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Approximately 30% of older adults exhibit the neuropathological features of Alzheimer’s disease without signs of cognitive impair-

ment. Yet, little is known about the genetic factors that allow these potentially resilient individuals to remain cognitively unim-

paired in the face of substantial neuropathology. We performed a large, genome-wide association study (GWAS) of two previously

validated metrics of cognitive resilience quantified using a latent variable modelling approach and representing better-than-pre-

dicted cognitive performance for a given level of neuropathology. Data were harmonized across 5108 participants from a clinical

trial of Alzheimer’s disease and three longitudinal cohort studies of cognitive ageing. All analyses were run across all participants

and repeated restricting the sample to individuals with unimpaired cognition to identify variants at the earliest stages of disease. As

expected, all resilience metrics were genetically correlated with cognitive performance and education attainment traits (P-values 5
2.5 � 10–20), and we observed novel correlations with neuropsychiatric conditions (P-values 5 7.9 � 10–4). Notably, neither resili-

ence metric was genetically correlated with clinical Alzheimer’s disease (P-values 4 0.42) nor associated with APOE (P-values 4
0.13). In single variant analyses, we observed a genome-wide significant locus among participants with unimpaired cognition on

chromosome 18 upstream of ATP8B1 (index single nucleotide polymorphism rs2571244, minor allele frequency = 0.08,

P = 2.3 � 10–8). The top variant at this locus (rs2571244) was significantly associated with methylation in prefrontal cortex tissue

at multiple CpG sites, including one just upstream of ATPB81 (cg19596477; P = 2 � 10–13). Overall, this comprehensive genetic

analysis of resilience implicates a putative role of vascular risk, metabolism, and mental health in protection from the cognitive
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consequences of neuropathology, while also providing evidence for a novel resilience gene along the bile acid metabolism pathway.

Furthermore, the genetic architecture of resilience appears to be distinct from that of clinical Alzheimer’s disease, suggesting that a

shift in focus to molecular contributors to resilience may identify novel pathways for therapeutic targets.
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Introduction
Alzheimer’s disease is characterized by the presence of neur-

itic plaques and neurofibrillary tangles in the brain at aut-

opsy. Clinically, it presents with progressive cognitive

impairment. Yet, due to the long prodromal period of

Alzheimer’s disease and unknown biological factors, not

everyone with Alzheimer’s disease neuropathology presents

with cognitive impairment. In fact, among cognitively unim-

paired volunteers agreeing to autopsy at the time of death,

70% have varying degrees of Alzheimer’s disease pathology

(Sonnen et al., 2011), and 30% have sufficient neuropathol-

ogy in their brain to meet neuropathological criteria for

Alzheimer’s disease (i.e. ‘asymptomatic Alzheimer’s disease’)

(Rahimi and Kovacs, 2014). Identifying the molecular fac-

tors that underlie the resilience observed in asymptomatic

Alzheimer’s disease may provide novel therapeutic targets

for clinical intervention and provide additional insight into

the genetic architecture of Alzheimer’s disease.

While there has been some prior discovery work using

genomic data (Mostafavi et al., 2018; Yu et al., 2018), pre-

vious work characterizing the genetic contributors to asymp-

tomatic Alzheimer’s disease has primarily focused on

candidate genes (Monsell et al., 2013, 2017; Franzmeier

et al., 2019) due to the lack of sufficient sample size to com-

plete full genome-wide analyses. A major barrier in moving

analyses forward has been the categorical definitions of

asymptomatic Alzheimer’s disease that drastically reduce the

number of participants available for analysis. In the past

decade, residual approaches to quantifying continuous met-

rics of ‘resilience’ have emerged as potential endophenotypes

for genetic analyses (Yu et al., 2015; White et al., 2017;

Boyle et al., 2019). The basic approach is to deconvolve cog-

nitive scores into components that are explained and unex-

plained by proxy or direct measures of neuropathology

(Reed et al., 2010). These residual approaches model better-

than and worse-than predicted cognitive performance to rep-

resent higher versus lower resilience (Yu et al., 2015; Boyle

et al., 2019). Recently, our group has extended these re-

sidual approaches to quantify and validate continuous met-

rics of ‘cognitive resilience’ (representing better-than-

predicted cognitive performance given an individual’s burden

of Alzheimer’s disease neuropathology) and ‘brain resilience’

(representing better-than-predicted brain volumes given an

individual’s burden of Alzheimer’s disease neuropathology)

(Hohman et al., 2016b). These continuous metrics are strong

predictors of future cognitive decline and cognitive impair-

ment (Hohman et al., 2016b). The goal of the present ana-

lysis was to evaluate genetic predictors of cognitive resilience

across the genome.

A few genome-wide analyses have been completed that

focus on resilience in asymptomatic Alzheimer’s disease, al-

though with limited sample sizes (Hohman et al., 2014a, b,

2016a; White et al., 2017). Recently, �3000 samples with

both whole-genome genetic data and in vivo brain measures

of amyloid burden from the Anti-Amyloid Treatment in

Asymptomatic Alzheimer’s Disease (A4) clinical trial were

made publicly available, providing an unmatched resource

for exploring the genetics of resilience to Alzheimer’s disease.

We performed the largest (n = 5108) genome-wide associ-

ation study (GWAS) of cognitive resilience in Alzheimer’s

disease by leveraging harmonized resilience metrics across

the cross-sectional A4 study and three longitudinal cohort

studies of Alzheimer’s disease. Validation of identified gen-

omic candidates was completed using gene expression data

from post-mortem brain tissue and genotype data from

large-scale case/control datasets of Alzheimer’s disease.

Importantly, we also performed comprehensive genetic cor-

relation and pathway analyses to provide critical informa-

tion about the fundamental biological pathways that may

protect the brain from the downstream consequences of

Alzheimer’s disease neuropathology.

