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* DUAL MODEUl AND SPON'rANEOUS SYMMETRY BREAKING 

K. Bardakci 

LBL-2l09 

Department of Physics and Lawrence Berkeley Laboratory 
University of California, Berkeley, California 94720 

August 7, 1973 

ABSTRACT 

The question of spontaneous symmetry breaking in dual models 

is investigated. In the context of a particular model with a conserved 

"charge", two different approaches to the problem, spurion emission 

and the effective potential methods, are developed. A method is 

described for the calcul.ation of the effective potential, and it is 

applied to determine the first few terms of the potential. 

* This work was supported in part by the U. S.Atomic Energy 

Commission. 
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1. Introduction 

It has been realized for some time that dual models suffer 

from too much symmetry. For example, when an SU(3) symmetry is 

introduced through Chan-Paton [1] factors, it is difficult to break 

the symmetry in a satisfactory fashion. The Neveu-Schwartz [2] model 

has a kind of (unwanted) "G" parity that is hard to get rid of. 

Finally, the orbital model with intercept (-1) and seemingly with no 

symmetry, has a gauge invariance of the second kind which constrains 

the mass of the lowest lying vector meson to be zero [3]. 

The symmetry in this last case results from invariance under 

the Virasoro [4] algebra, which is of course needed if the model has 

to be ghost free [5]. The situation is similar to quantum electro­

dynamics or Yang-Mills type theories, the local symmetry (gauge group), 

needed to make the vector particle transverse (and ghost free), results 

in also making its mass zero. 

Of course, in a Lagrangian theory, one can always add a mass 

term by hand, and break the gauge invariance explicitly. The only 

thing that is lost in the process is renormalizability for non-abelian 

gauge theories. Inothe case of dual models, however, we are unable to 

change the intercept of the Regge trajectory without introducing 

ghosts or violating duality and in the process ruining the model. 

There is an alternative approach to the problem of generating 

a gauge invariant Lagrangian with a massive vector field. In this 

approach, dUE to Goldstone [6J and Higgs [7°J, the gauge invariance is 

broken by thE vacuum, although it is formally preserved in the equations 

rrotion. The original symmetry of the theory is therefore broken 

spontaneously, and thE vector IUESOr: acquires a finite mass by absorbing 

thE massless scalar Goldstone boson. 
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In what follows, we shall try to follow the path suggested by 

field theory as closely as possible in the case of dual models. As a 

specific example, we shall consider the orbital model, although our 

method can be extended to more complicated models like the Neveu­

Schwart"z model or the quark model [8]. We wish to construct a model 

in which the lowest lying vector meson mass is moved away from its 

canonical value of ,zero by virtue of a spontaneous breakdown of the 

gauge symmetry. 

Clearly, the mechanism for spontaneous breakdown is already 

present in the orbital model with intercept (-1), since the "bare" 

vacuum is unstab1e- under decay into pairs of tachyons. From this 

point of view,. the. existence of a scalar tachyon in the model turns 

out to be an advantage, rather than a defect! If one could then solve 

the theory exactly by adding up the whole perturbation series, then 

necessarily one or the other of the following two alternatives would 

be true. Either there would emerge a new stable vacuum, or the theory 

would simply collapse without a stable vacuum. Since we are unable 

to sum the perturbation series, we have to treat the problem in the 

semiclassical or the tree approximation, again in full analogy to the 

Lagrangian approach. 

At this point we have to face a technical problem. Consider, 

for example, the spontaneous breakdown of SU(2)~SU(2) in the sigma 

model [9]. At the level of tree approximation, one can treat fields 

in the sigma model Lagrangian as classical fields and se,arch for the 

minimum of the Lagrangian. This minimum corresponds to a nonzero 

vacuum expectation value for the sigma field. We do not have any 

reliable Lagrangian formulation for dual models, so we are forced to 

approach the problem from an S-matrix point of view. Such an approach 
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was already used in connection with the sigma model (10]; it involves 

emitting zero four momentum sigma particles (spurions) into the vacuum. 

This new approach is completely equivalent to shifting the vacuum 

expectation value of the sigma. field; however, it is easier to cast it 

into an S-matrix language. For practical calculations, it turns out 

that one can always go back to an effective Lagrangian, which usually 

simplifies the calculations. 

