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Abstract

Arachidonic acid (AA), a representative ω6 polyunsaturated fatty acid (PUFA), is a precursor of 2-

series prostaglandins (PGs) that play important roles in inflammation, pain, fever, and related 

disorders including cardiovascular diseases. Eating fish or supplementation with the ω3 PUFAs 

such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are widely assumed to be 

beneficial in preventing cardiovascular diseases. A proposed mechanism for a cardio-protective 

role of ω3 PUFAs assumes competition between AA and ω3 PUFAs for cyclooxygenases (COX), 

leading to reduced production of 2-series PGs. In this study, we have used a systems biology 

approach to integrate existing knowledge and novel high-throughput data that facilitates a 

quantitative understanding of the molecular mechanism of ω3 and ω6 PUFAs metabolism in 

mammalian cells. We have developed a quantitative computational model of the competitive 

metabolism of AA and EPA via the COX pathway through a two-step matrix-based approach to 

estimate the rate constants. This model was developed by using lipidomic datasets that were 

experimentally obtained from EPA-supplemented ATP-stimulated RAW264.7 macrophages. The 

resulting model fits the experimental data well for all metabolites and demonstrates that the 

integrated metabolic and signaling networks and the experimental data are consistent with one 

another. The robustness of the model was validated through parametric sensitivity and uncertainty 
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analysis. We also validated the model by predicting the results from other independent 

experiments involving AA and DHA supplemented ATP-stimulated RAW264.7 cells, using the 

parameters estimated with EPA. Furthermore, we showed that the higher affinity of EPA binding 

to COX compared to AA was able to inhibit AA metabolism effectively. Thus, our model captures 

the essential features of competitive metabolism of ω3 and ω6 PUFAs.

Graphical abstract

Introduction

We previously developed a novel approach to analyze the flux of arachidonic acid and its 

downstream metabolites in the murine macrophage-like RAW cell line implicated in 

eicosanoid biosynthesis initiated by the activation of phospholipase A2 1. We also extended 

this model to bone marrow derived primary macrophages (BMDM) primed with the 

lipopolysaccharide (LPS) analogue KDO2 -Lipid A followed by activation with a purinergic 

P2X7 receptor agonist ATP 2. We have now analysed the effects of the ω3 polyunsaturated 

fatty acids (PUFAs) eicosapentaenoic acid (EPA; 5Z,8Z,11Z,14Z,17Z-eicosapentaenoic 

acid) and docosahexaenoic acid (DHA; 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid) on 

normal eicosanoid metabolism in murine macrophage cells 3.

Fatty acids (FAs) are considered as simple lipids and are comprised of a carbon chain and a 

terminal carboxylic acid. Saturated FAs, such as palmitic and stearic acids, have no double 

bonds and are de novo synthesized by chain elongation of an acetyl-CoA primer with 

malonyl-CoA. Stearic acid is further metabolized to longer-chain saturated FAs and also 

unsaturated FA like oleic acids. Due to the absence of desaturases, in Homo sapiens, for 

introducing a double bond into FAs distal to the Δ9 position, dietary supplementation of 

essential FAs (EFAs) is required. EFAs, including α-linolenic acid (9Z,12Z,15Z-

octadecatrienoic acid) and linoleic acid (9Z,12Z-octadecadienoic acid), are elongated and 

desaturated in our body resulting in ω3 and ω6 polyunsaturated fatty acids (PUFAs), 

respectively. Arachidonic acid (AA; 5Z,8Z,11Z,14Z-eicosatetraenoic acid), a representative 

ω6 PUFA, is a precursor of prostaglandins (PGs), leukotrienes (LTs) and other oxygenated 

metabolites that play important roles in inflammation, cell-cell communication, and several 

pathophysiological conditions 4–6. These lipid mediators, generically called eicosanoids, are 

produced on demand through the sequential actions of spatially and temporally regulated 

eicosanoid-synthesizing enzymes. The cyclooxygenases (COXs; COX-1 and -2), which are 

targets of non-steroidal anti-inflammatory drugs (NSAIDs) like aspirin, metabolize AA to 
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produce an unstable endoperoxide intermediate, PGH2, and to produce two mono-

hydroxylated side products, 11-hydroxy eicosatetraenoic acid (11-HETE) and 15-hydroxy 

eicosatetraenoic acid (15-HETE) simultaneously 7, 8. Specific terminal enzymes metabolize 

PGH2 to 2-series PGs such as PGD2, PGE2, PGF2α, PGI2 and thromboxane A2 (TXA2) 7. 

