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Campus Ring 1, 28759 Bremen, Germany
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Abstract

When choosing between multiple alternatives, people usually
do not have ready-made preferences in their mind but rather
construct them on the go. The 2N-ary Choice Tree Model
(Wollschlaeger & Diederich, 2012) proposes a preference con-
struction process for N choice options from description, which
is based on attribute weights, differences between attribute val-
ues, and noise. It is able to produce similarity, attraction,
and compromise effects, which have become a benchmark for
multi-alternative choice models, but also several other context
and reference point effects. Here, we present a new and math-
ematically tractable version of the model – the Simple Choice
Tree Model – which also explains the above mentioned effects
and additionally accounts for the positive correlation between
the attraction and compromise effect, and the negative correla-
tion between these two and the similarity effect as observed by
Berkowitsch, Scheibehenne, and Rieskamp (2014).
Keywords: computational model; multi-alternative choice;
choice from description; preference construction; context ef-
fects

Introduction
The decision making process involves various steps such as
setting and prioritizing objectives, identifying choice alter-
natives, searching for information, developing preferences,
and eventually taking a course of action. Here, we focus on
developing preferences in multi-alternative choice situations
and use in the following decision making from description
as basic paradigm. Given a set of at least three choice al-
ternatives that are described by at least two attributes, which
they have in common, how do people choose one of these
options? Simon (1955) argues that preferences in this kind
of situation are dynamically constructed over time due to
limited processing capacities. The decision maker experi-
ences preference uncertainty (cf. Simonson, 1989) and tries
to overcome it by gradually integrating the given informa-
tion (see Payne, Bettman, & Johnson, 1992, for a review
on constructive processing in decision making). The result-
ing preferences are stochastic and highly dependent on the
context, i.e., on the alternatives in the choice set and on
any external reference points. Naturally, a model describing
multi-alternative decision making from description should be
a context-sensitive cognitive process model. The recently
proposed 2N-ary Choice Tree Model for preference construc-
tion for N choice options (2NCT; Wollschlaeger & Diederich,
2012) assumes that the decision maker compares attribute
values within attributes and between alternatives in a pair-
wise manner. Attributes are selected for examination based
on attribute weights that reflect salience. Within attributes,

pairs of attribute values are selected for comparison based
on so-called comparison values. In the 2NCT Model, the
comparison values have a ”global” component that remains
constant over time during preference construction, a ”local”
component that depends on the outcomes of previous com-
parisons (reflecting leakage and inhibition, cf. Roe, Buse-
meyer, & Townsend, 2001; Usher & McClelland, 2004), and
a random component. Advantageous and disadvantageous
comparison outcomes for each alternative are counted sepa-
rately and the difference of these counters is compared to two
thresholds: a positive choice criterion and a negative elimina-
tion criterion. Implementation of an asymmetric value func-
tion (emphasizing disadvantageous comparison outcomes, cf.
Usher & McClelland, 2004) into the 2NCT Model is possi-
ble. Here, we present a revised and simpler version of the
2N-ary Choice Tree Model, the Simple Choice Tree (SCT)
Model. Therein, the local component is omitted from the
definition of comparison values, making the model mathe-
matically tractable while maintaining its ability to account for
similarity, attraction and compromise effects. Furthermore, a
new parameter, the focus weight λ, is introduced. It replaces
the asymmetric value function and allows the SCT Model to
account for correlations between the effects.

Benchmark: Context Effects
Three context effects, demonstrating the influence of choice
set composition on preferences, have played a prominent role
in the multi-alternative preference construction modeling lit-
erature: The similarity effect, the compromise effect, and the
attraction effect. All three effects occur when adding a third
alternative to a set of two equally attractive yet clearly distin-
guishable options described by two attributes. Let A1 and A2
be two choice alternatives with two common attributes, D1
and D2, describing them. We assume that D1 is the unique
strongest attribute for A1 and D2 is the unique strongest at-
tribute for A2, that is, A1 scores high on D1 but low on D2 and
vice versa for A2. One can think of the alternatives as placed
in a two-dimensional space with dimensions D1 and D2. We
further assume that the probability for choosing alternative
A1 from the binary choice set is equal to the probability for
choosing alternative A2, P(A1|A1,A2) = P(A2|A1,A2).

Similarity Effect The similarity effect was named and first
studied systematically by Tversky (1972). He observed
the effect when comparing the binary choice set {A1,A2}
to the ternary choice set {A1,A2,A3} where A3 is similar
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to one of the original alternatives, say A1, in scoring high
on attribute D1 and low on attribute D2 while overall be-
ing similarly attractive (i.e. P(A1|A1,A3) = P(A3|A1,A3)).
The probability of choosing A1 over A2 decreases when
the decision maker chooses from the ternary choice set as
compared to the binary set: P(A1|A1,A2)/P(A2|A1,A2) >
P(A1|A1,A2,A3)/P(A2|A1,A2,A3).