A more serious difficulty is connected with the off mass-shell 

continuation. If we try to induce the spontaneous breakdown by 

emitting tachyons into the vacuum, in analogy with sigma model, we 

face the problem of continuing the vertex for the 1;achyon emission 

to an off shell point corresponding to zero four momentum. Since as 

yet no satisfactory off mass-shell continuation of the dual model 

exists, we "promote" the tachyon into a zero mass particle by intro­

ducing a conserved "fifth momentum" of unit magnitude into the model. 

In this modified model, there are two states which consist of the 

original tachyon'state plus a unit of fifth momen1;um. These states 

can be emitted into vacuum at zero four momentum on the mass shell, 

since they have zero mass. 

This method looks somewhat provisional; ~owe-,ier, it enables 

us to stay on the mass shell and retain all the nice features of the 

original dual model, such as duality in the form of cyclic symmetry, 

absence of negative norm states, etc. It is also Easy to understand 

it in a simple manner. The fifth momentum can be thought of as a 

conser'led "charge", and the states of zero mass and plus or minus one 

unit of charge can be represented by a complex scalar field of (bare) 

mass zero. The emission of charged spurions into the vacuum breaks 

charge conser'-lation and hopefully gives rise to a new nonsymmetrical 
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solution. In this respect, the situation is the same as in the 

original models of Goldstone and Higgs, where a similar brEakdown of 

charge conservation occurs. The only difference is that the bare mass 

of the scalar field here is constrained to be zero, for reasons given 

earlier, as opposE;d to the situation in fiel(Ltheory, where the mass 

is arbitrary. 

In what follows, we first define and describe the model in 

the symmetric (normal) case. We then develop the theory of the vacuum 

emission of the spurions in parallel to the field-theoretical case. 

We then show that the spurion amplitudes can be summed by means of an 

.'. effective Lagrangian, which itself contains an infinite number of 

contact terms. The first few terms are explicitly calculated, and 

some tentative suggestions are made. The difficult problem of the 

calculation of all the terms of the effective Lagrangian is not 

attempted in this paper. 

2. Symmetric Orbital Model 

We con'sider an "N" point amplitude of charged scalars of 

mass zero. The charge takes on the values ± 1 and is identified 

with the fifth momentum. By charge conservation, N is necessarily 

even. Up to a constant of proportionalit~the amplitude is given 

by the following formula, 

2 

T
-T -s .. +Q .. -2 

l( J l(' I (U
ij

) l.J J.J (2.1) 
ij 

where (du) stands for the volume element in any N-3 nonoverlapping 

1.1 •• ' s, J is an appropriate WE ight factor, u" 's are the Koba-
IJ J.J 

Nielsen variables [11] for the channel defined by indices i and j 
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(see Fig. 1), is the channel center of mass energy squared and 

Qij is the total charge of the channel. If one chooses a cyclic 

configuration for the N-3 nonoverlapping channels, they can be taken, 

say, to be ul,i' i = 2,3,"',N-2, as in Fig. l,in which case 

are given by the following, 

(1 - ul k",ul £_1)(1 - ul,k_l",ul,t) 

(1 Ul:k"'Ul:t)(l - ul,k-l",ul,i-l) 

(k < £, k ~ 2, £ ~ N - 1) • 

u .. 
1.,J 

(2.2) 

Of course, one need not choose a cyclic set for the independent 

variables, in which case the set independent channels suggested by 

any planar Feynman graph with cubic coupling will serve just as well. 

One can then express all the u's in terms of a noncyclic set of 

independent variables; however, the expressions are complicated and are 

not needed in what follows. 

It remains to define J. For a cyclic choice of variables, 

as in Fig. 1, J is given by 

1 
J l( ••• X ".....-------

1 - ul,N-3ul,N-2 

(2.3) 

For further details, see, for example, reference 11. 

We have now to specify the ordering of the External charged 

lines. At first, it seems that ODE can cor,struct 8!1 amplitude of 
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the form given by Eq. (2.1) by ordering the positive and negative 

charges in any pattern whatsoever, subject solely to charge conserva-

tion. In fact, one can further form superpositions of amplitudes with 

different charge patterns. However, it turns out that there are only 

three schemes consistent with factorization. The scheme we are going 

to use involves an alternation of the sign of the charge in the cyclic 

confiugration and is well known to be factorizable (see Fig. 2). The 

second scheme involves a coherent superposition of positive and 

negative charge states, and therefore ends up as model with no charge. 

This is clearly uninteresting. The third scheme is more complicated, 

and although there seems to be nothing wrong with it, will not be 

considered any further. The schemes mentioned above are more fully 

discussed in Appendix 1. 