Materials and methods

Participants

Participant data was acquired from multiple cohort studies
including screening data from the A4 Study, the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), the Religious Orders
Study and Rush Memory and Aging Project (ROS/MAP), and
the Adult Changes in Thought (ACT) Study. The A4 Study
screening data were acquired as part of a clinical trial that
began in 2014 (Sperling et al., 2014). All participants were
recruited with unimpaired cognition, and amyloid PET imaging
was performed at screening. Additionally, participants with a
Delayed Logical Memory score 56 or 418 were excluded
from PET scans and are not included in the present analysis.
ADNI was launched in 2003 and over the four phases of the
study now includes 41800 individuals aged 55–90 (www.adni-
info.org). Recruitment was designed to mimic clinical trials and
therefore included individuals with unimpaired cognition, mild
cognitive impairment, and Alzheimer’s disease at baseline. Data
from ADNI-1, ADNI-2, and ADNI-GO are included in the pre-
sent analyses. ACT began in 1994 and recruited a random sam-
ple of nondemented older adults from the Seattle metropolitan
area (Kukull et al., 2002). A subset of participants in ACT
agreed to brain donation and are included in these analyses.
ROS launched in 1994 and recruited Catholic nuns, priests, and
brothers from across the USA, and MAP launched in 1997 and
recruited cognitively unimpaired older adults from the Chicago
metropolitan area (Bennett et al., 2018). Those who agreed to
brain donation are included in the present analysis.

Amyloid PET acquisition

For ADNI and A4 participants, amyloid burden was quantified
using amyloid PET. PET procedures in ADNI are described at
the ADNI website (http://www.adni-info.org). A4 and ADNI are
both largescale multisite studies for which PET amyloid acquisi-
tion was completed on multiple platforms, including GE,
Philips, and Siemens. In all cases, PET data were acquired using
a dynamic 3D scan with four 5-min frames acquired 50–70 min
post injection. A subset of ADNI participant data were acquired
using 11C-PiB, but the majority of ADNI and all of A4 was
acquired using 18F-florbetapir. Standardized uptake value ratios
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(SUVR) were quantified relative to whole cerebellum, and a
composite mean SUVR was quantified across cortical regions as
a summary metric of amyloid burden.

Amyloid PET processing and
harmonization

Harmonization of amyloid PET levels was performed using
composite cortical values calculated within ADNI and A4 separ-
ately. We applied a Gaussian Mixture Model (GMM) within
each dataset to place values on the same scale using a recently
developed harmonization algorithm (Properzi et al., 2019).
GMMs were estimated among cognitively unimpaired individu-
als using a two-component model fit and applied to the entire
sample. Mean SUVRs were scaled and normalized using the
mean and standard deviation estimated from the predicted
amyloid-negative (amyloid–) Gaussian distribution. A more
comprehensive assessment of this and alternative harmonization
approaches was recently published by our group (Raghavan
et al., 2020), but we used the present approach because it makes
the fewest assumptions about the data and was more robust to
outliers than alternative approaches. One alternative that we
investigated previously is using the predicted amyloid– and
amyloid-positive (amyloid + ) distribution to give more sensitiv-
ity in the high end of the amyloid + range (Raghavan et al.,
2020). The current approach focusing on amyloid– does have
limitations in the high end of amyloid + , so it is possible that we
are underestimating the extent of amyloidosis in late stage dis-
ease. That said, our head to head comparison previously
showed very small differences across harmonization approaches
when amyloid is an outcome, and they would be further attenu-
ated in the current context when amyloid levels are leveraged as
a linear predictor (Raghavan et al., 2020). The final scaled score
represents a z-score based on the predicted amyloid– distribu-
tion among cognitively unimpaired older adults.

Post-mortem assessment of
neuropathology

For ACT and ROS/MAP participants, neuritic plaque burden
was quantified with Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD) scores. A comprehensive neuro-
pathological evaluation was completed at each site, including
full CERAD staging as previously described (Mirra et al., 1991).

Neuropsychological composites

Harmonization of cognitive tests in ADNI and A4 was com-
pleted using the Preclinical Alzheimer Cognitive Composite
(PACC), calculated in each dataset individually using item level
data from Logical Memory Immediate and Delayed Recall,
WAIS-R Digit Symbol Substitution Test, the Mini-Mental State
Examination, and the Selective Reminding Test or the delayed
word recall from the Alzheimer’s Disease Assessment Scale-
Cognitive Subscale (ADAS-Cog). In all four datasets, a previous-
ly published protocol to harmonize neuropsychological scores in
the domains of memory and executive function was used (Crane
et al., 2017). A memory composite was calculated in all four
datasets, and an executive function composite was quantified in
ACT, ADNI, and ROS/MAP (there was insufficient item level
data in A4). The inclusion of three composite measures allowed

each dataset to have multiple indicator variables, providing a ro-

bust anchoring of resilience metrics across datasets. A detailed
description of the item level data and model that was included
in these composite metrics is presented in the Supplementary
material.

Quantification of resilience metrics

Resilience metrics were quantified using established procedures
(Hohman et al., 2016b) and the model is presented in Fig. 1.
Briefly, individual regression models estimated amyloid path-
ology associations with cognition covarying for age and sex. A
robust weighted least squares estimator in a confirmatory factor

analysis was quantified using Mplus (Muthén and Muthén,
1998: 2015) (version 7.31) to summarize residuals from the lin-
ear regression models into composite measures representing the
degree to which an individual performed better or worse than
predicted given their age, sex, and amyloid load (note that years

of education was integrated into the second order latent trait).
The outcomes of interest were residual cognitive resilience and
combined resilience where residual cognitive resilience was
quantified from residuals and combined resilience was summar-
ized as the covariance of educational attainment with residual

cognitive resilience. A detailed description of the methodology
and quantified resilience metrics is presented in the
Supplementary material.

