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There is increasing attention to the need to identify new immune markers for the evaluation of existing and
new influenza vaccines. Immune markers that could predict individual protection against infection and disease,
commonly called correlates of protection (CoPs), play an important role in vaccine development and licensing.
Here, we discuss the epidemiologic considerations when evaluating immune markers as potential CoPs for
influenza vaccines and emphasize the distinction between correlation and causation. While an immune marker
that correlates well with protection from infection can be used as a predictor of vaccine efficacy, it should be
distinguished from an immune marker that plays a mechanistic role in conferring protection against a clinical
endpoint—the latter might be a more reliable predictor of vaccine efficacy and a more appropriate target for
rational vaccine design. To clearly distinguish mechanistic and nonmechanistic CoPs, we suggest using the
term “correlates of protection” for nonmechanistic CoPs, and ‘‘mediators of protection’’ for mechanistic CoPs.
Furthermore, because the interactions among and relative importance of correlates or mediators of protection
can vary according to age or prior vaccine experience, the effect sizes and thresholds for protective effects for
CoPs could also vary in different segments of the population.

biomarkers; causality; immune correlates of protection; immune markers; immune mediators of protection;
influenza vaccines; influenza, human; terminology as topic

Abbreviations: CoP, correlate of protection; HAI, hemagglutination inhibition; LAIV, live attenuated influenza vaccine; MoP,
mediator of protection; sIgA, secretory immunoglobulin A.

Immune markers that could predict individual protection
against infection and disease, commonly called “correlates
of protection” (CoPs), play an important role in vaccine
development and licensing (1). As measures of immuno-
genicity, CoPs can provide a useful indication of protective
biological responses induced by investigational vaccines
before they are tested in large efficacy trials (2). As substitute
endpoints for clinical outcomes, CoPs can expedite the
licensure of vaccines based on their association with
increased levels of established CoPs. Pandemic influenza
vaccines, for instance, can be licensed based on their
association with increased levels of immune biomarkers

(immune CoPs) without requiring a demonstration of actual
protection against clinical outcomes (3, 4).

The importance of appropriate and validated CoPs in
vaccine development is well recognized. Yet their identi-
fication and validation remain difficult for many diseases,
including tuberculosis, malaria, and human immunodefi-
ciency virus infections (2, 5–9). For influenza, there is an
increasing body of research dedicated to understanding
the immune response to influenza exposures, aimed at
identifying new immune markers for the evaluation of
existing and new influenza vaccines (9–11). These include
systems biology studies of postvaccination immune profiles
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(12, 13) and experimental or observational studies to
correlate various immune markers with clinical endpoints
such as influenza virus infection, disease, and viral
shedding (14–18).

Nevertheless, there is a need to establish the causal con-
tribution of these immune markers to protection against
clinical endpoints because interventions targeted at non-
causal predictors could be ineffective. Here, our objective
is to review the analytical frameworks used to establish
an immune marker as a CoP, advocate for the use of the
term “mediator of protection” (MoP), and discuss methods
and important considerations when evaluating an immune
marker as a potential CoP or MoP to assess immunity against
influenza virus infection and disease.

CORRELATES OF PROTECTION PLAY AN IMPORTANT
ROLE IN INFLUENZA VACCINE EVALUATION

Historically, the development and use of CoPs as substi-
tutes or surrogates for “true” clinical endpoints occurs when
the clinical endpoints are rare, require a long time to develop,
or are expensive or difficult to measure (19). For infec-
tious diseases, CoPs are important when postintervention
outcomes of interest can be difficult to detect—for example,
either asymptomatic or transient infections (e.g., influenza
virus infections, latent tuberculosis)—or have long incu-
bation periods (e.g., acquired immunodeficiency syndrome
after human immunodeficiency virus infections). CoPs have
been used as indicators of protective immunity and immune
responses (e.g., those generated by vaccination) and can be
measured to evaluate the effectiveness of existing prevention
or treatment strategies, as well as being targets to develop
new interventions (20, 21).