Specializing Eq.(2.l) to the case of alternating charge 

assignment, 2 
(Qij) 0 or 1 according to whether the channel 

labeled by i and j carries an even number of charged lines with 

net charge zero (even channel), or an odd number of lines with net 

charge ± 1 (odd channel). We therefore have, 

.. EN. )( J 

where € •• = 0 for even channels and + 1 for odd channels. 
lJ 

(2.4) 

It is of some interest to write BN in factorized form, using 

the well-known harmonic oscillator operators. The factorized form is 

as follows: 
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where ~,k2'···'~ are the external momenta, 

Sij = (k
i 

+ k
i

+
l 

+ •.• +kj )2, and R and Vi are given by the usual 

expressions: 

00 

R n[(a I-l)+(a ) + an+ an] , 
n n,1-! 

x 

The a's satisfy the following commutation relations 

whereas the "fifth" operator "a" satisfies the usual commutation 

relations: 

(a ,a +) 
n m 

Note that, compared to the standard convention, we have 

changed the sign of the commutator of the "fifth" oscillator, and 

compensated for it by an extra "i" in the expression for + v-. 

.' 

'. 
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We conclude the section with a brief discussion of the 

spectrum. One has to distinguish between odd and even channels, which 

correspond to intercepts zero and one respectively. In the odd sector, 

the lowest lying state is the-vacuum 10), and it corresponds to a 

charged scalar of zero mass. In fact, this is nothing but the charged 

scalar of the external lines. In the even sector, the vacuum corre-

sponds to a scalar with th", mass squared minus one (the tachyon). 

Further, there is the state al+lo), corresponding to a neutral scalar 

of mass zero, and the state (al~)+lo), corresponding to a vector of 

mass zero (the photon). These states will playa special role in what 

follows, whereas states of higher mass will not be of any particular 

interest. 

3. Spurion Emission 

The spurion is defined to .be the charged scalar at zero four 

momentum. We have to define auxiliary amplitudes where a certain 

number of spurions disappear into the vacuum, and in our treatment, 

we follow a similar treatment of the sigma model by Lee [lOJ. Let us 

begin by defining an amplitude B.. to have -N+m N + m external lines, 

N of them belonging to charged scalars of nonzero four momenta 

kl,k2""'~' and the remaining "m" belonging to spurions. The only 

difference between spurions and the rest is that spurions carry zero 

four momenta. 

As usual, the charge alternates in the cyclic configuration. 

Since the dual amplitude has only cyclic symmetry, the full Bose 

symmetry must be put in by hand, and so we symmetrize the external of 

positive and negative charges separately with respect to all the 

elements of the full symmetry group, excluding the cyclic elements. 
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This operation includes symmetrization between spur ions and the other 

external lines; however, since the amplitude is already symmetric with 

respect to the spurions themselves (they all carry the same momentum), 

external spurion lines of like charge are not symmetrized any further 

to avoid multiple counting. The resulting amplitude is now unambiguous. 

The final step consists of multiplying the above amplitude by an 

appropriate power of spurion to vacuum transition constant and summing 

over the number of emitted spurions: 

00 

Here c is the spurion to vacuum transition oonstant, S 

stands for the Bose symmetrization described above, and the zeros 

symbolically stand for the momenta of the spurion lines. In defining 

BN, what we have done so far is similar to adding a term "c6" to 

the sigma model Lagrangian, and then summing over all sigma to vacuum 

transitions. Note that BN in general need not conserve charge and 

N can be odd; the deficit is taken up by the spurions. 

We are ultimately interested in the limit c -+ O. -It is easy 

to recover the amplitude we started with by setting c = 0 in Eq. 

(3.1), and this is the uninteresting "normal" solution. 

To get the Goldstone solution, we have to assume that there is 

a branch cut singularity somewhere in the complex c plane, and that 

one can come back to the point c ~ 0 in a different sheet after 

going through the branch cut. To demonstrate the assumed analyticity 

in the complex c plane is the standard problem of phase transition 

in statistical mechanics. This is a diffic:llt problem which will 
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occupy us for the rest of the paper; however, the following point 

should be made clear before we plunge into the technical complications. 

If the amplitude has the required analyticity properties in the 

c-plane and the Goldstone solution exists, then the solution is a dual 

amplitude with all the nice properties one has been looking for, so 

far unsuccessfully. Cyclic duality easily follows since each term in 

the sum ().l) has this property, and factorization is also satisfied, 
. . 