Genotype processing and quality
control

Genotyping in all cohorts was performed using DNA extracted
from whole blood or brain tissue on different genotyping arrays.
For A4, the Illumina Global Screening Array was used for geno-
typing. ACT participants were genotyped on an Illumina
Human660W-Quad. Three Illumina platforms were used in

ADNI: Human610-Quad, HumanOmniExpress, and Omni
2.5M. ROS/MAP genotypes were also obtained on three

Figure 1 Quantification of resilience metrics. Residuals from

linear regression models in which a cognitive score was regressed

on age, sex, and amyloid levels were extracted and entered as indi-

cator variables in a partial least squares path model using estab-

lished procedures. Combined resilience was quantified as a second

order latent trait in the model in which educational attainment was

included as an additional indicator variable. PACC = Preclinical

Alzheimer Cognitive Composite.

2564 | BRAIN 2020: 143; 2561–2575 L. Dumitrescu et al.

https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa209#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa209#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa209#supplementary-data


platforms: Affymetrix Genechip 6.0, Illumina Human1M, and
Illumina Global Screening Array. In ADNI and ROS/MAP, sam-
ple sets genotyped on different arrays were processed and
imputed in parallel and merged after imputation. Quality con-
trol (QC) was performed using standard procedures, including
removal of single nucleotide polymorphisms (SNPs) and samples
with 45% genotype missingness, removal of SNPs with 51%
minor allele frequency (MAF) or Hardy-Weinberg Equilibrium
(HWE) P-values 510–6, and removal of samples with sex dis-
crepancies, cryptic relatedness (pi-hat 40.25), or who were not
non-Hispanic White by self-report or by population principal
component analysis.

Genotypes were then imputed with Minimac3 on the
Michigan Imputation Server (https://imputationserver.sph.
umich.edu) using the HRC r1.1 2016 reference panel. Post-
imputation QC steps included removal of SNPs with imputation
quality score R2 5 0.90, call rate 5 95%, MAF 5 1%, or
HWE P-value 5 10–6. Imputed datasets were then merged for
the two autopsy cohorts (ACT and ROS/MAP) and the two
PET imaging cohorts (A4 and ADNI). Non-overlapping SNPs
(i.e. those with missingness 495%) were excluded. A total of
4 840 740 SNPs remained and were included in the analysis.

Statistical analyses

Our analysis workflow is presented in Fig. 2. Following
phenotype harmonization and calculation of resilience metrics
(i.e. residual cognitive resilience and combined resilience) for
each cohort, genome-wide association analyses were com-
pleted using linear regression in PLINK (version 1.9, https://
www.cog-genomics.org/plink/1.9). GWAS was performed in
the combined autopsy dataset and the combined PET dataset.
For each dataset, two models were run. The first model esti-
mated resilience among individuals across the spectrum of de-
mentia, including individuals with unimpaired cognition,
mild cognitive impairment, and Alzheimer’s disease. The se-
cond model restricted the sample to individuals with unim-
paired cognition to focus on resilience during the preclinical
phase of disease. In all models, covariates included age, sex,
and the first three population principal components. The gen-
ome-wide threshold for statistical significance was set a priori
at a = 5 � 10–8. Summary statistics at each marker across the
autopsy dataset and the PET dataset were then combined in a
fixed-effect meta-analysis using the GWAMA software pro-
gram (Mägi and Morris, 2010).

We first summarized genetic signal across the genome using
summary statistics from our resilience GWAS to estimate genetic
correlations between resilience phenotypes and 67 complex
traits with publicly accessible GWAS summary statistics using
the Genetic Covariance Analyzer (GNOVA) program (Lu et al.,
2017). Details about the source of summary statistics for each
trait are presented in Supplementary Table 1. This provided a
first level of validation that the genetic signal in our analysis
was correlated with common phenotypes (e.g. cognitive per-
formance and educational attainment) while also providing in-
sight into novel resilience associations. Additionally, we
replicated our top genomic correlation results leveraging the
BADGERS program (Yan et al., 2018) and quantified correl-
ation across 1738 traits in the UK Biobank (http://biobank.
ndph.ox.ac.uk/showcase/). To aid in interpretation of genetic co-
variance results, we also quantified heritability estimates using
the Genome-wide Complex Trait Analysis (GCTA) tool (Yang

et al., 2011). Heritability of each resilience phenotype was quan-
tified within the PET and Autopsy datasets separately, and with-
in a combined dataset including all samples. Estimates were
quantified across all participants and when restricting the sam-
ple to individuals with unimpaired cognition.

Next, we performed gene- and pathway-level analyses using
VEGAS2 (Liu et al., 2010; Mishra and Macgregor, 2015, 2017)
and PrediXcan (Gamazon et al., 2019). PrediXcan models were
estimated for 44 tissues in the GTEx Portal and for additional
disease relevant tissues, including prefrontal cortex from
CommonMind and monocytes from the Multi-Ethnic Study of
Atherosclerosis (MESA). Correction for multiple comparisons in
gene-level analyses was quantified using the false discovery rate
(FDR) procedure, which accounted for all 258 562 gene-tissue
combinations. The a priori threshold for significance of the
VEGAS pathway results was P51 � 10–5, which was based on
a simulation-derived 95% empirical significance threshold tak-
ing into account the multiple testing of 6213 correlated path-
ways (Mishra and MacGregor, 2017).