Influenza vaccines can be licensed based only on clinical
efficacy, and without a corresponding CoP. One example
of this is the live attenuated influenza vaccine (LAIV) Flu-
Mist (MedImmune Inc., Gaithersburg, Maryland), which
was licensed in the United States in 2003 based on its clinical
efficacy in large randomized placebo-controlled trials (22).
However, CoPs are important for the evaluation of current
inactivated influenza vaccines, because they provide a rela-
tively rapid and cost-effective measure of immune responses
to seasonal and pandemic influenza vaccines, circumventing
the need for large efficacy trials when seasonal vaccines
are updated annually and when pandemic vaccines need
to be evaluated and licensed quickly before deployment.
Three CoPs are established and used by regulatory agencies
for licensure of inactivated influenza vaccines: the antibody
titers measured by the hemagglutination inhibition (HAI)
assay, the single radial hemolysis assay, and the virus neu-
tralization or microneutralization assay (6).

THE SEARCH FOR ADDITIONAL CORRELATES OF
PROTECTION FOR INFLUENZA VACCINES IN HUMANS

In recent years, the sufficiency of current CoPs has been
called into question (6, 9). In the case of HAI titers, failures
of inactivated influenza vaccination to prevent laboratory-
confirmed infection despite high postvaccination HAI titers
against influenza viruses included in the vaccine have been

documented, particularly for influenza A(H3N2) viruses
(23). Although the microneutralization assay provides a di-
rect measure of antibodies that inhibit influenza viral entry,
the assay is labor-intensive, can have poor interlaboratory
reproducibility (6, 24), and currently has no established
threshold for protection (24). Notwithstanding the technical
challenges and limitations of these CoPs, the highly mutable
influenza virus also poses an additional challenge to the
use of postvaccination CoPs to evaluate influenza vaccines.
Circulating influenza virus strains can easily mutate and
acquire antigenic changes that can escape host immune
responses, and so postvaccination antibody titers such as
HAI titers that are induced specifically against vaccine
strains can be less effective in preventing infections by
circulating strains that could have evolved significantly from
the vaccine strains (9, 25). This is in contrast to vaccinations
against infections such as measles, for which exposures, if
overcome, will induce immune responses that provide long-
lasting immunity (25). Moreover, next-generation universal
influenza vaccines aiming to prove broader protection are
likely to work through other immune mechanisms, and thus
would not be properly evaluated with HAI-based assays.
These issues underscore the need for additional markers
that allow a more comprehensive evaluation of protection
conferred by current and next-generation influenza vaccines.

Additional candidate CoPs for current and next-generation
influenza vaccines have been suggested elsewhere, includ-
ing antibodies against the stalk of the influenza hemagglu-
tinin protein, antibodies against other influenza virus surface
proteins, components of cell-mediated immunity, and
components of mucosal immunity (18, 24). Several clinical
studies have measured these alternative immune markers
after influenza virus infection or vaccination; assessed their
relationships with subsequent infections, viral shedding,
symptom duration and scores, hospitalization, or death;
and reported on factors that might affect these relationships
(14, 18, 24, 26). These factors include the route of vaccine
administration, mode of infection (experimental vs. natural),
antigenic match between vaccine and circulating virus
strains, participant characteristics (e.g., age), immune status
(e.g., preexisting immunity), and sample size (14, 27). How-
ever, few studies have attempted to quantitatively evaluate
the strength or validity of these alternative immune measures
as CoPs (28, 29) or their relative importance in protection.

THE EVOLUTION OF STATISTICAL APPROACHES FOR
EVALUATING CORRELATES OF PROTECTION

The practical benefits of using CoPs as substitute end-
points have facilitated their use in clinical trials. However,
statistical methods for identifying CoPs can inadequately
predict the intervention’s effect on true endpoints such as
survival or disease progression (19). This can be problem-
atic if an intervention is designed to modify levels of the
CoP under the erroneous assumption that it will have a
causal effect on a person’s risk of developing the disease.
An example can be found in tuberculosis vaccine research,
when researchers did not observe significant protective effi-
cacy against tuberculosis infection in infants receiving a
candidate booster vaccine in a phase 2b trial (30), after the
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vaccine had elicited significantly higher levels of an immune
marker (31) that is thought to be a strong CoP against
tuberculosis infections in a phase-1 clinical trial (5, 31).