- as will be shown explicitly later. Finally, there can be no ghosts 

since the amplitude we started with had no ghosts. Indeed, the 

situation here is again quite similar to what happens in field theory: 

the Goldstone solution shares all the nice properties of the normal 

solution (absence of ghosts, factorization, crossing symmetry etc.), 

except for the original symmetry of the Lagrangian that gets broken. 

The symmetry in our case is charge .conservation and the associated 

gauge invariance, and the new "goldstone" model which breaks this 

symmetry spontaneously should preserve all the good features of the 

normal model. The spectrum of the new model will be different from 

the old one, and in particular the "photon" is expected to acquire a 

finite mass, eliminating an undesirable. feature of the old model. 

This should be compared with the "hit and miss" approaches to construc­

ting new dual models on. the bas:ls oLguess work, when it is not 

initially clear whether the model will enjoy the various desirable 

properties mentioned earlier. In contrast, apart from the admittedly 

difficult and crucial problem of demonstrating the existence of the 

Goldstone solution, we are guaranteed of all the correct features for 

the model from the start. 
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We close this section by presenting a formal summation of the 

spurion lines in the operator formalism. Consider the amplitude with 

N ordinary external lines and m spurions defined previously; this 

amplitude can be split into a vertex of Nl particles and ~ 

spruions, another vertex of N2 particles. and ~ spurions, joined 

by a propagator which emits £ spurions, as shown in Fig. )b, with 

d + n m· The wavy lines in the figure Nl + N2 = N, an ~ + ~ .~ = . 

indicate spurions, the solid ones indicate the particles, and we have 

chosen a particular pattern of alternation between particles and 

spurions. (We have, of course, to sum over all distinct patterns.) 

The factorized form described above is r~presented by the following 

formula: 

where r(left) and r(right) are the vertices that go with the bunch 

of lines on the left and right, respectively, in Fig. ), and b(s) 

is the propagator, with s = (kl + ~ + •.• + ~ )2. rand 6 are 
1 

easily expressed in terms of the operators of Eq. (2.5). In order to 

treat the odd arid even (charged and neutral) channels uniformly, we 

take r I s as two component spinors and 6 as a two by two matrix. 

in the odd-even channel space. 

We haVE, 
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.6(s) 

1 
- s - 1 

o 

1 o 
R - s 

-(;t) 
421 

(+) 
Q 

R _ !_ 1 exp6[2 i Q(;t») 

co 

(3.2b) 

The operators R and a 
n 

above are defined in the last 

section. The expression for r is not needed here and will not be 

written down. We note that .6(+) corresponds to spurions emitted 

from the propagator in the up direction, and .6(-) corresponds to 

spurionsemitted in the down direction, so that the product is 

symmetric under the "twist" operation [llJ. One can sum over the 

number of up and down spurions £(i)' and arrive at the following 

propagator: 

D D(+) D(-) tu ' 

(3. 2c) 

D(i) 1 
-(;t) 

1 - c .6 
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D is the propagator of the amplitude given by Eq. (3.1), 

and therefore it determine·s the mass spectrum. An amusing fact, which 

-1 
we note in passing, is that D is a generator of a new conformal 

group. We know, for the normal orbital model, the following properties 

are valid; 

(n - m) L + !3 n(n
2 

-1) 8 n+m ... n,""m 

R - s 

The expressions for ~rs are well known and will not be 

reproduced here [11]. This is, of course, the algebra that is 

responsible for the elimination of negative norm states. The 

propagator defined above also turns out to be part of a similar 

algebra: 

(n - m) J( +) + ! n(n
2 

- 1) 8n -m ' nf1Il 3 , 

with a similar expression for the (-) operators. To verify the 

:algebra, we note that the spurion emission vertex carries conformal 

spin one, since the spurion has zero mass: 

(n - m) exp(±"1/2 i Q( +») • 

(3.3c ) 

Using (3.3c), one can easily verify (3.3b), so the conformal 

algebra is formally intact! It then seems reasonable t.o try to build 

a model based on this new representation of the conformal algebra. 
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Unfortunately, the operator manipulations we have been 

indulging in are purely formal and cannot be taken too seriously. 

For example, if we let c ~O in (3.2c), we get back to the normal 

model, completely missing the possible Goldstone solution. 