Finally, single variant GWAS loci were mapped to genes and
functionally annotated leveraging INFERNO (http://inferno.lisan
wanglab.org/) (Amlie-Wolf et al., 2018) and the Brain xQTL
Serve database (http://mostafavilab.stat.ubc.ca/xqtl/) (Ng et al.,
2017). INFERNO integrates hundreds of publicly available
functional genomics databases, including databases of transcrip-
tion factor binding sites, expression quantitative trail loci
(eQTL), and enhancer activity. The Brain xQTL Serve database
includes additional eQTL, methylation-QTL (mQTL), and his-
tone-QTL (hQTL) analyses.

Figure 2 Workflow of analytical activities. CU = cognitively

unimpaired.
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Sensitivity analysis with educational
attainment

Our primary model includes education as an indicator variable;
thus, it does not allow for us to easily parse genetic effects due

to education from those due to other resilience factors. For that
reason, we recalculated the first-order latent trait residual cogni-

tive resilience including years of education as a covariate and re-
ran all genomic analyses. This metric for sensitivity analyses
reflects variance in cognitive performance that is not due to age,

sex, biomarker levels, or educational attainment.

Sensitivity analysis limited to
Alzheimer’s disease cases

Resilience phenotypes were also quantified in the sample
restricted to Alzheimer’s disease cases (n = 668) for comparison
to the cognitively unimpaired results, with a particular focus on

fit of the latent variable model and heritability of the resilience
phenotypes.

Data availability

Data from the ADNI and A4 studies are shared through the
LONI Image and Data Archive (https://ida.loni.usc.edu/). Data
from ROS/MAP can be requested at www.radc.rush.edu. Data

from ACT can be accessed through the Data Query Tool (http://
act.kpwashingtonresearch.org/dqt/). GWAS summary statistics

will be available through NIAGADS (https://www.niagads.org/
datasets).

Results
Across the four cohorts, 5108 individuals (A4 n = 2982;

ROS/MAP n = 1031; ADNI n = 688; ACT n = 407) had

both genome-wide genotype and resilience phenotype data,

3820 (75%) of whom were cognitively unimpaired.

Participant characteristics are presented in Table 1. In gen-

eral, participants were mostly female (except for ADNI) and

were well-educated. Individuals in the PET cohorts tended to

be younger than individuals in the autopsy cohorts.

Genetic covariance results

Heritability estimates for each resilience phenotype are pre-

sented in Supplementary Table 2. Briefly, we observed larger

heritability estimates when restricting the sample to individu-

als with unimpaired cognition (residual cognitive resilience

h2 = 0.20–0.28, combined resilience h2 = 0.23–0.99) com-

pared to the entire sample (residual cognitive resilience h2 =

0.00–0.08, combined resilience h2 = 0.19–0.67). We also

quantified the phenotypic correlation between educational

attainment and residual cognitive resilience, which was mod-

est (Pearson’s r = 0.15, P5 0.001).

Using the summary statistics from the resilience GWAS,

we performed genetic covariance analyses to gain insight

into any shared genetic basis of relevant biological processes.

Pair-wise genetic covariances between combined resilience

GWAS results in all participants and 67 health-related phe-

notypes are depicted in Fig. 3 and presented in

Supplementary Table 3. Ten genetic correlation analyses sur-

vived correction for multiple testing. We observed strong

and expected positive correlations with cognitive perform-

ance and educational attainment (P5 1.4 � 10–19), validat-

ing our metric and providing strong evidence of consistency

in the observed polygenic signal across comparable measures

from independent datasets.

Additionally, we observed multiple novel correlations,

including two smoking behaviour phenotypes: age at smok-

ing initiation (genetic correlation = 0.033; P = 2.0 � 10–7)

and number of cigarettes per day (genetic correlation =

–0.021; P = 8.0 � 10–4). Additional novel correlations

included two neuropsychiatric conditions, whereby increased

genetic risk of obsessive compulsive disorder (OCD) was cor-

related with higher levels of resilience (P = 7.9 � 10–4) while

increased genetic risk of attention deficit hyperactivity dis-

order (ADHD) was associated with lower levels of resilience

(P = 4.7 � 10–6). Interestingly, older age at first birth was

associated with higher levels of resilience (P = 1.1 � 10–8).

Genetic correlations with residual cognitive resilience were

similar to those observed for combined resilience and were

similar when restricting the sample to cognitively unimpaired

individuals (Supplementary Tables 3 and 4).

As a second level of validation, we also quantified genetic

correlations with phenotypes in the UK Biobank leveraging

a recently published method to perform phenome-wide asso-

ciation analyses leveraging summary statistics (Yan et al.,

2018). Consistent with GNOVA results, we observed strong

correlations with numerous education and cognitive pheno-

types (Supplementary Tables 5 and 6). We also verified cor-

relations with age at first birth (P = 6.2 � 10–12) and

observed some intriguing novel correlations.

Interestingly, there was no evidence for genetic correlation

between resilience phenotypes and clinical Alzheimer’s dis-

ease (P = 0.45). Similarly, when evaluating the 40 previously

identified Alzheimer’s disease risk variants from �25 loci

(Lambert et al., 2013; Jansen et al., 2019; Kunkle et al.,

2019), only three SNPs showed nominal evidence of associ-

ation with either resilience phenotype (Supplementary Table

7). Similar results were also observed when fully analysing

the APOE haplotype, whereby increasing numbers of

APOE e4 alleles or number of APOE e2 alleles were not

associated with either resilience phenotypes (P-values 4
0.13). Together these results suggest the polygenic signal

underlying the resilience phenotypes is distinct from clinical

Alzheimer’s disease.

Gene-level and pathway results

Next, we continued to explore the genetic architecture of re-

silience on both a gene and pathway level. Gene-level results

in individual tissues and cross-tissue, based on predicted

gene expression associations with resilience, are reported in

Supplementary Tables 8–11. Resilience metrics were not

associated with predicted gene expression among individual
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tissues or across tissues after Bonferroni correction for mul-

tiple testing. The most significant gene in the cross-tissue

analyses was ZNF451, which was associated with combined

resilience in individuals with unimpaired cognition at

P56.6 � 10–6 (Supplementary Table 9).

