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ABSTRACT OF THE DISSERTATION

Resting State Magnetoencephalography: Methods and Applications

by

Omer Tal

Doctor of Philosophy in Bioengineering

University of California, San Diego, 2014

Professor Thomas T. Liu, Chair
Professor Gert Cauwenberghs, Co-Chair

In recent times, the study of functional connectivity (FC) between spatially
distinct locations yet functionally related locations in the resting brain using functional
magnetic resonance imaging (fMRI) has been on the rise. However, the interpretation of
such functional measures is complicated by the complex hemodynamic nature of the
blood oxygenation level dependent (BOLD) signal, which can be influenced by both

neural as well as vascular factors. In this work, we employed a direct measure of
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neuromagnetic activity, magnetoencephalography (MEG), to further validate the neural
origin of caffeine-induced reductions in BOLD connectivity observed previously in our
lab. Concerns regarding the performance of existing source reconstruction methods for
MEG analysis motivated the development of an improved source reconstruction
technique, a multi-core beamformer (MCBF), which was comprehensively tested with
both simulations and neuromagnetic data. An iterative algorithm to be used in
conjunction with the MCBF, allowing a solution to be obtained without any a priori
knowledge about the underlying source configuration, was described and analyzed in
detail. With the help of the new beamformer, the caffeine data were reexamined and the
original findings were upheld. Preliminary investigation into resting-state networks by

means of temporal independent component analysis (ICA) was also conducted.
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INTRODUCTION

The field of resting-state functional connectivity was pioneered by Biswal et al.
(1995), who was the first to employ functional magnetic resonance imaging (fMRI) to
observe synchronous neurophysiological activity in the resting human brain. In particular,
it was demonstrated that low frequency (<0.1 Hz) fluctuations in the blood oxygenation
level-dependent (BOLD) signal were temporally correlated across spatially distinct
regions (left and right motor cortices). As BOLD fluctuations are generally viewed to be
reflections of underlying fluctuations in neural activity, the observed BOLD correlations
between the two regions were believed to be manifestations of functional connectivity in
the motor cortex at rest (Biswal et al., 1995). Later studies repeated the methodology to
discover other functionally connected networks in the resting brain, such as the visual
network (Lowe et al., 1998), the auditory network (Cordes et al., 2000) and the default
mode network (Greicius et al., 2003; Raichle et al., 2001). Given the robust spatial
consistency in networks across subjects (Beckmann et al., 2005; Damoiseaux et al.,
2006), spatial independent component analysis (ICA) was applied by Smith et al. (2009)
to help characterize the functional architecture of these resting-state networks (RSNs),
resulting in a set of RSN maps that have become the standard reference for the resting-
state connectivity community (cited over 850 times in the past 4.5 years). Advancing our
knowledge of the fundamental nature and neurophysiological basis of the RSN is
essential as such fMRI studies have already helped us shed light on the brain’s behavioral
states (Fox et al., 2007; He et al., 2007) and development (Jolles et al., 2011), assess

cognitive performance and intelligence (Hampson et al., 2006; Jolles et al., 2013; Song et



al., 2008) and better understand the neural pathology of disorders such as Alzheimer’s
disease (Greicius et al., 2004; Liu et al., 2013b), multiple sclerosis (Lowe et al., 2002),
schizophrenia (Garrity et al., 2007), Parkinson’s disease (Kwak et al., 2010; Liu et al.,
2013a), epilepsy (Lui et al., 2008) and more.

Although resting-state fMRI is quickly becoming a popular approach for the study
of brain function, caution must be exercised when interpreting the physiological
mechanisms driving the observed connectivity results due to the BOLD signal’s
dependence on both vascular as well as neural factors. Resting-state neural fluctuations
triggers changes in oxygen metabolism, cerebral blood volume and cerebral blood flow in
a complex fashion, which collectively produce the measured hemodynamic response
known as the BOLD signal (Buxton et al., 2004). Therefore, fMRI can provide only an
indirect measure of the underlying neural dynamics. Furthermore, studies have repeatedly
shown that non-neuronal elements (metabolic and vascular factors) can significantly
affect BOLD measurements by altering the neurovascular coupling linking the neural
activity and the hemodynamic response (Behzadi and Liu, 2005; Cohen et al., 2002;
D'Esposito et al., 2003; Liau et al., 2008; Liu et al., 2004). This can unfortunately lead to
the undesirable outcome of a false-positive assessment, where the detected BOLD signal
connectivity fluctuations could be incorrectly misattributed to changes neural activity
which did not actually take place (Liu, 2013). Matters could be further complicated in the
scenario where the influencing factor is known to affect both the neural and the vascular
systems. For example, caffeine, which stimulates neural activity via A; adenosine
antagonism (Dunwiddie and Masino, 2001) as well as constricts the vasculature via A,

adenosine antagonism (Fredholm et al., 1999), has been previously noted to significantly



reduce BOLD functional connectivity in the resting brain (Rack-Gomer et al., 2009;
Wong et al., 2012), yet the true physiological origin of the observed reductions was not
fully understood. Altogether, a better grasp of the electrophysiological basis of fMRI
resting state connectivity findings would be valuable to ensure their correct interpretation.
Direct measures of neuro-electromagnetic activity could be extremely useful in
elucidating fMRI observations as the hemodynamic confounds of the BOLD signal are
bypassed. For example, magnetoencephalography (MEG), a non-invasive brain imaging
modality, detects primarily the magnetic fields produced by the highly organized patches
of post-synaptic neuronal currents in the cortical gray matter (Hamalainen et al., 1993).
Such synchronized neuronal oscillations are believed to be more direct indicators of
underlying cortical connectivity (Schnitzler and Gross, 2005; Singer, 1999). In addition,
whereas fMRI’s temporal resolution is considerably poor (>1s) due to the temporal
characteristics of the hemodynamic response (Buxton et al., 2004), MEG offers data
which matches the timescale of neural firing (on the order of 1ms), thereby allowing a
wider, as well as more fitting, frequency range for data analysis of recorded neural
activity. Although perhaps less recognized than its familiar counterpart,
electroencephalography (EEG), MEG provides vastly improved spatial resolution as it is
insensitive to the inhomogeneous conductivity profile of the head, includes a high
number of sensors (~300), and is supported by more advanced reconstruction algorithms
for source-space projection (Robinson, 1998; Sekihara, 2008; Zumer et al., 2007). Taking
all these facts into consideration, MEG serves as a suitable choice for functional brain
imaging studies. In fact, the use of MEG as an investigative tool for resting-state

connectivity has been on the rise as of recent years, for the study of brain networks in



healthy subjects (Brookes et al., 2011a; de Pasquale et al., 2010; Hipp et al., 2012; Liu et
al., 2010; Mantini et al., 2007) as well as in patients suffering from neurophysiological
conditions such as autism, Alzheimer’s disease, Parkinson’s Disease, and stroke (Gomez
et al., 2011; Schoonheim et al., 2011; Tarapore et al., 2012; Westlake et al., 2012;
Zamrini et al., 2011). Several noteworthy resting-state fMRI findings were mirrored, thus
helping establish their underlying electrophysiological basis, such as existence of the
motor network (Brookes et al., 2011a), the default mode and attention networks (de
Pasquale et al., 2010), the visual and auditory networks (Hipp et al., 2012) and other
RSNs (Brookes et al., 2011b).

Typically, functional connectivity analyses of resting-state MEG recordings have
estimated source time-courses and correlations utilizing adaptive spatial filters
(beamformers) as their source-space projection tool of choice (Brookes et al., 2011a;
Brookes et al., 2011b; Hall et al., 2013; Hillebrand et al., 2012; Hipp et al., 2012;
Luckhoo et al., 2012; Mantini et al., 2011). Although most commonly used, the
reconstructions using the conventional minimum-variance beamformer (Robinson, 1998;
Sekihara et al., 2002; Van Drongelen, 1996; Van Veen et al., 1997) are highly susceptible
to inter-source correlations, resulting in source amplitude suppression and time-course
distortion (Sekihara, 2008). Considering that spontaneous neural activity is known to
involve synchronous communication between multiple sources (Singer, 1999), the use of
the conventional beamformer as a tool for FC analysis could be problematic (Moiseev
and Herdman, 2013). Moreover, spurious connectivity introduced due to the ill-posed
nature of the inverse (source-space projection) problem known as signal leakage, is

thought to be a significant hindrance in assessing MEG functional connectivity and RSN



characterization (Brookes et al., 2011b; Brookes et al., 2012), further raising the question
of the current practice.

The purpose of this dissertation is to further validate previous fMRI resting-state
findings by probing the corresponding MEG connectivity observations as well as to help
advance existing MEG source-space projection techniques to better suit the question at
hand. In the first study, we examined and compared the effects of a pharmacological
agent (caffeine) on fMRI and MEG resting-state global connectivity across a sample of
10 subjects (standard beamformer used for MEG source-space projection). We found that
caffeine led to a significant and widespread reduction in both fMRI and MEG measures,
suggesting that changes in neural connectivity played a substantial role in decreasing the
BOLD connectivity. In our second study, we developed and tested a mathematical
framework for an improved version of the conventional beamformer, which is insensitive
to inter-source correlations. Simulations and real evoked neuromagnetic data were used
to confirm theory. In our third study, we developed and tested an algorithm to help
automate MEG resting-state data processing with the enhanced beamformer, helping to
eliminate the concerns of signal leakage and the requirement of a priori knowledge of
source location. Once more, complex simulations along with real evoked neuromagnetic
measurements were used to confirm the potential of the proposed technique. In the final
section, we compare the original and new beamformers by re-examining both the caffeine
data as well as MEG resting-state networks in general. We demonstrate that although the
different reconstructions methods exhibited significant differences when investigated
with simulations and evoked data, the difference between methods were not significant

when applied to resting-state measurements.
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In resting-state functional magnetic resonance imaging (fMRI), the temporal correlation
between spontaneous fluctuations of the blood oxygenation level dependent (BOLD) signal
from different brain regions is used to assess functional connectivity. However, because
the BOLD signal is an indirect measure of neuronal activity, its complex hemodynamic
nature can complicate the interpretation of differences in connectivity that are observed
across conditions or subjects. For example, prior studies have shown that caffeine leads
to widespread reductions in BOLD connectivity but were not able to determine if neural
or vascular factors were primarily responsible for the observed decrease. In this study, we
used source-localized magnetoencephalography (MEG) in conjunction with fMRI to further
examine the origins of the caffeine-induced changes in BOLD connectivity. We observed
widespread and significant (p < 0.01) reductions in both MEG and fMRI connectivity mea-
sures, suggesting that decreases in the connectivity of resting-state neuro-electric power
fluctuations were primarily responsible for the observed BOLD connectivity changes. The
MEG connectivity decreases were most pronounced in the beta band. By demonstrating
the similarity in MEG and fMRI based connectivity changes, these results provide evi-
dence for the neural basis of resting-state fMRI networks and further support the potential
of MEG as a tool to characterize resting-state connectivity.
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INTRODUCTION

The temporal correlation between spontaneous low-frequency
fluctuations in the blood oxygenation level dependent (BOLD)
signal measured using functional magnetic resonance imaging
(fMRI) is being increasingly used to characterize functional con-
nectivity (FC) in the brain. Functional connectivity MRI (fcMRI)
was first demonstrated by Biswal et al. (1995), who observed syn-
chronous BOLD fluctuations within the motor cortex during rest.
Subsequent studies found additional resting-state networks such
as the visual network (Lowe et al., 1998), the default mode network
(Raichle et al,, 2001), the task positive network (Fox et al., 2005),
and a number of task-related networks (Smith et al., 2009)., feMRI
studies are advancing our understanding of the brain’s behavioral
states (Fox et al., 2007; He et al., 2007) and pathology (Lowe et al.,
2002; Greicius et al., 2004; Lui et al., 2008; Kwak et al., 2010),
and have also proven to be useful for the assessment of cognitive
performance (Hampson et al., 2006; Song et al., 2008a).

In most fcMRI studies, changes in FC measures are inter-
preted as evidence of underlying changes in neuronal connec-
tivity. However, as the BOLD signal reflects both vascular and
neural factors, the interpretation of resting-state FC observa-
tions can be challenging. The BOLD response is a complex
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function (known as the hemodynamic response) of changes in
oxygen metabolism (CMRO;), cerebral blood flow (CBF) and
blood volume, and thus provides an indirect measure of the
underlying neuro-electrical activity (Buxton et al., 2004). Other
non-neuronal confounds, such as metabolic and vascular factors
rising from differences in age, diet, medications, and pathol-
ogy, can alter the neurovascular coupling linking neural activ-
ity to the observed hemodynamic changes (Cohen et al., 2002;
D'Esposito et al.,, 2003; Liu et al., 2004; Behzadi and Liu, 2005;
Liau et al, 2008) and thus affect the BOLD signal. Hence, changes
in metabolic and vascular factors can give rise to changes in FC
measures even when there is no underlying change in neural
connectivity.

Magnetoencephalography (MEG) is a non-invasive brain imag-
ing modality which can aid in the interpretation of fcMRI mea-
sures (Hamalainen et al., 1993). MEG avoids the hemodynamic
confounds of the BOLD signal by providing a direct measure of
neuro-electromagnetic activity. Furthermore, the temporal res-
olution of the MEG signal is on the timescale of neural firing
events, permitting a substantially wider frequency range for activ-
ity analysis than the fMRI signal, whose temporal resolution is
limited by the temporal broadening inherent in the hemodynamic
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response (Huxton et al., 2004). Compared to electroencephalogra-
phy (EEG), MEG provides superior spatial resolution, due in large
part to its robustness to the conductivity profile of the human
head. In addition, the high number of sensors and availability of
advanced reconstruction algorithms (Robinson and Viba, 1998;
Wipl et al., 2010) have enabled more accurate characterization
of the underlying neuro-electromagnetic sources. In recent years,
MEG has emerged as a valuable tool in the investigation of connec-
tivity and power fluctuations in both studies of healthy volunteers
(de Pasquale et al., 2010; Liu et al., 2010; Brookes et al., 2011a;
Mantini et al,, 2011) and patients suffering from neurophysio-
logical disorders such as autism, Alzheimer’s disease, Parkinson’s
disease, and stroke (Gomez et al,, 2011; Schoonheim et al,, 2011;
Zamrini et al., 2011; Tarapore et al., 2012a,b; Westlake et al., 2012).
Perhaps most notably, Brookes et al. (2011h) recently used MEG
and beamforming algorithms to validate the electrophysiological
basis of the resting-state fcMRI networks.

In order to compare changes in fIMRI and MEG FC, it is useful to
have a pharmacological agent that can alter the state of connectiv-
ity in healthy subjects for a period of time (e.g., an hour or more)
that is sufficiently long to facilitate experimental measurements.
Caffeine is a widely used stimulant that reliably perturbs the neural
and vascular systems of the brain for several hours or more (Ired
holm et al,, 1999), We have previously shown that a 200-mg dose
of caffeine significantly reduced resting-state BOLD connectivity
in the motor cortex (Rack-Gomer et al,, 2009) as well as in a global
fashion across the brain (Wong et al., 2012). Caffeine constricts
the vascular system and decreases CBF by antagonizing adeno-
sine A receptors (Iredholm et al., 1999) and stimulates the neural
system through antagonism of adenosine A; receptors (Dunwid-
die and Masino, 2001), Both pathways can alter the measured
BOLD signal, where the vascular pathway does so by modifying
the mechanisms of neurovascular coupling and thus the overall
hemodynamic response function, while the neural pathway can
modulate the input to the response function. It has been demon-
strated that caffeine significantly reduces baseline CBF (Liau et al.,
2008; Rack-Gomer et al,, 2009) and increases baseline CMRO,
(Ciriffeth et al, 2011), a combination which tends to increase the
BOLD response to an arbitrary neural input. On the other hand,
it has also been shown that caffeine tightens the coupling between
CBF and CMRO;, reducing the BOLD sensitivity to neural activity

(Chen and Parrish, 2009; Griffeth et al., 2011). These two effects
tend to cancel out, resulting in little or no impact on the task-
related BOLD response (Laurienti et al.,, 2002; Liau et al., 2008;
Chen and Parrish, 2009; Griffeth et al, 2011). As task-related

and resting-state BOLD responses are likely to share the same
underlying hemodynamic pathways, it is unlikely that vascular
and metabolic changes are the primary mechanisms behind the
observed reductions in BOLD connectivity, With regards to caf-
feine’s effect on neural activity, several studies find that caffeine
reduces EEG power (Dimpfel et al., 1993; Siepmann and Kirch,
2002) and may also decrease inter-hemispheric coherence (Recves
et al, 2002), Based on these prior findings, we hypothesized that
the caffeine-induced reductions in BOLD connectivity are mainly
driven by decreases in neural connectivity, and that MEG mea-
sures of FC would show a similar caffeine-related decrease. To test
our hypothesis, we conducted a double-blind placebo-controlled
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study with a repeated measures design in which MEG and fMRI
resting-state data were collected on subjects both prior to and
after the ingestion of caffeine (or placebo). At present, there is
not a clear consensus among resting-state FC studies with respect
to the state of the eyes during the experiment, with some stud-
ies employing an eyes closed (EC) protocol while others use
an eyes open (EO) with fixation protocol (Liu et al,, 2010; Van
Dijk et all, 2010). In light of this situation, we chose to compare
the effects of caffeine on fMRI and MEG connectivity in both
states.

MATERIALS AND METHODS

EXPERIMENTAL PROTOCOL

Twelve healthy volunteers were initially enrolled in this study
after providing informed consent. Two subjects were not able to
complete the study due to excessive motion and dental artifacts,
resulting in a final sample size of 10 subjects (four males and
six females; ages 21-33 years; mean of 25.6 years). To minimize
potential confounds due to differing levels of caffeine consump-
tion (Jones et al., 2000; Reeves et al., 2002), we recruited subjects
with low levels of caffeine usage (<50 mg/day). Participants were
instructed to abstain from caffeine for 24 h prior to being scanned,
as well as to maintain low caffeine consumption for a 2-month
period prior to the beginning of the study and throughout the
entire duration of the study.

The study employed a double-blind, placebo-controlled,
repeated measures design. For each modality (MEG and fMRI),
each subject participated in two independent imaging sessions, a
control session and a caffeine session, where the order of the two
sessions was random. Each of the four imaging sessions (MEG con-
trol and caffeine; IMRI control and caffeine) was separated from
the other sessions by at least 2 weeks. Half the subjects started with
MEG sessions while the other half started with fMRI sessions. Each
session consisted of a pre-dose section and a post-dose section,
with each MEG and fMRI section lasting about 30 and 60 min,
respectively. After the pre-dose section, subjects were taken out of
the MEG or MRI scanner and asked to ingest a capsule contain-
ing 200 mg of caffeine or placebo. A 40-min period was allotted
between capsule ingestion and the first functional scan of the post-
dose section, as previous studies have shown that the absorption of
caffeine from the gastrointestinal tract reaches 99% about 45 min
post ingestion (Fredholm et al., 1999),

Each MEG scan section consisted of four 5min resting-state
scans, two with EC and two with EO, in the following order: EC,
EO, EC, and EO. Subjects were instructed to stay awake, relax, and
think of nothing in particular (Stamatakis et al,, 2010; van den
Heuvel and Hulshoft Pol, 2010) while keeping their hands open,
laying flat. During EO resting-state scans, participants were asked
to visually fixate on a black cross placed on a white screen, while
during the EC resting-state scans they were asked to keep their
eyes closed and to imagine the black cross. Each fMRI scan section
included a high-resolution anatomical scan, two 5min resting-
state scans, one EO scan and one EC scan, and additional scans
described below and in Wong et al. (2012), The instructions given
to the subjects for the resting-state scans were the same as those
used for the MEG sessions. The order of the EC and EO fMRI
resting-state scans was randomized.



DATA ACQUISITION

Magnetoencephalography

Magnetoencephalography data were measured using an Elekta/
Neuromag™ whole-head MEG system with 204 gradiometers and
102 magnetometers in a magnetically shielded room (IMEDCO-
AG, Switzerland). Electro-oculogram (EOG) electrodes were used
to record eye blinks and movements. Data were sampled at 1000 Hz
and pre-processed using MaxFilter (Neuromag™) to detect and
correct for saturated and spurious channels, suppress magnetic
interference from inside and outside the sensor array, and com-
pensate for disturbances due to magnetic material in the region of
the head (Taulu et al,, 2004; Taulu and Simola, 2006; Song et al.,
20080, 2009), As MaxFilter is limited in certain artifact-removal
tasks (e.g., eye movement), we also applied temporal independent
components analysis (ICA) to the data using the fast ICA algo-
rithm (Hyvarinen, 1999) to remove notable residual artifacts due
to eye movements, eye blinks, and cardiac activity. The indepen-
dent components to be removed were selected by visual inspection
of their temporal and spatial signatures (e.g., the EOG time-course
was used for visual comparison), typically removing one to three
components in a given dataset.

Functional magnetic resonance imaging

A detailed description of the acquisition and analysis of the fMRI
data was previously provided in Wong et al. (2012). For con-
venience, we restate the relevant details in this and subsequent
sections. Imaging data were acquired using a 3-T GE Discov-
ery MR750 whole body system with an eight-channel receiver
coil. High-resolution anatomical data were collected using a mag-
netization prepared 3D fast spoiled gradient (FSPGR) sequence
(Tl=600ms, TE=3.1ms, FOV=256cm, 256 x 256 x 176
matrix, slice thickness = 1 mm, and flip angle = 8°). Whole brain
BOLD resting-state data were acquired using an echo planar
imaging (EPI) sequence (TR=1.8s, TE =30 ms, FOV =24 cm,
64 x 64 matrix, slice thickness =4 mm, slice gap=1mm, # of
slices = 30, and flip angle = 70°). Field maps were acquired using
a gradient recalled acquisition in steady state (GRASS) sequence
(TE, = 6.5 ms, TE; = 8.5 ms), with equivalent in-plane parame-
ters and slice coverage as in the BOLD data, and the phase differ-
ence between the two echoes was used to correct the BOLD data
for magnetic field inhomogeneities (Jenkinson, 2003; Fessler etal.,
2005). Cardiac pulse and respiratory data were monitored using a
pulse oximeter (InVivo Corp.) which was placed on the subject’s
finger and a respiratory effort transducer (BIOPAC) placed around
the abdomen. The physiological data were sampled at 40 Hz using
a multi-channel data acquisition board (National Instruments).

DATA PROCESSING

Magnetoencephalography

Using the high-resolution anatomical data obtained in the MRI
scan, a boundary element based triangular mesh of 5-mm mesh
size was generated for each subject from their inner-skull surface.
FreeSurfer was used to define a fixed source grid (7 mm spacing) on
the brain’s gray—white matter boundary, which was then divided
into cortical regions of interest (ROI) using the FreeSurfer com-
puted parcellations (Desikan et al., 2006). With the inner-skull
triangular mesh and gray matter source grid, the MEG forward
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model calculation for the lead-field (gain) matrix was performed
using aboundary element model (Mosher et al,, 1999 Huang et al.,
2007). Registration of MRI and MEG data was performed using
positioning information obtained with a Polhemus Isotrak system
prior to each MEG session.

In our analysis, we considered MEG data both within a wide-
band range of 1-50 Hz and within the following bands: delta
(8) — 1-4 Hz, theta (8) — 4-8 Hz, alpha (a) — 8-13 Hz, low and
high beta (B) — 13-20 and 20-30 Hz, respectively, and low gamma
(y) — 30-50 Hz. The frequency filtered MEG data were then pro-
jected into source space using the array-gain constraint minimum-

variance regularized vector beamformer (van Drongelen et al.,
1996; Van Veen et al., 1997; Robinson and Vrba, 1998; Sekihara and
Nagarajan, 2008), yielding a set of band-limited time-courses for

each source location, Covariance matrices were generated inde-
pendently for each frequency band and experimental run using
all 3005 of the recorded data from each run. The regularization
level was set uniquely for each individual MEG recording by uti-
lizing a modified “broken-stick” model as described in Behzadi
etal. (2007 ), which helps to identify the meaningful (data-related)
principal components. A statistical distribution of expected eigen-
values, derived from random normally distributed data with rank
and Frobenius norm equal to that of the MEG data of interest, was
used for comparison and determination of the noise level [i.e., the
number of significant (p < 0.05) modes|. The value of the first
non-significant (noise) component then represented the cut-off
and was used as the regularization parameter. For each frequency
band of interest, the source time-courses were Hilbert transformed
to construct the corresponding analytic signals. The envelope of
oscillatory power fluctuations (also referred to as the “Hilbert
envelope”) was obtained via computation of the amplitude of the
analytic signal (Brookes et al., 2004, 2012a), Temporal smoothing
was applied following the approach of Brookes etal. (201 1a) where
an “average Hilbert envelope” time-course was obtained by divid-
ing the envelope time-course into 500 ms blocks and averaging
the envelope within each block. These average Hilbert envelope
time-courses were then used for the connectivity computations
described below, yielding the Correlation of Average Envelopes as
defined in Brookes et al. (2011a).