To overcome the limitations of relying on statistical asso-
ciations to establish the validity of CoPs as substitute end-
points, Prentice (32) introduced a set of criteria that should
be met for a CoP to be called a “surrogate” or a substitute
endpoint to a “true” endpoint of interest (Figure 1). Prentice
proposed that for a CoP to be a valid surrogate for an effec-
tive intervention, its levels must not only be significantly
related to the intervention and the true endpoint, it must
“capture any relationship between the treatment and the
true endpoint” (32, p. 431) in the context of randomized
controlled trials (Figure 1A). Therefore, a surrogate is a CoP
that will nullify any association between intervention and
a clinical endpoint when it is accounted for in a statistical
model (Figure 1B) (32). This criterion is quite restrictive,
given that few interventions work through a single mecha-
nism or causal pathway (1, 33).

Another approach proposed in the 1990s is based on
the proportion of treatment effect explained by a CoP (34,
35). Here, the expectation is that a valid surrogate endpoint
can be a CoP that “accounts for a substantial portion of
treatment effect on the clinical endpoint” (36, p. 1516),
even when the surrogacy is “incomplete” (37). Some of the
limitations of this approach, detailed in De Gruttola et al.’s
summary of a National Institutes of Health workshop on
surrogate endpoints, include the difficulty in interpreting the
proportion of treatment effect explained (38). For instance,
the relative magnitude of the treatment effect on the true
and surrogate endpoint, and the association of the surrogate
and true endpoint independent of treatment, are important in

Figure 1. A causal diagram depicting the relationship between an
intervention, a surrogate, and a clinical endpoint according to the
Prentice criteria in the context of an influenza vaccine randomized,
controlled trial (32). According to Prentice, a surrogate for an effective
intervention must satisfy four criteria: 1) the intervention (vaccination)
must be significantly associated with the clinical endpoint (infection);
2) the intervention (vaccination) must be significantly associated
with the surrogate; 3) the surrogate must be significantly associated
with the clinical endpoint (infection); and 4) the clinical endpoint
(infection) is independent of the intervention (vaccination) conditional
on the surrogate variable. A) Influenza vaccination is expected to
have an effect on the surrogate (“a”), which in turn is expected to
have an effect on influenza virus infection (“b”). Therefore, influenza
vaccination is expected to have an effect on influenza virus infection
through the surrogate marker (a + b), satisfying criteria 1–3. B)
Because influenza vaccination is expected to have an effect on
influenza virus infection only through the surrogate, influenza vac-
cination and influenza virus infection would be independent of each
other if the surrogate variable is accounted for in a statistical model.
By accounting for the surrogate variable, the surrogate variable is
prevented from varying by vaccination status. Hence, the arrow from
vaccination to surrogate is removed.

determining the utility and validity of the surrogate endpoint,
but this is usually not considered in methods that estimate the
proportion of treatment effect explained (39). High values
of the proportion of treatment effect explained also do not
imply that a surrogate endpoint lies on a causal pathway from
an intervention to a clinical endpoint, unless the relationship
is modeled perfectly (38).

In 2002, Frangakis and Rubin proposed the idea of a
“principal surrogate” to assess the validity of a CoP based
on its causal nature (40, 41). This is a CoP for which
the effect of treatment on the true endpoint is the same
within categories of principal strata (categories based on
variables that are not affected by treatment assignment) for
fixed levels of a CoP, thereby demonstrating the “causal
necessity” property of the CoP (40, 42). An example of this
would be when the same value of the CoP corresponds to
the same strength of protection for people of different ages
or vaccination histories. These properties are assessed by
characterizing changes in treatment efficacy with subgroup
analyses on groups categorized into principal strata, which
led Gilbert et al. (42) to suggest “principal stratification
effect modification analysis” as a name to describe such
analysis. A principal surrogate is a CoP in which modifica-
tion of the relationship between an intervention and outcome
is consistent among pretreatment variables. However, the
principal surrogate property might not be met by some
causal CoPs (43) and might be too restrictive in scenarios
where multiple mechanisms operate. In some scenarios, an
intervention could have a negative impact on the clinical
endpoint despite demonstrating a positive effect or being
positively associated with the surrogate endpoint (44).