AA is also metabolized by 5-lipoxygenase (5-LOX) to 5-hydroxyeicosatetraenoic acid (5-

HETE) and an unstable intermediate LTA4, which is further metabolized to LTB4 and LTC4 9–11.

The ω3 PUFAs, such as eicosapentaenoic acid (EPA; 5Z,8Z,11Z,14Z,17Z-eicosapentaenoic 

acid) and docosahexaenoic acid (DHA; 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid), are 

now widely used as a supplement for health benefits. Epidemiologic analyses demonstrate a 

lower prevalence of coronary heart disease in Greenland Eskimos (Inuits) 12, which is 

thought to be due to their diet like seal and whale that contain abundant ω3 PUFAs 13. These 

epidemiological studies have been supported by several clinical trials suggesting that 

supplementation of ω3 PUFAs reduces the risk of cardiovascular events 12. A possible 

mechanism of ω3 PUFA-mediated cardioprotection is a reduction in 2-series PG by 

competitive metabolism between AA and ω3 PUFAs, because EPA is metabolized to less 

potent 3-series PGs (like PGE3 and PGD3 ) by COX and terminal enzymes 14. Indeed, long-

term therapy with low-dose aspirin has been employed for the prevention of cardiovascular 

events 15, suggesting that suppression of 2-series PG production seems to be beneficial for 

reducing cardiovascular risks, though enhanced conversion to lipoxins may also 

contribute 16. Another possible mechanism has been proposed that ω3 PUFAs are 

metabolized to anti -inflammatory/pro-resolving lipid mediators such as D-series and E-

series resolvins, protectins, and maresins 17. Although detailed mechanisms are not yet fully 

established, it is widely assumed that ω3 PUFA-containing diets are helpful in preventing 

cardiovascular and other diseases 12, 18.

A systems biology approach offers a powerful strategy to reveal novel mechanisms in 

cellular and molecular machinery. Indeed, we previously found important molecular 

interactions between lipid metabolic enzymes by developing a computational model 1, 2, 19. 

In the present study, we developed a computational model for understanding the competitive 

metabolism of ω3 and ω6 PUFAs in macrophages that are one of the major inflammatory 

cells that produce eicosanoids and play pivotal roles in cardiovascular pathologies including 

atherosclerosis. Based on our original experimental data 3, kinetic parameters were 

estimated by a two-step matrix-based approach employing a constrained least-squares 

method followed by nonlinear optimization. The computational model was able to simulate 

another experimental conditions, using AA and DHA instead of EPA, indicating that the 

model is valid and useful for simulating the competitive metabolism between ω3 and ω6 

PUFAs.

Methods

Development of kinetic models

The reaction rates were described by linear kinetics with the assumption that for enzymatic 

reactions, the substrate concentrations are much lower than the corresponding Michaelis 

constant, KM. A quasi-steady state approximation, in which the enzyme-substrate complex 

production rate was assumed to be equal to that of dissociation rate, was used to describe the 
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competitive metabolism. If an enzyme E competitively catalyses different substrates S1,…, 

Sj,…, SN, and produces their products P1,…, Pj,…, PN, respectively, the total amount of 

enzyme ETotal is described as follows:

where [E:Sj] is a complex of enzyme E and substrate Sj. Therefore, the reaction rate of Pn 

formation from Sn by enzyme E is described as follows:

where Kn is a lumped rate constants related to the substrate Sn, and K′j is the association 

constant between the enzyme E and the substrate Sj. For example, in the present study, the 

PGH2 (Pn) production rate from AA (Sn) via COX (E) in the presence of EPA (Sj) is 

described as follows:

where C1 represents all other inhibitory mechanisms of COX. The ordinary differential 

equations (ODEs) were generated based on the rate of change of metabolites (mass-balance) 

using the reaction rates. All of the equations used in the simulation are listed in Appendix A.