Functional magnetic resonance imaging

Anatomical data were skull-stripped and segmented into white
matter, gray matter, and cerebral spinal fluid using FSL (Smith
et al, 2004). The post-dose anatomical volume was registered
to the pre-dose volume using AFNI (Cox, 1996), and the result-
ing rotation and shift parameters were applied to the post-dose
functional data. A binary brain mask was created using the skull-
stripped anatomical data. For each slice, the mask was eroded by
two voxels along the border to eliminate voxels at the edge of the
brain (Rack-Gomer and Liv, 2012), The first six time points of
fMRI data were discarded to allow magnetization to reach steady
state. Nuisance terms were removed from fMRI data by means
of multiple linear regression using the following regressors: lin-
ear and quadratic trends, six motion parameters, RETROICOR
(Glover et al., 2000) and RVHRCOR (Chang and Glover, 2009)
regressors, and the mean BOLD signal calculated from WM and
CSF voxels (partial volume threshold of 0.99 for each tissue type).



BOLD data were then low pass filtered with a cut-off frequency of
0.08 Hz (Biswal et al., 1997; Cordes et al,, 2001; Fox et al., 2005),

CONNECTIVITY MEASURES

For each subject, we used the FreeSurfer cortical parcellations
(Desikan et al., 2006) to define anatomical ROls, As described
in Wong et al. (2012), we discarded ROIs for which any subject
had less than five voxels within a region, resulting in a total of
40 ROIs (20 per hemisphere). For fMRI data, an average BOLD
time-course was calculated for each ROI using all voxels within
the region. To reduce spatial leakage effects on the ROI-to-ROI
MEG connectivity estimates that are inherent to the beamform-
ing process (Brookes et al, 2012b), we defined a smaller MEG
source region within each larger anatomical ROI. A central source
for each of the cortical ROIs was defined as the source with the
smallest mean path length to all the other sources within the ROL
Next, a sphere-shaped region was defined to include every source
that was both within 12 mm of the central source and contained
within the same ROI. The average Hilbert envelopes within this
region were then averaged to provide a mean MEG time-course
for each ROL.

To assess connectivity, we computed the Pearson correlation
coefficient (r) between the average time-courses for each pair of
ROIs (780 pairs). For each modality, the correlation coefficient
was computed for each of the four acquisition sections (pre-dose
and post-dose sections of both the Control and Caffeine sessions).
For the MEG data, the correlation coefficients from repeated scans
(e.g., the two pre-dose EC scans) were averaged. For quantitative
assessments, the Pearson correlation scores were converted to the
Fisher z-scores using the Fisher transformation (Luckhoo et al,
2012). The change in the z-score metric ( Az = post-dose z-score
minus pre-dose z-score) in each session (caffeine and control) was
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calculated, and a repeated measures two-way analysis of variance
{ANOVA) (Keppel and Wickens, 2004) was then used to exam-
ine the effects of two factors on the measured connectivity: (1)
the effect of caffeine/control and (2) the effect of ROI pair (\Wong
et al., 2012).

RESULTS

WHOLE BRAIN CONNECTIVITY

For a representative subject, Pearson correlation coefficient matri-
ces indicating the degree of connectivity in the EC condition for
all ROI pairs are displayed in Figure 1 for each of the four scan
sections (pre-dose and post-dose sections of the caffeine and con-
trol sessions). The MEG and fMRI connectivity matrices are shown
in the left and the right hand sides of the figure, respectively, and the
fMRI matrices are similar to those previously presented in \Wong
etal. (2012), The MEG connectivity metrics were obtained using
the wide-band frequency range (1-50 Hz). MEG correlations in
the post-dose caffeine data are visibly lower than in the pre-dose
caffeine data, indicating a caffeine-induced global decrease in this
subject’s connectivity, while there is not a widespread difference
between the pre-dose and post-dose MEG correlations in the con-
trol session. A similar qualitative assessment can be made about
the fMRI data, where the connectivity in the post-dose section of
the caffeine session shows a widespread decrease as compared to
the pre-dose condition.

Figure 2 shows the changes in z-score (post-dose minus pre-
dose) averaged across subjects for both conditions (EC and EO)
and sessions (control and caffeine), with the changes for MEG
and fMRI shown in the left and the right hand sides of the figure,
respectively. The upper triangle of each matrix shows the mean
changes in the z-score metric (across subjects) for all ROI pairs,
while the lower triangle shows the t-statistics of those ROI pairs

A MEG WideBand (1-50Hz)
Caffeine Control

FIGURE1|C ivity ices for a rey i bject in the
eyes closed condition showing P lations b all
pairs of ROIs for the (A) MEG wide-band (1-50 Hz) data and the (B)
fMRI BOLD data. Each entry corresponds to the correlation between
one pair of ROIs, with the axes corresponding to the ROI indices (1-40).
Both MEG and fMRI connectivity are visibly lower in the post-dose
caffeine section than in the pre-dose caffeine section, while no change is

apparent in the control session for either modality. RO labels (1-20 left
hemisphere; 21-40 right hemisphere): anterior cingulate, middle frontal,
cuneus, fusiform, inferior parietal, isthmus cingulate, lateral orbitofrontal,
medial orbitofrontal, pars opercularis, post central, posterior cingulate,
precentral, precuneus, rostral anterior cingulate, rostral middle frontal,
superior frontal, superior parietal, superior temporal, supramarginal,
insula.
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A MEG WideBand (1-50 Hz)
Caffeine Control

ating b

in mean Y
averaged across the subject group for both the (A) MEG wide-band
(1-50 Hz) data and the (B) fMRI BOLD data. The results from the eyes

FIGURE 2 | Ch all ROI pairs

closed condition are shown in the top row, while the bottom row
corresponds to the results from the eyes open condition. Each subplot is
divided into an upper triangle which shows the mean change in z-scores
for each ROI pair and a lower triangle displaying the corresponding

B fMRI BOLD
Caffei

g W
M=
o

l‘_ .
.

t-statistic for each ROI pair (in a mirrored fashion where only significant

(p < 0.05) entries are filled in). A negative value (blue color) corresponds to
a caffeine-induced decrease in connectivity, while a positive value (red)
corresponds to an increase in connectivity, Qualitative assessment shows
broad decreases in connectivity due to caffeine for the eyes closed
condition and to a lesser extent in the eyes open condition, for both
modalities.

thatexhibited a significant (p < 0.05) change in connectivity across
the sample. Decreases and increases in z-scores and r-statistics are
indicated by blue and red hues, respectively. From a qualitative
perspective, broad decreases in MEG and fMRI connectivity can
be observed for the EC caffeine data and to a lesser extent in the
EO data. The control data for both conditions (EC and EO) shows
fewer significant changes than the caffeine data, with the MEG data
showing only significant decreases and the fMRI data showing a
nearly even mix of increases and decreases.

As a quantitative assessment of the data, Table 1 summarizes
the results provided by the two-way repeated measures ANOVA.
For the EC condition, the caffeine/control factor showed a signifi-
cant effect for both MEG and fMRI (p < 0.01), indicating that the
change in correlation was significantly different between the caf-
feine and control sessions in both modalities, Post hoc two-tailed
t-tests showed a significant decrease in mean z-score averaged
across ROI pairs for the caffeine session [1(9) = —4.43,p = 1.7e—3
for MEG; t(9) = —5.63, p=3e—4 for fMRI] whereas significant
changes were not observed for the control session [1(9) = —1.96,
p=0.08 for MEG; t(9) = —0.69, p=0.51 for fMRI]. The inter-
action terms between the factors were not significant for either
modality, suggesting that the effect of the caffeine/control factor
was largely independent of ROI pair. For both modalities, the effect
of the caffeine/control factor did not reach significance in the EO
condition. As a result, we will focus on the EC condition for the
remainder of the analysis.

MEG BAND-SPECIFIC ACTIVITY

To provide further insight into the global MEG connectivity reduc-
tions observed in the EC condition, Figure 3 shows the mean
connectivity changes across all ROIs for each of the frequency

bands defined in the Section “Materials and Methods” (displayed
in the same manner as the wide-band MEG data in Figure 2).
Widespread decreases in z-scores are evident in the caffeine data
across all bands, with the strongest reductions appearing in the
a, low B, and high f bands. The data from these three bands also
showed connectivity decreases in the control session. A quanti-
tative assessment using the two-way repeated measures ANOVA
(Table 2) indicates that only the 6, low f, and high f bands showed
a significant main effect (p < 0.0165) of the caffeine/control fac-
tor. The interaction term was not significant (p = 0.58) for these
bands. Although the a band exhibited qualitatively large reduc-
tions in connectivity as well, the effect of the caffeine/control factor
was not significant (p = 0.085).

To gain a better understanding of the contribution of different
bands to the wide-band MEG connectivity changes, we computed
the Pearson correlation between the mean Az-scores (averaged
across all ROIs for each subject) for the wide-band and band-
limited MEG data. As shown in Table 3, significant correlations
were observed for the a, low f, and high p bands in the caffeine
session and for the o, low B, and low y bands in the control session.

COMPARING fMRI AND MEG GLOBAL EFFECTS

To estimate each subject’s mean global correlation, we averaged the
correlation values across all ROI pairs from their respective con-
nectivity matrix. The mean global correlations for the fMRI and
MEG caffeine sessions (pre-dose and post-dose section) for all 10
subjects are plotted in the top panel of Figure 4. The bar graph
in the bottom panel of Figure 4 summarizes the caffeine-induced
changes (post-dose minus pre-dose) in the MEG and fMRI mean
global correlations for each subject. While all subjects exhibited a
decrease in their overall connectivity regardless of modality, there
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Table 1 | Quantitative assessment of the group data for both modalities (fMRI and wide-band MEG) and both conditions (eyes closed and open)

using rep d two-way analysis of vari (ANOVA) to examine the effects of (1) caffeine/control and (2) ROl pair on the measured
connectivity changes.
Factor Dof Eyes closed Eyes open
MEG fMRI MEG fMRI

F p F P F p F P
Caffeine/control (1.9 11.89 <0.01 10.45 0.01 1.38 0.27 2.70 0.13
ROI pairs (779, 7011) 121 <le—4 141 <le-6 1.87 <le-6 144 <le-6
Interaction (779, 7011) 0.85 0.99 1.04 0.23 1.07 0.10 0.99 0.60

The caffeine/control factor showed a significant (p < 0.01) effect in the eyes closed condition but not in eyes open condition (for both modalities). Interaction terms
were non-significant, suggesting caffeine/control factor was largely independent of RO pair.

Caffeine

Control

FIGURE 3 | Ch

in mean
between all ROl pairs
six MEG frequency bands of interest: & (1-4 Hz), 6 (4-8 Hz), « (B-13 Hz),

low B (13-20 Hz), high f (20-30 Hz), and low y (30-50 Hz). Each subplot is

ivity (eyes closed condition)
ged across the subject group for each of the

low B (13-20Hz) high [ (20-30Hz) low y (30-50Hz)

e

created in the same manner as was described in the caption of Figure 2.
Widespread decreases in connectivity (z-scores) are evident in the caffeine
data across all bands, with the strongest reductions appearing in the a and p
bands.

Table 2 | Quantitative assessment of the group data for each of the six MEG fi

y bands of i (eyes closed condition) using repeated

measures two-way analysis of variance (ANOVA) to examine the effects of (1) caffeine/control and (2) ROI pair on the measured connectivity

changes.
Factor & [} o Low High g Low y

F P F ] F P F P F ] F P
Caffeine/control 172 0.22 14.38 =0.01 38 0.085 9.67 0.012 B.64 0.016 132 0.28
ROI pairs 0.80 1.00 123 <le-4 2.08 <le—6 1.66 <le-6 126 <le-6 145 <1e-6
Interaction 0.80 0.98 0.80 1.00 0.92 093 0.99 058 0.94 0.85 0.87 0.99

The caffeine/control factor showed a significant (p < 0.0165) effect in both the 6 and i bands (interaction terms were non-significant; p= 0.58).

was not a significant relation between the magnitude of the MEG
and fMRI changes [Pearson correlation coefficient (r) = —0.18,
p=0.62; Spearman’s rank correlation p=—0.12, p=0.73]. Fur-
ther examination of Figure 4 reveals that 8 out of the 10 subjects
showed a larger decrease in correlation in the fMRI data as com-
pared to the MEG data, while the remaining two subjects (numbers
1 and 6) showed a smaller correlation decrease in the fMRI data,

These two subjects also exhibited the lowest overall IMRI pre-dose
global connectivity (solid red curve in top panel) and the smallest
changes in the fMRI mean global correlation when compared to
the rest of the group (red bars in bottom panel). Recomputing
the correlation between the magnitudes of connectivity changes
for the remaining eight subjects results in a larger (although not
significant) correlation (Pearson’s r =0.62, p = 0.09; Spearman’s



Table 3 | Correlation (Pe ) of the ivity ch
bands of interest (eyes closed condition).

L]
Pearson correlation of Az across all subjects Caffeine 0.22
Control 0.42
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in the wide-band MEG to the connectivity changes in each of the six MEG frequency

) o Low B High p Low y
0.47 0.84* 0.79* 0.72* 0.40
0.57 0.96* 0.76* 0.56 0.67*

Connectivity changes were quantified for each subject by averaging the change in the z-score metric across all ROI pairs. Significant (p < 0.05) correlations are noted

with a star.

Avg. Corr (r)
e
-

Avg. Ar

0.4

ol N —
NaNLLLE

——MEG Pre
=+ MEG Post
——fMRI Pre
~=—fMRI Post
I MEG

I fMRI

lI'l "

23 1 2 3 4 5

FIGURE 4 | Top panel - individual mean global correlations (averaged across
all RO| pairs) are plotted for the MEG (blue lines) and MR (red line} eyes
closed caffeine scans. The solid lines represent the mean global correlation
from the pre-dose section while the dotted lines correspond to the post-dose
section connectivity. Bottom panel — individual caffeine-induced changes in

6
Subject #

7 8 ] 10

mean global comrelation (post-dose section minus pre-dose section) for the
MEG (blue) and the fMRI (red) caffeine sessions. Although all subjects
exhibited a decrease in overall connectivity for both modalities, the
magnitudes of the MEG and fMRI decreases were not significantly related.
Error bars represent the standard error across regions.

p=0.71, p=0.06). The relation between MEG and fMRI mea-
sures was similar for the bands which were found in the previous
section to have the strongest similarity to the wide-band MEG
changes. For example, in the low-beta band, we found Pearson’s
r=10.72, p=0.04 and Spearman’s p = 0.69, p = 0.07.

DISCUSSION

Caffeine has been previously shown to reduce the connectivity of
spontaneous BOLD fluctuations across the brain (Rack-Gomer
et al, 2009; Wong et al,, 2012), Given the BOLD signal’s com-
plex dependence on both neural and vascular factors, it is not
straightforward to assess how caffeine’s modulation of these fac-
tors contributes to the observed changes in BOLD connectivity
when only fMRI measures are available. In this study, we utilized
MEG measures to better determine the contribution of neural
changes in connectivity to the observed reductions in BOLD con-
nectivity. We found that caffeine led to a significant and widespread
reduction in both fMRI and MEG measures of resting-state con-
nectivity in the EC condition. Neither modality revealed a signifi-
cant change in connectivity for the EO condition. While our prior
study (Wong et al., 2012) suggests that the lack of pronounced
connectivity changes in the EO state may reflect a smaller additive

global signal component (as compared to the EC state), further
studies are needed to determine why both fMRI and MEG connec-
tivity changes are more evident in the EC versus EO state. Overall,
our results indicate that caffeine-related changes in neural connec-
tivity (as assessed with MEG) play a substantial role in decreasing
BOLD connectivity. In addition, as the widespread decreases in
BOLD connectivity have been shown to be related to a decrease
in the resting-state fMRI global signal, the concomitant decreases
in MEG connectivity provide further evidence for a neural basis
to the global signal (Scholvinck et al., 2010; Wong et al., 2012). In
this study, we focused on the global nature of the caffeine-induced
changes in connectivity. Future studies comparing changes in spe-
cific functional networks as well as differences in complex network
measures of connectivity (Rubinov and Sporns, 2010) may pro-
vide deeper insights into the nature of the caffeine-induced effects
and the relation between fMRI and MEG connectivity measures.
While all subjects showed a decrease in both global fMRI and
MEG connectivity measures, we did not find a significant rela-
tion between the magnitude of the decreases. Because the fMRI
and MEG measures cannot be obtained in a simultaneous fashion,
this finding partly reflects the presence of inter-subject and inter-
session variability in resting-state brain connectivity. Differences



in the experimental settings may have also been a factor (e.g., sub-
jects were supine for the fMRI experiments but sat in a reclining
chair for the MEG experiments). Prior work has demonstrated
that there can be considerable variability across subjects and scans
in the amplitude of the resting-state fMRI global signal, which is
proportional to the average global connectivity (e and Liu, 20125
Wong et al., 2012), Variability in the degree of connectivity in the
pre-dose state can alter the observed changes in connectivity. For
example, if a subject has a typical level of resting-state connectivity
(as compared to the rest of the sample) in the pre-dose MEG scan
on one day but a lower relative level of connectivity in the pre-dose
fMRI scan on another day, these differences in pre-dose connec-
tivity will tend to lead to a relatively smaller reduction in this
subject’s fMRI connectivity, as compared to the decrease in their
MEG connectivity. Indeed, in the current study, we find that the
relation between fMRI and MEG connectivity measures is consid-
erably weakened by the relatively low pre-dose fMRI connectivity
levels in two of the subjects. When considering the measures from
the remaining eight subjects, we find a stronger (and nearly signifi-
cant) relation between the fMRI and wide-band MEG connectivity
measures.

As prior work has shown that fMRI fluctuations reflect a com-
plex interaction of neuronal processing across different frequency
bands (Mantini et al., 2007), we also examined the contribution
of different bands to the observed wide-band MEG connectivity
changes. We found that connectivity changes in the p band (both
low and high) exhibited a significant effect of the caffeine/control
factor and that changes in these bands were significantly correlated
with the connectivity changes observed in the wide-band MEG
signal. This finding is consistent with the growing body of resting-
state literature which has shown a close relationship between f
band oscillations and the BOLD signal in the motor cortex, visual
cortex, and other resting-state networks (Brookes et al,, 2011b;
Stevenson et al., 2011). Furthermore Liu et al. (2010) found the
large-scale synchrony of MEG power fluctuations (assessed at the
sensor level) to be strongest in the p band and proposed that this
finding suggested a neural basis for the global signal observed in
resting-state fMRI,
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Although considerably more informative then sensor measure-
ments, the MEG beamformer approach used in this study has some
potential limitations. Due to overlapping lead fields, signal leak-
age can occur and MEG time-courses from separate locations may
appear to be correlated even though no true underlying FC exists
(Brookes et al,, 2011a). In this study, signal leakage effects were
reduced by forming average time-courses from dipoles located
within a sphere of 12 mm radius at the center of each ROI, thus
minimizing the inclusion of physically adjacent dipoles from dif-
ferent ROIs. Prior work has shown that leakage is influenced by the
choice of regularization as well as preprocessing artifact reduction
steps (Brookes et al., 20084,b). We verified that the degree of reg-
ularization performed in this study was consistent with that used
in prior resting-state MEG connectivity studies (Brookes et al,

201 1ab; Luckhoo et al,, 2012), Future connectivity studies could
perhaps better address the leakage issue by applying techniques
insensitive to leakage (Hrookes et al, 2012b). Furthermore, an

inherent limitation of the beamformer approach is its inability
to resolve correlated sources, resulting in source suppression and
time-course distortion (Sekihara et al., 2002). However, these lim-
itations may be less pronounced in this study as the beamforming
is performed on the filtered MEG time series while the corre-
lation is computed using the MEG power fluctuations (Hrookes
ctal, 2011ab). Nevertheless, future implementation of techniques
which have addressed the issue of correlated source suppression
could be beneficial (Wipf et al., 2010; Diwakar et al., 2011).

In conclusion, this study demonstrates the similarity in
caffeine-induced changes as assessed with both fMRI and MEG,
supporting the neural origins of the BOLD connectivity decreases.
This finding serves to provide a firmer basis for the use of fMRI as
a tool for the evaluation of FC at the neural level. In addition, our
results further demonstrate the utility of source-localized MEG
measures for the assessment of resting-state connectivity.
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magnetoencephalography (MEG) recordings at low signal-to-noise ratio (SNR), Conventional beamformer
techniques are successful in localizing uncorrelated neuronal sources under poor SNR conditions. However,
the spatial and temporal features from conventional beamformer reconstructions suffer when sources are
correlated, which is a common and important property of real neuronal networks. Dual-beamformer
techniques, originally developed by Brookes et al. to deal with this limitation, successfully localize highly-
correlated sources and determine their orientations and weightings, but their performance degrades at low
correlations. They also lack the capability to produce individual time courses and therefore cannot quantify
source correlation, In this paper, we present an enhanced formulation of our earlier dual-core beamformer
(DCBF) approach that reconstructs individual source time courses and their correlations. Through computer
simulations, we show that the enhanced DCBF (eDCBF) consistently and accurately models dual-source
activity regardless of the correlation strength. Simulations also show that a multi-core extension of eDCBF
effectively handles the presence of additional correlated sources. In a human auditory task, we further
demonstrate that eDCBF accurately reconstructs left and right auditory temporal responses and their
correlations. Spatial resolution and source localization strategies corresponding to different measures within
the eDCBF framework are also discussed. In summary, eDCBF accurately reconstructs source spatio-temporal
behavior, providing a means for characterizing complex neuronal networks and their communication.

© 2011 Published by Elsevier Inc.

Introduction

Magnetoencephalography (MEG) is a functional imaging modality
that directly detects neuronal activity with millisecond temporal
resolution. Reconstruction of source space neural activity requires an
adequate forward model based on the sensor and conductivity
distribution (related to head geometry) and subsequent inverse
modeling with the actual neuromagnetic recordings. Since the MEG
inverse problem does not have a unique solution, assumptions about the
sources (i.e. source modeling) must be made to properly localize and
reconstruct sources of neuronal activity (Hamalainen and llmoniemi,
1994). The conventional single beamformer (SBF), a type of adaptive
spatial filter, reconstructs sources with high spatial accuracy under poor

* Corresponding author at: Radiology Imaging Laboratory, Department of Radiology,
University of California, San Diego, 3510 Dunhill Street, San Diego, CA92121, USA.
E-mail address: mxhuang@ucsd.edu (M.-X. Huang ).
! Dual-first author arrangement—both authors contributed equally to the work,

signal-to-noise ratio (SNR) conditions, but assumes that the neuronal
sources are uncorrelated (Robinson and Vrba, 1998; Sekihara et al.,
2002; Van Drongelen et al, 1996; Van Veen et al, 1997). This
assumption is not ideal since neural responses commonly involve
communication between multiple sources within the same or across
different neuronal networks. Many modified beamformer approaches
have been proposed to overcome this limiting assumption.

The nulling beamformer (NB) and the coherent source suppression
model (CSSM) seek to deal with correlated sources by constraining the
beamformer gain for a single source to zero at pre-determined
interfering locations ( Dalal et al., 2006; Hui and Leahy, 2006; Hui et al.,
2010; Quuran and Cheyne, 2010). While the NB and CSSM can
successfully handle correlated sources individually given the appro-
priate nulling constraints (location of interfering sources), multiple
computations of source beamformer weights are still required to
determine source correlation. The array-gain constraint minimum-
norm filter with recursively-updated gram matrix (AGMN-RUG) spatial
filter seeks to improve the spatial reconstruction of both uncorrelated
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and correlated sources by optimizing the gram matrix with the
actual biomagnetic measurements (Kumihashi and Sekihara, 2010).
Though the AGMN-RUG spatial filter does not require a priori infor-
mation and is quite powerful with only a few iterations of the
recursive algorithm, measurements with high SNR are necessary for
it to perform effectively. Thus, the beamformer is well-suited to study
neural response to evoked stimulation, but is not ideal for studying
brain activities that are not time- or phase-locked to stimuli.

The dual-source beamformer (DSBF) seeks to reconstruct correlated
sources by using spatial filters formulated from a linear combina-
tion of two sources' lead-field vectors. The technique requires non-
linear optimization of source orientation angles and source amplitude
weighting, in addition to a brute-force search across all possible
source dipole combinations. This approach has a high computational
cost, which greatly limits its application in practice. Furthermore,
source time course retrieval yields only a single, combined waveform
for both sources. Also, the output from the DSBF spatial filter is
compromised when sources are poorly correlated, while its inability
to produce individual source time courses limits the quantitative
measurement of source correlation (Brookes et al., 2007).