TERMINOLOGY FOR CORRELATES OF PROTECTION

These developments in the concept of surrogacy have
been accompanied by confusion in the terminology used
to describe CoPs. While the National Institutes of Health
Biomarkers Definitions Working Group had proposed defi-
nitions for the terms “biological marker” (biomarker), “clin-
ical endpoint”, and “surrogate endpoint” in 2001 (45), both
“correlates” and “surrogates” are used to describe substitute
endpoints in scientific and regulatory documents, and other
terms such as “immune marker of protection” and “inter-
mediate endpoint” are still commonly used (1). In 2007,
Qin and others proposed a framework in which a potential
“correlate of risk” (CoR), or an immunological measurement
that could predict a clinical endpoint, could be assessed.
They proposed 2 categories, “level 1” surrogate of protection
and “level 2” surrogate of protection, based on whether cor-
relations between levels of the correlate of risk and clinical
endpoints can be found in both the vaccinated and unvacci-
nated (level 1) and whether this correlation can be replicated
in different populations or settings (level 2) after satisfying
the Prentice criteria (46, 47). However, they acknowledged
that the identification and validation of an immune CoP
that causes or mediates vaccine-induced protection likely
requires a mechanistic understanding, and CoPs that only
partially contribute to a vaccine’s protective effect will not
be identified under this paradigm (46). Plotkin and Gilbert
(48) highlighted the need to distinguish mechanistic CoPs
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(mCoPs), from nonmechanistic CoPs (nCoPs). The latter do
not play a causal role in protection against a specific clinical
endpoint but predict protection through correlations with
other causal protective immune responses.

While the use of the terms mechanistic and nonmecha-
nistic CoPs are useful in differentiating CoPs that are likely
causal from the noncausal, as described by Plotkin and
Gilbert (48), we believe there is a simpler and more direct
way to describe a biomarker that plays a causal role in
protection against a specific clinical endpoint. Because it is
generally of most interest to determine whether an immune
marker merely predicts or causes protection against a clinical
endpoint, a nonmechanistic CoP could still be called a
CoP in that it describes exclusively a statistical association
between vaccination and risk of infection or disease (48). A
mechanistic CoP could be called a “mediator of protection”
(MoP) to better reflect its role on a causal pathway between
the two.

The difference between a CoP and MoP can be illustrated
with a directed acyclic graph (DAG; see Web Appendix 1 for
basic notation and terminology), which is a type of causal
diagram and a graphical visualization of the assumed rela-
tionships between exposures, outcomes, and other factors
related to exposure and/or outcome (Figure 2). According
to our definitions, a CoP might or might not lie on a direct
causal pathway between natural infection or vaccination and
protection against a clinical endpoint, while a MoP must lie
on such a pathway (Figure 2).

IDENTIFYING IMMUNE MEDIATORS OF PROTECTION
FOR INFLUENZA VACCINES USING CAUSAL
INFERENCE FRAMEWORKS

While many potential CoPs for influenza vaccines have
been proposed, we believe that the focus should shift to the
identification of new MoPs for evaluation of next-generation
influenza vaccines, especially when the ultimate goal of
these vaccines is to generate broader and longer-lasting
protection (9). While it is a reasonable approach to design
vaccines that aim to generate immune response against
conserved viral targets, we would be remiss if we did not
also consider the biological plausibility or capacity of the
consequent immune response to generate a protective effect
against infection or disease. This could potentially be done
through laboratory investigation into the mechanisms of pro-
tective immune responses and through further assessment
of the causal role of these CoPs in human studies through
causal inference frameworks.