The trouble is easy to identify. Because of duality, the sum 

that appears in Eq. (3.2) contains not only the poles in the s channel 

which are explicit in the formula, but also poles in crossed dual 

channels as shown in Fig. 4. To produce crossed channel poles from 

a direct channel sum, the sum must diverge at the position of the 

pole. The invariant energy qf a collection of spur ions is zero, which 

is right on top of the pole generated by the exchange of zero mass 

particles. We therefore conclude that the sum in Eq. (3.2c) is 

divergent as it stands! To derive a meaningful expression, we have 

to do two things. Firstly, we have to start with finite spurion 

momenta so that all spurion subenergies are large and negative. This 

is the region, free of poles, in which the integral for the dual 

amplitude converges as it stands. When we'reach the tachyon pole in 

any subenergy the integral diverges, so we have to solve the problem 

of analytic continuation around the tachyon pole. The second problem 

is the one mentioned before; even after the analytic continuation, we 

cannot directly reach the pOInt at which all spurion invariant 

subenergies vanish, since we are right on top of zero mass particle 

poles. This is a spurious infrared problem which goes away when the 

infinite sum is done, since the zero mass particles will then acquire 

finite masses. However, to treat the finite order terms correctly 

and unambiguously, we have to separate the amplitude into pole term 

plus a finite part, and sum them separately. To do this using the 

operator formalism seems to be a formidable task, so that we will not 
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here try to give a meaning to the manipulations of Eq. (3.3). Instead, 

in the next section, we will approach the problem using an effective, 

Lagrangian. 

4. Effective Lagrangian 

Let us c6nsider, once more, the sigma model. The "spur ion II' -,--,.----~-' 

in this case is the sigma field at zero four momentum, and the, sum 

over all spurion emissions is carried out by translating the sigma 

field to the minimum point of the Lagrangian. To verify that such a 

minimum exists, we have only to know the self couplings of the sigma 

field; the couplings with other fields are not needed. Similarly, if 

we know the Lagrangian for only the spurion self-couplings, and if that 

Lagrangian has a nontrivial minimum,_that is sufficient for the 

existence of a Goldstone solution. Of course, to learn more about the 

model and, for example, to determine the mass spectrum etc., one has to 

take into account the other terms in the Lagrangian. In what follows, 

we shall mainly concentrate on the problem of showing the existence 

of the Goldstone phenomenon; we will not attempt to determine various 

other properties of the model. Hence,_we shall only need the effective 

Lagrangian for spurion self couplings. 

The method for determining the effective Lagrangian from any 

given S matrix is well known [12J. Given the amplitude ~,one 

defines a one particle irreducible from which all zero mass one 

particle poles have been subtracted. (In our case, the zero mass 

particles to be eliminated are the charged and neutral scalars and 

the "photon", discussed in Sec. 2.) One then sets all the external 

momenta equal to zero to define BN(O). The effective Lagrangian or 

potential contains (in general an infinite number of) contact 
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interactions of the fundamental zero mass fields. The coefficients 

of the interaction terms are determined by the requirement that in the 

tree approximation they reproduce BN(O) for all N. There should 

be no confusion about one point: The effective Lagrangian reproduces 

the dual amplitude only when all external legs are at zero momentum, 

and in general it fails to do so for other values of the momenta. 

For one thing, the Lagrangian does not contain the full spectrum of 

the dual model; it only contains zero mass fields. Even if one tried 

to include more of the spectrum of the dual amplitude by introducing 

many more fields, it is well known that a Feynman graph expansion 

where dual channel poles are simply additive runs into serious 

difficulties with duality. However, in the semiclassical (tree) 

approximation, the only thing that is needed to workout the Goldstone 

solution is the value of the field at zero four momentum, and the 

effective Lagrangian is quite adequate for that purpose. 

At this point, one may wonder why, of the four zero mass 

particles at our disposal, we are using two' only as spurions. We 

cannot use the vector particle (photon) for fear of breaking Lorentz 

invariance, but there is no reason why, in addition to the charged 

scalars, we shoUld not use the neutral scalar. In fact, we shall 

enlarge our "collection" of spurions to contain the neutral zero 

mass scalar, and so we shall consider amplitudes where external lines 

are either charged or neutral scalars. The order in which various 

external lines appear in the cyclic configuration again becomes a 

problem. The solution is provided by the requirement of factorization. 

The new amplitudes are obtained from the old ones by factorizing at the 

zero mass poles; charged scalars appear in the odd clJannels and the 
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neutral ones in the even channels. The final rule is the following: 

In the cyclic configuration', charged lines alternate in the sign of 

the charge same as before, and the neutral lines are inserted between 

charged ones in all possible distinct ways; the result being summed 

over all distinct insertions. Figure 5 is a simple example of this 

rule. Of course, everything must be Bose symmetrized among like 

charge states at the end. 