Estimation of the kinetic rate parameters and uncertainty analysis

As previously reported 1, 2, 19, all the ODEs without the inhibitory kinetic parameters used in 

this study were rearranged in a matrix format, i.e., Y = X × K, where Y and K are matrices 

for metabolite concentrations and kinetic parameters, respectively. The quantitative data of 

X and Y was obtained from our original experimental results 3. First, to estimate the matrix 

K, a least squares approach (Matlab® function lsqlin) was used constraining all the 

parameters to be positive. Then, initial guesses for the inhibitory parameters were added to 

the list of estimated parameters values from previous step. All the parameters values were 

further optimized by using generalized constrained nonlinear optimization (Matlab® 

function fmincon) where the objective function was to minimize the fit-error between the 

experimental and predicted metabolite concentrations.

K: parameters (rate constants)

X0 : Initial conditions (metabolite concentrations)
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where nt is the number of time-points and nsp is the number of metabolites. Numerical 

integration was used (e.g. Matlab® function ode23) to simulate the system to circumvent 

discretization error. The initial conditions were also optimized in a narrow range around the 

experimental values. The point-wise error was scaled by the square root of the length of the 

time interval for the purpose of resolving relatively poor fits by irregular time intervals. In 

the parameter estimation process, we optimized the profile for PGH2 and PGH3 formation 

with the constraint that its maximum concentration remains less than ~200 and ~10 pmol/

million cells, respectively, based on the total amount of lipids produced, because we could 

not measure the level of PGH2 and PGH3.

The goodness of the fits was accessed by comparing the variance for the fitted data to the 

variance in the experimental (replicate) data (Treatment and Control data combined) using 

F-test as follows:

where Xj, X̄
j and Yj denote the experimental data, mean experimental data and simulated 

(fitted) data at time point j, respectively, nr is the number of replicates (nr = 3, indexed as i), 

and Trt and Ctrl are treatment and control groups, respectively. F smaller than Fth = F0.95 

(128, 256) = 1.28 indicates statistically equal variance in simulated (fitted) and experimental 

data.

The uncertainty analysis was performed on the parameters to evaluate the variation of 

estimated rate constants as previously described 2. Briefly, the nsp × nt normally distributed 

data matrix was generated using the mean-value of the experimental lipid data and the 

corresponding standard-error of means (SEMs) at each time point. The parameter estimation 

was performed using this data set, and repeated k times (k = 10 in our simulation). The SEM 

for each parameter across the k sets was computed.

Results and Discussion

Development of the kinetic model for the COX pathway

The chemical structures of AA, EPA and DHA are shown in Fig 1A. RAW264.7 

macrophages were cultured in the absence or presence of supplemental 25 μM AA, EPA and 

DHA for 24 hrs prior to ATP stimulation, and then culture supernatants were collected at the 

indicated time points (Fig. 1B). The quantitative data was reported previously 3 and was 

used in the present study. In our previous study, ATP-stimulated RAW264.7 macrophages 

produced high amount of eicosanoids within an hour, which was not affected by the 

inhibitors of transcription and translation of cellular proteins, suggesting that the levels of 

eicosanoid-synthesizing enzymes were unchanged and are negligible 20. Therefore, we 
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developed a computational model without distinguishing COX isozymes as previously 

reported 2. Figure 1C illustrates a COX-mediated lipid metabolic network 1. The competitive 

metabolism between AA and EPA were modelled according to the quasi-steady state 

approximation as described in Methods. The model was described by linear kinetics based 

on the law-of-mass action and composed of 10 ODEs with 29 kinetic parameters. All ODEs 

are given in the Appendix A.

Next, we estimated the effective rate constants using EPA-supplemented and non-

supplemented (control) data using the matrix-based two-step approach described in 

Methods. With the optimized parameters, a good fit (F score = 0.30 < Fth) to the 

experimental lipid profiles was achieved (Figure 1D). An uncertainty analysis was 

performed on the optimized parameters to assess the effect of a variation in the experimental 

data. The SEM for each parameter across the 10 sets of analysis was computed and is given 

in Table 1. Most of the parameters showed less than 25% variation. In the case of some of 

the parameters associated with degradation reactions or appearing in the denominator of the 

reaction-rate expression, high relative-fluctuations were observed, possibly as a 

mathematical artifact.