Compared with standard statistical methods to assess the
association between a CoP and a clinical endpoint, causal
analysis approaches such as counterfactual-based mediation
analysis methods have the advantage of accommodating
formal hypotheses (49–51) about the causal contribution of
candidate MoPs to the risk of infection. These hypotheses
are based on current understanding of immune mechanisms
and can be tested quantitatively. A CoP for an influenza
vaccine that is also on the causal pathway for protection
against infection or disease can be described as a MoP, which
is a component of the immune response that, if not present
or stimulated after vaccination, will result in elimination (the

Figure 2. A causal diagram representing the hypothesis regarding
the causal relationships between historical exposures to influenza
(either by historical infections, or historical vaccinations with inacti-
vated or attenuated virus) (H), current influenza vaccination (V), a
correlate of protection (CoP), a mediator of protection (MoP), and
a clinical endpoint such as infection, disease, or influenza-related
mortality (I). In causal framework terminology, here in the evaluation
of the protective effect of vaccination (V) on clinical outcomes/end-
points such as infection (I), V takes the role of cause, I as effect,
MoP as mediator, and H as confounder (common cause) to MoP
and I. The path consists of a single-headed arrow (“edge”) drawn
from V to I to represent a “direct effect” of vaccination on infection
(V → I), while the “indirect effect” of V on I is represented by the
path that consists of the two edges from V to MoP and from MoP to I
(V → MoP → I), with MoP being the mediator of such effect.The “total
effect” of V on I is the sum of the direct and indirect effect represented
by the two paths. An absence of a directed path between two factors
represents an assumption of no causal relationship between the
two, for example between CoP and I. While a CoP can lie on both
causal and noncausal pathways, a MoP is a CoP that lies on a
causal pathway, here between vaccination (or historical exposures
to influenza) and infection. An association between the CoP and
(reduced) risk of infection can still be observed due to confounding
by historical exposures to influenza or current influenza vaccination,
or if another unobserved immune marker (as represented by the
absence of it in the diagram) affects both the level of CoP and the
risk of infection. A brief introduction including graphical notation and
terminology of directed acyclic graphs, a type of causal diagram, is
available in Web Appendix 1.

protection is fully mediated by the MoP) (Figure 3A and 3B)
or attenuation (the protection is partially mediated by the
MoP) of vaccine-induced protection (Figure 3C and 3D).

In causal mediation analyses where the effect of vac-
cination on a clinical endpoint is partially mediated by a
particular immune marker (Figure 3C), we can decompose
the “total effect” of vaccination on the clinical endpoint into
at least two components—the indirect and direct effects. The
“indirect effect” of vaccination (V) on the clinical endpoint
(I) is the effect that is mediated by the immune marker (M)
under study (the path V → M → I in Figure 3C). Conversely,
the “direct effect” of vaccination on a clinical endpoint is the
effect that is not mediated by the immune marker under study
(the path consists of a single edge V → I in Figure 3C). In the
simplest possible of settings, Baron and Kenny’s approach
(52) can sometimes be used to perform causal mediation
analysis, under fairly strong assumptions of no effect modifi-
cation between the mediator and the exposure in the outcome
model and stringent no unmeasured confounding assump-
tion. This approach entails estimating the direct effect by
including both the exposure and the mediator in a regression
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Figure 3. Causal diagrams depicting two hypotheses of the role of
an immune marker (M) as a mediator of protection (MoP) against
clinical endpoints such as infection (I), as influenced by the effect of
current influenza vaccination (V) or historical exposures to influenza
infection/vaccination (H). The top row depicts full mediation by
immune marker M on protection against infection I before and after
adjustment for M, respectively. A) The protective effect of historical
exposures to influenza or current influenza vaccination (H and V)
on I is mediated only by M, indicated by the two paths H → M →
I and V → M → I respectively. B) The protective effect of historical
exposures or current vaccination will not be observed, in theory, after
M is controlled or adjusted for in a statistical model, as graphically
represented by a box around M (i.e., M can explain all of the effect
of H or V on I). By controlling or adjusting for M, values of M are
prevented from varying by values of V or H. Therefore, the edges V →
M and H → M are removed. The bottom row depicts partial mediation
by immune marker M on protection against infection I before and after
adjustment for M, respectively. C) The protective effect of historical
exposures to influenza or current influenza vaccination (H and V)
is mediated by M as well as other unmeasured immune responses
(as unobserved confounders in the causal context), with the effect of
historical exposures to influenza indicated by the two paths H → M
→ I (i.e., mediated by M) and H → I (i.e., mediated by unmeasured
immune responses), and the effect of current influenza vaccination
by the other two paths V → M → I and V → I. D) The protective effect
of historical exposures to influenza or current influenza vaccination
will still be observed even when M is controlled or adjusted for in a
statistical model, through the protection mediated by the unmeasured
immune responses as represented by the two paths H → I and V →
I respectively (i.e., M can only partially explain all of the effect of H
or V on I).