Let us denote the charged and nuetral scalars by a complex 

field ¢ and a hermitian field X respectively, and the "photon" 

by A 
~ 

v 

The effective potential is of the following form: 

(4.1) 

The effective Lagrangian in general contains an infinite 

series of terms, of which a few typical ones are exhibited above. 

As explained earlier, Except for the couplings of A , terms that 
~ 

contain gradients of fundamental fields are neglected. 

The problem now is how to determine thE various coefficients 

in Eq. (4.1). The first constant, El , is arbitrary, and all other 

constants are then determined in terms of "'1' The coefficient of 

the second term follows from gauge invariance, and can easily be 
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checked directly. To determine the other coefficients, we have to 

calculate the dual amplitude at zero four momentum. For convenience, 

let us introduce the following notation: let 

~ N N (~,k2""'~ ; ~ +l""'~ +N ; ~1+N2+1""'~1+N2+N~) 
1 2 3 1 1 1 2 / 

denote the N point dual amplitude where the first set ofNl 

momenta go with external particles of positive charge, the second set. 

of N2 momenta go with particles of negative charge, and the third 

set of N3 momenta with neutral particles, where Nl + N2 + N3 = N. 

Also let B (0) denote the one particle irreducible part at Nl ,N2,N
3 

zero momentum as before. If N = 4, B can be calculated directly 

from the expression for the beta function in terms of gamma functions. 

For N > 4 however, the calculation is not so easy. Instead, we use 

the integral representation for BN, and what we call the method of 

subtraction to carry out the analytic continuation to zero momenta. 

Let us illustrate this method for the case of N = 4, where it can 

also be checked directly. We first give a list of the integral 

representations for various four point functions: 

,t,l' dx x-,,2(1 - xft-2 

, (, ~ u) . (t ~ u») 

Equation (4.2) continued next page 
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Equation (4.2) continued 

x (2 
2 

+ x x) , "'3~' 

. Jl -u-l( )-t-l ]. CX
2 

dx x 1 - x 

o 

x (2 , 2x2 - 3X) + (t _ u)} 

B2,2, 0('1.''''; k3' k4 ) , a4 I' dx x -u-2 (1 - x) -t-2 

s t (k lL)2, 2 + 5 u 

s+t+u 0 

(4.2) 

The first amplitude corresponds to four external neutrals, 

the second to two neutrals and two charged lines, and the third to 

four charged lines. The terms indicated by (s ~u) etc. are needed 

for Bose symmetry. Figure 6 depicts the way various momenta are 

ordered in the planar dual amplitudes; for example, in the expression 

for Bl 1 2' the first term corresponds to a configuration where the , , 
neutral and charged lines alternate, in the second term the two 

neutrals and the two charged lines are adjacent. Factorization can , 

be used to determine relations between the coefficients as follows: 
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2 1 2 
0:4 2el '2("2) , 

2(0:2 + 0:
3

) 2 
"2' 0:2 = 0:3 ' 

f 

0:10:4 ~2 
3 

Expressing everything in terms of el , we have 
) 

0:4 
. 2 

2el ' ~ 2el 

(4.3b ) 

2 2 0:2 0:
3 el ' 0:1 el 

We now face the problem of computing these amplitudes at 

zero four momentum. The subtraction procedure we employ is simple: 

Since the tachyon and the various zero mass particles are responsible 

for the divergence of the integral representation, we subtract them 

out in order to get a convergent formula. We illustrate this procedure 

by exhibiting the calculation of B2 2 0(0). By definition, we have, , , 

-2 + lim {t 11 + ~l 
t-+o + u+ 
u-+ 0 

(4.4) 

The poles that appear after the limit symbol are the poles to 

be subtracted by the foregoing argument. Note that the residue of 

the photon pole is calculated without ambiguity from the gauge 
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invariant coupling given by (4.1). The definition of B(O) calls 

only for the elimination of the zero mass poles; the first term on the 

right, (-2), compensates for the extra subtraction of the tachyon poles. 