Attraction Effect The attraction effect (or decoy effect
or asymmetric dominance effect) was introduced by Huber,
Payne, and Puto (1982) as consistent violation of the regu-
larity principle. This principle, as presumed for example by
the theory of Elimination by Aspects (Tversky, 1972), states
that additional alternatives cannot increase the choice proba-
bilities of the original options. However, Huber et al. (1982)
claim that the relative probability for choosing alternative,
say, A1 can be increased by adding a third alternative A3 to
the choice set that is similar to but dominated by A1 (and sym-
metrically for alternative A2). A3 then serves as a decoy for
alternative A1, drawing attention to it and therewith improv-
ing its evaluation and increasing its choice probability.

Compromise Effect Originally intended to explain the
attraction effect, the theory of Reason-based Choice
(Simonson, 1989) predicts an additional context effect, the
compromise effect. It occurs when a third alternative A3,
equally attractive as the original alternatives A1 and A2, but
more extreme with respect to the attribute values, is added
to the choice set. If A3 is more extreme than alternative
A1, that is, if it scores higher than A1 on attribute D1 but
lower on attribute D2, then it increases the choice share
of A1 as compared to the binary situation (and vice versa
for alternative A2): P(A1|A1,A2,A3)/P(A2|A1,A2,A3) >
P(A1|A1,A2)/P(A2|A1,A2). However, note that the more sim-
ilar the additional extreme alternative A3 is to its adjacent al-
ternative A1, the more shares it takes away from A1 via the
similarity effect.

Interrelations of the Effects Recently, several studies have
explored similarity, attraction and compromise effects and
their interrelations in different choice scenarios. In a within-
subject consumer choice design, Berkowitsch et al. (2014)
find that the similarity effect is negatively correlated with
both the attraction and the compromise effect while the latter
two are positively correlated. In a similar vein, Liew, Howe,
and Little (2016) criticize that most of the results regarding
context effects are based on averages over participants, not
taking into account individual differences. Before analyzing
the data from their inference and consumer choice experi-
ments, they cluster it according to the observed choice pat-
terns. The differences between clusters are remarkable, some
even show negative (reverse) context effects while positive
effects are observed in the averaged data. Before explaining
how the Simple Choice Tree (SCT) Model accounts for the
similarity, attraction and compromise effects and their inter-
relations, we introduce the basic mechanisms of the model.

The Simple Choice Tree Model
Let na be the number of alternatives under considera-
tion, {A1,A2, . . . ,Ana}, and nd the number of attributes,
{D1, . . . ,Dnd}, that characterize them. The decision maker
is provided with one attribute value per alternative per at-
tribute, that is, na · nd attribute values in total. Let mi j be
the attribute value for alternative Ai with respect to attribute
D j. Attribute values within attributes and between alterna-
tives are repeatedly compared and the resulting evidence is
accumulated in two counters S+i and S−i for each alternative
Ai, i ∈ {1, . . . ,na}. The positive counter S+i accumulates ev-
idence for choosing alternative Ai and the negative counter
S−i accumulates evidence for rejecting it. Here, the initial
counter states are set to zero, S+i (0) = 0 = S−i (0). Definition
of non-zero initial counter states accounting for prior knowl-
edge about the choice alternatives is possible. However, these
additional free parameters make the model less parsimonious
and complicate parameter estimation. The counter states at
time t, S+i (t) and S−i (t), are the initial counter states increased
by the respective evidence accumulated until t. Their differ-
ence defines the momentary preference state for alternative
Ai at time t: Pre f (Ai, t) = S+i (t)− S−i (t). We will now an-
swer the following questions: (1) How is attention allocated
between choice alternatives and attribute values? (2) How are
alternatives evaluated and how is evidence accumulated? (3)
When does evidence accumulation stop and which alternative
is chosen?

Attention Allocation

At the beginning of the process, when information about the
alternatives and attributes is made available to the decision
maker, each attribute D j, j ∈ {1, . . . ,nd}, is assigned a weight
ω j, 0 ≤ ω j ≤ 1, reflecting its salience. The attribute weights
determine how much attention the decision maker gives to the
respective attributes during the preference construction pro-
cess. Attributes with higher weights get more attention than
attributes with lower weights. To allow for at least some of
the attention to be allocated randomly between attributes, we
define a random component (see below) for which an addi-
tional weight ω0,0≤ω0≤ 1 is designated. Assuming that the
weights sum up to one, ∑

nd
j=0 ω j = 1, they can be interpreted

as attention probabilities for the attributes: At each points of
the preference construction process, the decision maker con-
centrates on attribute D j, j ∈ {1, . . . ,nd} with probability ω j.