Our recently developed dual-core beamformer (DCBF) addresses
many of the limitations of the DSBF developed by Brookes et al. ( Diwakar
et al, 2011). The DCBF implements the DSBF with a vector description,
eliminating the need for non-linear searches of source orientations and
source weighting. Furthermore, pairing the DCBF with a Powell search
optimization algorithm allows quick localization of the correlated source
pairs. However, our simulations demonstrated that the estimation of
source amplitudes with DCBF grows inaccurate as correlation values
decrease since time course reconstruction only generates a single signal
(scaled accordingly for each source). Though DCBF provides an effective
way to identify source pairs, the measurement statistic ( pseudo-Z-score)
obtained is dependent on both source power and source correlation and
does not exclusively quantify correlation between sources.

Ideally, in addition to localizing active sources, a quantitative
measure of correlation is desired to obtain a more complete under-
standing of neuronal networks, Such a measure (e.g. power correlation)
would more completely characterize highly sophisticated networks. In
this manuscript, we propose an enhanced dual-core beamformer (eDCBF),
which is capable of accurately estimating the source covariance matrix
from multiple sources, providing a proper measure of correlation in
addition to individual source time courses without amplitude suppres-
sion. Once sources are localized, their correlation can be found without
time course reconstruction, allowing the eDCBF to handle large datasets
quickly and requiring little memory. If desired, the eDCBF also provides a
simple way of computing correlations in frequency bands of interest.
Moreover, eDCBF's improved design offers robustness to a wide range of
both source correlations and SNR. Finally, the eDCBF framework may be
generalized to effectively account for the presence of multiple sources.

The mathematical formulation of the eDCBF and extension to the
multi-core beamformer (MCBF) are first presented to fully demonstrate
the design of the new spatial filter. In simulations we demonstrate that
the eDCBF spatial filter is robust to a wide range of correlations, SNRs,
source locations, and various source temporal dynamics. Using a three-
core MCBF filter, we further demonstrate how additional sources of
interference can be accounted for once source localization is performed.
Finally, we cross-validate our findings from the simulations in an
analysis of a human MEG recording during a stereo auditory stimulation
task, showing that the eDCBF produces meaningful correlation
estimations and accurate time courses.

Methods
General lead-field model

Let b(t) be an m x 1 vector of sensor measurements at time t, n(t) be
an mx 1 vector of sensor noise measurements, and s(t) be a 2px1
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matrix of vector source amplitudes, where m is the number of sensors
and p is the number of pre-defined dipolar sources. Let the lead-field
matrix defined in two directions # and & for the ith source be denoted
by the m = 2 matrix L; = [ TR Y ] In the spherical MEG forward head
model, # and ¢ represent the two tangential orientations for each dipole
location, whereas in a realistic MEG forward model using the boundary
element method (BEM), the # and & orientations are obtained as the two
dominant orientations from the singular value decomposition (SVD) of
the mx 3 lead-field matrix for each dipole, as previously documented
(Huang et al., 2006). The composite lead-field matrix or gain matrix is
defined asthemx2p matrix L = [L; Ly Ly - Ly|. The MEG signal
equation can be written as:

b(t) = Ls(t) + n(t) (1

Taking the covariance of Eq. (1) and assuming that the noise and
signal are uncorrelated leads to the covariance relationship:

R, = LR’L" + R, (2)

Ry, is the mx m sensor covariance matrix, RY is the 2p x 2p source
covariance matrix, and R,, is the mxm noise covariance matrix.

Previous dual-core beamformer formulation (Diwakar et al., 2011)

The DCBF was developed assuming the presence of two sources.
Let Ly and L; define the lead-field matrices of the two sources of
interest. The dual-core lead-field matrix is expressed as the mx4
matrix Ly = [L; L;]. The DCBF weighting matrix is then defined as
the mx 1 vector Wy designed such that:

S(t) = v, Wyb(r) (3)

where s(t) represents the 4x1 vector of estimated source time
courses in both the # and & directions. 1, is defined as a 4x 1 vector
containing both optimal non-normalized 2 x 1 source orientations 1),
and 12

n= ()

1y is obtained by computing the eigenvector associated with the
weakest eigenvalue of Qgua = LiRs 'Ly, where the dual-source power
P, is represented by the inverse of the eigenvalue. The DCBF solution
for the weighting matrix was shown to be (Diwakar et al., 2011):

Wy = PopRy 'Lav, (5)

The DCBF orientations from Eq. (4) reduce Ly to a rank 1 scalar
lead-field matrix leading to an m x 1 beamformer weight (Eq. (5)),
resulting in scaled copies of a single time course to represent
both sources. Furthermore, a single eigenvector of Qg (1) can
only capture either the correlated or uncorrelated part of the signal
and is not sufficient to span the entire signal subspace, leading
to incorrect estimates of source amplitude in the presence of non-
highly correlated sources.

Enhanced dual-core beamformer formulation

The enhanced dual-core beamformer (eDCBF) offers a novel
solution to overcome the deficits of the previous DCBF. The eDCBF
dual-core lead-field matrix is expressed identically to the original
DCBF (Diwakar et al,, 2011). Instead of using the DCBF m < 1 weighting
vector, the eDCBF weighting matrix is defined as the mx4 matrix
W, = [W; W;], where W, are the individual weighting matrices
for each source, ensuring no reduction in rank and enabling the



computation of unique source time courses and correlation. The
eDCBF weighting matrix is designed such that:

s(t) = Wib(t) (6)

sit) is the 4 x 1 vector of unique estimated dual-source time courses in
both the # and ¢ directions. As a measure of source strength and
activity, the 4 x 4 eDCBF estimated dual-source covariance matrix R ; is
determined by taking the covariance of Eq. (6):

R; = (305007 ) = WiRW, @

The constraints of the vector minimum-variance beamformer,
consistently shown to produce accurate beamformer reconstruction
with single sources (Sekihara et al., 2004; Spencer et al., 1992; Van
Veen et al., 1997), may be used to derive the eDCBF weighting matrix
Wy

W, = a:gminrr{wIR,,w,} subject to WiL, =1 (8)
L]

The matrix product WL, represents the spatial filter output from
two unit-magnitude impulse currents. The linear constraint WjiLy,=1
ensures that each weighting vector W, passes signal from its
respective source while not passing signal from the second source.
Furthermore, the trace of the beamformer output source power
WIR,W, is minimized to suppress both noise and additional source
contributions. However, no assumptions are made about the
correlation between the two sources of interest. In fact, the correlation
can take on any value from O for uncorrelated sources to 1 for
completely synchronized sources. The solution for the minimization
problem may be obtained by minimizing the Lagrangian with
Lagrange multiplier »:

CWe.R) = tr{WiR W, + (WiLy—1)r} (9)

The derivative of the Lagrangian may be computed using the matrix
derivative identities ﬁn'\[.?(’A} = Aand ﬁl:'{)(’.ﬂ!.)ﬁ‘ } = AX + ATX:

a-“%:zn.w,n,,x:o (10)

W, = —R; 'Lyw/2 (11)
Substituting the unit-gain constraint Wily;=1 into Eq. (11) yields:

w=—2(LiRy'Ly) ' (12)

Wy = Ry 'Ly(LiRy L) ' (13)
The eDCBF estimated dual-source covariance matrix R;, which is

equal to the inverse of the DCBF Q 4,q. may be obtained by substituting

the derived eDCBF beamformer weight from Eq. (13) into Eq. (7):

R = WiRW, = (Lik;'L) (14)

The eDCBF time courses are obtained by substituting the derived
eDCBF beamformer weight from Eq. (13) into Eq. (6):

() = wib(t) = (LiR; 'Ly) "' LIRS 'bit) = R;LIR 'bit) (15)

The eDCBF uses the full dual-source covariance matrix (R; or Qz1,)
instead of a single eigenvector when determining the weighting matrix,
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preventing undesired amplitude suppression and allowing reconstruc-
tion of unique time courses. Thus, the eDCBF makes it possible to define
and compute source correlation.

eDCBF estimated correlation reconstruction

The eDCBF estimated vector covariance matrix R ; can be expressed
as:

. (sos)mm  (sm50)50 .
5= | e o o (16)
(B50)mm (50505

where 5;(t) are the estimated scalar source time courses and 7j, are the
2x 1 normalized orientations for the two sources. The two diagonal
2x2 sub-matrices of R; are of the same form as SBF vector covariance
matrices (Sekihara et al., 2004). Thus, the eigenvectors corresponding
to the maximum eigenvalues (signal-related) of these sub-matrices
contain the source orientations, while the eigenvectors corresponding
to the minimum eigenvalues (noise-related) contain the noise
orientations. The 4 x 2 source orientation matrix  is used to reduce
the 4 x 4 vector source covariance matrix to the 2 x 2 estimated dual-
source scalar covariance matrix R;:

="1.0) 17
w(ﬂﬁz @

R.=u'R (18)

The orientation matrix also allows scalar source time course
recovery:

5(t) = ' Wibir) (19)

The estimated dual-source power correlation %,, may be com-
puted from:

. R.(1.27°
Iz S L (20)
R.(LVR,2.2)

Amplitude correlation i':z can be computed as the square root of
Eq. (20).

eDCBF transformed correlation reconstruction

Often, it is desirable to examine the source activity in a certain
frequency band or envelope of the source signals. The eDCBF
weighting matrix W, can be derived from either the transformed or
original sensor recordings. Use of the original recordings allows
determination of source orientations and Wy based on the com-
plete source power spectrum, which is more representative of true
source activity. Furthermore, the eDCBF provides a straightforward
way to compute correlations and time courses when Wy has
been derived I‘rgm the original signal. 3;((}. the transformed
time courses of s(t), are defined by transforming Eq. (15) in the
time domain:

Se(t) = 8[3(0)| = wigib)] = wibe(0) (1)

where bg(t) are the transformed sensor time courses and § is the
operator of the transformation. The transformed source covariance



matrix R§ may be computed with the transformed sensor covariance
matrix RS = (be(t)b(t)") without computation of source time courses:

R = (§(050)") = WiRiW, (22)

The estimated correlation may be computed from the transformed
source covariance matrix in the same fashion as Egs. (18) and (20).
Furthermore, Eqs. (21) and (22) hold for any linear transformations
in the time domain.

eDCBF regularized correlation reconstruction

Use of the regularized beamformer has greatly improved the
quality of beamformer signal time course reconstruction (Robinson
and Vrba, 1998; Van Veen et al., 1997; Hillebrand et al., 2005). The
eDCBF beamformer weight can be reformulated to obtain the
regularized beamformer weight Wj

r — - =1
Wi =Ry +¥) " La(La(Ry + ¥ 'Ly) (23)

where v is the regularization parameter that increases the full-width
half-maximum of the beamformer point-spread function while
reducing the amount of uncorrelated noise. Source time courses
may be reconstructed as:

5,0t) = (W) Tb(t) (24)

Source correlation may be computed from the regularized
estimated source covariance matrix R; without computation of time
courses using Eqgs. (18) and (20).

R: = (5,05,07) = (W) RW, (25)

Correlation and time courses in specific frequency bands may
be computed by using the regularized beamformer weight Wj in
conjunction with Egs. (21) and (22).

eDCBF noise-corrected correlation reconstruction

The estimated dual-source covariance matrix can be heavily biased
by the presence of noise, making true prediction of correlation
difficult. Further investigation reveals that this bias can be corrected
using the sensor noise covariance R,. The expression for R, from
Eqg. (2) may be equivalently written as Ry, = Efc‘f T 5 Ry, where the
scalar composite lead-field matrix isgivenby L= [I; I I, | and
Rf is the p = p scalar source covariance matrix. The m = 1 vectors [; that
comprise L are the scalar lead-fields for each source along its true
orientation 7j; where [; = L;7j,. By substituting this expression for Ry
into Eq. (7), it is evident that the estimated source covariance matrix
R; is composed of a noise-free component (first term on the right-
hand-most side of Eq. (26)) and a noise-related component (second
term on the right-hand-most side of Eq. (26)):

R; = (505007 ) = WiRWy = WILRIT'W, + WiR,W, (26)

The process of minimization and application of linear constraints
result in weight vectors that satisfy WJl;=0 for i:3 — p by assuming
that the corresponding sources are uncorrelated with each other as
well as the two sources of interest (Sekihara et al., 2002). The noise-
free component then reduces to the 4x4 true dual-source vector
covariance matrix Rg:

WILR'L'W, =R, (27)
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Eq. (27) also remains valid when only two sources are present.
When additional partially correlated sources exist, the multi-core
extension presented in the next section must be used. Eq. (26) then
simplifies to:

R; = R, + WiR,W, (28)

Substituting the derived beamformer weight (Eq. (13)) into
Eq. (28) and solving for R; yields:

R, = (I=R:LiRy 'RuR; 'Ly )Ry (29)

To obtain the noise-corrected correlation, an unbiased estimate of
the noise covariance R, is essential. The true dual-source vector
covariance matrix can then be reduced using the derived orientations
to the 2 % 2 true dual-source scalar covariance matrix R; to compute
the noise-corrected correlation value y,3:

Ro=u'Ry (30)

R.(1,2)?

—— (31)
R(1,1)R,(2,2)

Xu=

Using the definition of the matrix K = WIR,W, (WIR,W,) ' =
R;LiR; 'R.R; 'Ly from the original DCBF (Diwakar et al, 2011),
Eq. (29) can be written as:

R, = (I-K)R; (32)

Thus, the relationship between the true dual-source vector
covariance and the estimated dual-source vector covariance is
dependent on the K matrix, which is inversely proportional to the
source space SNR. As shown previously, the K-related dual-source
pseudo-Z-score (ZX)may be obtained by inverting the minimum
eigenvalue of the K matrix (Robinson and Vrba, 1998; Vrba and
Robinson, 2001; Sekihara et al., 2004; Diwakar et al., 2011):

z¥ = mineig(k)) " (33)

This pseudo-Z-score can be used as a measure of relative source
activity. Alternatively, the power pseudo-Z-score may be computed
by dividing the dual-source power by the noise power (Van Veen
et al., 1997):

7= "{Rg}ftr{(iﬁﬂn"iu) '1} (34)

The differences in the spatial profile of Z¥ and 2" will be inves-
tigated in Results.

Extension to multi-core beamformer ( MCBF)

We previously demonstrated that using DCBF to model two
sources is sufficient to reveal complex neuronal networks with many
sources due to only partial suppression of the pseudo-Z-score
(Diwakar et al, 2011). However, as shown by Eq. (27), the eDCBF
can only account for two correlated sources in the presence of other
uncorrelated sources. When multiple correlated sources exist, the
correlation coefficient and time course reconstruction are affected
severely. Therefore, the model needs to be expanded to handle such
environments.

A multi-core beamformer (MCBF) can be developed to account for
additional sources. The technique can be described by a straightfor-
ward extension of the eDCBF. Starting from Eq. (2), the multi-core
lead-field vector is defined as the mx 2c matrix L, = [L; Ly = L],
where ¢ is the desired number of sources to be modeled. The



corresponding multi-core weighting vector is then defined as the
mx2c matrix Wy, = (W, W, W, |. The solution to the multi-
core weighting vector, W, is derived in an equivalent manner to
Eqgs. (8) through (13):

Wi = Ry 'L (L0R5 L) ™ (35)

The derivations presented from Eqs. (14) to (31) can then be
applied to the multi-core beamformer to obtain the 2¢ x 2¢ estimated
multi-core vector covariance matrix R;, the 2cx 2c true multi-core
vector covariance matrix R, the cxc¢ estimated multi-core scalar
covariance matrix R;, and the cx ¢ true multi-core scalar covariance
matrix R,. The orientation vector i is defined as:

W0 -0
v=|2% -9 36)
00 - W

The estimated pair-wise correlation i,, and the noise-corrected
pair-wise power correlation y; between the ith and jth sources are
given by:

- R.(i.j)

= ot (37)
Xy Ri(i.0)R; (j.J) i
Ry(i.j)

= 38
%= Ba0RGD ¥

Amplitude correlation can be computed as the square root of Eqs.
(37) and (38). The formulation of the MCBF is similar to that of the NB
and CS5M except that instead of deriving the beamformer weight for
only one source of interest at a time, the MCBF applies additional
constraints to simultaneously find weights for all modeled sources
(Dalal et al., 2006; Hui and Leahy, 2006; Hui et al., 2010; Quuran and
Cheyne, 2010). This feature allows correlation reconstruction of
multiple interfering sources at the same time. The MCBF requires
three degrees of freedom for spatial location and two degrees of
freedom for orientation per core. Theoretically, if all signals from m
sensors are linearly independent and signal-related (achieved at
infinite SNR), the MCBF can model a maximum of m/5 sources.
However, at the typical SNR of real measurements recorded on a
modern MEG system, the number of signal-related independent
spatial modes is approximately 40-50, allowing the MCBF to model a
maximum of 8-10 sources, The MCBF is most appropriately used to
determine source activity for a given set of sources that already have
been accurately localized by methods utilizing a metric such as the
DCBF pseudo-Z-score (Diwakar et al., 2011).

General setup for simulations

To measure the performance of the eDCBF spatial filter for both
correlation and temporal reconstruction, a series of computer
simulations was conducted with a simulator designed to allow
variation of the sources present (number, location and orientation)
and their corresponding waveforms (frequency, amplitude, lag,
duration and SNR), thereby providing vast flexibility for simulation
execution.

The source space was simulated with a grid covering the cortical
gray matter with homogenous 5 mm spacing in the x, y, and z
directions. The cortical boundaries were obtained from a healthy
subject's T1-weighted anatomical MRI. The sensor configuration was
based on the Elekta/Neuromag™ whole-head MEG system (Vector-
View), in which 306 sensors are arranged on a helmet-shaped surface
(204 gradiometers and 102 magnetometers). The source-sensor
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configuration is shown in Fig. 1 (inner-skull surface represented by
gray mesh).

To compute the forward model, the boundary element method
(BEM) was employed where the inner-skull surface (from MRI)
served as the BEM mesh (size 5 mm). SNR levels were adjusted by
adding uncorrelated random Gaussian noise to the sensor waveforms,
where the SNR was defined as the ratio of the Frobenius norm of the
signal vector to that of the noise vector calculated over the interval
with signal. Using the simulator, eDCBF correlation and time course
reconstruction were inspected over varying source coherence, SNRs,
and temporal dynamics. Additional simulations were designed to test
the eDCBF at various source separations as well as to investigate
correlation estimation for the three-core MCBF.

Setup for SNR, correlation, and time course simulations

Two source dipoles were placed in the left and right hemisphere
auditory cortices (Fig. 1). Their signals were composed of a 6-second
inactive period followed by 6 s of a sinusoidal wave with amplitude of
5nAm and frequency of 30 Hz (sampling rate 1000 Hz). The phase
shift of the second source was varied from 0° to 90" in steps of 10° to
test a wide range of correlations. Reconstruction of the estimated
correlation and the noise-corrected correlation was carried out at
SNRs of 4, 2, 1, 0.5, 0.25, and 0.167. Estimation of source amplitudes
was carried out by FFT examination of extended length (50x) source
time course reconstructions over all phase lags and SNRs. To test time
course recovery of a more complicated signal, a linear chirp was
utilized, wherein the frequency was varied from 5 to 10 Hz (and back)
over a period of 5s and the amplitude was modulated by a 0.1 Hz
sinusoid. Noise-corrected correlation was computed for all SNRs and
for source time lags of 0.05, 0.1, 0.4 and 1 s. Source time courses and
RMS amplitudes were calculated at all time lags and at an SNR of 4.
Finally, Monte Carlo methods were employed to properly quantify the
results’ probability distribution (1000 simulations unless otherwise
noted).

Setup for location simulations

To test eDCBF reconstruction at varying source locations, the
sinusoidal simulation from the previous section was performed for
two additional sets of sources. Noise-corrected correlation values
were computed for distantly-placed sources in the left and right

Fig. 1. Source and sensor model, Green—MEG sensor groups. Blue—posterior cingulate
cortex dipoles. Black—motor cortex dipoles. Red—auditory cortex dipoles. (For
inter ion of the ref es to colour in this figure legend, the reader is referred
to the web version of this article.)




hemisphere primary motor cortices with a separation of 70 mm and
for closely-placed sources in the left and right posterior cingulate
cortices (PCC) with a separation of 5mm (Fig. 1). A set of 1000
randomly chosen source pairs was also tested for noise-corrected
correlation accuracy at a fixed SNR of 4.

Setup for three-core MCBF simulation

An additional simulation was designed to test MCBF performance
for a core size of three. Sources were placed in the PCC and the left and
right primary motor cortices. The right motor cortex source's phase
lag ranged from 45° to 90° (in steps of 5°) whereas the PCC source's
phase lag decreased from 45 to 0° (in steps of 5°), creating a variety
of correlation conditions. The simulation was executed 1000 times
to compute the noise-corrected correlation for the full SNR and
correlation ranges.

Setup for human MEG auditory study

A stereo auditory test stimulus was designed to compare eDCBF
correlation and time course reconstruction in actual MEG measure-
ments (200 epochs of evoked responses) to reconstruction using two-
dipole fit, a method known to adequately represent neuronal activity
in the auditory cortices (Mosher et al., 1992; Mosher and Leahy, 1998;
Mosher et al., 1999; Huang et al., 1998). The test sound file consisted
of 1800 ms of pre-stimulus silence followed by a 2000 ms stereo
stimulus period. The stimulus consisted of a 500-Hz pure tone with a
40-Hz envelope modulated at 100% level. The modulation envelopes
between the left and right channels were designed to be fully
correlated. The intensities of the left and right channels were balanced
for equal sensitivity for the left and right ears. The start and end of the
stimulus epochs were smoothed with a cosine roll-off to prevent
any artifacts. Magnetic fields evoked by auditory stimulation were
measured using an Elekta/Neuromag™ whole-head MEG system
(VectorView) with 204 gradiometers and 102 magnetometers in a
magnetically shielded room (IMEDCO-AG, Switzerland). EOG elec-
trodes were used to detect eye blinks and eye movements,

Intervals of 1400 ms of post-stimulus data and 200 ms of pre-
stimulus data were used for analysis. Data were sampled at 1000 Hz
and processed by MaxFilter to remove environment noise (Taulu
et al, 2004; Taulu and Simola, 2006; Song et al.,, 2008; Song et al.,
2009). Artifact-free MEG responses (n= 181) were averaged with
respect to the stimulus trigger. A BEM mesh of 5-mm size for
the subject was generated from the inner-skull surface using a set of
T1-weighted MRI images taken on a 1.5 T MRI scanner. Registration
of MRI and MEG was performed using data obtained from the
Polhemus Isotrak system prior to MEG scanning.

Reconstructions of MEG auditory recordings with the eDCBF, SBF,
and dipole-fit modeling were compared to assess the accuracy and
validity of the eDCBF reconstruction. SVD was used to separate the
original sensor measurements into signal and noise components. The
top eight singular modes were chosen as a conservative estimate of
the noise-free signal based on manual inspection of the elbow-shaped
region of the singular value spectrum, The remaining singular modes
were considered to contain only the noise-related signal. The noise
components were removed and replaced with white noise of the same
power, resulting in an estimated SNR of 3.7 and allowing construction
of a noise covariance matrix. A regularization parameter equal to 4% of
the largest eigenvalue of Ry, was used for reconstruction with both
the eDCBF and the vector SBF (Van Veen et al., 1997; Sekihara et al.,
2002; Sekihara et al., 2004).

Dual-source localization was performed with a Nelder-Mead
downhill simplex search for the maximum power pseudo-Z-score.
The eDCBF regularized beamformer weight W was computed and
used with Eqgs. (24), (21), and (19) to generate unfiltered and low-
pass filtered (<50 Hz) regularized time courses for each source. Inter-
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hemispheric correlation values were computed from filtered time
courses, from the source covariance matrix presented in Eq. (22),
and from the noise-corrected source covariance matrix. Vector-based
SBF was also used to reconstruct unfiltered and filtered regularized
time courses for the source locations identified by the eDCBF. Inter-
hemispheric correlations were computed with the reconstructed
filtered regularized SBF time courses for comparison.

Localization was also performed using a multi-start downhill
simplex dipole-fit algorithm with a spherical head model (Huang
et al., 1998). The fitted locations were further refined with a BEM
forward model. The dipole-fit source time course reconstruction was
obtained by multiplying the pseudo-inverse of the gain matrix for
the fitted dipoles and the sensor measurements. Inter-hemispheric
correlations were computed with unfiltered and low-pass filtered
dipole-fit source time courses (<50 Hz). Correlations were also
computed between filtered regularized reconstructions (eDCBF and
SBF) and filtered time courses obtained from dipole fit as a measure
of time course similarity.

Results
Analysis of eDCBF across entire correlation range

To test the performance of eDCBF across the entire range of
possible correlations, a phase lag was introduced to the sinusoid of the
second source, The simulation was performed with an SNR of 4,
minimizing noise effects so that the eDCBF's sensitivity to correlation
was emphasized. Source reconstruction was completed using esti-
mated correlation reconstruction. Table 1 shows that eDCBF estimates
of the sources' time course correlations are highly accurate (£<0.003,
0<0.0013, where ¢ is the error, and o is the standard deviation
across Monte Carlo iterations) regardless of the actual value of the
correlation. In addition, the low standard deviation demonstrates
eDCBF's exceptional stability. Accuracy of source localization was
not examined here, as it was already confirmed with the original
DCBF (Diwakar et al., 2011).