In pathway-level analyses using VEGAS2, no molecular

pathways remained significant when correcting for multiple

comparisons. However, when restricting to cognitively unim-

paired participants in the combined resilience analysis, there

was nominal evidence of enrichment in the amino acid me-

tabolism pathway (P = 7.8 � 10–5, PANTHER database),

the prolactin receptor signalling pathway (P = 8.2 � 10–5,

Reactome database), and the dehydrogenase pathway

(P = 1.4 � 10–4, PANTHER database).

Single-variant associations with
resilience

Finally, we focused on single variant level analyses to iden-

tify novel genetic loci associated with resilience. Genome-

wide significant results are presented in Fig. 4A, and detailed

results for all models are presented in Supplementary Tables

12–15. When including all diagnoses in the GWAS, we did

not observe any variants that reached statistical significance

in either residual cognitive resilience or combined resilience

analyses. When restricting analyses to individuals with unim-

paired cognition, we identified a locus on chromosome 18

just upstream of the ATP8B1 gene that reached genome-

wide significance in combined resilience analyses (Fig. 4B).

More specifically, the minor allele of the index SNP at this

locus (rs2571244; MAF = 0.08) was associated with lower

levels of combined resilience (b = –0.11, P = 2.3 � 10–8),

and the direction of association was consistent across the

PET and Autopsy datasets (Fig. 4C). No genome-wide asso-

ciations were observed in the residual cognitive resilience

analyses among participants with unimpaired cognition.

Single-variant gene mapping and
functional annotation

To characterize the molecular mechanisms of the genome-wide

associated loci identified above, we used hundreds of functional

genomics datasets to test for tissue-specific regulatory activity

of these novel variants. The index SNP at the chromosome 18

locus (rs2571244) was strongly associated with prefrontal cor-

tex methylation at multiple sites (Table 2), with the strongest as-

sociation observed at a CpG site just upstream of ATPB81

(cg19596477; P = 2 � 10–13; Fig. 5). SNPs in this region also

showed statistically significant enrichment for enhancer sites in

the Roadmap dataset in across multiple tissues, including brain

Table 1 Participant characteristics

Autopsy cohorts PET cohorts Combined

ACT ROS/MAP ADNI A4

CU All CU All CU All CU/All CU All

Sample size 284 407 337 1,031 217 688 2980 3818 5108

Female, n (%) 153 (54) 232 (57) 217 (64) 672 (52) 107 (49) 296 (43) 1779 (60) 2258 (59) 2983 (58)

Age 87.11 ± 6.73 88.28 ± 6.75 86.99 ± 6.62 89.43 ± 6.51 76.46 ± 6.34 74.82 ± 7.58 71.36 ± 4.75 74.20 ± 7.78 76.82 ± 9.67

Education 14.92 ± 2.99 14.71 ± 3.04 16.56 ± 3.78 16.42 ± 3.61 16.38 ± 2.68 16.19 ± 2.71 16.76 ± 2.68 16.57 ± 2.86 16.44 ± 2.98

Amyloid burden

CERAD, n (%)

None 84 (29) 106 (26) 133 (39) 253 (24) – – – – 217 (35)

Sparse 89 (31) 107 (26) 39 (12) 97 (9) – – – – 128 (21)

Moderate 63 (22) 94 (23) 115 (34) 374 (36) – – – – 178 (29)

Severe 47 (16) 100 (25) 50 (15) 307 (30) – – – – 97 (26)

Standardized PET

amyloid

– – – – 1.39 ± 2.69 2.19 ± 3.05 1.41 ± 2.52 1.41 ± 2.52 1.41 ± 2.53

Cognitive function

Harmonized

memory

0.31 ± 0.57 –0.09 ± 0.82 0.36 ± 0.47 –0.60 ± 1.01 0.81 ± 0.48 0.30 ± 0.69 0.53 ± 0.22 0.53 ± 0.22 0.52 ± 0.33

Harmonized execu-
tive function

1.55 ± 0.89 1.13 ± 1.17 1.39 ± 0.82 0.58 ± 1.12 2.89 ± 0.88 2.36 ± 1.16 – – 1.83 ± 1.07

PACC – – – – –0.31 ± 2.93 –4.39 ± 5.33 0.20 ± 2.5 0.20 ± 2.5 0.17 ± 2.53

Resilience phenotypes

Residual cognitive

resilience

–0.04 ± 0.89 0.24 ± 0.82 4.8 � 10–3 ± 0.80 –0.17 ± 0.9 0.22 ± 1.37 –0.54 ± 1.33 0.06 ± 1.06 0.25 ± 0.63 0.06 ± 1.05

Combined
resilience

–0.19 ± 0.47 –0.13 ± 0.41 7.5� 10–4 ± 0.53 –0.04 ± 0.46 0.05 ± 0.56 –0.15 ± 0.46 0.04 ± 0.47 0.09 ± 0.34 0.02 ± 0.49

Age is age at death for autopsy cohorts and age at visit for PET cohorts. Values are mean ± standard deviation or number of samples (per cent of the group). CERAD =

Consortium to Establish a Registry for Alzheimer’s Disease; CU = cognitively unimpaired; PACC = Preclinical Alzheimer Cognitive Composite.
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and liver (adjusted P-values = 0.001). However, there was no

evidence that rs2571244 functioned as an eQTL or hQTL in

any of the databases.