Parametric sensitivity, time scale analysis and validation of the model

Parametric sensitivity analysis was performed to test the robustness of the model. Each 

optimized parameter was individually changed in a range between two-fold up and down 

from the optimized parameter and responses were predicted. To perform the sensitivity 

analysis on AA, EPA and DHA, the whole profiles of AA, EPA and DHA were increased or 

decreased. The slope of the sensitivity curve for each parameter and each metabolite was 

calculated and displayed as a heat map (Figure 2A). With most of the parameters, small to 

moderate sensitivities were observed, and the sensitivities were consistent with the structure 

of the biochemical reaction network (Figure 1B). For example, changing the parameter of 

AA→PGH2, kC1, tended to increase AA metabolites and decrease PGE3, whereas changing 

the parameter of EPA→PGH3, kC15, showed an increase of EPA metabolites and no or a 

slight increase of AA metabolites. The EPA association constant, KCOX:EPA, also reflected 

the structure of the AA/EPA metabolic network, which showed the opposite effects of AA 

and EPA on the 2-series and 3-series eicosanoid production. However, changing the AA 

association constant, KCOX:AA, did not produce significant effects on any of the eicosanoids. 

These results suggest that our model of eicosanoid metabolism is robust with respect to 

parametric perturbations.

To test the validity of the model, one of the intermediary metabolites, PGD2, was excluded 

from the objective function and we simulated the profiles. The values of the estimated 

parameters in this leave-one-metabolite-out method were similar to those of corresponding 

optimized parameters (Figure 2C), and the simulated time-courses were in good agreement 

with the experimental time-courses qualitatively and quantitatively (Figure 2B).

To understand the kinetic features of the cellular responses, a timescale analysis was 

performed by computing eigenvalues and eigenvectors of the Jacobian matrix of the ODEs at 

steady state conditions. The timescale was divided into two ranges (i.e., fast, and slow) 

depending upon the eigenvalues and metabolites significantly contributing to the 
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corresponding eigenvectors. Time scales of most of the metabolites were similar to our 

previous analysis of the eicosanoid pathway 2. Most of the AA and EPA metabolites (PGE2, 

PGD2, PGJ2, 15d-PGJ2, 11-HETE, PGE3 and PGD3) were distributed mainly in the slow 

timescale. However, PGH2 and PGH3 showed a fast timescale because of their low 

concentrations and unstable nature.

To check the reliability of optimized parameters, the fluxes for PGD2 and PGE2 were 

compared with the literature values. Urade et al. reported that the PGD2 flux in macrophages 

is less than 30 pmol/min/million cells 21. The activity of purified mouse mPGES-1 has been 

reported to be about 100 nmol/min/mg of purified enzyme, which is equivalent to 0.1 

pmol/min/million cells 22. We converted the activity of purified mouse mPGES-1 using the 

experimentally obtained values of 0.25 mg of total protein, and 1 ng of mPGES-1 protein are 

present in 106 cells 1, 23. In our model, the calculated PGD2 and PGE2 fluxes at steady state 

were 1.2 and 0.23 pmol/min/million cells, respectively. Considering the differences in the 

experimental conditions, cell types, inaccuracies in some of the modeling approximations, 

etc., such differences in the parameter values between the present and previous studies are 

acceptable.

Prediction of eicosanoid profile in AA-supplemented and DHA supplemented 
macrophages

We further validated our computational model by predicting the eicosanoid profiles in AA-

supplemented ATP-stimulated RAW264.7 macrophages. The optimized parameters did not 

predict the profiles well. Therefore, the parameters were re-optimized by allowing 25% 

variability in the optimized parameter values. The range of 25% variability was chosen 

based on the uncertainty analysis of the optimized parameters (Table 1). The simulation 

results with the re-optimized parameters showed a good fit between the predicted time-

course and the experimental data (Figure 3A), suggesting that the optimized parameters are 

useful for predicting other eicosanoid profiles in RAW264.7 cells.

DHA, as well as EPA, effectively inhibit eicosanoid production through COX inhibition 24. 