Examination of eDCBF performance across SNR range

Real-world noise commonly dominates the underlying signal,
frequently posing a problem for beamformers. Therefore, we char-
acterized eDCBF performance across a range of SNR values. The
following simulation allowed comparison of the estimated and noise-
corrected correlation reconstruction from Egs. (20) and (31). We
observed that even though the estimated correlation works well
initially, as SNR drops below 1, the accuracy of eDCBF estimated
correlations fell to unacceptable levels. By a SNR level of 0.167, the filter
became practically ineffective and was unable to appropriately resolve
the underlying signal (£<0.32), where & is the averaged correlation
error over all phase shifts for a given SNR. From the noise time courses
(added to sensor waveforms to create the desired SNR), an unbiased

Table 1
Estimated correlation reconstruction for auditory dipoles (SNR=4). Correlation
averages and standard deviations determined using 1000 Monte Carlo simulations.

i Shift ¥ (actual) ¥ (estimated) o

o 1.000 0997 3.83E-05
10" 0970 0967 1.96E-04
20" 0883 0.881 4.44E-04
30" 0,750 0.748 7.96E-04
40" 0.587 0.585 1.03E-03
50° 0413 0412 1.22E-03
60" 0.250 0250 1.21E-03
70" 0117 0117 9.85E-04
80" 0,030 0.030 5.47E-04
90" 0.000 0.000 1.07E-04
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Fig. 2. Estimated (blue ) and noise-corrected (red) correlation reconstruction errors and
standard deviations (error bars) for auditory dipoles. Correlation values determined
using 1000 Monte Carlo simulati (For interp of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

estimate of the noise covariance matrix was used to examine the noise-
corrected correlation. The correction allowed the beamformer to
perform successfully at the entire range of SNR and correlation values
(£<0.0008.0 <0.011), where o is the averaged Monte Carlo standard
deviation across all phase shifts in a given SNR (Fig. 2), rendering eDCBF
an extremely robust and flexible beamformer filter given a reasonably
accurate estimation of the noise covariance.

Validation of eDCBF performance regardless of source location

The sensitivity of the eDCBF filter to the location of the two sources
was investigated by examining three cases: a pair of distantly-spaced
dipoles, a pair of closely spaced dipoles, and a pair of randomly
placed dipoles. For distant dipoles, we observed that the correlation
reconstruction worked precisely throughout the entire SNR and
correlation ranges (£ <0.0005,¢ <0.009). When dipoles were closely
placed (PCC dipoles spaced only 5 mm apart), a hindrance for
beamformer operation at low SNR, the eDCBF still performed
effectively. At SNRs at or above 0.5, the eDCBF was reasonably
accurate (£<0.005.0<0.036), while at SNRs of 025 or lower it
slightly overestimated the correlation value (£ <0.027. < 0.11)due to
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Fig. 3. Noise-corrected correlation reconstruction errors and standard deviations (error

bars) for auditory cortex (red), motor cortex (green), and posterior cingulate cortex

(blue) dipoles. Correlation values determined using 1000 Monte Carlo simulations.

(For interp ion of the refe es to colour in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 4. Sinusoidal time course reconstruction at phase shifts ranging from 0 to 90°. Top
panel—simulated source forms. Bottom panel—eDCBF time courses,

bias in the noise covariance estimate at very low SNRs (Fig. 3). Finally,
the eDCBF filter still performed accurately when dipole pairs were
chosen randomly (£<0.0002, o<0.003).

Time course reconstruction — sinusoid/chirp source waveforms

For most of the simulations, a sinusoid wave was used to construct
the source signal. To investigate the precision of the reconstructed
waveform, we examined the accuracy of the reconstructed amplitude
as the SNR and phase lag were varied, which is another concern
associated with previous dual beamformers. Fig. 4 shows a set of
reconstructed waveforms (for the entire range of phase shifts) at
SNR of 4 computed from Eq. (19). As shown in Table 2, eDCBF
reconstructed the amplitude with the same success regardless of
SNR or correlation value, underestimating by more than 1% only in a
single case. The small bias in amplitude estimation occurs due to a
rank deficient sensor covariance matrix before the addition of noise.
Amplitudes estimated from the eDCBF were far more accurate than
those from the previous DCBF, which were suppressed by an average
of 12.5% (Diwakar et al., 2011).

Since neuronal signals typically contain complex features, a more
sophisticated waveform in the form of a linear chirp was also considered.
To simulate various correlations, a series of time lags were introduced to
the chirp present in the second source. Fig. 5 shows an example of the
reconstructed waveform for a one-second time lag at a SNR of 4 for the
sensor waveforms. To quantitatively asses the reconstruction, an RMS
amplitude measure was employed. When comparing the original

Table 2
Amplitude values for left auditory cortex dipole (results equivalent for right dipole).
Amplitude values determined using 100 Monte Carlo simulations.

1] ¥ SNR
shift (actual) 1 2 1 05 025
Amplitude

L1 1.000 499 499 499 499 499
10" 0970 499 5.00 499 499 499
20" 0.883 4.99 499 5.00 499 499
30* 0.750 499 5.00 5.00 499 499
40° 0587 499 499 499 499 499
50° 0413 499 499 5.00 499 499
60" 0.250 4.99 499 5.00 499 498
70" 0.117 499 5.00 499 499 498
80° 0.030 499 499 499 499 497
90" 0.000 499 499 499 499 493




Fig. 5. Chirp time course reconstruction at 15 time lag. Top panel-—original source
‘waveforms. Bottom panel—eDCBF time courses. Blue—left auditory cortex. Green—right
auditory cortex. (For i of the es to colour in this figure legend, the
reader is referred to the web version of this article.)

waveform's amplitude with the reconstructed waveform (for the example
above), it was accurate to 99.9%. The accuracy of the correlation com-
putation was also tested (1000 Monte Carlo simulations). Fig. 6 shows
that the eDCBF successfully estimates the correlation for any combination
of SNR and time lag(& < 0.0004.0 < 0.007).

Three-source simulation with MCBF

The last simulation examined the performance of the MCBF filter
when reconstructing three simultaneously-active correlated sources.
Currently, no beamformer method is able to properly address this
issue. MCBF performance in reconstructing the source correlation
values for all three dipole combinations can be seen in Fig. 7. For
any given condition, MCBF properly reconstructed all correlation
values (£<0.005, <0.04).

Human auditory reconstruction results

The two-dipole-fit reconstruction of the evoked MEG auditory
response to the 500-Hz pure tone with a 40-Hz envelope (Fig. 8)
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Fig. 6. Noise-corrected correlation reconstruction errors and standard deviations (error

bars) for chirp waveforms at different time lags. Correlation values determined using

1000 Monte Carlo simulations.
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Fig. 7. Pair-wise three-core MCBF noise-corrected correlation reconstruction errors and
standard deviations {error bars). Blue—left motor cortex and posterior cingulate cortex.
Green—left motor cortex and right motor cortex. Red—right motor cortex and posterior
cingulate cortex. Correlation values determined using 1000 Monte Carlo simulations.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

showed bilateral activation of both the left and right auditory cortices.
The left hemisphere neuronal source (blue) showed a large transient
response followed by a steady-state response with a weak 40-Hz
component. The right hemisphere neuronal source (green) revealed a
slightly smaller transient response with strong 40-Hz steady-state
oscillations from 500 ms to 1400 ms.

During eDCBF reconstruction of the auditory response, maximizing
the power pseudo-Z-score (Eq. (34)) appropriately localized sources
to the left and right auditory cortices (Fig. 9). Though the K-related
pseudo-Z-score provides a valid method of localization at low SNRs
as shown previously (Diwakar et al., 2011), its spatial distribution at
high SNR is sharply peaked, rendering it unsuitable for grid spacing
of a few millimeters. However, the power pseudo-Z-score provides
a suitable measure of detection for high SNR recordings (Fig. 10).
Localization of the auditory response found by dipole fit and the
eDCBF differed by less than 2.5 mm for each hemisphere (Fig. 9).

The eDCBF regularized recovery of source time courses (Fig. 11—left
panels) showed individual signals for the left (blue) and right (green)
hemisphere neuronal sources. Furthermore, examination of both right
and left source signals showed well-defined transient and steady-state

Two-Dipole-Fit Source Timecourses (<50 Hz)
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Fig. 8 Normalized dipole-fit source time course reconstruction. Reconstruction of time
courses shows a transient and steady-state response in both left (blue) and right
(green) auditory cortices. The left transient response is higher in amplitude, while the
right 40-Hz steady-state oscillations are more p ed, (For i ion of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)




Fig. 9. a) Coronal view of left and right auditory response localizations. b) Sagittal view
of left and right auditory response localizations. Green—eDCBF localization. Red-—
dipole-fit localization. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

responses that closely resembled the time courses obtained from dipole
fit as indicated by high correlations (x{=0.9630; y§=0.9614). In
contrast, SBF regularized time courses (Fig. 11—right panels) correlated
poorly with those obtained from dipole fit ( ¥{ =0.5018; y%=0.4946),
In fact, even features such as the larger, left-sided transient response
and the stronger, right-sided 40-Hz steady-state response were
preserved with the eDCBF. The errors in the SBF reconstruction were
due to inaccurate determination of source orientations and the false
assumption that sources are uncorrelated.

Correlations for dipole-fit time courses showed strong coherence
between the left and right auditory cortices ( " = 09535, yfi, = 0.9567).
The eDCBF noise-corrected correlation ( 7, =0.9349) and the filtered
eDCBF correlation f\j,i it _0.9385_] agreed wi[L\ these values
(A y"<3%). However, the SBF-predicted correlation 5 Xreg e = 0.6119)
was quite poor (Ay“=35%). Correlations computed from eDCBF time
courses and from the appropriate source covariance matrices were
identical.

Normalized K-related Pseudo-Z-score
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Discussion

The present study provides an improved implementation of our
previously introduced DCBF, which was unable to accurately estimate
source amplitudes or produce unique time courses and correlations
to characterize source activity (Diwakar et al,, 2011). The eDCBF
provides a novel approach designed to reconstruct the source power
covariance matrix R; between multiple sources. With this matrix,
individual time courses and correlations for sources can be deter-
mined in low SNR conditions, overcoming the deficits of the DCBF.

Computationally, multiple source beamformers (e.g. DSBF, DCBF
and eDCBF) require some searching for the optimum source
configuration unlike traditional beamformers. Single beamformers
may therefore appear more attractive as quick scanning methods
but are less accurate due to the strict assumption of non-correlated
sources (Robinson and Vrba, 1998; Sekihara et al., 2002; Van
Drongelen et al., 1996; Van Veen et al., 1997). Furthermore, unlike
beamformer spatial filters that are designed to work in a correlated
environment (e.g. NB, CSSM, and AGMN-RUG), the eDCBF requires
only a single computation of the weight matrix for accurate
correlation determination (Dalal et al., 2006; Hui and Leahy, 2006;
Hui et al., 2010; Quuran and Cheyne, 2010; Kumihashi and Sekihara,
2010).

For complex signals, the mathematical formulation of eDCBF
flexibly enables examination of correlations in envelopes and
frequency bands of interest without too much additional computa-
tional load, thereby permitting a more detailed investigation of
neuronal communication. Moreover, the eDCBF correlation analysis
can be naturally extended to the MCBF spatial filter to account for the
presence of multiple correlated sources.

A variety of simulations were conducted to examine the per-
formance of the eDCBF by quantifying the robustness of computed
correlations across a range of SNRs (4 to 0.167), source locations, time
lags, and waveform shape for two sources. The eDCBF reconstructed
correlations with a high degree of accuracy even at a source spacing
of only 5mm. The results also showed that the eDCBF could
handle both fully correlated and uncorrelated neuronal sources.
Source time course reconstructions resulted in accurate and individ-
ual time courses regardless of the degree of correlation between
sources. Furthermore, the amplitudes of time courses were accurately
reproduced irrespective of the correlation between sources, which is a
notable shortcoming of previous dual-beamformer approaches
(Brookes et al., 2007; Diwakar et al., 2011). The spatial width of the
eDCBF localization peaks using different measures (Z* and Z”) under
different SNR conditions was also investigated. We observed that
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Fig. 10, 5NR dependence of pseudo-Z-scores, Left panel—the K-related pseudo-Z-score peaks sharply at high SNR but provides a reasonable profile for localization at lower SNR. Right
panel—the power pseudo-Z-score has much broader peaks, providing an appropriate tool for localization in evoked recordings.
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Fig. 11. Normalized eDCBF and SBF source time course reconstruction. eDCBF reconstruction of time courses shows a transient and steady-state response in both left (blue) and right
(green) auditory cortices. The left transient response was higher in amplitude while the right steady-state response was more visible. SBF reconstruction of time courses shows
distortion and features that are difficult to identify. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Z¥ provides a suitable width for low SNR data while Z” is preferable
for high SNRs.

As a proof of principle, our investigation of the MCBF spatial filter
showed accurate correlation reconstruction across a wide variety
of source correlations and SNRs in the presence of three correlated
sources. In reality, MEG signals can have many active sources. As such,
future developments should include an optimization algorithm to
determine the proper MCBF core-number to use for reconstruction,
which would prevent inaccurate estimation of source activities due to
under-modeling. For example, DCBF localization and pseudo-Z-score
statistical thresholding can be used to determine MCBF core-number.
Furthermore, typical SNR levels for real recordings must be consid-
ered, which limits the MCBF core size to 8-10 sources in practice.

We also applied the eDCBF spatial filter to human MEG mea-
surements from a stereo auditory tone paradigm to cross-validate
reconstruction performance from our simulations. Localization
with the power pseudo-Z-score showed activity in both auditory
cortices. The SBF and eDCBF reconstructions were compared to a two-
dipole-fit reconstruction. The eDCBF time courses for both right and
left hemisphere auditory cortices closely resembled dipole-fit time
courses, maintaining both transient and steady-state components of
the signal. In contrast, reconstruction with SBF showed malformed
and inaccurate time courses. Source localization with eDCBF was used
for SBF reconstruction due to the SBF's inability to properly localize
correlated neuronal sources (Brookes et al., 2007). Inter-hemispheric
correlations computed from eDCBF and dipole-fit estimated time
courses were very close; however, the SBF-predicted correlation
was underestimated, confirming that the eDCBF offers a more robust
reconstruction than the SBF in correlated source environments.
Furthermore, strong correlation between eDCBF time courses and
dipole-fit results showed that the two methods yield very similar
waveforms.

In summary, the present results indicate that the eDCBF spatial
filter provides a viable method for exploring complex neuronal
networks and their communication, promoting the use of MEG to
investigate brain activity.
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CHAPTER 3

Abstract

Adaptive spatial filters (beamformers) have been widely used to reconstruct
source activity for biomagnetic measurements recorded by magnetoencephalography
(MEG) and assess whole-brain connectivity, yet still contain certain limitations. Most
notably, the conventional single beamformer (SBF) has difficulty detecting neuronal
sources with correlated time-courses, resulting in the misestimation of source amplitudes
and time-courses. Furthermore, signal leakage typical of the SBF strongly affects the
spatial extents of the estimated sources, limiting the ability to accurately evaluate MEG
functional connectivity. The recently introduced multi-core beamformer (MCBF)
addressed the issue of source correlation, yet a solution required source locations to be
known. In this chapter, we introduce an iterative algorithm that when integrated with the
multi-core beamformer (MCBF) mathematical framework enables accurate source
localization without any a priori information. Furthermore, combining MCBF together
with the iterative approach results in substantial minimization of the signal leakage
distortion and other spatial biases common to beamformers. The proposed MCBF
solution also ultimately provides voxel-by-voxel source activity estimates thereby
enabling whole-brain functional connectivity analyses of MEG evoked and spontaneous
data (allowing the characterization of MEG resting-state networks). Performance of the
approach was validated and compared to that of the SBF by means of simulated
waveforms designed to resemble spontaneous MEG signals as well as real neuromagnetic

measurements recorded during an evoked task.
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Introduction

Magnetoencephalography (MEG) is a functional neuroimaging modality capable
of detecting neural activity with millisecond temporal resolution and high spatial
accuracy. The magnetic field distribution at the sensors can be accurately predicted using
the quasi-static approximation to the Maxwell Field Equations (forward model) if the
neural current distribution and head geometry are known. However, if no additional
constraints are imposed, the ability to determine a neural source distribution given a set
of sensor measurements (inverse model) is ill-defined and non-unique (i.e. different
source distributions yield the same sensor waveforms) (Hamalainen and [Imoniemi,
1994). Due to the underdetermined nature of the inverse problem, different techniques
have been proposed as a means of generating viable solutions.

Adaptive spatial filters (beamformers), which utilize the minimum-variance
constraint, are a popular choice for source-space projection. Most commonly used is the
conventional single beamformer (SBF), which is capable of generating time-courses and
power estimates on a voxel-by-voxel basis with high spatial accuracy even under poor
signal-to-noise ratio (SNR) conditions (Robinson, 1998; Sekihara et al., 2002; Van
Drongelen, 1996; Van Veen et al., 1997). However, SBF reconstructions are susceptible
to inter-source correlations, resulting in amplitude suppression and time-course distortion
(Sekihara, 2008). Considering that spontaneous and non-averaged task related (e.g. eye
tracking) neural activity is known to involve synchronous communication between
multiple sources (Singer, 1999), the SBF may not be optimal for analyzing complex,

highly coordinated brain activity (Moiseev and Herdman, 2013).
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A number of modifications to the SBF have been proposed to address its
susceptibility to source correlation, most notably the nulling beamformer (NB) and the
coherent source suppression model (CSSM). Both utilize additional constraints to null
out interference from correlated sources and ensure proper recovery of the source of
interest. However, the locations of these obstructing sources must be determined a priori
for these techniques to successfully constrain the problem (Dalal et al., 2006; Hui and
Leahy, 2006; Hui et al., 2010; Quraan and Cheyne, 2010), thus limiting their practical use
as source locations are normally unknown in spontaneous or non-averaged task-related
recordings. Another approach introduced by Brookes et al. (2007) handles the presence of
correlated sources by redesigning the spatial filter to reconstruct the signals from two
sources simultaneously. Although the dual-source beamformer (DSBF) is capable of
localizing temporally synchronous yet spatially distant activity, it is computationally
expensive, requiring lengthy non-linear searches to determine source orientations,
locations, and weightings (Brookes et al., 2007).

The DSBF was later reformulated by Diwakar et al. (2011a) as a vector
beamformer, termed the dual-core beamformer (DCBF), thereby greatly reducing
computational expense by removing the need for non-linear searches of source
orientations and weightings (Diwakar et al., 2011a). Another major advantage of the
DCBF (and DSBF) over the NB and CSSM techniques, is its ability to accurately localize
activity without any a priori information. However, the source time-courses generated by
the DCBF are simply scaled replicas of each other (i.e. non-unique), precluding any type
of functional connectivity (FC) analyses (Brookes et al., 2007; Diwakar et al., 2011a).

Addressing DCBF’s shortcomings, the enhanced dual-core beamformer (eDCBF)
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allowed determination of unique source time-courses, thus permitting accurate source-to-
source correlation analyses (Diwakar et al., 2011b). Reconstructions of auditory evoked
recordings with the eDCBF demonstrated its capability to produce high-fidelity solutions
with real data. An extension of the eDCBF was also introduced, dubbed the multi-core
beamformer (MCBF), to help process data that contained more than two correlated
sources. Unfortunately, the increase in dimensionality with the MCBF is associated with
a considerable increase in the computational cost of source localization (Diwakar et al.,
2011b).

Recent work by Moiseev et al. (2011) focused on developing an iterative
localization search algorithm for the multiple constrained minimum variance beamformer
(MCMYV), a modified multi-source beamformer similar to the eDCBF and MCBF. The
technique essentially finds the solution without requiring a priori knowledge by
iteratively determining the source locations using a novel unbiased localizer. Although an
important and fundamental first step in the field of multi-source localization, this
“bottom-up” approach is inherently challenged, as any correlation of yet to be discovered
sources would still distort and interfere with per iteration activity estimates, especially as
SNR weakens (Moiseev et al., 2011). In addition, the number of iterations required for an
adequate solution (i.e. the estimated number of interfering sources) is normally not well-
defined or available in spontaneous settings. Furthermore, the MCMYV and its
counterparts (i.e. the eDCBF and MCBF) are limited as source dynamics are estimated
only in specified locations, unlike the SBF which generates them for the entire brain

thereby enabling whole-brain FC analysis.
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In this chapter, we put forward an iterative Bayesian-based localization algorithm
for the MCBF that overcomes the intrinsic limitations of previous beamformers. The
localization procedure utilizes a “top-down’ approach which initially assumes an equal
contribution for all voxels (i.e. possible sources) in the brain. An iterative process is then
used to update the weighting parameters for each voxel, gradually refining the spatial
distribution and temporal dynamics of the underlying sources (without any a priori
information). Because all locations are simultaneously incorporated into the “top-down”
solution, this approach avoids confounds due to interference from “undetected” sources
in the “bottom-up” approach. Furthermore, as the procedure provides a solution (time-
course) at every voxel, it ultimately enables the MCBF to estimate whole-brain dynamics,
a prerequisite for assessment of whole-brain neural connectivity.

Cortical FC analyses of resting-state MEG recordings have traditionally computed
correlations between sources utilizing the SBF (Brookes et al., 2011a; Brookes et al.,
2011b; Hall et al., 2013; Hillebrand et al., 2012; Hipp et al., 2012; Luckhoo et al., 2012;
Mantini et al., 2011; Tal et al., 2013). However, as noted above, the temporal correlation
between sources (Singer, 1999) may adversely affect the SBF time-course
reconstructions, placing its use as a tool for FC analysis under question (Moiseev and
Herdman, 2013). In this section, we look further into the matter and compare the
reconstruction performance of the conventional SBF to the newly developed MCBF
algorithm using simulations whose source time-course characteristics emulate those of
spontaneous MEG signals by taking into account prior electrophysiological knowledge
(Brookes et al., 2011b; de Pasquale et al., 2010; Liu et al., 2010; Mantini et al., 2007).

We also examine the performance of the two reconstruction techniques with real
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neuromagnetic measurements evoked by a unilateral median-nerve stimulation, a task
involving intricate interaction between multiple neural regions in the somatosensory
system, thus serving as an ideal scenario to study the beamformers’ ability to accurately
map source activity for complex networks.
Materials and Methods

We begin with a review of the general lead-field model and MCBF mathematics,
after which we develop an iterative algorithm to obtain the final MCBF solution for
source dynamics. The simulations used to compare the performance of MCBF and SBF
are then described.

Review of General Lead-field Model

The general lead-field model provides a mathematical description of the magnetic
fields produced by dipolar neuronal currents. Let b(t) be an m x [ vector of sensor
measurements at time ¢, n(t) be an m x I vector of sensor noise measurements, and s(t)
be a 2p x I matrix of vector source amplitudes, where m is the number of sensors and p is
the number of pre-defined dipolar sources. Let the lead-field matrix defined for the i"
source be denoted by the m x 2 matrix L; = [lg;; lg,i], where the 8 and ¢ orientations
are determined by the two dominant modes obtained from the singular value
decomposition (SVD) of the m x 3 lead-field matrix for each dipole (Huang et al., 2006).
The composite lead-field matrix or gain matrix is defined as the m x 2p matrix L =
[Ly L, Lz -+ Ly]. The MEG signal equation can then be written as:

b(t) = Ls(t) + n(t) (1)
Taking the covariance of (1) while assuming that the noise and source signals are

uncorrelated, provides the following relationship:



R, = LR,L" + R,
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)

where R}, is the m x m sensor covariance matrix, R, is the 2p x 2p source covariance

matrix, and R,, is the m x m noise covariance matrix.

Multi-core Beamformer

The multi-core lead-field vector is defined as the m x 2¢ matrix L,,, =

(L1 L

L.], where c is the desired number of sources to be modeled. The

corresponding multi-core weighting vector is defined as the m x 2¢ matrix W,,, =

W, W

5(t) = WILb(¢t)

W], designed such that:

3)

where S(t) represents the estimated source time-courses. The solution for the multi-core

weighting vector, W, is obtained by computing the minimum variance solution

(Diwakar et al., 2011b):

W, = Rl;le(LTlelem)_l

The MCBF estimated vector covariance matrix R is then given by:

R; = Wanme = (LZanlem)_l

The MCBF estimated source vector covariance matrix R; can be expressed as:
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R; = (8, (O%@)ﬁﬁf
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(ﬁl(t)ﬁc(t))ﬁlﬁ?\

($2(0)8¢ -(t))ﬁzﬁz (6)

<§c<t)§ctt)>ﬁcﬁ£/

where §;(t) are the estimated scalar source time-courses ({-) indicates the time average)

and 7; are the 2 x ] estimated normalized orientation vectors. The diagonal 2 x 2 sub-

matrices of R; are of the same form as the SBF vector covariance matrices (Sekihara et
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al., 2004). Thus, source power estimates can be obtained by simply computing the trace
of the respective diagonal submatrix (Diwakar et al., 2011b).