Sensitivity analyses with educational

attainment

We reanalysed all residual cognitive resilience results leverag-

ing a metric calculated with residuals from linear regression

models covarying for years of education. Genetic covariance

results are presented in Supplementary Table 16. We

observed only small changes in correlations with cognitive

performance, psychiatric phenotypes, and smoking pheno-

types. Interestingly though, when including individuals with

clinical Alzheimer’s disease in our analyses we did observe

robust genetic correlation with Alzheimer’s disease

(P = 4 � 10–27) and hippocampal volume (P = 1 � 10–7),

suggesting that genetic architecture of residual cognitive re-

silience more closely resembles the genetic architecture of

Alzheimer’s disease when including education as a covariate.

Figure 3 Genome-wide genetic covariance results. Genetic covariances between combined resilience and 67 complex traits. Error bars

represent 95% confidence intervals. FWE-P: corrected P-value based on the family-wise error rate. BMI = body mass index; HDL = high density

lipoprotein; LDL = low density lipoprotein; pvRSA HF = peak-valley respiratory sinus arrhythmia, high frequency power; RMSSD = root mean

square of successive differences; SDNN = standard deviation of the NN interval (NN interval is the interval between two heart beats).
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In contrast to our primary results, we also observed an

APOE e4 association with the education adjusted resilience

metric, but only when including clinical Alzheimer’s disease

participants in the analysis, further highlighting a move to-

wards the genetic architecture of Alzheimer’s disease. Single

variant results were largely consistent across the two pheno-

types, with no genome-wide significant variants identified

and the top identified variants in the primary analysis show-

ing similar effects (rs27986 original b = 0.112, original

P = 5 � 10–7 compared to b = 0.105, P = 1 � 10–6). The

variant identified in the combined resilience GWAS

remained nominally significant in the education adjusted re-

sidual cognitive resilience analysis (rs2571244, P = 0.0006),

suggesting that association is not driven entirely by educa-

tional attainment.

Sensitivity analyses limited to

Alzheimer’s disease cases

Model fit was comparable in the latent variable model lim-

ited to Alzheimer’s disease cases (Supplementary material).

However, we did not observe significant heritability in the

autopsy (h2 5 0.001, P = 0.5) or PET (h2 5 0.001, P = 0.5)

dataset for either resilience trait. When combining across

datasets heritability remained non-significant (h2 = 0.11,

P = 0.38) likely due to the limited sample size. In GWAS

Figure 4 Variant-level resilience GWAS results. (A) Manhattan plot of results from the GWAS analysis of combined resilience. GWAS sig-

nificance (5 � 10–8) is indicated by the red line, while suggestive significance (1 � 10–5) is indicated by the blue line. (B) LocusZoom plot of the

GWAS-significant locus on chromosome 18. Colours denote linkage disequilibrium with the most statistically significant SNP. (C) Forest plot for

the top SNP on chromosome 18 is presented demonstrating consistent direction and magnitude of effect across the autopsy and PET datasets

and within the component cohorts. The summary estimate at the bottom indicates the meta-analysis of the autopsy and PET combined datasets.

CI = confidence interval.
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analysis, we did not observe any statistically significant loci,

and the top variant identified in unimpaired participants

was non-significant in Alzheimer’s disease cases (rs2571244,

b = –0.01, P = 0.72).

Discussion
We completed a large genetic analysis of resilience to

Alzheimer’s disease neuropathology and identified a number

of variants, genes, and functional pathways that are associ-

ated with protection from the downstream consequences of

neuropathology. Our results implicate genetic drivers of edu-

cational attainment, smoking behaviours, and neuropsychi-

atric phenotypes in Alzheimer’s disease resilience; highlight a

novel resilience locus on chromosome 18; and implicate me-

tabolism in the liver as a molecular contributor to resilience.

Notably, the genetic architecture of resilience appears to be

distinct from the genetic architecture of clinical Alzheimer’s

disease, with no observed genetic correlation and nominal

contributions of APOE on resilience, suggesting that a focus

on the molecular contributors to resilience may highlight

novel pathways for therapeutic development.

Resilience scores are genetically
correlated with education,
neuropsychiatric, and smoking
phenotypes

Results from genetic correlation analyses provided validation

of the genetic signals we observed in this analysis and high-

lighted a number of important biological processes in the

aetiology of resilience. As expected, we observed strong gen-

etic correlations with educational attainment, cognitive per-

formance, and several education-related traits. It is also

interesting that we observed some hormone and smoking

related traits, although both may be confounded by educa-

tional attainment making interpretation challenging. In the

case of the smoking traits, genetic risk for smoking and a

younger age of initiating smoking was associated with lower

levels of resilience, consistent with epidemiological associa-

tions between smoking and dementia (Tyas et al., 2003;

Peters et al., 2008). In the case of hormone-related pheno-

types, an older age of first birth, last birth, and menopause

(nominal association in GNOVA and UK Biobank) was cor-

related with higher resilience scores. Similar associations at

the phenotypic level have been reported previously, with an

older age at menopause correlated with protection from cog-

nitive decline (McLay et al., 2003; Ryan et al., 2009, 2014).

Interestingly, we and others have published extensively on

sex differences in the downstream consequences of neuro-

pathology (Buckley et al., 2018; Deming et al., 2018;

Hohman et al., 2018; Dumitrescu et al., 2019; Mahoney

et al., 2019). The present results suggest that hormone

changes in older adulthood may contribute to susceptibility

to cognitive decline, but more work is needed to disentangle

the potential contribution of educational attainment on these

observed genetic correlations.

In addition, we observed notable genetic correlations with

neuropsychiatric phenotypes including ADHD and OCD.

Interestingly, genetic risk for OCD was associated with

higher resilience scores, while genetic risk for ADHD was

associated with lower resilience. Although there is some lit-

erature suggesting a potential link between ADHD and de-

mentia, it is challenging because of the symptomatic overlap

of the two conditions in adulthood (Callahan et al., 2017).