Having selected an attribute D j, the decision maker con-
centrates on the specific attribute values of two alternatives
and compares them. Pairs of attribute values are selected for
comparison according to their importance for the decision.
The more diagnostic the attribute values are, i.e., the more
they discriminate between the alternatives, the more impor-
tant they become for the decision. Pair selection probabilities
within attribute D j are therefore defined to be proportional to
the absolute differences dik j = |mi j−mk j|, i 6= k∈ {1, . . . ,na}.
In order to obtain probabilities, we normalize these differ-
ences to sum up to one: The probability for selecting the pair
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{mi j,mk j} for comparison is pik j = dik j/∑{l,m} dlm j, l 6= m ∈
{1, . . . ,na}. Note that the normalization of absolute differ-
ences balances out inequalities between attributes with – on
average – bigger or smaller differences. Higher salience of an
attribute D j, j ∈ {1, . . . ,nd}, with, for example, higher abso-
lute differences, is thus not hard-wired into the model but is
reflected in a higher attribute weight ω j instead.

Preference Sampling

The actual comparison of the two selected attribute values
mi j and mk j is ordinal and directional: Let mi j > mk j, then
the comparison can be either positively phrased, e.g. ”mi j is
greater than mk j”, or it can be negatively phrased, e.g. ”mk j
is smaller than mi j”. For the positive phrasing, mi j is called
focus value and mk j is called reference value. The focus value
determines the counter whose state is increased by +1, here
S+i , since the comparison is advantageous for the associated
alternative Ai. For the negative phrasing, mk j is the focus
value and mi j is the reference value, leading to an increase by
+1 of counter S−k , since the comparison is disadvantageous
for alternative Ak. Which phrasing the decision maker uses
for the comparison and therewith which counter is updated
might, for example, depend on the wording of the task or the
decision maker’s attitude (cf. Choplin & Hummel, 2002). It is
implemented into the model via the focus weight λ, 0≤ λ≤ 1.
If λ = 1−λ = 0.5, the decision maker uses the positive and
negative phrasing both about equally often. If λ > 0.5, the
decision maker has a tendency towards the negative phras-
ing and towards updating negative counters. If λ < 0.5, the
decision maker has a tendency towards the positive phrasing
and towards updating positive counters. The focus weight λ

replaces the asymmetric value function that was applied to
the absolute differences between attribute values in the origi-
nal 2NCT Model (Wollschlaeger & Diederich, 2012). While
the asymmetric value function hard-wired a tendency towards
updating negative counters into the 2NCT Model, weight-
ing with λ allows for flexible balancing of attention to pos-
itive versus negative aspects of the alternatives in the SCT
Model. It is therefore especially useful in situations without
a loss/gain-framing, e.g., in perceptual or preferential choice.
Note that λ is a global weight and independent from the at-
tributes and attribute values. However, it allows us to define
counter updating probabilities for the positive and negative
counter of alternative Ai, i ∈ {1, . . . ,na} with respect to at-
tribute D j, j ∈ {1, . . . ,nd}: p+i j = ∑k:(mi j>mk j)(1−λ) · pik j for
updating S+i and p−i j = ∑k:(mi j<mk j) λ · pik j for updating S−i .

Finally, the random component accounts for times where
counter states are updated at random and without any con-
nection to the actual attribute values (for instance due to inat-
tention or misperception, cf. Busemeyer & Townsend, 1993).
Technically, it is treated as an additional (phantom) attribute
D0. The counter updating probabilities p+i0 = p−i0 = 1/(2 ·na),
i ∈ {1, . . . ,na} with respect to D0 depend on the number of
available choice alternatives and therefore sum up to one:
∑

na
i=1(p+i0 + p−i0) = 1.

Combining attribute-wise counter updating probabilities
p±i j with attribute weights ω j, we can now define weighted
counter updating probabilities for the positive and negative
counter of alternative Ai:

p+i =
nd

∑
j=0

p+i j ·w j and p−i =
nd

∑
j=0

p−i j ·w j. (1)

Choice Tree and Stopping Rules
Starting with the presentation of the choice alternatives and
their attribute values, the preference construction process
consists of a sequence of counter updates. In principle, ev-
ery possible sequence of counter updates may occur and it
is therefore of interest to have them conveniently summa-
rized. For this purpose, we introduce the (2 · na)-ary choice
tree T = (V,E,r) with vertices V , edges E ⊆ V ×V and root
r ∈ V , where all vertices are directed away from r and each
internal vertex v ∈ V has 2 · na children that are associated
with the 2 ·na counters. Figure 1 shows an example with three
choice alternatives and six counters. The preference construc-
tion process is represented by a random walk on T , beginning
at the root and passing from there through an edge to another
vertex, triggering the update (increase by +1) of the associ-
ated counter, moving on through another edge and so forth.
The next edge to pass through is chosen according to the up-
dating probability of the counter associated with its endpoint.
Note that for each vertex the transition probabilities of all out-
going edges sum up to one. An example path of this random
walk is pictured in bold in Figure 1.