The MCBEF solution, as formulated above, can only be obtained if the positions of
the sources are known, rendering it possible to obtain L,,. Since the position of active
sources is generally an unknown parameter, the MCBF weight formulated in (4) will be
hereafter referred to as the optimal MCBF solution.

Generalized MCBF Solution:

The MCBEF solution for the weighting vector presented in (4) is valid only when
all sources contributing to the MEG signal are specified in the core. This introduces two
challenges: 1) the locations of the sources must be known and 2) the size of the subspace
spanned by the MEG measurements places a practical limit on the number of sources
specified by the MCBF weights. If the latter limitation did not exist, one could include all
dipoles in the MCBF core. Substituting the full gain matrix L for L, in Equation (4)
yields the solution for the MCBF beamformer weight for all sources (W):

W =R;'LQ (7)

Q =L"R;'L (8)
Inversion of the Q matrix in Equation (7), however, cannot be performed, as the matrix is
highly singular. Instead, we may use the ranked pseudoinverse of Q, denoted Q" where
matrix inversion can be carried out using 25-60 modes. Unfortunately, Q* tends to be a
poor estimate of Q! unless the lead fields are weighted to improve the power of modes
with actual signal. This can be done by weighting the lead fields by a function I'(P) of
source power, defined as a block diagonal matrix of 2p x 2p hyper-parameters composed

of 2 x 2 block matrices along the main diagonal (weights for each source) with the
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remaining off-diagonal block matrices equal to zero. The diagonal components of the 2 x
2 sub-matrices allow I' to optimize for source strength, while the off-diagonal
components allow optimization of source orientation. We can apply the hyperparameters
by substituting L = LI into equations (7) and (8):

W = R;'LrQ* ©)

Q =I"L"R;'LT (10)
This solution is equivalent to solving for MCBF weights with the constraint WY LI = I
or equivalently, WL = I'"1. To correct for this deformation (or rescaling) when
computing source time-courses, we must multiply W by I'. This is the same procedure
used to rescale time-courses when using the array-gain constraint (Sekihara, 2008).
Source time-courses are therefore given by:

s(t) =I"wWTh(t) (11)
We note then that I' would be in optimal form when all 2 x 2 block matrices along the
main diagonal that correspond to locations without sources are equal to zero. In other
words, the generalized MCBF solution will be reduced to the optimal MCBF solution
when all the columns corresponding to source-free locations in L are fully nulled (i.e. LI
matches L,,).

Iterative MCBF Approach

In the iterative MCBF approach, the optimal MCBF solution is estimated by
successive refinement of the beamformer weighting matrix using information provided
by source amplitude estimates. The refinement of the weighting matrix occurs through
optimization of the hyperparameters I'. The method of optimizing the hyperparameters is

based on Bayesian approaches presented by Friston et al. (2008); Owen et al. (2012);
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Wipf and Nagarajan (2009); Wipf et al. (2010); Zumer et al. (2007). We begin by
examining the cost function, which provides a means to improve solutions through
successive iterations and is defined as:

L(I') = trace[R,R;*] + log|Ry| (12)
where R, is the per-iteration sensor covariance matrix estimate and is initialized to R,
for the first iteration. The cost function is designed to optimize both sparsity and
agreement with the forward model per iteration (Owen et al., 2012; Wipfet al., 2010). In
each subsequent iteration, R, is computed with MCBF source activity estimates (Eqn.

11) and the forward model (Eqn. 2):

R}**t = LT"WT R, WTL" + R, (13)
W is the per iteration weighting matrix given by:

W = R;'LTQ* (14)

Q =T"L"R;'LT (15)
R, is a rank-reduced version of R, computed with the same number of modes as Q*. Use
of R, allows de-noising of the forward model resulting in less noisy estimates of R,,
computed per iteration. T, the per iteration matrix of hyperparameters, is determined by
an update equation described below.

To compute an updated equation for I we adopt procedures (Owen et al., 2012;
Wipf et al., 2010) that construct auxiliary functions using sets of hyperplanes to minimize
the cost function. The approach is generic and requires only an estimate of source time-
courses (X). For our purposes, X is computed with the MCBF solution for source time-

courses (11) and is given by:
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X=TTW'b(t) =TTQ*T"L"R;'b(t) (16)
Equation 16 can be re-written by defining I'" = TQ™T such that:

X=T"L"R;'b(t) (17)
The solution for the minimizing auxiliary function Z with respect to T’} (the 2 x 2 sub-
matrix of I’ corresponding to the i" source) is analogous to the expression presented in
other studies (Owen et al., 2012; Wipf et al., 2010) and is given by:

Z;=Vp log|R,| = LTR;L; (18)
Empirically, we have found that using R}, the regularized inverse of the recorded sensor
covariance, in (18) instead of R, the regularized inverse of the estimated sensor
covariance, provides more reliable reconstructed time-courses. The update equation for

T’} (Wipf et al., 2010), assuming it is a positive definite matrix, is then given by :

4

next -2 2 2 % -
I =zi2<z§XiXiTz§> Z?* (19)

S
XXT =T L"R;'R,R;'LT (20)

D : = . =mext
In practice, it is difficult to find an exact solution for T'T"*** given I’ ;nex . However, we

1

, = — mext . oo
have found that we can estimate T'7¢*" ~ (F ;nex )2 and still get accurate localization.

This approximation is equivalent to assuming that @ does not contribute significantly to
the diagonal 2 x 2 sub-matrices of I (i.e. T} = T';Q; T; ~ T';T’;).
In summary, we have the following iterative path (variables marked “next” are

used on the subsequent iteration):

1) Initialize T = Iand R, = R,
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2) Compute R} using the regularized inverse (see equation 21)
3) Compute W using W = R,*LTQ" and Q = TTL"R,*LT

4) Compute R?*** ysing R?¢** = R,, + LT"WTR,WTL"
1
=, next —l l l 2 —l A e .~
5) Compute I'; ~ =Z,*|Z:X,X{Z? | Z,* using X;X] = T{W{R,W,T'; and

Zi = L’erl;lLl',

1
,next

6) Compute I'"** using I'"*** ~ (T" i )E

7) Return to step 2

In steps 2 and 5 above, the matrix inverses of Rj, and R, are calculated by applying a
regularization constant (y) determined from the measured sensor covariance (where

|| X|| indicates the Frobenius norm).

IR || -
IRy |lF

-1
Ry' = (Ry+VIjenE) 5 Ry' = (R, +yD™ e

Simulation Setup

The sensor space utilized in the simulation was based on the spatial configuration
of the Elekta/Neuromag'™ whole-head MEG system (VectorView) which contains 306
sensors (204 gradiometers and 102 magnetometers). The modeled source space was
generated using FreeSurfer, where a healthy subject’s T1-weighted anatomical MRI was
first segmented, and the resulting brain’s gray-white matter boundary was then used to
define a fixed source grid (7mm spacing). The segmented inner-skull surface was
employed to construct a boundary element based triangular mesh (Smm side length).
With the source grid and the triangular mesh, the MEG forward model calculation for the

lead-field matrix was performed using a boundary element model (Huang et al., 2007,
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Mosher et al., 1999). The built-in FSL Harvard-Oxford Atlas (Jenkinson et al., 2012) was
utilized to identify the locations in which the simulated sources were placed. In total, ten
sources were created, with a pair of sources placed in each of the following cortical reg-
ions (one per hemisphere): the superior frontal gyrus, the precentral gyrus, the middle
temporal gyrus, the angular gyrus and the occipital pole. The location of the ten sources
is illustrated in Figure 3.1 using an inflated FreeSurfer image of the subject’s brain.
When designing the simulated source time-courses, we took into account
previously observed characteristics of MEG fluctuations thought to be direct
manifestations of electrophysiological FC (Brookes et al., 2011b; de Pasquale et al.,
2010; Liu et al., 2010; Mantini et al., 2007). Recent papers (Brookes et al., 2004; Brookes
et al., 2011a; Brookes et al., 2011b; Hall et al., 2013; Hipp et al., 2012; Luckhoo et al.,
2012; Mantini et al., 2011; Tal et al., 2013) have routinely used the envelope of
oscillatory fluctuations (also termed “Hilbert Envelope™) of raw resting-state MEG time-
courses as a means for quantifying FC across brain regions. Each source time-course was
designed with the following general form: thirty seconds of an inactive period followed
by thirty seconds of a sinusoidal waveform with an amplitude of 10 nAm (sampled at a
standard MEG sampling rate of 1000Hz). In the first simulation, each source’s sinusoid
was composed of a unique frequency selected from the 3 band frequency (21Hz to 30Hz
in increments of 1Hz), a frequency range commonly known to be involved in human
inter-hemispheric cortical interactions (Brookes et al., 2011b; Liu et al., 2010; Mantini et
al., 2007). The 1Hz frequency differences between sources ensured that zero correlation
existed between any two raw time-courses, helping to minimize the common pitfall for

standard MEG source analysis methodologies (e.g. SBF). Each of the raw source time-
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courses were then convolved with a modulating low frequency (0.1 Hz) sinusoid (this
introduced a negligible degree of raw source correlation; » < 0.0075), using a frequency
known to be associated with resting-state MEG power modulation (de Pasquale et al.,
2010; Liu et al., 2010). Thus, once the simulated MEG data have been processed for
connectivity analysis (i.e. obtaining the “Hilbert envelope™), one would be left with the
0.1Hz modulating envelope as the source time-course to be used in correlation
computations. To introduce variation into the correlation between the envelopes (as
would exist in real data), a phase was introduced to each source’s modulating envelope
relative to the first source’s envelope (in steps of 5°). For instance, the 2" source’s
envelope had a 5° phase shift relative to the 1% source, while the 10™ source’s envelope
had a 45° phase relative to the 1* source. Not only did this process ensure that the entire
correlation range (0 to 1) was utilized for each individual source relative to all other
sources, but it also created a visually distinct correlation matrix as illustrated in Figure
3.2. The ten simulated waveforms are displayed as well; for visualization purposes only
the envelopes are shown.

In the second simulation, the challenging obstacle of raw source correlation was
incorporated into the simulation, creating a more challenging environment for source
reconstruction. This was accomplished by matching the 3 frequency of each pair of
homologous sources (e.g., left and right precentral sources operate @ 25Hz, left and right
occipital pole sources operate at 29Hz, and so forth) and introducing a phase shift
between the raw source time-courses of each source pair (2 pairs set at 20°, 1 pair set at

50°, 1 pair set at 70° and 1 pair at 90°). It is important to note that no changes were made
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to the sources’ modulating envelopes (i.e. the correlation matrix being “solved for”
should not change).

Once all source time-courses were constructed, the simulated sensor waveforms
were computed for each scenario using the BEM forward model. SNR levels were
adjusted by adding uncorrelated random Gaussian noise to the sensor waveforms, where
the SNR was defined as the ratio of the Frobenius norm of the signal vector to that of the
noise vector calculated over the interval with signal. In general, random Gaussian noise
was added such that the sensor space SNR was set at 8. Source reconstruction for the
second (correlated) simulation was also further examined at a lower sensor space SNR
level of 2 to see how the reconstruction results were affected by the noisier conditions.
Lastly, source reconstructions (i.e. the correlated sources simulation at SNR levels of 8
and 2) were also performed with the optimal MCBF solution to help gauge the quality of
the proposed iterative algorithm in optimizing the generalized MCBF solution (i.e.
simulated source locations used to reduce L to L,, for the optimal case).

Prior to source localization, sensor waveforms were band-passed filtered for the
frequency range of interest (15Hz to 35Hz). This is a typical approach that helps optimize
sensitivity of the beamformer reconstruction to effects in a band of interest (Brookes et
al., 2011a; Brookes et al., 2008; Tal et al., 2013). A regularization parameter selected by
visual inspection of the eigenvalue distribution was used to regularize the sensor time-
courses for SBF and MCBF reconstructions (Sekihara et al., 2002, 2004; Van Veen et al.,
1997). For each approach, an estimate of R;,, was computed from the thirty-second active
period, while an estimate of R,, was obtained from the complementary inactive period.

The inverse problem was then computed (gradiometers only) using the proposed MCBF
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algorithm and the original SBF (minimum-variance regularized vector) with and without
the array-gain correction.

Performance of each methodology was evaluated by examining (1) the
reconstructed source Hilbert envelope time-courses, (2) the corresponding source-to-
source Hilbert envelope connectivity (Pearson correlation) matrix and (3) the source
localization (RMS amplitude) maps (along with a corresponding F-statistic map). Their
agreement with the “ground truth” source characteristics (shown in Figures 3.1 and 3.2)
was measured by (1) the mean percent error in the source envelopes’ RMS amplitude
estimates, (2) the percent RMS error in envelope connectivity estimates for all source
pairs and (3) the average distance error in the localized source RMS amplitude peaks (i.e.
difference between the estimated and true peak locations). Source envelopes were
normalized to the maximum value present in their respective reconstructed data,
highlighting the relative scaling of the simulated sources to the overall solution provided
by the spatial filter (ideally the maximum value corresponds to the value at the location
of the simulated sources). For metrics (1) and (2), source envelopes used in the analysis
were selected based on the simulated (true) locations. Note that this does not conflict with
the notion that no a priori information is necessary for the methods, but rather helps us
observe how well the algorithm did in reconstructing the activity in the correct
(simulated) locations. For each RMS amplitude map, the lower and upper thresholds were
set at 3% and 100% of the maximum RMS amplitude value, respectively. Statistical maps
were computed by determining the Bonferroni-corrected F-statistic for each voxel by
dividing signal window by noise window variances of the time-course envelope values

using 118 degrees of freedom. The lower limit map threshold (Fsig) was set to the F-
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statistic value corresponding to the desired p-value of 0.01. Upper limit map thresholds
were set with Fsat = Fsig + (Fmax — Fsig) - 0.1.

Median-Nerve Stimulation Task

To examine the performance of the MCBF localization algorithm on real, evoked
human data we observed the MEG responses to right median nerve stimulation. This
common approach used to study the somatosensory system provides a useful standard for
analyzing performance as the location of activity has been documented extensively. MEG
and functional studies utilizing other modalities have established that somatosensory
stimulation typically activates the thalamus (Huang et al., 2006; Kandel, 2000; Tesche,
1996), BA 1, 2, and 3b of the primary somatosensory cortex (S-I) (Forss et al., 1994;
Forss and Jousmaki, 1998; Hari and Forss, 1999; Huang et al., 2004a; Huang et al., 2000;
Huang et al., 2006; Huang et al., 2004b; Huang et al., 2005; Jousmaki and Forss, 1998;
Kandel, 2000; Mauguiere et al., 1997a, b; Wood et al., 1985), BA 4 of the primary motor
area (Baldissera and Leocani, 1995; Davidoff, 1990; Huang et al., 2004a; Huang et al.,
2000; Huang et al., 2005; Jones et al., 1978; Jones et al., 1979; Kawamura et al., 1996;
Lemon, 1981; Lemon and Porter, 1976; Lemon and van der Burg, 1979; Rosen and
Asanuma, 1972; Spiegel et al., 1999; Wong et al., 1978), BA 5 of the superior parietal
area (Boakye et al., 2000; Forss et al., 1994; Huang et al., 2006; Jones et al., 1978; Jones
et al., 1979; Kandel, 2000; McGlone et al., 2002; Waberski et al., 2002), BA 6 of the
supplementary motor area or SMA (Barba et al., 2001; Boakye et al., 2000; Huang et al.,
2006; Urbano et al., 1997) and BA 40 of the secondary somatosensory cortex (S-1I)
(Forss and Jousmaki, 1998; Fujiwara et al., 2002; Hari and Forss, 1999; Hari et al., 1993;

Huang et al., 2006; Huang et al., 2005; Kandel, 2000; Simoes et al., 2003). Furthermore,
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since the stimulation results in a complex network of closely-spaced and correlated
source activation, a challenging localization scenario is provided for reconstruction.

MEG recordings were obtained using a single healthy male subject. The subject’s
median nerve was stimulated using a bipolar Grass'™ constant-current stimulator. The
stimuli were square-wave electric pulses of 0.2 ms duration delivered at a frequency of 1
Hz. The inter-stimulus-interval (ISI) was between 800 and 1200 ms. The intensity of the
stimulation was adjusted until robust thumb twitches were observed. A trigger was
designed to simultaneously send a signal to the MEG for every stimulus delivery to allow
averaging over evoked trials. Magnetic fields evoked by median nerve stimulation were
measured using the Elekta/Neuromag™™ whole-head MEG system. EOG electrodes were
used to detect eye blinks and eye movements. An interval of 500 ms post-stimulus was
recorded, using 300 ms of pre-stimulus data for noise measurement. An interval of 30 ms
centered on the stimulus was discarded due to the presence of stimulus-related artifacts.
Data were sampled at 1000 Hz and run through a high-pass filter with a 0.1 Hz cut-off
and through MaxFilter to remove environmental noise (Song et al., 2009; Song et al.,
2008; Taulu et al., 2004; Taulu and Simola, 2006). 512 artifact-free MEG responses were
averaged with respect to the stimulus trigger.

Registration of MRI and MEG was performed using data obtained from the
Polhemus Isotrak system prior to MEG scanning. The source space was defined using
FreeSurfer’s segmentation of the subject’s T1-weighted anatomical MRI where the
brain’s gray-white matter boundary obtained was used to position the dipoles (7mm
spacing). As in the simulated portion, the segmented inner-skull surface was employed to

construct a boundary element based triangular mesh (Smm side length). With both the
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source grid and the triangular mesh, the MEG forward model calculation for the lead-
field matrix was performed using a boundary element model (Huang et al., 2007; Mosher
et al., 1999). The sensor covariance matrix, Rj, was constructed using the post-stimulus
interval while a diagonal estimate of R,, was computed using the pre-stimulus interval.
The regularization level of R, (Sekihara et al., 2002, 2004; Sekihara, 2008; Van Veen et
al., 1997) was determined by utilizing a modified “broken-stick” model which helps
identify the meaningful components of the data (Behzadi et al., 2007; Tal et al., 2013). A
regularization parameter equal to the sixth largest eigenvalue of R;, (approximately equal
to 4.5% of the largest eigenvalue) was used for localization and time-course estimation.
The MCBF algorithm was executed with 32 iterations in order to generate the shown
source time-courses and source localization (RMS amplitude) map. The data was also
processed equivalently with the SBF (with array-gain correction). An evaluation and
comparison of each methodology’s performance was completed by visual means.
Results

Simulation Results

The performance of both algorithms for the first simulation (minimally correlated
sources; r <0.0075) is graphically summarized in Figure 3.3. For each of the methods
(MCBF — left column, SBF — center column, SBF w/ array-gain correction — right
column), the reconstructed source Hilbert envelopes (top row), the inter-source Hilbert
envelope connectivity matrix (2™ row) and the source localization (RMS amplitude) map
(3" row) with the corresponding F-statistic map (bottom row) are displayed. The MCBF
performed considerably well: source envelope amplitudes (4.1%=3.1% error) and

waveforms were properly recovered resulting in an accurate estimation of inter-source



53

envelope connectivity (0.67%=0.02% error) while no error was observed in peak
localization (i.e. estimated peak location for each source coincided with the simulated
location). Qualitative inspection of the RMS map’s topography reveals MCBEF’s strengths
of accuracy along with precision (i.e. symmetric and well-defined peaks centered on
simulated locations), further confirmed by the F-statistic map which shows source
significance only when overlapping with simulated locations (i.e. those which are
supposed to contain signal). Since the F-statistic reflects the likelihood of a source
existing based on source space SNR, the observed agreement between the two maps
reflects MCBF’s ability to minimize spatial biases.

In contrast, the reconstruction performance of the SBF (without the array-gain
correction) was of a mixed nature. Although, envelope waveforms were adequately
reconstructed such that the error in connectivity measures was minimal(0.57%0.02%
error), the sources amplitudes (relative to the maximum RMS value in the reconstructed
SBF dataset) were severely underestimated (70.0%=0.1% error). This is a result of the
SBF’s sensitivity to the spatial non-uniformity of the lead-field norm resulting in a large,
false intensity (i.e. weights approach infinity) near the center of the brain (Kumihashi and
Sekihara, 2010; Sekihara, 2008). Moreover, unlike the MCBF, the spatial extent of the
SBF sources in the RMS amplitude map is loosely defined (e.g. smeared, “blob”-like),
reflecting a familiar yet undesirable beamformer phenomenon known as signal leakage
(Brookes et al., 2012) where voxels surrounding true sources show a false signal (the
source signal is essentially “leaking” into them). The combination of these two
susceptibilities can be detrimental as now both the reconstructed signal’s true origin and

true amplitude are undistinguishable. Thus, SBF source localization is rendered
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impractical as no local peaks exist around the simulated locations (all the energy is
“leaking” towards the brain’s center at an increasing slope). This severe spatial bias
results in stronger yet false sources “penetrating” the final RMS amplitude map, virtually
attenuating the true sources and thus hindering them from view. However, as the F-
statistic is spatially bias-free (both signal and noise contain the same nonuniform lead-
field bias, and thus it cancels out), the corresponding F-statistic map still shows hot spots
in the correct locations.

The array-gain modification introduced to the SBF attempts to address this
problem by rescaling the weight vector to account for such non-uniformity (Kumihashi
and Sekihara, 2010; Sekihara, 2008). Envelope amplitude estimation improved
(25.0%+19.2% error) and while the waveforms did appear slightly noisier than before the
correction, there was only a minimal effect on the connectivity estimates (0.63%%0.02%
error). Furthermore, the source RMS amplitude map now exhibited amplitude peaks at
the nearby the correct (simulated) locations, thus allowing the calculation of the
localization metric (1.33mm average error). We note that the largest RMS amplitude
value in the dataset corresponded now to a true source, demonstrating that the array-gain
modification rescaled the data to help “bring out” the actual sources and partially
overcome the large, false signal in the center. Nevertheless, source time-courses were not
scaled in a fully equivalent manner, unlike the non-corrected SBF where relative inter-
source scaling was preserved. Furthermore, minimizing the SBF’s spatial bias ultimately
caused the RMS map contours to match those of the F-statistic map. However, despite

this adjustment, the two middle temporal sources are still barely visible (corresponding to
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the two attenuated time-courses). Furthermore, the array gain correction does not address
the problem of signal leakage (i.e. local source topography).

Overall, the quantitative assessment indicated that both the MCBF and the SBF
with the array-gain modification technique could adequately localize sources as well as
estimate the underlying envelope correlations (the non-corrected SBF could only
accomplish the latter). However, the MCBF’s source reconstruction strongly
outperformed either version of the SBF when estimating the amplitude not only of signal
containing voxels (i.e. the genuine sources) but also those voxels which should not
contain any signal (i.e. noise only). Such behavior can be explained by the fact that the
iterative MCBF algorithm simply finds a more effective way to project the highly
linearly-dependent data into the source space, thereby strongly minimizing the signal
leakage effects on the reconstructed MCBF results. The presence of many such “false”
voxels in the SBF reconstruction is a significant drawback, highlighting that it still has
some limitations even when the sources environment conditions are minimally correlated.

Next, the algorithm performance was examined as varying degrees of correlation
were introduced between the source pairs (i.e. correlation between the raw source-space—
projected time series, not the Hilbert envelopes). The reconstruction results are
summarized in Figure 3.4. MCBF reconstruction efforts were largely unaffected due to its
immunity to raw source correlation. Source envelope time-course amplitudes
(7.1%=%5.46% error), inter-source connectivity estimates (1.33%=x0.04% error), the source
localization (Omm error), and F-statistic maps remained comparable to those obtained
under the minimally correlated conditions. In contrast, a review of the reconstructed SBF

data revealed the presence of strong interference effects. Considerable source amplitude
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attenuation (47.6%=x21.2% and 40.8%127.2% error without and with the array-gain
correction, respectively) and time-course distortion resulting in connectivity
misestimation (17.5%=x0.4% error for both) were observed. Interestingly, intra-
hemispheric envelope correlation values were generally overestimated while the inter-
hemispheric connectivity values were primarily underestimated. As with the previous
simulation, the SBF localization map showed below par source topography due to signal
leakage and the need for the array-gain correction. Due to several of the sources
“leaking” to the center of the brain, localization accuracy still could not be estimated with
the non-corrected SBF version, while the average localization error for the array-gain
corrected version more than doubled (2.93mm). The source attenuation due to underlying
correlations also noticeably influenced both of the SBF F-statistic maps. The reduction in
contribution from the signal component lowered the source space SNR, thus lowering the
significance (i.e. F-stat) of all dipoles across the brain. To summarize, these results
indicate that when correlated sources are present, performance of the SBF markedly
decreases whereas the MCBF continues to perform well, regardless of the added
challenge.