Interestingly, the genetic correlation appears to be driven by

a locus on chromosome 6 that shows suggestive association

in both the combined resilience GWAS and ADHD GWAS

(Supplementary Fig. 1). The top SNP in each GWAS at this

locus (rs141547796 in ADHD and rs283562 in the resili-

ence GWAS) are both eQTLs for the TFAP2B gene involved

in neural crest cell differentiation, suggesting this transcrip-

tion factor may play a role in both ADHD and resilience to

Alzheimer’s disease. Less work has characterized the associ-

ation between OCD and dementia, but the limited literature

suggests OCD is a risk factor for dementia (Dondu et al.,

Figure 5 Functional annotation of resilience GWAS

results. The minor allele of rs2571244 (T) is associated with

decreased methylation at the CpG site cg19596477.

Table 2 Methylation targets for rs2571244

CpG site CpG start position Spearman’s q P

cg19596477 18:55472454 0.33 2.24 � 10–13

cg16310513 18:55471075 0.17 1.79 � 10–4

cg16141316 18:55469758 –0.12 8.14 � 10–3

The most significant methylation targets for rs2571244 (18:55473651) in dorsolateral

prefrontal cortex are presented.
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2015). Thus, it is quite interesting that we observed a posi-

tive genetic correlation between OCD and resilience here,

suggesting a potential protective role. When comparing the

GWAS results, we were unable to determine an obvious

overlapping locus driving this correlation (Supplementary

Fig. 2). Past work has highlighted a strong negative genetic

correlation between OCD and metabolic phenotypes includ-

ing body mass index, hip circumference, smoking, triglycer-

ides, and insulin levels (Dondu et al., 2015). OCD and

ADHD also show a similar opposing genetic correlation

with educational attainment, so it may be that the genetic

correlation between these psychiatric conditions and resili-

ence is secondary to metabolic or educational attainment

phenotypes, but it is an area ripe for future investigation.

Heritability of resilience phenotypes

Our combined heritability analysis of resilience phenotypes

suggested a range of 4–24% narrow-sense heritability with

fairly stable estimates and reasonable standard errors. That

said, we observed larger standard errors and larger swings

in point estimates in cognitively impaired individuals, likely

due to the known limitations of the mixed-effects approach

at smaller sample sizes. Larger sample sizes will ultimately

be needed to solidify heritability estimates across disease

stages, measures of neuropathology, and cohort studies. The

present results suggest a modest heritability consistent with

many polygenic complex traits, with the most stable esti-

mates observed across studies for the residual cognitive re-

silience phenotype among cognitively normal participants.

Variants near ATP8B1 are associated
with resilience

Our top variant level association was observed on chromo-

some 18 in relation to the combined resilience score, which

pools information from residual and proxy measures of re-

serve. The cluster of SNPs associated with combined resili-

ence localized just upstream of ATP8B1, and the top SNP

was robustly associated with methylation at a site also just

upstream of ATP8B1. Interestingly, prefrontal cortex methy-

lation at this site was strongly associated with combined re-

silience scores in the ROS/MAP dataset, particularly among

rs2571244 minor allele carriers, further implicating methyla-

tion as a potential biological driver at this locus. ATP8B1

encodes the protein aminophospholipid translocase, which is

critical for maintaining bile acid homeostasis in the liver

(Bull et al., 1998). For that reason, we also performed post

hoc analyses using recently quantified metabolomic measures

of 15 bile acids from serum samples in ADNI and observed

that the variant was nominally associated with five bile

acids, including taurocholic acid (TCA), glycolithocholic

acid (GLCA), glycocholic acid (GCA), taurodeoxycholic acid

(TDCA), and taurochenodeoxycholic acid (TCDCA)

(P5 0.05; Supplementary Table 17). Moreover, we

observed significant associations between GLCA and TDCA

on combined resilience, whereby higher levels of these bile

acids were associated with lower levels of resilience

(Supplementary Table 18). Bile acids have emerged as a po-

tential biological contributor to Alzheimer’s disease, with re-

cent work reporting differential abundance in Alzheimer’s

disease cases compared to controls in both blood and brain

(Nho et al., 2019), and other work reporting associations

with biomarkers of Alzheimer’s disease neuropathology

(Nho et al., 2019). Notably, both GLCA and TDCA were

reported to have robust associations with hippocampal atro-

phy and glucose hypometabolism. The present findings

therefore suggest genetic variation that predisposes some

individuals towards a more detrimental bile acid state may

also increase susceptibility to cognitive decline. The exact

causal pathway of such bile acid effects is difficult to infer.

Notably, the methylation QTL that we observed for

rs2571244 was in prefrontal cortex, suggesting effects could

be through brain, but there is a pressing need to better

understand the gut-liver-brain axis and determine whether

associations with cognitive ageing and dementia are driven

by metabolic processes in liver, gut, brain, or all three

tissues.

While we did not observe strong associations with

Alzheimer’s disease-relevant loci, we did observe nominal

associations with the SPI1 and NME8 loci in candidate

analyses, both of which have been implicated in a number of

Alzheimer’s disease endophenotypes (Rosenthal and

Kamboh, 2014; HuaNg et al., 2017). SPI1 encodes a tran-

scription factor that regulates many Alzheimer’s disease-rele-

vant genes and pushes back age of onset (HuaNg et al.,

2017). The function of NME8 is less well understood but

may confer risk through oxidative stress pathways.

Regardless, there remains only weak evidence that variants

contributing to Alzheimer’s disease drive notable variation

in cognitive performance after accounting for amyloid levels.