model for the outcome, and estimating the indirect effect by
subtracting the direct effect from the total effect obtained by
removing the mediator from the regression. In recent years,
there has been a growing recognition that the Baron and
Kenny approach is often not appropriate, and a more general
counterfactual framework for mediation analysis has been
adopted (50, 53–55). Within a counterfactual framework,
the causal effect of an intervention is conceptualized as
the difference between two “potential outcomes” or “coun-
terfactual outcomes” (56). While these two outcomes by
definition cannot be observed simultaneously for the same
individual, the average causal effect for a specific study
population can be estimated by comparing these counter-
factual outcomes for that study population (57). This is in
contrast to the use of separate regression models that relate
exposure to a CoP and that relate CoP to a clinical outcome

to identify CoPs. Under this causal mediation framework, we
can formally recognize the assumptions that are essential for
the estimation of direct and indirect effects (also known as
natural direct and indirect effects), including the assumption
of no unmeasured confounding of the relationships between
exposure and outcome (V and I), exposure and mediator
(V and M), and mediator and outcome (M and I) (58).
The assumption of no unmeasured confounding between
mediator and outcome could be violated if an unmeasured
immune mechanism induced by the exposure influences
levels of the immune marker under investigation as well
as the clinical endpoint. However, as recently shown by
Fulcher et al. (59), progress can sometimes be made by an
appropriate analytical method even when such unmeasured
confounding exists.

A more specific example would be evaluating potential
MoPs for LAIV (Figure 4). Although the serum HAI anti-
body was once expected to be a strong MoP for LAIV
(Figure 4A), as is believed to be the case for inactivated
influenza vaccines, a study found that the serum HAI anti-
body titer underestimates protection (60), and another study
suggested that mucosal secretory immunoglobulin A (sIgA)
antibody might be a more appropriate MoP (61). Based on
the current understanding of the mechanisms of immune
responses generated by LAIV (61), several hypotheses could
account for this observation. For example, LAIV might
confer protection through both mucosal sIgA antibody and,
to a lesser extent, serum HAI antibody (Figure 4B). Alterna-
tively, it could confer protection only through mucosal sIgA
antibody and other immune mechanisms that do not affect
the levels of serum HAI antibody (Figure 4C). One could
test these hypotheses by drawing directed acyclic graphs to
describe the hypothesized causal relationships between fac-
tors and formulating statistically testable hypotheses based
on these relationships.

In a recent study, we demonstrated the use of a causal ana-
lytical approach to quantitatively evaluate the causal contri-
bution of HAI antibody titers to protection against influenza
B virus infection, in a randomized placebo-controlled trial of
inactivated influenza vaccines in children aged 6–17 years
(62). In that study, using inverse odds-ratio weighting, we
estimated that the postvaccination HAI titer mediated 57%
of the causal effect of inactivated influenza vaccines on
protection against influenza B virus infection. However, this
study used just 1 immune measure, the serum HAI antibody
titer measured by the HAI assay, and just 1 reference anti-
gen used in the HAI assay. The remaining 43% could be
explained by residual HA-targeting antibody response not
captured in that HAI assay or by other components of the
immune response.