Therefore, the eicosanoid profiles in DHA-supplemented ATP-stimulated RAW264.7 

macrophages were also predicted after re-optimizing the parameters again within 25% of the 

values reported in Table 1. To account for the DHA inhibition, the association constant 

between COX and DHA, KCOX:DHA, was added in the ODEs. The optimized value of 

KCOX:DHA was 0.1629 1/pmol/106 cells). The simulation results showed a good fit between 

the predicted time-course and the experimental data (Figure 3B). Collectively, optimized 

parameters are reliable in predicting eicosanoid profiles, and the mathematical model 

reflects the eicosanoid metabolic network in macrophages.

Simulation of COX activities during AA/EPA supplementation

Wada et al. reported that COX-1 could not utilize EPA as a substrate, but that EPA inhibited 

COX-1 activity 14. Further, EPA was metabolized by COX-2 to PGH3 and barely inhibited 

COX-2 activity 14. Within the 60 minute time-frame of our study, we could not detect 

significant expression changes of COXs in ATP stimulated macrophages 3, and thus we did 

not distinguish between COX-1 and COX-2 in the model. Previous studies indicated that the 
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basal protein expression level of COX-2 is about 5% as compared to COX-1 expression 2. 

The less than 5% concentration of EPA metabolites compared to the total concentration of 

all metabolites in the experimental data (Figure 2) was consistent with the basal protein 

expression level of COX-1 and COX-2. The same effect was also seen in flux values. In our 

model, COX metabolized AA and EPA at the rate of 4 and 0.2 pmol/min/million cells, 

respectively. To further understand the inhibitory effect of EPA in vivo, we simulated how 

EPA supplementation would affect the COX activities (Figure 4). EPA supplementation 

inhibited COX activities in a dose dependent manner (Figure 4A), whereas its metabolism 

was less affected by AA supplementation (Figure 4B). These distinct responses were due to 

the difference in the values of KCOX:AA and KCOX:EPA (~ 25* KCOX:AA) which 

reflects AA and EPA affinity/binding to COX, respectively. Taken together, our model 

captured features of both COX-1 and COX-2.

Our modeling approach has helped validate the mechanism of ω3 PUFA -mediated 

reduction in 2-series PG by competitive metabolism between AA and ω3 PUFAs by COX 

and terminal enzymes. This model can be used in systems pharmacokinetics and 

pharmacodynamics studies to calculate inhibition efficiency of drugs and to design dose 

schedule for inflammation and immune system related diseases. Previously, we have carried 

out an in-depth comparison of transcriptomic and lipidomic response of RAW264. 7 and 

thioglycolate-elicited macrophages to KLA 25. Overall, RAW 264.7 cells serve as a good 

model for studying inflammation and immunity associated with primary macrophages. 

However, their responses to different ligands can differ in term of time scale and kinetics. 

For example, ATP stimulated RAW264.7 cells produce eicosanoids in a time-scale of 1 

hour 20, whereas ATP-stimulated bone marrow-derived macrophages produce prolonged 

production of eicosanoids lasting 20 hours 2, 26.

Conclusion

We have developed a quantitative model of the competitive metabolism of AA and EPA via 

the COX pathway by integrating known mechanistic knowledge and novel high-throughput 

data in RAW 264.7 macrophages. The robustness of the model is validated through 

parametric sensitivity and uncertainty analysis. Additionally, we have successfully predicted 

the eicosanoid profiles in independent datasets utilizing AA and DHA instead of EPA. The 

computational model developed has enhanced our understanding of the biological 

characteristics of eicosanoid metabolic networks. We showed that the higher affinity of EPA 

binding to COX compared to AA was able to inhibit AA metabolism effectively. Thus, our 

computational model helps to elucidate the competition between ω3 and ω6 metabolism in 

cells as an ex vivo model of inflammation.
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Figure 1. Computational simulation of the COX-dependent eicosanoid profiles in EPA-
supplemented ATP-stimulated RAW264.7 cells
(A) The chemical structures of AA, EPA and DHA. (B) Experimental conditions. AA and 