Pathway analyses highlight

metabolism

While variant-level results implicate the metabolic processes

in the liver, enrichment results highlight the related branched

chain amino acid (BCAA) and dehydrogenase molecular

pathways. Although the role of BCAAs in Alzheimer’s dis-

ease onset and progression is unclear, several studies have

supported a connection. A previous GWAS study showed

that SNPs associated with increased isoleucine plasma levels

were also associated with Alzheimer’s disease (Larsson and

Markus, 2017). However, metabolomic studies have shown

that increased serum concentration of BCAAs are associated

with decreased Alzheimer’s disease risk (Tynkkynen et al.,

2018). Particularly, increased serum valine was associated

with decreased rates of cerebral atrophy and cognitive de-

cline (Toledo et al., 2017). Deficits in brain BCAA metabol-

ism have been proposed to contribute to the onset and

progression of Alzheimer’s disease in mice, and increased cir-

culating BCAAs have been hypothesized to increase
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neuronal mTOR signalling, leading to hyperphosphorylated

tau pathology (Li et al., 2018).

Several components of dehydrogenase pathways have

been implicated to play a role in dysfunctional oxidative

stress handling in Alzheimer’s disease (Martins et al., 1986).

Inhibition of alpha-ketoglutarate, pyruvate, and alcohol

dehydrogenases by amyloid beta is thought to contribute to

mitochondrial and metabolic dysfunction associated with

Alzheimer’s disease (Casley et al., 2002; Yan and Stern,

2005). Alpha-ketoglutarate dehydrogenase complex expres-

sion and activity is reduced in the temporal cortex of

Alzheimer’s disease brains and is thought to reduce energy

metabolism, contributing to neurodegeneration

(Mastrogiacoma et al., 1996).

Contributions of the genetic
architecture of educational
attainment

Our sensitivity analyses focused on differentiating the contri-

bution of educational attainment from the contribution of

residual cognitive resilience. A few notable results emerged

including the consistent genetic correlation with a number of

psychiatric phenotypes and smoking phenotypes even when

statistically adjusting for educational attainment. Similarly,

our primary variant-level results appeared to be attenuated

but comparable. In contrast to those consistent results, we

did note an interesting shift in the genetic correlation be-

tween residual cognitive resilience and Alzheimer’s disease

relevant phenotypes when covarying for years of education,

including a nominal association with APOE that was not

present in the unadjusted analyses. This striking shift occurs

despite the high correlation between the primary phenotype

and the education-adjusted phenotype (Pearson’s r = 0.96),

highlighting how even subtle alterations in the underlying la-

tent variable model can have substantial implications on the

genetic architecture. While increasing sample size will be im-

portant to increase statistical power, it will also be important

to explore residual metrics phenotypically to understand the

predictive value added by incorporating or removing vari-

ance associated with classic proxy measures of cognitive re-

serve such as educational attainment.

Differences across diagnostic groups

It is notable that our only genome-wide variant level result

was identified in cognitively normal participants. Given the

differences in the proportion of cases to controls across data-

sets, this result may simply reflect a reduction in the pheno-

typic heterogeneity across data sources, and the large

proportion of individuals who were cognitively normal.

However, the interpretation of results in cognitively normal

participants is also challenging as a slightly smaller percent

of variance is explained among cognitively unimpaired par-

ticipants (6–20%; Supplementary material) and a large pro-

portion of the participants will never go on to show

symptoms of Alzheimer’s disease. In our previous work,

higher combined resilience did predict protection from con-

version to Alzheimer’s disease even among cognitively nor-

mal participants, suggesting these metrics are relevant to

protection across the diagnostic spectrum (Hohman et al.,

2016b). Yet, it is likely that small variance explained by the

genomic loci identified has limited clinical utility, and that

additional work to understand the degree to which the herit-

able component of resilience contributes to longitudinal pro-

tection from Alzheimer’s disease and cognitive decline.

Increasing the availability of longitudinal outcomes in large

datasets with biomarkers and genomic data will allow for a

more comprehensive characterization of genetic contributors

to resilience.

Strengths and limitations

This project has multiple strengths including the large, well

characterized cohorts, the deep phenotypic data that allowed

for a quantification of residual cognitive performance given

level of amyloidosis, and the comprehensive follow-up analy-

ses highlighting novel genes and pathways contributing to re-

silience. The study is not without limitations. Our sample was

restricted to non-Hispanic white individuals who were

healthy and highly educated, limiting generalizability beyond

such populations. Additionally, while we were able to fully

harmonize cognitive data within the autopsy and PET analy-

ses separately, subtle differences in the scores across autopsy

and PET remain possible due to limited availability of item

anchors across all cohorts. Further, we were limited to cross-

sectional analyses, which leave open the possibility that some

individuals will later develop more severe pathology or cogni-

tive impairment. Additional measures of neuropathology, par-

ticularly tau and cerebrovascular pathology, may have

explained additional variance in cognitive performance and is

an important area for future work. Moreover, the lack of ex-

tensive neuropsychological protocols in some datasets limited

our ability to investigate other cognitive domains (e.g. lan-

guage or visuospatial abilities). Finally, while this is the larg-

est analysis of the genetic predictors of residual cognition

completed to date, we remained underpowered to detect sin-

gle variant effects, particularly at a low minor allele fre-

quency. Continued efforts to pool, harmonize, and analyse

biomarker, autopsy, and neuropsychological data from

larger, more representative cohorts will be needed to charac-

terize the genetic architecture of resilience more fully.

Conclusions
We completed a large analysis of genetic resilience to

Alzheimer’s disease and highlight several novel biological

pathways that may protect the brain from the downstream

consequences of amyloidosis. Our results implicate genetic

drivers of bile acid homeostasis, vascular and metabolic risk

factors, and neuropsychiatric conditions in Alzheimer’s dis-

ease resilience.
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