Algorithm performance reconstructing correlated activity in a noisier environment
(SNR level of 2) was also explored (Figure 3.5). An examination of the SBF
reconstruction revealed minor performance reductions (59.2%+15.9% error in RMS
amplitude and a 19.8%+0.5% error in connectivity for the non-corrected SBF;
41.2%%26.1% error in RMS amplitude, 20.07%=x0.5% error in connectivity and 2.93mm
average localization error for the array-gain SBF), suggesting that the errors induced by

the correlation between sources outweighed the effect of increased noise levels. In
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contrast, as the MCBF is inherently robust to source correlation, observable changes in
reconstruction quality could be attributed to the increase in noise. Most reconstructed
source envelope time-courses demonstrated amplitude suppression (55.2%+35.5% error)
and noisier waveforms, with the latter resulting in greater misestimation of inter-source
envelope connectivity (6.5%10.02%error). For the first time, the MCBF localization was
imperfect (2.1mm). Nonetheless, it is important to note that the similarity in the SBF and
MCBEF values of the mean distance errors can be misleading. Although noise did result in
a loss of precision in MCBF peak localization, the MCBF sources’ focal nature (i.e. peak
definition and spatial extent) was generally preserved in both the F-statistic and RMS
maps (as when compared to the SBF maps). Thus, even in the presence of noise, the
iterative MCBF algorithm successfully manages to reduce signal leakage, such that
spatial assessment of source activity does not suffer.

In summary (Table 1), increased noise levels had minimal effect on SBF
performance as its inability to properly reconstruct in a correlated environment
overshadowed the effects of the lower SNR. In contrast, certain components of the
MCBEF reconstruction (amplitude and connectivity estimates) did suffer to some degree
from the noisier conditions. However, as Moiseev and Herdman (2013) discussed in
detail, the mathematics of the eDCBF (and its expanded version - the MCBF) should
allow for perfect reconstruction at any arbitrary SNR as long as the source positions are
known (and a good noise estimate is available). To validate this claim and the capabilities
of the underlying MCBF mathematics, we used the known source locations to test the
optimal MCBF case in which the weight matrix is “focused” using the known simulated

source locations (see Methods). By doing this we are also indirectly assessing the
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limitations of the proposed iterative algorithm (i.e. ability to identify the optimal
beamformer weight matrix). The optimal MCBF reconstruction results for both the high
(8) and the low (2) SNR levels in a correlated environment are displayed in Figure 3.6.
As expected, a qualitative evaluation indicated a strong improvement in reconstruction
quality in the noisy environment. Reconstructed source envelopes exhibited more
accurate amplitudes (3.9%=0.5% and 4.6%%0.8% error for SNR levels of 8 and 2,
respectively) and waveforms leading to improved connectivity measures (0.66%%0.02%
and 1.58%10.05% error for SNR levels of 8 and 2, respectively). For the noisy conditions
(SNR 2), these values represent a significant improvement over those provided by
iterative algorithm (the RMS amplitude error was reduced by more than 90%;
connectivity error was reduced by 75%). They also represent a slight improvement over
the high SNR iterative values (amplitude error reduced by 45%; connectivity error
reduced by over 50%), although the absolute correction is much smaller than in the low
SNR case. This highlights both the MCBEF’s underlying potential as a mathematical
technique for recovery of time-course and connectivity measures as well as the need for
improvement in the iterative algorithm for future implementations.

Median Nerve Stimulation Task Results

The measured human MEG response to the median-nerve stimulation is shown in
figure 3.7 (gradiometer sensors displayed only; all channels superimposed). The ensuing
source reconstruction results (source activity map and time-courses) are summarized for
both methods visually in figures 3.8-3.10. Figure 3.8 displays the source RMS amplitude
localization maps obtained for SBF (top) and MCBF (bottom). The source map produced

by MCBF reveals the expected activation in the many regions of the somatosensory
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system (S-LM1,SMA,S-II, SP) and thalamus as well as other areas, including the superior
temporal gyrus and the parietal-occipital junction. In contrast, the SBF reconstruction
managed to mainly resolve only the dominant region of activity (where most of the
energy was located) while all secondary regions were suppressed. The highlighted
activity is also smeared across the primary somatosensory region (unlike the sparse, well-
defined peaks of the MCBEF sources), challenging the characterization of distinct sources.
We note that when the array-gain constraint was not applied (not shown in figure), no
source activity on the lateral surface was detected as all energy leaked to the center due to
spatial bias (as was seen in the simulations). It is also interesting to note that the map
thresholding was applied equally (a set percentile of the cumulative distribution function
(CDF) of the RMS data), yet it corresponded to a vastly different range of the RMS data
values (over 90% of the entire RMS range was included in the MCBF map in comparison
to a little over 40% of the SBF’s RMS range). Once again, this emphasizes the impact of
signal leakage on the reconstruction, as the sheer number of voxels containing false
signal increases immensely, considerably hindering the ability to discover and properly
distinguish all true sources.

Time-course reconstruction was examined as well (Figure 3.9-10). All
reconstructed source time-courses (superimposed) are displayed in the top panel of
Figure 3.9 for both the MCBF (left) and the SBF (right). A simple visual comparison
indicates not only that some components of the transient response were not revealed (e.g.
S-II, SMA components), but that the signal of those responses which were captured has
leaked to many surrounding grid locations (many non-zero time-courses, thus the “noisy”

look). The predicted MEG sensor waveforms (computed from the reconstructed time-
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courses using the same forward model as in the inverse solution) are shown in the bottom
panel of Figure 3.9 for both the MCBF (left) and the SBF (right). The strong similarity
between the recorded (Figure 3.8) and the predicted MCBF sensor waveforms indicate
that the solution reasonably explains the proposed underlying source configuration.
Conversely, the strong mismatch between the recorded and the predicted SBF waveforms
highlights the erroneousness of the SBF’s attempt at solving the inverse problem.
Individual time-courses for the S-I and S-II activity peaks (picked using the MCBF
reconstruction) are presented in Figure 3.10 for the MCBF (left) and the SBF (right). The
MCBEF S-I activation (BA 3b) showed a strong transient response 20 ms following
stimulation. The MCBF S-II activation showed a much smaller initial transient response
with a large delayed response peaking at about 80-90 ms. The latencies of these peak
activations as well as the general wave shape agree with previous neurological studies
(Boakye et al., 2000; Forss and Jousmaki, 1998; Hari and Forss, 1999; Huang et al.,
2006). The SBF source time-courses appear much noisier, and although the SBF S-1
activation transient response was still primarily visible, the S-1I activation seemed to be
considerably suppressed and masked by noise.
Conclusions

Despite an inability to accurately operate in correlated settings (Brookes et al.,
2007; Dalal et al., 2006; Diwakar et al., 2011a; Diwakar et al., 2011b; Hui and Leahy,
2006; Hui et al., 2010; Moiseev et al., 2011; Moiseev and Herdman, 2013; Quraan and
Cheyne, 2010; Sekihara et al., 2002), the conventional single beamformer (SBF) is a
popular source reconstruction technique commonly used in FC analyses of task-related

and spontaneous MEG recordings (Brookes et al., 2011a; Brookes et al., 2012a; Brookes
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et al., 2011b; Hall et al., 2013; Hillebrand et al., 2012; Hipp et al., 2012; Luckhoo et al.,
2012; Mantini et al., 2011; Tal et al., 2013). Various modifications have been put forward
to address this inherent mathematical limitation of the SBF, yet they either require a
priori information or are incapable of estimating FC (source-to-source and/or whole-
brain). In this chapter, we adapted an iterative Bayesian-based localization approach and
applied it without any a priori information to the multi-core beamformer (MCBF),
enabling accurate source localization irrespective of the underlying correlation while also
providing per voxel time-course reconstruction, which is a requirement for whole-brain
FC estimations. We emulated resting-state waveforms and designed intricate simulations
involving ten sources, as compared to the more common 3 to 4 sources typically used in
prior work, to perform a comparison of the MCBF and the SBF reconstruction
capabilities at varying connectivity strengths (for both the raw time-courses and
envelopes) and SNR conditions. Task-activated neuromagnetic measurements (median-
nerve stimulation) were used to further assess the beamformers’ ability to resolve closely-
spaced, highly correlated human neural networks.  Our results showed that the SBF and
MCBEF were both capable of producing accurate inter-source power envelope correlation
estimates when no raw inter-source correlations existed. Nevertheless, the RMS maps
clearly showed that the MCBF was superior in correctly localizing the simulated sources,
whereas SBF source definition was spatially smeared (i.e. due to signal leakage) as well
as spatially biased when the array-gain correction was not applied. Furthermore, the
envelope time-course plots demonstrated that MCBF successfully recovered source
amplitudes while SBF envelopes were improperly scaled (with or without the array-gain

correction). In the presence of raw inter-source correlation, the MCBF outperformed the
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SBF (regardless of the array-gain constraint) in all reconstruction categories: source
localization, estimation of inter-source envelope correlations, and source amplitude
recovery. When noise levels were substantially increased, the ability of our localization
algorithm to refine the weight matrix was lessened. Interestingly, the SBF reconstruction
results were still so strongly influenced by the existing inter-source correlation that
effects due to increased noise levels were overshadowed. In the evoked (high SNR,
highly correlated) recordings, the MCBF bettered the SBF yet again, reconstructing more
comprehensive source activity maps (resolving all the components of the heavily-studied
somatosensory response), cleaner and better-detailed source time-courses (reducing
signal leakage) and predicted sensor waveforms nearly identical to the originals.
Altogether, these results suggest that the MCBF holds more promise than the SBF as a
tool suitable for studying intricate MEG dynamics as well as conducting MEG FC
analyses.

Whole-brain measurements of neural dynamics are essential for FC investigation
of the electrophysiological signal in the resting-state brain (Brookes et al., 2011b; de
Pasquale et al., 2010; Mantini et al., 2011). This feature was previously unavailable in
prior multi-source beamformers, as they were designed to only evaluate activity at
selected locations of interest (Brookes et al., 2007; Diwakar et al., 2011a; Diwakar et al.,
2011b; Moiseev et al., 2011), unlike the conventional beamformers (SBF/NB/CCSM).
This limitation was overcome by the generalized framework of the MCBF, permitting
simultaneous application of the beamformer (i.e. source-space projection) to every grid

point. The MCBF’s expanded ability to compute voxel-by-voxel time-courses and
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amplitude estimates is thus of critical importance in its application to whole-brain FC
analyses.

Concerns regarding beamformer signal leakage are also addressed by the
proposed algorithm. Signal leakage is currently a significant hindrance in assessing MEG
dynamics, FC and resting-state network formation (Brookes et al., 2011a; Brookes et al.,
2011b; Brookes et al., 2012b) as it introduces spurious connectivity measures (Brookes et
al., 2012b). Although corrections for such effects have been proposed (Brookes et al.,
2012b), it was noted that the success of the suggested fix was highly dependent on the
particular source projection algorithm employed. A second concern was that the
correction could also remove any genuine zero-lag neurophysiological communications
that existed, a generally undesirable effect. As suggested by Brookes et al. (2012b),
application of beamformers that are insensitive to raw inter-source correlation could hold
the key to solving this issue. The present study supports the validity of this hypothesis
showing that the MCBF can overcome one of the greatest drawbacks of the SBF (and
other beamformers as well).

Nonetheless, the algorithm for hyperparameter optimization still exhibits some
shortcomings and certainly has room for improvement. The simulations showed the
algorithm’s performance degrading as noise levels increased; on the contrary, the
accuracy of the optimal MCBF solution remained identical (as was mathematically
proven by Moiseev and Herdman (2013)). While this underscores the mathematical
potential of the MCBF technique, it also reflects the iterative algorithm’s need to more
effectively refine the generalized solution (i.e. the beamformer weight matrix). Thus,

further improvement or development of more robust algorithms is warranted.
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MEQG resting-state measurements conventionally employ five minutes of data
(Brookes et al., 2011a; Brookes et al., 2011b; Brookes et al., 2012b; de Pasquale et al.,
2010; Hall et al., 2013; Hillebrand et al., 2012; Hipp et al., 2012; Luckhoo et al., 2012;
Mantini et al., 2011; Tal et al., 2013) for construction of the signal covariance matrix,
thus providing a higher effective SNR for the beamformer and improving its
reconstruction performance (Brookes et al., 2008). In our study, we designed our
waveforms to contain only 30 seconds of signal (at the equivalent sampling rate to real
data), thereby challenging the filter more than is typically done for spontaneous analyses.
In the future, the application of the MCBF to real data which contains more samples (e.g.
10x for a 5 minute recording) should only improve reconstruction performance.
Combined with the ability to minimize signal-leakage and spatial bias (towards the
head’s center) and operate in the presence of underlying source correlation, the MCBF
could lead to vastly improved estimates of FC and better characterization of resting-state
networks.

In conclusion, use of the SBF in FC studies has been largely justified by
hypothesizing that the nature of correlated neuronal oscillations in the resting-state is
short-lived and thus, should have little impact on time-course reconstruction (Brookes et
al., 2011b). However, this would truly be unverifiable using the SBF, as its inherent
limitation hinders accurate examination of the underlying correlations among the
supposed “resolved” sources. As the MCBF innately bypasses this obstacle, and even
further, curtails signal leakage distortions as well as accurately and precisely reconstructs
source features, it is conceivably the ideal tool for future FC investigations in the MEG

domain (Moiseev and Herdman, 2013).
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Figure 3.1: Subject’s head (inflated in FreeSurfer) displaying the true location of all
ten simulated sources (L and R designate left and right hemispheres).
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Figure 3.2: Left panel — Simulated time-courses (Hilbert envelopes) for all ten

sources. Right panel - Source-to-source connectivity (Pearson Correlation) matrix
formed by cross-correlating all the source envelope time-courses displayed above.
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Figure 3.3: Source reconstruction results for the Minimally Correlated Sources
Simulation (SNR = 8) for the Multi-Core Beamformer (MCBF), the Single
Beamformer (SBF), and the SBF with the array-gain constraint.

Top Panels — Reconstructed “Hilbert envelope” time-courses for all ten sources. 2nd Row
Panels - Source-to-source connectivity (Pearson correlation) matrix formed from the
estimated envelope time-courses. 3rd row Panels -Source RMS amplitude maps
(significant voxels only) with the minimum and maximum thresholds set at 3% and 100%
of the maximum RMS amplitude value, respectively. Bottom Panels —F-statistic maps
with Fsig corresponding to p < 0.01 (Bonferroni corrected).
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Figure 3.4: Source reconstruction results for the Correlated Sources Simulation
(SNR = 8) for the Multi-Core Beamformer (MCBF), the Single Beamformer (SBF),
and the SBF with the array-gain constraint.

Top Panels — Reconstructed “Hilbert envelope” time-courses for all ten sources. 2" Row
Panels - Source-to-source connectivity (Pearson correlation) matrix formed from the
estimated envelope time-courses. 3" row Panels - Source RMS amplitude maps
(significant voxels only) with the minimum and maximum thresholds set at 3% and 100%
of the maximum amplitude RMS value, respectively. Bottom Panels —F-statistic maps
with Fg, corresponding to p < 0.01 (Bonferroni corrected).
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Figure 3.5: Source reconstruction results for the Correlated Sources Simulation
(SNR = 2) for the Multi-Core Beamformer (MCBF), the Single Beamformer (SBF),
and the SBF with the array-gain constraint.

Top Panels — Reconstructed “Hilbert envelope” time-courses for all ten sources. 2" Row
Panels - Source-to-source connectivity (Pearson correlation) matrix formed from the
estimated envelope time-courses. 3" row Panels - Source RMS amplitude maps
(significant voxels only) with the minimum and maximum thresholds set at 3% and 100%
of the maximum amplitude RMS value, respectively. Bottom Panels —F-statistic maps
with Fg, corresponding to p < 0.01 (Bonferroni corrected).
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Figure 3.6: Optimal Multi-Core Beamformer reconstruction results for the
Correlated Sources Simulation at a SNR level of 8 (left) and at a SNR level of 2
(right).

Top panels — Reconstructed “Hilbert envelope” time-courses for all ten sources. Bottom
panels - Source-to-source connectivity (Pearson correlation) matrix formed from the
estimated envelope time-courses.
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Figure 3.7: The recorded MEG sensor (gradiometers only) waveforms for the right
median-nerve stimulation experiment

An exact representation of the data prior to being sent to the SBF and the MCBF
reconstructions. Note the first 15ms were not included as an interval of 30ms (centered
on the stimulus) was discarded due to the presence of stimulus-related artifacts.
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Thalamus

Figure 3.8: Median-nerve source localization (RMS amplitude) maps provided by
the SBF and MCBF algorithm (left hemisphere shown).

Source RMS amplitude map red and yellow thresholds were set at the 97" percentile and
the 99" percentile of the CDF, respectively. Only significant voxels (whose Bonferroni-
corrected F-statistic was larger than the F-stat which corresponds to p =0.01) are
displayed. M1 = primary motor cortex; S-1 = primary somatosensory cortex; S-II =
secondary somatosensory cortex; SMA = supplementary motor area; BA = Brodmann
area.
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Figure 3.9: Reconstructed median-nerve source time-courses (top panels) and
predicted MEG sensor waveforms (bottom panels) for the MCBF (left panels) and
the SBF (right panel).

The sensor waveforms (gradiometers only) were computed from the reconstructed time-
courses (respectively for each technique) via the same forward model used in the inverse
solution estimation.
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Figure 3.10: Individual reconstructed median-nerve time-courses for the S-1 (BA
3b,1,2) region (top panels) and S-II (BA 40) region (bottom panels) for the MCBF

(left panels) and the SBF (right panels).
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CHAPTER 4

Introduction

In recent times, connectivity (i.e. functional relation) between spatially distinct
regions in the brain has become a key matter of study in the field of neuroscience. Such
functional connectivity (FC) measures have been commonly used as means for
identifying and characterizing resting-state brain activity and distributed network
formation (Beckmann et al., 2005; Smith et al., 2009). Typically this uses functional
magnetic resonance imaging (fMRI) in spite of the fact that it provides only an indirect
measure of neural activity due to the signal’s hemodynamic basis (Buxton et al., 2004).
Furthermore, the modality’s limited temporal resolution due to the signal broadening
inherent to the hemodynamic response restricts its ability to fully investigate the
underlying, rapid neural fluctuations believed to be responsible for the observed fMRI
manifestations (Schnitzler and Gross, 2005; Singer, 1999). These confounds can be
avoided by utilizing direct measures of electrophysiology, such as
magnetoencephalography (MEG), which detects extra-cranial magnetic fields produced
by synchronized neural currents (Hamalainen et al., 1993). Indeed, recent work with
MEG has identified a number of the networks commonly observed with fMRI (Brookes
et al., 2011a; Brookes et al., 2011b; Hipp et al., 2012).

In order to project the externally collected MEG data onto the brain (i.e. source
space), FC analyses (Brookes et al., 2011a; Brookes et al., 2012a; Brookes et al., 2011b;
Hall et al., 2013; Hillebrand et al., 2012; Hipp et al., 2012; Luckhoo et al., 2012; Mantini

etal., 2011; Tal et al., 2013) routinely use an adaptive spatial filter known as the
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minimum-variance single beamformer (SBF) (Robinson, 1998; Sekihara et al., 2002; Van
Drongelen, 1996; Van Veen et al., 1997). Although compelling to use due to robust
performance in low signal-to-noise conditions (e.g. resting-state measurements) and ease
of implementation, the SBF reconstructions are susceptible to inter-source correlations,
resulting in source amplitude suppression and time-course distortion (Brookes et al.,
2007; Dalal et al., 2006; Diwakar et al., 2011a; Diwakar et al., 2011b; Hui and Leahy,
2006; Hui et al., 2010; Moiseev et al., 2011; Moiseev and Herdman, 2013; Quraan and
Cheyne, 2010). Considering that spontaneous and non-averaged task related (e.g. eye
tracking) neural activity is known to involve synchronous communication between
multiple sources (Singer, 1999), the use of SBF as a tool for FC analysis could be
questionable (Moiseev and Herdman, 2013). Furthermore, due to the ill-posed nature of
the inverse problem, certain dependencies in the projected signals could exist between
spatially separate voxels resulting in the phenomenon known as signal leakage. This can
be a hindrance to assessing MEG dynamics (FC and resting-state network formation) as
signal leakage will introduce spurious connectivity measures (Brookes et al., 2012b). The
SBF also suffers from strong spatial bias towards the head’s center due to a non-uniform
lead-field (Kumihashi and Sekihara, 2010; Sekihara, 2008), an effect which can be
reduced using the array-gain constraint (Sekihara, 2008), but at the cost of incorrect
relative scaling among sources as we have shown in Chapter 3.

Beamformers that are less sensitive to the presence of underlying source
correlation, signal leakage and spatial bias could potentially lead to improved estimates
of resting-state FC and network characterization (Brookes et al., 2012b; Moiseev and

Herdman, 2013). In chapter 3 we introduced and analyzed the multi-core beamformer
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(MCBF) combined with an iterative algorithm and used both complex simulations and
evoked neuromagnetic data measurements to demonstrate the method’s ability to
successfully reconstruct sources regardless of their correlation and minimize signal
leakage and spatial bias.

Application of the SBF in spontaneous FC studies has been largely justified by
hypothesizing that the nature of correlated neuronal oscillations in the resting-state is
short-lived and thus, should have little impact on time-course reconstruction (Brookes et
al., 2011b). However, this would truly be unverifiable using the SBF, as its inherent
limitation hinders accurate examination of the underlying correlations among the
supposed “resolved” sources. As the MCBF innately bypasses this obstacle, and even
further, curtails signal leakage distortions as well as accurately and precisely reconstructs
source features, it is conceivably the better tool for spontaneous FC investigations
(Moiseev and Herdman, 2013).

In this chapter, we look further into the matter and compare the reconstruction
performance of the SBF to the MCBF using resting-state measurements collected
previously for Tal et al. (2013) by recomputing the study’s results with the MCBF. We
also employ CHAMPAGNE, an L2 minimum-norm iterative solution developed by Wipf
et al. (2010) which is insensitive to source correlation as well. In addition, we apply
independent component analysis (ICA) to the spontaneous source data reconstructed by
SBF and MCBEF in order to extract resting-state networks (RSNs). The SBF and MCBF
networks’ spatial extent are compared to each other as well as their established fMRI
analogues (Smith et al., 2009). Such insights should help determine whether SBF

reconstructions are adequate for spontaneous MEG FC estimations.
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Materials and Methods

Data from a previous study are employed; all experimental and data processing
procedures have been previously published (Tal et al., 2013) and are repeated here for the
reader’s convenience.

FExperimental Protocol

Twelve healthy volunteers were initially enrolled in this study after providing
informed consent. Two subjects were not able to complete the study due to excessive
motion and dental artifacts, resulting in a final sample size of 10 subjects (4 males and 6
females; ages 21 to 33 years; mean of 25.6 years). To minimize potential confounds due
to differing levels of caffeine consumption (Jones et al., 2000; Reeves et al., 2002), we
recruited subjects with low levels of caffeine usage (<50 mg/day). Participants were
instructed to abstain from caffeine for 24 hours prior to being scanned, as well as to
maintain low caffeine consumption for a two month period prior to the beginning of the
study and throughout the entire duration of the study.

The study employed a double-blind, placebo-controlled, repeated measures
design. For each modality (MEG and fMRI), each subject participated in two independent
imaging sessions, a control session and a caffeine session, where the order of the two
sessions was random. Each of the four imaging sessions (MEG control and caffeine;
fMRI control and caffeine) was separated from the other sessions by at least two weeks.
Half the subjects started with MEG sessions while the other half started with fMRI
sessions. Each session consisted of a pre-dose section and a post-dose section, with each
MEG and fMRI section lasting about 30 and 60 minutes, respectively. After the pre-dose

section, subjects were taken out of the MEG or MRI scanner and asked to ingest a
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capsule containing 200 mg of caffeine or placebo. A forty minute period was allotted
between capsule ingestion and the first functional scan of the post-dose section, as
previous studies have shown that the absorption of caffeine from the gastrointestinal tract
reaches 99% about forty five minutes post ingestion (Fredholm et al., 1999).

Each MEG scan section consisted of four 5 minute resting-state scans, two with
eyes closed (EC) and two with eyes open (EO), in the following order: EC, EO, EC and
EO. Subjects were instructed to stay awake, keep their mind blank and their hands open,
laying flat. During EO resting-state scans, participants were asked to visually fixate on a
black cross placed on a white screen, while during the EC resting-state scans they were
asked to keep their eyes closed and to imagine the black cross. In this chapter, our
analysis will focus primarily on the EC scans from the MEG sessions.