Setting 

1 
- t + 1 

1 u - s 
- '2-t-

1 I I dx(l _ x)-t-2 , 

o 
- U + 1 

I I ( )-t-l dx 1 - x 

o 

1 -t-l f
l 

- '2 + U 0 dx(l - x) , 

1 
u 

etc., we have the following: 

B2,2,o(O) 
i 0:4 

- 1 + lim II dx 
u,t-+ 0 0 

{X-U-2(1 _ x)-t-2 _ x-u-2 _ (1 _ x)-t-2 

I I -u-2 
dxx 

o 

I I -u-l 
dxx , 

o 

_ 2 x -u-l _ 2(1 :.. xrt - l _ tx -u-l _ (1 _ xrt"-l} 

In thE above formula, the integrand can easily be shown to 

be nonsingular in the range of integration ~hen u and t are near 

zero, as a result of the subtraction procedure. We can, therefore, 

set u = 0, t = 0 in the integrand itself, and since, 

1 1 1 1 

x2 (1 _ x)? - x2 - (1 _ x)2 
2 o 
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The integrand and hence the integral goes to zero. The yields us the 

result 

132 2 0(0) , , (4.6a) 

The other B's can be computed similarly, with the following 

result: 

o 
(4.6b) 

This enables us to determine some further coupiing constants 

in the Lagrangian of Eq. (4.1): 

2 e 2 
1 (4.6c) 

It is an amusing exercise at this point to truncate the 

effective potential; i.e., set all the higher terms equal to zero. 

The truncated Lagrangian, Lt , is given by the following expression: 

- iel A~[¢+O 0 - ¢o ¢+] 2 2 ¢+¢ + el A~ ~ . ~ 

2 el (¢+¢)2 _ 2e
l X. O\~ - 2 2 GJ+GJ (4.7) -2 el J... 

This Lagrangian exhibits the Goldstone and Higgs mechanisms. 

The minimum of the potential occurs at ¢ = 
1 

ie' 
1 

and when the fields /.. and Gl are translated so that the minimum 

is a. t the origin, in the new Lagrangian the "photon" acquires a mass 
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2 
of mA = 2, the neutral scalar field X acquires a mass 2 

m. = 2, the 
X. 

1 + 
field ¢l = \f2[¢ + ¢] acquires a mass 

2 
~ = 1, and the field 

¢2 = ~(¢ ¢+) decouples. In an exact treatment, the numbers will, . 

of course, be different, but the general features of this simple 

solution are expected to persist. For example, the zero mass particles 

will always acquire mass,and one of the zero mass scalars will 

decouple. Another importa.nt feature is that there is only one .free 

coupling constant, el , and consequently all the masses are independent 

of They are given by numerical constants times the slope 

parameter which provides the scale. It is of some interest to note 

that the mass spectrum of the dual model is completely fixed even in 

the presence of the Goldstone phenomenon. 

Are the results obtained from the truncated Lagrangian 

reliable? Unfortunately, the answer seems to be no. One may be able 

to justify the truncated Lagrangian as a zero slope limit of the full 

Lagrangian, although the significance of this is not clear. On the 

other hand, the naive hope that the neglected terms may be small is 

easily dashed by the calculation of, for example, /'-4 and ~'5. The 

calculations, although they are somewhat tedious, can be carried out 

using essentially the method outlined in this section, and some of the 

details are given in Appendix B. The constants are given by the 

following: 

"4 

where 

8 e 3 I 
1 ' 

:z 
6 e .) I 

1 



) 

I 

If 
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2 2 
2 + '3 If 

JIJl ~ [4 + 2 ~ - 2XY] 
. l-xy l-xy 
o 0 .. 

4 +! l 
3 

(4.8) 

Clearly,the coefficients of the fifth order terms are quite 

sizable. In fact, their inclusion in the truncated Lagrangian would 

completely upset our tentative solution. 

The lesson we learn from this calculation is that higher order 

contact terms in the effective potential a~e important. One either 

has to do an exact calculation or develop a reliable approximation 

scheme. The direct subtraction. method we have used so far works 

pretty well for the lower order amplitudes, but it is too cumbersome 

to be of much use for the higher point functions·. Instead, an approach 

based on factorization seems to be more promising. In contrast to the 

usual multiperipheral factorization of the dual model, this new 

factorization scheme is of the Feynman type and involves all the 

channels additively •. Such an approach also suggests a natural 

approximation scheme, hopefully much better than the naive truncation. 

One could do approximate calculations by keeping a few low lying 

states only, and neglecting the higher mass states. Work on this 

new approach is under way. 
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5. Conclusions 

In the preceding seCtions, we have presented a simple dual 

model with a natural gauge symmetry connected with charge conservation. 

We have also shown how one could proceed to break this symmetry 

spontaneously by emitting charged spur ions into the vacuum. The 

problem was then converted into one of constructing an effective 

Lagrangian, whose nontrivial minimum (if it exists) corresponds to 

the Goldstone solution. A procedure for the calculation of the 

.effective Lagrangian was outlined, and a few lowest order terms were 

exhibited. The fundamental problem is then, to develop a technique 

for either an exact or failing that, an approximate calculation of the 

higher order terms in the Lagrangian. Although this is a difficult 

problem, at this point it does not look hopelessly so, and work is 

under progress along directions suggested here. 