EPA were supplemented in RAW264.7 cell culture media for 24 hr before stimulation. Then, 

cells were stimulated with ATP and the culture media were collected at the indicated time 

points to measure the eicosanoid levels by liquid chromatography-tandem mass 

spectrometry (LC-MS). (C) Simplified AA and EPA metabolic pathways via the COX 

pathway. The measured and non-measured metabolites are given in black and gray letters, 

respectively. Arrows indicate the enzymatic and non-enzymatic reactions and the Ø symbol 

represents additional metabolic pathways including degradation. (D) The experimental data 

(Exp) for EPA and non-supplement represent means ± SEM. The simulation results (Fit) are 

shown as red and blue curves for EPA supplemented and non-supplemented data, 

respectively.
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Figure 2. Parametric sensitivity analysis and leave-one-metabolite-out analysis
(A) Slope of the sensitivity curves are shown as heat maps. Sensitivity of KCOX:EPA and 

EPA was found in the range of −4 – 0.5. (B) The simulation results of leave-one-metabolite 

(PGD2)-out are shown as orange and light blue curves for EPA supplemented and non-

supplemented data, respectively. The blue and red lines are simulation results obtained from 

Fig. 1D. (C) The estimated parameters by leave-one-metabolite (PGD2)-out methods are 

compared with optimized parameters.
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Figure 3. Computational prediction of COX-dependent eicosanoid profile in AA and DHA-
supplemented ATP-stimulated RAW264.7
(A) The experimental data (Exp) for non-supplemented and AA-supplemented cases 

represent means ± SEM. The simulation results (Fit) are shown as green and blue curves for 

AA-supplemented and non-supplemented, respectively. (B) The experimental data (Exp) for 

non-supplemented and DHA-supplemented cases represent means ± SEM. The simulation 

results (Fit) are shown as brown and blue curves for DHA-supplemented and non-

supplemented cases, respectively.
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Figure 4. Computational simulation of COX activities
(A) The COX specific activities for AA were simulated with increasing concentrations of 

AA in the presence of EPA. (B) The COX specific activities for EPA were simulated with 

increasing concentrations of EPA in the presence of AA.
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Table 1

Chemical reactions and estimated kinetic parameters in the COX pathway

Reaction Name Parameters Optimized value SEM

AA → PGH2 kC1 0.1353 0.0361

PGH2 → kC2 0.1 0.0142

PGH2 → PGE2 kC3 0.4399 0.2996

PGE2 → kC4 0.1 0.0101

PGH2 → PGD2 kC5 0.6906 0.1823

PGD2 → kC6 0.1 0.0118

PGD2 → DHKPGD2 kC7 0.0009 0.0001

DHKPGD2 → kC8 0.1 0.0001

PGD2 → 15dPGD2 kC9 0.0019 0.0002

15dPGD2 → kC10 0.1 0.0000

PGD2 → PGJ2 kC11 0.0036 0.0002

PGJ2 → kC12 0.1 0.0014

AA → 11-HETE kC13 0.0039 0.0020

11-HETE → kC14 0.1 0.0083

EPA → PGH3 kC15 0.0094 0.0161

PGH3 → kC16 0.0904 0.0128

PGH3 → PGE3 kC17 0.4489 0.0638

PGE3 → kC18 0.0873 0.0116

PGH3 → PGD3 kC19 0.9075 0.2395

PGD3 → kC20 0.1 0.0057

KCOX:AA 0.0014 0.0145

KCOX:EPA 0.0366 0.0720

KPGES:PGH2 0.2569 0.1715

KPGES:PGH3 0.8046 0.4272

KPGDS:PGH2 0 0.0483

KPGDS:PGH3 0.0411 0.1238

CC1 0 0.0064

CC2 1.5659 0.7107

CC3 0.004 0.0633

The unit of the parameters in first-order reactions is 1/min. Association constants such as KCOX:AA have units of 1/concentration.

J Phys Chem B. Author manuscript; available in PMC 2017 August 25.


	Abstract
	Graphical abstract
	Introduction
	Methods
	Development of kinetic models
	Estimation of the kinetic rate parameters and uncertainty analysis

	Results and Discussion
	Development of the kinetic model for the COX pathway
	Parametric sensitivity, time scale analysis and validation of the model
	Prediction of eicosanoid profile in AA-supplemented and DHA supplemented macrophages
	Simulation of COX activities during AA/EPA supplementation

	Conclusion
	References
	Appendix A
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1