Data Acquisition and Processing

MEG data were measured using an Elekta/NeuromagTM whole-head MEG
system with 204 gradiometers and 102 magnetometers in a magnetically shielded room
(IMEDCO-AG, Switzerland). Electro-oculogram (EOG) electrodes were used to record
eye blinks and movements. Data were sampled at 1000 Hz and pre-processed using
MaxFilter (NeuromagTM) to remove environmental noise and signal artifacts due to
magnetic interference from sources outside the brain (Song et al., 2009; Song et al.,
2008; Taulu et al., 2004; Taulu and Simola, 2006). Temporal independent components
analysis (ICA) was applied to the data using the fastICA algorithm
(http://research.ics.tkk.fi/ica/fastica), and artifact-related independent components due to
eye blinks, cardiac activity, and instrument-related activity were removed based on visual

inspection of their temporal and spatial signatures (typically removing 1-3 components).
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Using the high-resolution anatomical data obtained in the MRI scan, a boundary-
element based triangular mesh of 5-mm mesh size was generated for each subject from
their inner-skull surface. FreeSurfer was used to define a fixed source grid (7mm spacing)
on the brain’s gray-white matter boundary, which was then divided into cortical regions
of interest using the FreeSurfer computed parcellations (Desikan et al., 2006). With the
inner-skull triangular mesh and gray-matter source grid, the MEG forward model
calculation for the lead-field (gain) matrix was performed using a boundary element
model (Huang et al., 2007; Mosher et al., 1999). Registration of MRI and MEG data was
performed using positioning information obtained with a Polhemus Isotrak system prior
to each MEG session.

In our analysis, we considered MEG data both within a wide-band range of 1-50
Hz and within the following bands: delta (8) — 1-4 Hz, theta (0) — 4-8 Hz, alpha (o) — 8-
13 Hz, low and high beta (B) — 13-20 Hz & 20-30 Hz, respectively, and low gamma (y) —
30-50 Hz. The frequency filtered MEG data were then projected into source space using
the array-gain constraint minimum-variance regularized vector beamformer (Robinson,
1998; Sekihara, 2008; Van Drongelen, 1996; Van Veen et al., 1997), the multi-core
beamformer (Diwakar et al., 2011b) in tandem with the proposed iterative algorithm
(Chapter 3) as well as CHAMPAGNE (Wipf et al., 2010), yielding a set of bandlimited
time-courses (at each source location) for each of the reconstruction techniques. The
regularization level was set uniquely for each individual MEG recording by utilizing a
modified “broken-stick” model as described in (Behzadi et al., 2007) which helps to
identify the meaningful (data-related) principal components. A statistical distribution of

expected eigenvalues, derived from random normally distributed data with rank and
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Frobenius norm equal to that of the MEG data of interest, was used for comparison and
determination of the noise level (i.e., the number of significant (p < 0.05) modes). The
value of the first non-significant (noise) component then represented the cut-off and was
used as the regularization parameter. Reconstructed source time-courses were then
Hilbert transformed to obtain the analytic signal. The envelope of oscillatory power
fluctuations was obtained from the absolute value of the analytic signal and this envelope
time course was then epoched into 500ms blocks, following the approach of (Brookes et
al., 2011a).

Connectivity Measures

For each subject, we used the FreeSurfer cortical parcellations (Desikan et al.,
2006) to define anatomical regions of interest (ROIs). As described in (Wong et al.,
2012), we discarded ROIs for which any subject had less than 5 voxels within a region,
resulting in a total of 40 ROIs (20 per hemisphere). A central source for each of the
cortical ROIs was defined as the source with the smallest mean path length to all the
other sources within the ROI. Next, a sphere-shaped region was defined to include every
source that was both within 12 mm of the central source and contained within the same
ROL. Envelope time-courses within this region were then averaged to provide a final
average MEG time-course for each ROI. To assess connectivity, we computed the
Pearson correlation coefficient (r) between the average time-courses for each pair of
ROIs (780 pairs). For each modality, the correlation coefficient was computed for each of
the four acquisition sections (pre-dose and post-dose sections of both the Control and
Caffeine sessions). The correlation coefficients from repeated scans (e.g. the two pre-

dose EC scans) were averaged. For quantitative assessments, the Pearson correlation
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scores were converted to the Fisher z-scores using the Fisher transformation (Luckhoo et
al., 2012). The change in the z-score metric (Az = post-dose z-score minus pre-dose z-
score) in each session (caffeine and control) was calculated, and a repeated measures
two-way analysis of variance (ANOVA) (Keppel and Wickens, 2004) was then used to
examine the effects of two factors on the measured connectivity: (1) the effect of
caffeine/control and (2) the effect of ROI pair (Wong et al., 2012).

Preliminary Post-processing ICA

Following the approach of Brookes et al. (2011b), temporal ICA was applied to
the data using the fastICA algorithm (Hyvarinen, 1999) to extract the resting-state
networks’ (RSNs) spatial configurations. Prior to ICA, data were prewhitened and
reduced to thirty principal components and twenty-five independent components (ICs)
were obtained (Brookes et al., 2011b). For each IC, the Pearson correlation between its
time-course and the time-course of every voxel was computed and the correlation values
were then combined to form a RSN spatial map, resulting in a series of RSNs maps. The
spatial similarity of the MEG RSNs maps to previously published fMRI RSN maps
derived from spatial ICA (Smith et al., 2009) were quantified using a spatial Pearson
correlation coefficient measure (only voxels within the brain included).

Results

Source Time-courses

For a representative subject, the projected source time-courses from a single run
(5 min) in the control session are shown in Figure 4.1 for the SBF, the MCBF and
CHAMPAGNE. A qualitative review reveals that although source waveform shape and

structure is generally similar (i.e. activity peaks match temporally and in magnitude), the
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overall neural activity is noticeably represented by a smaller number of sources with the
MCBEF than with the SBF, indicating that signal leakage reduction effects of the
algorithm presented in Chapter 3 extend to resting-state analyses as well. CHAMPAGNE
time-courses appear to fall somewhere in the middle: although less source time-courses
seem to be used than SBF, signal leakage is still more apparent than with the MCBF.

Analysis of Data from Caffeine Study

To qualitatively compare the two reconstruction techniques, the figures presented
in (Tal et al., 2013) were reproduced. For the same representative subject, Pearson
correlation coefficient matrices are displayed in Figure 4.2 indicating the degree of
connectivity in the eyes closed (EC) condition for all ROI pairs for each of the four scan
sections (pre-dose and post-dose sections of the caffeine and control session). The SBF
connectivity matrices are shown in the top, while the MCBF and CHAMPAGNE are
shown in the bottom left and the right hand sides of the figure, respectively (the SBF
matrices are similar to those previously presented in (Tal et al., 2013)). The connectivity
metrics were obtained using the wide-band frequency range (1-50Hz). As before,
correlations in the post-dose caffeine data are visibly lower than in the pre-dose caffeine
data, indicating a caffeine-induced global decrease in this subject’s connectivity, while
there is not a widespread difference between the pre-dose and post-dose correlations in
the control session. Although some individual ROI pairs might slightly differ in their
value, a consensus in the subject’s global connectivity exists among the three
reconstruction approaches for each of the four sessions.

Similarly, group results were also recomputed. Figure 4.3 shows the changes in z-

score (post-dose minus pre-dose) averaged across subjects and sessions (control and
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caffeine — EC condition), with the changes for SBF, MCBF and CHAMPAGNE shown in
the top, middle and bottom panels of the figure, respectively. The upper triangle of each
matrix shows the mean changes in the z-score metric (across subjects) for all ROI pairs,
while the lower triangle shows the t-statistics of those ROI pairs that exhibited a
significant (p < 0.05) change in connectivity across the sample. Significant decreases and
increases in z-scores are indicated by blue and red hues, respectively. From a qualitative
perspective, broad decreases in connectivity can be observed for the caffeine data while
the control data shows fewer significant changes than the caffeine data. It is noted that in
the control data (where minimal changes are expected to be seen as minimal physical
changes in subject state are expected to occur between pre-dose and post-dose sections),
MCBF and CHAMPAGNE showed fewer significant ROI pairs than the SBF, perhaps
indicating that false connectivity changes due to signal leakage are reduced. The
quantitative assessment of the data provided by two-way repeated measures ANOVA is
shown in Table 4.1. For all reconstruction techniques, the caffeine/control factor showed
a significant effect (p < 0.0065, p <0.0058 and p < 0.0089 for SBF, MCBF and
CHAMPAGNE, respectively), indicating that the change in correlation was significantly
different between the caffeine and control sessions as well as that the projection approach
of choice did not substantially affect the computed global group statistical measures. A
one-way ANOVA (factor being reconstruction method) conducted on the observed mean
global (averaged across ROI pairs) connectivity reductions for all the subjects (including
both control and caffeine session values) showed no difference to exist between the
results provided the three techniques (p = 0.94). Post-hoc two-tailed t-tests further

validated no that significant difference existed between the reconstruction methods



92

results (p > 0.22 for all three comparison cases). However, we note that if examining just
the absolute correlation values themselves instead of the changes across sections (one-
way ANOVA still insignificant with p = 0.4), equivalent post-hoc t-tests comparing the
three approaches shows significant changes when comparing CHAMPAGNE with SBF
or MCBF (p < 1e-8) but not in between MCBF and SBF (p = 0.63).

Band-specific (frequency bands defined in Methods) mean connectivity changes
across all ROIs are compared in Figure 4.4 (displayed in the same manner as the wide-
band data in Figure 4.3). Widespread decreases in z-scores are evident in the caffeine
data across all bands regardless of reconstruction technique, with the strongest reductions
appearing in the a, low 3 and high  bands. As was seen with the wide-band control data,
MCBF and CHAMPAGNE appear to result in fewer significant ROI pairs (with the
exception of the A band), potentially implying a reduction in signal leakage. The
quantitative assessment using the two-way repeated measures ANOVA (Tables 4.2, 4.3
and 4.4 for SBF, MCBF and CHAMPAGNE, respectively) revealed that in both
approaches only the 0, low B and high B bands showed a significant main effect (p <
0.05) of the caffeine/control factor (interaction term not significant for any of the bands
with significant main effect). Interestingly, the ANOVA results from the MCBF and
CHAMPAGNE data were more conservative when estimating significance (i.e. larger p-
values). This could follow from reduction of spurious connectivity due to signal leakage,
where ROI pairs whose signal was “leaked” (i.e. not truly belonging there) and were
demonstrating a false positive significance, are now without any signal and consequently
not significant.

Resting-State ICA Analysis
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For a representative subject, a single run (5-min acquisition) was used to generate
two sets of twenty-five independent RSN spatial maps (from the SBF and MCBF
reconstructed time-courses, respectively). The results were matched to their 10 known
fMRI analogues by means of a spatial correlation (i.e. resulting in a 25x10 matrix of
correlation coefficients). As an example, the strongest MEG complements of the fMRI
motor network are displayed for the SBF, MCBF and CHAMPAGNE data in Figure 4.5.
Although the degree of correspondence (i.e. correlation to fMRI RSN) was similar for the
three methods (0.45, 0.48 and 0.42 for SBF, MCBF and CHAMPAGNE respectively), a
visual comparison does seem to indicate a somewhat less defined motor RSN in the SBF
and CHAMPAGNE maps than in the MCBF map, perhaps suggestive of increased signal
leakage effects (same thresholding was applied for both maps: 98.5™ and 99.9" percentile
of the data’s cumulative distribution function (CDF) for red and yellow, respectively). It
is interesting to note that the MEG motor RSNs were mainly restricted to a single
hemisphere (for a given IC), while generally the fMRI motor RSNs are known to be
captured bilaterally. Four 5-min acquisitions (all control runs) were concatenated to
enhance IC map spatial definition. Results shown for SBF, MCBF and CHAMPAGNE
(Figure 4.6) exhibit improved RSN spatial extent (in comparison to maps from the single
run), yet the MCBF motor map still seemed to maintain its edge in RSN spatial definition
when compared to the SBF and CHAMPAGNE motor maps. Other examples of MEG
RSN maps resembling known fMRI networks are shown for MCBF, such as the visual
network (Figure 4.7) and executive network (Figure 4.8). It is noted that when comparing
the amount of correspondence for the best matching maps across the 10 maps, similar

patterns of spatial correlation are observed regardless of reconstruction (i.e. if a resolved
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SBF network has a high degree of spatial matching, then so would the respective MCBF
network, and vice versa). This suggests that although signal leakage (voxel
nonindependence) is reduced by using MCBF, due to ICA’s inherent nature of extracting
independent features it may be somewhat resistant to leakage effects, and thus both
techniques result in comparable ICA maps suggesting that the utilization of the advanced
may not provide significant advantages MCBF.
Conclusions

Although commonly used to reconstruct MEG data collected in resting-state
functional connectivity analyses (Brookes et al., 2011a; Brookes et al., 2012a; Brookes et
al., 2011b; Hall et al., 2013; Hillebrand et al., 2012; Hipp et al., 2012; Luckhoo et al.,
2012; Mantini et al., 2011; Tal et al., 2013), the minimum-variance single beamformer is
vulnerable to the presence of inter-source correlations (Brookes et al., 2007; Dalal et al.,
2006; Diwakar et al., 2011a; Diwakar et al., 2011b; Hui and Leahy, 2006; Hui et al.,
2010; Moiseev et al., 2011; Moiseev and Herdman, 2013; Quraan and Cheyne, 2010),
believed to exist during spontaneous and non-averaged task related neural activities
(Singer, 1999). Artifacts due to the ill-posed inverse problem such as spatial leakage
(Brookes et al., 2012b) and bias towards the center of the brain (Kumihashi and Sekihara,
2010; Sekihara, 2008) further provide complications for resting-state FC analyses,
placing its use for such tasks under question (Brookes et al., 2012b; Moiseev and
Herdmann, 2013). In this chapter, we attempted to determine whether these factors were
strong enough to affect resting-state MEG functional measurements (e.g. connectivity)
and the associated interpretation of the measures (e.g. ROI based changes, resting-state

networks).
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First, re-examination of the resting-state MEG data collected for the caffeine
study (Tal et al., 2013) was completed using both the SBF, the MCBF (Diwakar et al.,
2011b) combined with the iterative algorithm (Chapter 4) and CHAMPAGNE (Wipf et
al. 2010) where the latter two methods have been shown to be immune to such concerns.
Interestingly, while the significance of connectivity changes in individual ROI-to-ROI
connectivity measures did differ across certain pairs (for the group data), the observed
global behavior (i.e. connectivity reductions) and corresponding statistical measures
remained alike (for both the wideband and band-limited data). We noted that the apparent
visual reduction in significant ROI pairs (when comparing the MCBF and
CHAMPAGNE results to the SBF) is attributed perhaps to the minimization of signal
leakage effects (i.e. less voxels exhibiting spurious connectivity resulting in false-positive
significance). However, given that the global observations did not differ wildly between
the two, it seems safe to suggest that underlying source connectivity in spontaneous
conditions is minimal enough that the SBF observations can be trusted. We would not
recommend the same when attempting to look specific ROI pairs, as clearly disagreement
exists between the two on numerous occasions. If one must employ SBF, a secondary
measurement (e.g. signal amplitude) should be used to truly verify the existence of a
source in that location (as leaked, “weak” signals can result in artifactual connectivity),
prior to concluding a significant connectivity change. Second, ICA was employed to
extract resting-state networks from SBF, MCBF and CHAMPAGNE reconstructed data.
Although better spatial definition was apparent for the MCBF RSNs, the differences were

no large enough to justify employment of either MCBF or CHAMPAGNE over SBF.
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We note that our work on characterization of MEG RSNs using temporal ICA is
extremely preliminary. Foremost, a full quantitative assessment is needed for proper
characterization and comparison of the resolved RSNs. Also, networks presented in the
established fMRI (Smith et al., 2009) and MEG (Brookes et al., 2011b) literature were
obtained by the concatenation of data from numerous subjects (36 and 10, respectively),
as such subject-based averaging facilitates the identification of spatially distinct RSN
maps. At this time, we have only employed a single subject due to an inability to apply a
common pre-processing step of data mean and variance normalization, which normally
takes place when concatenating datasets (to help minimize unwanted discrepancies in the
grouped signals from affecting the ICA process). This is an unfortunate outcome due to
the “sparser” features of the MCBF reconstruction technique which translates to voxels
(sources) whose time-courses have near zero amplitudes and variances. As such activity-
less locations (voxels) tend to vary across sessions and subjects, improper magnifications
of source time-courses may occur resulting in failure during the ICA process. Better
understanding of this phenomenon and developing means to address the difficulties
which arise from it are critical for any future assessments of multi-subject resting-state
MEG data which utilize ICA analysis.

Contrary to expectations based on the observations in Chapter 4, the preliminary
investigation suggests that the SBF can serve as a projection tool for spontaneous MEG
data when conclusions are to be made on the global level (i.e. changes seen across the
entire brain) but not when examining differences in the voxel level (i.e. for a given ROI
pair) due to the presence of spurious connectivity measures brought about by SBF’s

spatial leakage. Further work would be useful to confirm this as the genuine basis for the



97

disparities between the SBF, MCBF and CHAMPAGNE reconstructions. In addition,
improved pre-processing techniques need to be developed to allow the successful
application of temporal ICA to MCBF and CHAMPAGNE reconstructed data for RSN

characterization and comparison with SBF RSN reconstructions.
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for MEG wide-band (1-50Hz) data reconstructed with SBF (top), MCBF (bottom
left) and CHAMPAGNE (bottom right).

ROI labels (1-20 left hemisphere; 21-40 right hemisphere): anterior cingulate, middle
frontal, cuneus, fusiform, inferior parietal, isthmus cingulate, lateral orbitofrontal, medial
orbitofrontal, pars opercularis, post central, posterior cingulate, precentral, precuneus,
rostral anterior cingulate, rostral middle frontal, superior frontal, superior parietal,
superior temporal, supramarginal, insula.
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MEG WideBand (1-50 Hz)

Control Caffeine

MCBF SBF

CHAMPAGNE

Figure 4.3: Mean connectivity changes across subjects (blue color — decrease, red
color — increase) for MEG wide-band (1-50Hz) data reconstructed with SBF (top
panels), MCBF (center panels) and CHAMPAGNE (bottom panels).

Upper triangle represents mean change in z-scores and lower triangle shows the
respective t-statistics for significant (p <0.05) entries.
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Table 4.1: Repeated measures two-way ANOVA statistics for MEG wide-band data
reconstructed with SBF, MCBF and CHAMPAGNE (metric is change in z-score).

MEG WideBand (1-50Hz) - Eyes Closed

SBF MCBF CHAMPAGNE
Factor Dof F p F p F p
Caffeine/contr (1,9) 12.38  0.0065 1291  0.0058 11.04  0.0089
ROI pairs (779,7011  1.23 <le-5 1.76 <le-5 1.39 <le-5

Interaction (779,7011  0.87 0.99 0.83 1.00 0.85 1.00

Table 4.2: Repeated measures two-way ANOV A statistics for band-limited MEG
data reconstructed with the SBF (metric is change in z-score).

o 6 v} Low B High B Low y

Factor F p F p F »p F »p F »p F »p

Caffeine/contr 17 02 145 <001 3.7 008 9.6 0012 86 0016 13 028

ROI pairs 08 10 125 <le- 21 <lee 16 <le- 12 <le- 14 <le-

Interaction 09 09 08 100 09 08 10 045 09 08 08 099

Table 4.3: Repeated measures two-way ANOV A statistics for band-limited MEG
data reconstructed with the MCBF (metric is change in z-score).

) 0 (v} Low B High B Low y

Factor F p F p F »p F p F p F p

Caffeine/contr 2.59 0.14 725 025 376 0084 879 0.016 138 0048 106 0.33

ROI pairs 0.84 1.00 101 038 165 <le6 175 <le6 203 <le-6 1.67 <le-6

Interaction 095 083 089 098 104 024 1.02 037 096 0776 0.77 1.00
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Table 4.4: Repeated measures two-way ANOV A statistics for band-limited MEG
data reconstructed with the CHAMPAGNE (metric is change in z-score).

o 0 (v Low B High B Low y

Factor F »p F p F »p F P F p F p

Caffeine/contro 2.16 0.18 65 031 293 012 881 0016 7.88 002 138 027

ROI pairs 094 088 1.0 037 212 <le6 196 <le6 204 <le-6 145 <le-6

Interaction 1.I5 0004 1.0 026 125 <le6 1.00 049 1.15 0003 076 1.00
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CHAPTER 5

Scope

As the task of MEG and EEG signal post-processing is known to be quite
extensive, being both time-consuming and computationally complex, an appropriate
toolbox to assist in the matter was designed while keeping simplicity and ease in mind.
The toolbox, dubbed EEGMEG (for the type of data it handles), required minimal
interaction from the user while providing it with a wide array of processing capabilities.
The EEGMEG toolbox utilizes MATLAB for its backbone (main software driving the
program), while being supplemented by other software such as the Neuroelectromagnetic
Forward Head Modeling Toolbox (NFT) (Acar and Makeig, 2010), fMRIB Software
Library (FSL)(Smith et al., 2004), Minimum-Norm Estimates (MNE) package (Gramfort
et al., 2014), FreeSurfer (Fischl, 2012) and AFNI (Cox, 1996) to complete specific parts
of the analysis processes (full functionality requires installation of all programs
mentioned).
General Functionality

Processing capabilities

EEGMEG provides an analysis pathway for the two dominant imaging modalities
currently available for non-invasive neuroelectrical signal detection: EEG and MEG. For
MEG, both sensor-space (outside the brain) and source-space (inside the brain) analysis
pipelines are provided, while only the latter is currently available for EEG. Furthermore,
in the case of MEG sensor-space analysis, an advanced form which uses anatomical MRI

data to improve accuracy is also available to the user. To prepare the MR anatomical data
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necessary for the aforementioned case or for any MEG/EEG source-space analysis,
EEGMEG contains a pre-preprocessing pathway common to the two modalities, where
such data as well as other mandatory items (e.g. Boundary element method (BEM)
meshes, dipole grids, gain matrices, etc.) are generated. Pre-preprocessed sensor as well
as reconstructed source time-courses can exploit the multiple available atlases (e.g.
Harvard-Oxford from FSL, Desikan-Killiany from FreeSurfer) to estimate both ROI-
based power and connectivity measures. EEG and MEG reconstructed source time-
courses can employ either seed-based or ICA approaches to conduct functional analyses
producing both surface and volume maps as well as movies of power and connectivity
dynamics (FSL and FreeSurfer compatible formats). All supporting files and results
created during the toolbox’s processing are immediately stored in a simple, systematic
manner allowing easy retrieval of the processed data for any post-analysis examination
desired by the user.

Architectural Structure

All of EEGMEG?’s core functions are written and executed within the MATLAB
software environment. To maximize simplicity and ease, EEGMEG was designed such
that the average user’s knowledge requirements were limited to the minimum of viewing
and editing a single m-tile, named eegmegSetup.m. This file contains a wide array of
pertinent flags and parameters for the user to set and is used to distinguish and control the
analysis pathway (described in detail below). All analysis pertinent information (e.g.
flags, parameters, defining variables, file locations) is stored in single structure (titled
em), which is used as the sole input and output variable for the majority of EEGMEG’s

functions. This ensures that each function serves as an independent building block,
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simplifying the integration of newly developed functions into the existing processing
pathway (as well as their removal).
File Storage

EEGMEG toolbox operation entails mainly three distinct groups of files (see
Figure 5.1 for examples) which must be accurately stored, updated and retrieved:
neurophysiological recordings (raw as well as minimally pre-processed using MaxFilter
and/or ICA to remove non-neuronal artifacts), subject-specific anatomical files (e.g.
DICOM files, MEG-MRI registration file, BEM meshes, dipole grids, etc.) and lastly any
post-processing results (e.g. reconstructed source time-courses, connectivity/amplitude
maps and movies, spatial/temporal ICA maps, etc.). All EEGMEG analyses can be
completed locally, resulting in all three file groups remaining within the containing folder
(i.e. the folder from which eegmegSetup.m was launched). However, the option of the
EEGMEG database also exists for those who are collecting repeated measures on subjects
or conducting multiple analyses on the same recordings and are interested in increasing
storage efficiency. Specifically, the database is comprised from files from the first two
groups (neuro-recordings and subject-specific anatomical files) which need to be
manipulated or generated only once for any given subject, helping eliminate any
unnecessary repetitiveness. All results (3rd group) remain in the same location as
described above. All supporting files, regardless of category, are stored (within their own
respective location) using a unique folder directory based on the project title, subject id
and date of data acquisition, ensuring any necessary data review can be completed with

casc.
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Main Setup File

Eegmegsetup.m serves as the launch pad for the EEGMEG toolbox and is the sole
m-file the average user should be concerned with (see Figure 5.2 for sample excerpts). To
start, the user simply defines the analysis by labeling the necessary identifiers which
make it unique: project name, subject id and data acquisition date. This information
points EEGMEG to a distinct directory pathway, which can be used to follow all file
groups related to that specific analysis (i.e. for a given day, subject and projects).
EEGMEG can then determine if this is a repeating analysis on an already existing dataset
or a brand new analysis (if the pathway does not exist), where in the latter case the user
must also specify the current location of the acquired raw data (neurophysiological and
anatomical). Lastly, the user must specify the type of analysis to be conducted (e.g.
sensor/source EEG/MEG) and then set various corresponding flags and parameters for
his desired analysis. For example, when conducting source analysis, a user must select
what type of dipole grid he would desire to employ (e.g. rectangular or cortical).
Flags/parameters which can be set regardless of analysis type also exist, such as temporal
downsampling or filtering or the recorded neurophysiological data. Once finished, the
user can simply launch EGGMEG by executing the amended setup file.