Finally, we would like to point out that, once the technical 

problem stated in the last paragraph is solved, there would be no 

difficulty in applying the ideas of this paper to more sophisticated 

and physically more interesting models. For example, in the Neveu-

2 1 
Schwartz model, the tachyon at m = - 2 can be promoted to zero 

mass by attaching a "fifth" momentum of magnitude + ~ to it,·· and --{2 
this new state can be used as a spurion. It would be most interesting 

to see what kind of a theory emerges as a consequer.ce. 

One point which we have not touched upon is what happens 

beyond the tree approximation. Our whole discussion so far has been 

based on the tree approximation; the way in which, for example, the 

one loop calculation is affected by the foregoing remains as an 

interesting question. 
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Appendix A 

We will here outlifte the arguments which lead to the three 

distinct factorizable dual amplitudes of Sec. 2. As pointed out 

earlier, the most general amplitude can be written as a superposition 

over all different cyclic orderings of charge. For example, B2 2 0' , , 
the four point amplitude of external charged particles, can in general 

be written as follows: 

B 2,2,0 
.Jl . -u-2( )-t-2 

~ ~l dx x 1 - x 

o 

+ i 
-s+2 -t-2 {II 1 ~2 0 dx x (1 - x) + (u ~ t) (A.l) 

As shown in Fig. 7, the first term corresponds to an alterna-

tion of charge, and in the second term, two positive and two negative 

charges are adjacent. Similarly, the six point function is the sum of 

three different terms, as shown in Fig. 7. Higher point functions can 

also be written as a general superposition of increasing number of 

terms • 

Factorization imposes a stringent constraint on the arbitrary 

constants that appear in a formula like (A.l). For example, 

factorizing a six point function in a three particle channel, we must 

recover the four point function. There are clearly a large number of 

such consistency requirements, and we have explicitly solved the 

consistency relations involving four, six, and eight point functions. 

We expect that the inclusion of the conditions involving higher point 

functions will not change our results. As noted in Sec. 2, there 

emerges three distinct solutions. which we exhibit below in terms of 
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131 and 132 , 

Solution 1: 131 132 

Solution 2: 132 0 (A.2) 

Solution 3: 132 - ~ 131 

The second solution is the one used throughout this paper. The 

first solution gives a "neutral" amplitude, i.e." the photon decouples. 

It is, therefore, uninteresting. Note that, in any case, only one free 

coupling constant is allowed. 

Appendix B 

Here, very briefly, we sketch the calculation of B2 2 1(0). , , 
The calculation of the other reduced fi 'Je point functions is 

similar and will be skipped. We start with the following integral 

representation: 

B 2,2,1 

. (B.la) 

where stands for the appropriate Mandelstam variables, with the 

legs numbered from 1 to 5 in the cyclic order, and th,e variables of 

integration satisfy the following relations: 
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1 - x4 5 

(B.lb) 

We have again to subtract all the dangerous poles to get an 

expression that converges as all the s tend to zero. In addition to 

poles in single variables, we also have poles in two nonoverlapping 

variables to subtract. The residues of these poles can be computed 

either in terms of four point functions through factorization, or 

directly from (B.l). We again skip the details, which are very tedious 

and also very straightforward. The poles can then be cast in a form 

similar to (4.5). i.e., 

1 
(B.2) 

etc. After the subtraction procedure, the integrand becomes non-

singular, so that we can let all s's go to zero. After some algebra, 

that yields the following result, 

8 e:5 flJl ~, (5 + x.;. xy) , 
1 1 ':" xy 

o 0 

which is the first equation in (4.8). 
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FIGURE CAPTIONS 

Fig. 1. The N-point amplitude. 

Fig. 2. 

Fig. 3. 

The pattern of alternation of charge. 

Spruion eiiiission and factorization. Solid lines stand for 

particles, wavy lines for spurions, and the dotted line stands 

for the propagator. 

Fig. 4. Direct and dual channel poles. 

Fig. 5. The pattern of charged and neutral lines for a five-point 

amplitude. The five different cyclic arrangements have to be 

added. 

Fig. 6. Various four-point amplitudes. The signs (+,-,0) refer to 

the charges. 

Fig. 7. Various patterns of charge in the four- and six-point 

ampli tudes. 
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