As more potential CoPs and MoPs are identified and
evaluated, it is also important to note that the role of an
immune measure as a CoP or MoP might differ depending on
the way it is generated (e.g., whether it is by influenza virus
infections or vaccinations). These roles might also differ
according to the endpoints being measured (63), type of vac-
cines (64), and population characteristics (65). As the inter-
actions among and relative importance of CoPs and MoPs
could vary according to historical exposures to influenza
including prior vaccinations or infections, the effect sizes
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Figure 4. Causal diagrams of three hypotheses of the causal rela-
tionships between vaccination with live attenuated influenza vaccine
(LAIV), a clinical endpoint such as infection (I), and two potential
mediators of protection (MoPs), hemagglutination inhibition antibody
titer (HAI) and secretory immunoglobulin A (sIgA) antibodies. A) In
the first hypothesis, LAIV is hypothesized to confer protection though
HAI antibody titer and other immune mechanisms. Therefore, there is
a path LAIV → HAI → I, indicating an indirect effect through HAI, and
a path LAIV → I, indicating the protective effect from other non-HAI-
mediated immune mechanisms. B) In the second hypothesis, LAIV
is hypothesized to confer protection through sIgA and HAI as well as
other immune mechanisms; hence, there are three paths from LAIV
to I, including the path mediated through sIgA (LAIV → sIgA → I),
the path mediated through HAI (LAIV → HAI → I), and the path that
consists of a single edge (LAIV → I). C) In the third hypothesis, LAIV
confers protection only through sIgA and other non-HAI-mediated
immune mechanisms; hence, there are only two paths from LAIV to
I (LAIV → sIgA → I and LAIV → I), while the path LAIV → HAI → I
is absent due to the absence of the edge LAIV → HAI.

and thresholds required for the strength of association for
CoPs or the protective effect for MoPs could also vary in
different segments of the population. As such, established
and novel CoPs and MoPs must be identified and evaluated
in different population groups, such as different age groups,
as well as for different influenza strains.

CONCLUSION

Identifying new correlates and mediators of immune pro-
tection is a critical step for the development and evaluation
of next-generation and universal influenza vaccines. It will
be important to collect data on multiple immune measures
in the same study and decipher their relative causal contri-
bution to protection. Although we might still be unable to
isolate the causal contribution of a single immune marker
to protection with such studies, we might be able to indicate
that a composite MoP that consists of several immune mark-
ers might be a better MoP than any single immune marker.
Given the value of causal immune markers in vaccine evalu-
ation, more research is needed to identify CoPs that mediate
protection for next-generation and universal influenza vac-
cines. A unifying term to describe these immune markers,
such as the term “mediator of protection” suggested here,

can be an important first step to raise awareness of the
need for causal evaluation of CoPs and stimulate discussion
on the desired characteristics of MoPs for future influenza
vaccines. The eventual adoption of any immune marker or
group of markers as a tool to evaluate new influenza vaccines
would have to consider both their reliability as predictors of
vaccine efficacy and the cost and technical demands of their
measurement.

Although there is not thought to be any natural long-
lasting broadly cross-reactive immunity against influenza in
humans, as indicated by repeated influenza virus infections
during a person’s lifetime, one might still ask whether it will
be possible to identify a MoP for universal influenza vac-
cines. Because repeated influenza virus infections could be
due to antigenic drift and the increasing mismatch between
circulating viruses and host immunity (i.e., reduced cross-
protection/a limitation on the breadth of immune responses)
and/or a decreasing level of immunity over time (i.e., a
limitation on the duration of immune responses), an ideal
MoP for universal influenza vaccines would need first to
be shown to be cross-reactive, and subsequently a vaccine
designed based on this MoP would need to demonstrate a
persistent level of the MoP that might be maintained after
single or repeated doses. A MoP that is only cross-reactive
might not be ideal, but it would still be very useful for novel
pandemics where the concern is mainly the very limited
population immunity against the novel virus.
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