Data Processing

Pre-Launch EEGMEG

Before any data pre-processing or analysis begins, EEGMEG runs through a
series of automated initialization steps that are necessary for proper operation of the
toolbox. For example, EEGMEG checks to see if the unique project/subject/date combo

already exists (e.g. corresponding ‘em’ structure, analysis directories, etc...). If non-
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existent, initialization of a new set of essential files and folders will take place and all
new raw data (MRI or neurophysiological) will be uploaded if requested.

Anatomical MRI and EEG/MEG Pre-Processing

If any anatomical MRI data is present, and the user desires to or the analysis
necessitates anatomical information (mandatory step for MEG/EEG source but not sensor
analysis), the following pre-processing steps will take place (see Figure 5.3 for sample
figures). First, EEGMEG will utilize FreeSurfer (the process is completely automated, no
user input necessary) to reconstruct a volumetric MRI image set along with the
white/gray matter segmented volumes and cortical parcellations of the given subject.
Next, since MEG sensors are not fixed to the head (i.e. relative positioning unknown), the
collected fiducials/sensors coordinates must be used to align and co-register the sensor
(MEG) and anatomical (MRI) spaces. This step is completed with the help of MRILAB
(Neuromag ™) software and is one of the few steps which requires significant user input
(as the alignment process could not be computer automated). SEGLAB (another
Neuromag'™ software program) then uses the skull-stripped MR volume to create the
BEM Mesh (representing the inner skull surface) which will be used in the forward
model computation and construction. Although MEG data can be processed using a
single surface (as the signal is insensitive to the different layers of the brain), EEG
requires at least three surfaces to be modeled (inner skull surface, outer skull surface and
scalp). Thus, for any EEG analysis (or if a user desires to do a 3-shell MEG analysis), the
NFT toolbox is then employed to construct any necessary meshes. All anatomical MR
files are automatically prepared and converted to the necessary format for NFT. For both

SEGLAB and the NFT procedures, minimal user input (following printed instructions) is
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necessary to obtain all desired surfaces. In addition, the subject’s dipole grid is created
(fully automated) based on the user’s selection from the three available choices: a generic
rectangular 3D grid (Smm spacing), a FreeSurfer cortical (gray/white matter boundary)
grid and a NFT cortical grid. Combined together (meshes and grid), the EEG and/or
MEG forward model is computed using the forward models introduced in (Huang et al.,
1999; Mosher et al., 1999). For MEG, a spherical head model is offered in addition to the
BEM option. For EEG data, the NFT toolbox’s forward model is also available as an
option for those using the FS/NFT grids. Lastly, a variety of atlases to be used later in
whole-brain ROI analyses are morphed into the subject space (including FSL’s Harvard-
Oxford, FreeSurfer’s Desikan-Killiany and more). Please note that all these steps take
place only once (i.e. EEGMEG does not repeat any task twice; all pertinent information is
stored for future analyses in the applicable directory).

Neurophysiological Data Pre-processing

This stage begins with a user prompt to select the files of interest for the analysis.
If selected to do, MEG data will be cleaned via Maxfilter ™ (Taulu et al., 2004; Taulu and
Simola, 2006), a temporal signal space separation technique (Figure 5.4A) which helps to
remove any unwanted signals originating outside the brain (e.g. dental work, sensor array
interference, etc.). Also available is temporal ICA by means of the fastiICA algorithm
(Hyvarinen, 1999), commonly used to remove any artifact-related independent
components (e.g. residual cardiac activity, eye blinks and movements). A user-friendly
GUI (Figure 5.4B) containing the computed IC time-courses and corresponding spatial
maps, along with automated prompts, provides the user with the necessary environment

to visually remove false signals with ease. Next, based on user defined parameters in
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eegmegSetup.m, all data files possibly undergo trimming, filtering and downsampling.
Trimming can either be completed automatically (user pre-defines desired length) or
manually using a pop-up GUI where the user chooses the endpoints. Files can either be
low-pass filtered, filtered within a frequency band of choice or left unfiltered. If
employing band-pass filtering, multiple bands can be processed at once (e.g. a band, 3
band, etc.). Downsampling can also be automated (based on filtering choices), manual
selected by the user or not applied at all.

Sensor Analysis

Two main methods exist in the MEG sensor analysis path: a simple, quick
approach which requires no anatomical MR data and a more intricate approach which
accounts for the user’s head positioning to improve the results. In the former approach
shown in Figure 5.5A, the sensor field is divided into 14 ROIs based on general brain
regions (e.g. left/right parietal, L/R temporal, etc.), and the different sensor groups are
then used to characterize the global temporal dynamics (e.g. connectivity, power) of the
neurophysiological signal. In the latter showing in Figure 5.5B, the gain matrix obtained
in the forward model estimation (during anatomical/ MEG pre-processing) is used to
“guide” the grouping selection, by observing which sensors most reflect the activity at the
various cortical ROIs (obtained from the subject’s maps) and selecting and grouping
those to be used in the sensor ROI-to-ROI dynamics analyses (Figure 5.5D). For
example, the sensors which exhibited the highest gain value across all left motor cortex
dipoles were then used to form the left motor sensor ROI group.

Source Analysis Reconstruction Techniques
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EEGMEG provides the user with the choice between four source reconstruction
techniques currently available in neuroelectromagnetic signal analysis research: the
minimum-variance vector beamformer (Robinson, 1998; Sekihara, 2008; Van Drongelen,
1996; Van Veen et al., 1997), the Vector-based Spatial-temporal minimum L1-norm
solution — VESTAL (Huang et al., 2006), the empirical Bayesian-based method for
source localization known as Champagne (Owen et al., 2012; Wipfet al., 2010) and the
multi-core beamformer (MCBF) proposed in Chapter 4. All may be executed in the same
analysis run if desired. To improve reconstruction success, regularization of the sensor
data prior to reconstruction can be employed (regardless of the technique chosen). The
user can either manually choose (via a pop-up plot of the eigenvalue spectrum) the
desired regularization level for each file, use a predetermined percent cut-off value or use
the built-in, automated regularization, an exclusive feature of EEGMEG. The latter
utilizes a modified “broken-stick” model (Behzadi et al., 2007) along with precomputed
statistical distributions of eigenvalues from random noise (normally distributed) to help
identify the meaningful data components that should be kept.

Data Analysis

For the MEG sensor analysis, time-frequency analysis using either Morlet
wavelets (Figure 5.5C) or the Hilbert transform can be applied to the data to obtain
amplitude and power waveforms. Subsequently, estimates of amplitude and power in the
various ROIs and/or functional connectivity (Pearson correlation coefficient) between the
ROI pairs can be made for each band of interest. Similarly, MEG and EEG source
amplitude and power waveforms can be attained. Analysis outputs include but are not

limited to: whole-brain ROI amplitude matrices, whole-brain ROI-to-ROI connectivity
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matrices, RMS amplitude and Z-power 3D brain maps, ROI seed-based functional
connectivity maps, 3D movies of reconstructed time-courses, spatial/temporal ICA
analysis for resting-state networks detections, etc. (Figure 5.6). Three-dimensional maps
can either be produced in FreeSurfer format (surface based) or FSL format (volume
based), but three-dimensional movies currently only come in the FreeSurfer format. The
ROIs used for power/connectivity analysis are obtained either from the Harvard-Oxford
atlas or the Desikan-Killiany cortical parcellations. Lastly, for any of the seed-based
analysis outputs, the user may select the type of seed to from three existing options: a
spherical seed around a manually designated coordinate, an automatically chosen central
spherical seed (using a minimum distance scheme) or the entire ROI as the seed (source
time-courses are averaged to provide seed time-courses).
Independent EEGMEG tools

EEGMEG also includes some tools that are independent of the analysis pathways
mentioned thus far. Most popular is FifView (Figure 5.7), designed for quick and easy
access to review any EEG or MEG fif files (Neuromag format). The GUI allows the user
to evaluate sensor time-courses both on an individual channel basis and in groups (MEG
gradiometers, MEG magnetometers, EEG sensors). For the latter, statistics such as
standard deviation of the signal from each of the measurement channels or the signal’s
overall frequency spectrum can be displayed (can be computed for a certain window of
interest or the entire time-course). In addition, sensor time-courses can be manipulated
via filtering (low-pass and band-pass) and trimming (completed with user’s manual
selection of regions to be removed). If desired, all changes can be saved as a new file

(same format). Figures of the MEG and EEG sensors’ spatial organization are provided
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for user convenience, highlighting the sensors whose waveforms are being currently
displayed.

An additional GUI tool (Figure 5.7) offered provides the user with the proper
environment for inspection of three-dimensional spatial IC maps (computed from
reconstructed source time-courses during data analysis). Once the user points the GUI to
the folder containing the files of interest, EEGMEG automatically determines the subject
being inspected and brings his anatomical MR data into view (in a montage format given
the large number of slices), after which it loads the first IC map and overlays it on the
anatomical. The user can then easily move back and forth between the available IC maps,
as the GUI automatically refreshes the display to overlay the new IC. If multiple
frequency bands have been analyzed, the user can navigate between them as well (i.e.
each band generates its own set of IC maps). In order to optimize viewing, the user can
manually specify the overlay’s color scale minimum and maximum threshold values. The
GUI can also be requested to do so automatically (when each new IC is overlayed),
further increasing ease and speed of inspection.

Another significant tool is the EEGMEG simulator (heavily used in Chapters 2
and 3), which is capable of creating a simulated sensor waveform dataset based on user
specified inputs such as: timing parameters (pre-stimulus/stimulus durations, sampling
rate), dipole information (number of dipoles and their corresponding amplitude,
frequency, orientation, phase shift, modulating frequency and location) and waveform
type (basic sinusoidal, complex chirps or modulated sinusoidal waveforms). Simulations
can be designed across a range of SNR (signal-to-noise ratios) or dipole locations

(resulting in a simulated dataset for each scenario of interest). The anatomical data of a
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sample subject pre-loaded into the EEGMEG toolbox is used for the forward model
analysis (i.e. sensor time-course computation). Due to the simulator’s high degree of
flexibility, it can serve as the ideal tool for testing the true performance of a source-
reconstruction technique.

A fourth noteworthy tool is the EEGMEG’s eigenvalue distribution creator which
employs randomly distributed noise waveforms to help identify meaningful eigenvalues
in the measured data. Such distributions are typically used in the regularization step in
source-reconstruction analysis to determine the “noise” mode cut-off. The user can
design the random distributions based on the actual data to be analyzed by defining the
number of data points, sampling rate, number of modes expected in the data (can be a
range), any filtering (e.g. band-pass) that took place and the desired number of Monte
Carlo iterations. The distribution sets are then scaled to a norm of 1 (re-scaled to actual
data before any comparison) and stored for future use by any of EEGMEG’s source
reconstruction techniques.

Future Work

Of highest importance is to complete the functionality of the EEG sensor analysis
pathway (previously done with the EEGLAB toolbox), thus allowing EEGMEG to
provide a comprehensive EEG/MEG capability within one integrated environment. Other
tasks would include the integration of functional MRI analysis (currently done with
fmritools toolbox developed at the UCSD center for FMRI) into EEGMEG, as the
collection of fMRI data in conjunction with EEG data has become a common occurrence

these days. Lastly, an overhaul of all documentation to improve user support and
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experience would be advantageous for the success of EEGMEG as a universal tool for

neuroelectromagnetic analyses.
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Figure 5.1: Example screenshots of MATLAB depicting EEGMEG's directory
structure for the three distinct file groups: neurophysiological recordings (A),
subject-specific anatomical files (B) and post-processing results (C).
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%% Project Definition

en.study.namne = 'Pilot'; % MAKE SURE IT IS ONE WORD
en.study . operator = 'John Smwth
e . study . scanner = '3Thest';

en.study.date
en.study . subjectID

= '010101"'; Slyw/mmsdd)
= '123456";
LOCATION OF RAW DATA
Only used when grevious structure does not exist, 1.e. first/random {e.g. locall analysis such that the raw files are not located on serve
If on server then default Tocation is smntsraidlS/raweegneg, (for repeated with new structures)
IMPORTAMT: If first (not random) analysis, 1.e. segnegUpload will be utilized,
nake sure inside folder of raw data entered helow, a secondary folder exists
whare the raw files are actually located based on modality, e.g. neg, eeg or fard,
othewise Upload will fail.
en.dir.data.hone = [pwd '/'];
%% InitializefLoad structure
% Verify wheter subject/date folder already exists (i.e. secondary
% analysis), and Toad structure from previous run
if (exist{[pwd, /' ,en.study.name,'s' ,em.study.subjectID,'/ ,em.study.date, ' sstru.mat'],’ file')==2)
Toad ([en.study.nane, '/ ,en.study.subjectID, /' ,en.study.date,' /stru.natc'])
else % Initialize new structure if first analysis being done
new = input{ wnCurrent Project does not exist. Would wou 1ike to set up a new folder set? 1-Y, O-N --»= ')};

BROER BT BB R R

if (new)
en = initEegmegienl;
elze
errar('Dataset Does Mot Exist');
end
end
%% Analysis Execution
en.flags.megsen.do = 0; %do MEG sensor analysis
en.flags.megsrc.do = 1; %do MEG source analysisg|
en.flags.eegsen.do = 0; %do EEG sensor analysis
en.flags.eegsrc.do = 0; %do EEG source analysis

if (~em.flags.megsen.do && ~en.flags.negsrc.do &8 ..

~en, flags.eegsen.do && ~en.flags.eegsrc.do)

error{'“nERROR: Mo analysis type was selected to execute!!yn');
end % indicate whether user did not select any analysis to process
%% Directory Creation/Initialization
% directory creation initializing function which runs through all
% defined fields under dir to confirn those folders exist.

en = initEMdir{en);

%% RAW File Upload

% If user desires, raw file upload to server folder can be done through the eegmegSetup

% IMPORTANT: If trying to use previously uploaded files then set em.dir.data.home (Tine 231 to folder location on database and set flag belo
en. flags.upload =0; % do file upload

en. flags. eegneglonbined =1; % IT using FIF file for EEG sets (already in the MEG files) this should be set to 1. For EEGLAB files flag

if {en.flags.upload)
en = eegnegUploadien):
end
%% Analysis Specific Flags
%% Ceneral Flags
en.flags.duplicate = O % This will assumes that your analysis parameters are duplicated regardless of type (MEG, EEC, sensor, sourc
% USE WITH CAUTION. THIS WILL ASSUME YOU KNOW WHAT YOU ARE DOING. OTHERWISE IF SET TO 1 W/ DUT PROPER PARAMETER SETUP, ERRDRS WILL RESULTLLL

%% MEG pre-processing

en.flags.megpre. doMF = 1; % whether or not to execute MaxFilter on raw data
en. flags.negpre.dolC = 1; % whether or not to execute FAST-ICA on raw data
en. flags.megpre.ICTp = 0; % whether or not to Lowpass filter data before IC (set em.para.mneg.ICTpf for filtering freg.)

%xr Ceneral MEG flags
en.flags.meg.evoked =
en.flags.meg.spon = 1;

en.flags.neg.grid = 2; 1 - rectangular grid, 2 - FS cortical grid

en.flags.meg.trunc = 1; Truncate data (0 for no trunction, 1 for automated truncation, 2 for visual truncation)

0; %
%
%
%
en.flags.meg.truncForce = 03 % Redo manual truncation (otherwise uses saved truncation)
%
%
%
%

Ewvoked data
Spontaneous data

en.flags.meg.ds = O; Downsample data (0 for no downsanpling, 1 for automated downsampling based on Filtering frequency, 2 for
en.flags.meg.useSpgh = 0; Use spherical forward nodel (this or useBEM nust be selected)
en.flags.meg.useBEM = 1; Use BEM forward model (this or useSph must be selected) - NEW OFTION WILL INCLUDE 2 (BEM WITH THREE SHELL
en.flags.meg.shellType = 1; 1 - single shell {using SEGLAB) or 2 - three shell (using NFT) model for BEMs
%% Analysis Pre-Processing
if (em f1ag5 megsen.do || em.flags.megsrc.do || em.flags.eegsrc.do || em.flags.eegsen.do)

= doEegnegpre(en); % EEC/MEG Fre-processing

end

%% Analysis Processing

en = doMegsen(en); % MEC sensor analysis
en = doMegsrcien); % MEG source ahalysis
en = doEegseniem); % EEG sensor analysis
en = doEegsrciem); % EEG source analysis

%% Save Structure/Update Counters
% Run through each do flag and accordingly update every co flag (updates at end only to ensure counters are not updated unless processing is
% conplete) Save structure in ssubjectsdatasstrus
if (em.flags.megsen.do && en.flags.megsen.suc)
en.flags.megsen.co=en. flags.negsen.co+l;
en.flags.negsen.suc=0; % reset success indicator
end

Figure 5.2: Screenshots of sample excerpts from Eegmegsetup.m, the main definition
file for the EEGMEG toolbox, used to vary the data analysis as desired via flags and
parameters.
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Figure 5.3: Sample images depicting EEGMEG anatomical pre-processing steps.
For example, MRI anatomical reconstruction via Freesurfer (A), MEG-MRI registration
via MRILAB (B), BEM mesh formation via SEGLAB (C), dipole grid definition via
Freesurfer (D), ROI definition via FSL (E) or Freesurfer (F) and sensor-source space
model (G) used for MEG forward model computation.
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Figure 5.4: Depictions of pre-processing approaches to clean MEG data from
unwanted contributions due to signals originating outside the brain (e.g. dental
work, sensor array interefernce, cardiac activity, eye-blinks, etc.).

The geometry of the MaxFilter, a temporal signal separation technique, is exhibited in
(A). Sample independent components (ICs) time-courses and corresponding spatial maps
from a temporal ICA analysis are shown in (B) for both eye-blinks (top) and heart beats
(bottom).
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Figure 5.5: Depictions of sensor analysis processing approaches and sample results.
Standard sensor analysis division of sensor groups into 14 ROIs based on general brain
areas (A) or MRI-guided ROI definition (B) where the anatomical ROI data (left) and the
gain matrix (B) are used to select the sensors used for analysis, are available. Analysis
approaches include time-frequency analysis using Morlet wavelets (C) or ROI-to-ROI
connectivity matrices (D).
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Figure 5.6: Example images of several of the available source analysis processing
results which EEGMEG can generate.

Such pictures include but not limited to whole-brain ROI amplitude measures (A), whole-
brain ROI-to-ROI connectivity matrices (B), RMS amplitude 3D brain maps (C), ROI
seed-based functional connectivity maps (D — top: seed, bottom: homologous cortex
connectivity) and IC networks derived from spatial/temporal ICA (E).
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Figure 5.7: Screenshot of fifView, an GUI independent of EEGMEG, which offers
the user simple means to visually review recorded electromagnetic sensor data.
GUI can inspect both EEG and MEG waveforms (Neuromag format files). User can
adjust the size of the window length being viewed and scroll (small and large steps)
through time (bottom left). User can also scroll through channels (map above indicating
channels being shown) and toggle between modalities using the MEG/EEG button
(bottom right). User can filter (either low-pass or band-pass) data and/or trim data (by
selecting endpoints of section to be removed). All changes can be made permanent by
saving the modified file. Waveforms for all channels (gradiometers/magnetometers) as
well as statistics (channel standard deviation, frequency spectrum) can be displayed for
all data or just the windowed segment.
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Subject: Filename: C: d_Datasetl _ch Data_13-20Hz_IC4_1mm nil

Figure 5.8: Screenshot of the EEGMEG GUI used to inspect the spatial maps for
each IC obtained from the ICA analysis (spatial or temporal).

The user may sift through the various computed IC’s for each of the frequency bands via
simple toggle buttons (bottom of screen). Images can be manually thresholded (color
scale endpoints) by entering the desired values (left of screen) or automatically by
checking the Auto Estimator option (via statistical distribution estimation).
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Figure 5.9: EEGMEG’s eigenvalue distributions computed from randomly
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CONCLUSIONS

Resting-state fMRI studies are now routinely used to advance our knowledge of
the brain’s behavioral states and development, cognitive performance and intelligence, as
well as its pathology. However, due to the fMRI signal’s complex hemodynamic nature,
it can provide only an indirect measure of neural activity, and thus interpretation of the
observed BOLD signal remains a challenge, especially for experimental conditions
without an explicit task. In this work, we validated the neural basis of previous fMRI
resting-state findings by probing the corresponding neuromagentic signatures recorded
via MEG. In addition, we advanced existing MEG source-space projection techniques to
help improve their applicability for conducting complex brain analyses.

In chapter 1 (Tal et al., 2013), we employed source-based MEG (specifically the
single beamformer) in conjunction with fMRI to further examine the origin of caffeine
induced changes in BOLD connectivity observed in previous research by our lab (Rack-
Gomer et al., 2009). We observed significant (p < 0.01) global reductions in both the
MEG and fMRI connectivity measures, indicating that the observed BOLD connectivity
changes predominantly resulted from decreases in the connectivity of the underlying
neuro-electromagnetic fluctuations (similarities were found for both wideband and band-
limited MEG data). Demonstrating the correspondence between the MEG and fMRI
findings helped provide firmer evidence for the neural basis of resting-state fMRI
observations and its use as a tool for the evaluation of functional connectivity at the
neural level. In addition, our study strengthened the case (Brookes et al., 2011a; Brookes

et al., 2011b; Hall et al., 2013; Hillebrand et al., 2012; Hipp et al., 2012; Luckhoo et al.,
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2012; Mantini et al., 2011) for utilizing source-space MEG measures for characterization
of resting-state connectivity.

Concerns regarding the ability of currently available beamformer approaches to
correctly reconstruct source amplitudes and time-courses in the presence of correlated
sources (Brookes et al., 2007; Dalal et al., 2006; Diwakar et al., 2011a; Hui and Leahy,
2006; Hui et al., 2010; Moiseev et al., 2011; Quraan and Cheyne, 2010; Sekihara et al.,
2002), a phenomenon believed to be present during spontaneous and non-averaged task-
related brain activity (Singer, 1999), led to the development of an improved version
presented in chapter 2 (Diwakar et al., 2011b). After describing the novel mathematical
additions, the multi-core beamformer (MCBF) insensitivity to correlation was tested with
multiple simulations as well as with real data (human auditory task), successfully
showing in both cases accurate source localization, amplitude recovery, time-course
reconstruction and connectivity estimation. It was shown that the MCBEF spatial filter can
properly reconstruct source spatio-temporal behavior, thus providing a viable method for
exploring complex neuronal networks and their communications (e.g. RSNs), and
promoting the use of MEG to investigate such brain activity.

However, as the proposed approach was dependent on the location of the sources
of interest to be already known, an ideal yet generally unavailable scenario in resting-
state conditions, we introduced in Chapter 3 an iterative algorithm to be integrated with
the MCBF mathematical framework enabling source localization without any a priori
information. Performance was validated by means of complex simulations (containing
waveforms designed to resemble spontaneous MEG signals) as well as real

neuromagnetic measurements (evoked median nerve stimulation), and MCBF
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reconstructions were compared with those of the SBF. As expected, MCBF
reconstructions were insensitive to underlying source correlations. MCBF source
localization maps and time-course reconstructions were found to be a major improvement
over their SBF counterparts. Furthermore, combining MCBF together with the iterative
approach resulted in substantial minimization of the signal leakage artifacts and solution
bias towards the center of the brain that occur with the SBF. The proposed MCBF
solution ultimately provided voxel-by-voxel source activity estimates thereby enabling
whole-brain functional connectivity analyses of MEG evoked and spontaneous data
(allowing the characterization of MEG resting-state networks).

Lastly, in Chapter 4 we applied the MCBF approach to the experimental results
from Chapter 1 to compare its performance with the SBF. We found that from a global
perspective both techniques indicate a similar reduction in connectivity. However, we
note that significant individual (i.e. for a given ROI pair) changes in connectivity were
slightly reduced for MCBF (potentially reflecting less signal leakage), suggesting that
SBF measures should be treated cautiously when interpreting the significance of local
changes. Preliminary research into resting-state network characterization using temporal
ICA was also conducted. Initial observations indicate better spatial definition for the
MCBF RSN maps when compared with the SBF maps, but further work is needed to
demonstrate the potential advantages of the MCBF approach over SBF for studies of

resting-state networks.
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