The preference construction process stops when enough
evidence has been accumulated to make the required choice.
To this end, the preference states Pre f (Ai, t) = S+i (t) −
S−i (t), i ∈ {1, . . . ,na} are constantly compared to two thresh-
olds, a positive threshold θ+ and a negative threshold θ− =
−θ+. If the preference state for alternative Ai hits the pos-
itive threshold, the process stops and Ai is chosen. If, on
the other hand, the preference state for alternative Ak hits
the negative threshold, Ak is eliminated from the choice set
and the process continues with the remaining alternatives un-
til one of them is chosen or until all but one of them have been
eliminated. Consider a simple example with three choice al-
ternatives {A1,A2,A3} and thresholds θ+ = 2 and θ− = −2.
The sample path in Figure 1 with its associated sequence of
counter updates S+2 ,S

−
1 ,S

−
1 ,S

+
2 , leads to elimination of alter-

native A1 after three steps and choice of alternative A2 after
four steps. Other possible sequences resulting in choice of
alternative A2 include S+3 ,S

−
1 ,S

+
2 ,S

+
2 with direct choice of A2

after four steps, and S−1 ,S
−
3 ,S

−
3 ,S

−
1 with elimination of alter-

natives A3 after three steps and A1 after four steps and there-
with choice of the only remaining alternative A2.

Choice Probabilities and Expected Response Times
The probability for walking along a specific path as, for ex-
ample, shown in Figure 1, is the product of the transition
probabilities along the respective edges. The choice prob-
ability for alternative Ai, i ∈ {1, . . . ,na} is equal to the sum
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Figure 1: A random walk on the choice tree for three al-
ternatives. The associated sequence of counter updates is
S+2 ,S

−
1 ,S

−
1 ,S

+
2 and the probability for walking along this spe-

cific path is p+2 · p
−
1 · p

−
1 · p

+
2 . Supposing that the rejection

threshold θ− is equal to −2 and the choice threshold θ+ is
equal to 2, this sequence implicates first rejection of alterna-
tive A1 and then choice of alternative A2. When A1 is elim-
inated from the choice set, the vertices associated with its
counters no longer appear in the choice tree, as can be seen in
the bottom row of vertices here.

of the probabilities for walking along all the specific paths
that lead to choice of alternative Ai. Since it is not feasible
to calculate probabilities separately for each path and sum
them up, we will analyze preference states, choice probabil-
ities and response times instead by interpreting them as in-
dependent birth-death Markov chains with absorbing bound-
aries θ+ and θ−. The state space of these birth-death chains
Pre f (Ai, t) = S+i (t)− S−i (t) =: Si(t), i ∈ {1, . . . ,na} is S :=
{θ−, . . . ,−1,0,1, . . . ,θ+}, with |S |= θ+−θ−+1. The tran-
sition probabilities are

pi(x,x+1) = p+i > 0

pi(x,x−1) = p−i > 0

pi(x,x) = 1− p+i − p−i = p0
i > 0

 for x∈ S−{−θ
−,θ+},

where p±i is defined in Eq. 1 above; pi(x,x+ 1) = pi(x,x−
1) = 0, pi(x,x) = 1, for x ∈ {−θ−,θ+}; and zero other-
wise. They form a |S | × |S | transition probability matrix
P′i = (p′rs)r,s=1,...,|S |, where p′rs is the probability for the birth-
death chain to transition from state xr to state xs in one step.
P′i can be written in its canonical form Pi by rearranging the
rows and columns (changing the indices of the states such
that the absorbing states −θ− and θ come first). Pi can be de-

composed into a 2×2 identity matrix I2, a 2×nt matrix 0 of
zeros with nt = |S |− 2 (the number of transient states in S ),
a nt × 2 matrix Ri, containing the probabilities for entering
the absorbing states θ+ and θ−, that is, for hitting the elimi-
nation or choice threshold, and a nt × nt matrix Qi, contain-
ing the transition probabilities between transient states (cf.

Diederich, 1997): Pi =

(
I2 0
Ri Qi

)
.

Given a row vector Zi of length nt which represents the
initial preference state (e.g.,

(
0 0 1 0 0

)
) or the ini-

tial distribution of preference over the transient states (e.g.,(
0.05 0.10 0.70 0.10 0.05

)
, cf. Diederich & Buse-

meyer, 2003) for alternative Ai, the probability that the pro-
cess is absorbed during the first step can be obtained by mul-
tiplying Zi and Ri, yielding a vector of length 2: Zi · Ri =
[P(Si(1) = θ+),P(Si(1) = −θ−)]. In the case that the pro-
cess was not absorbed during the first step, the distribution
of preference over the transient states after the first step is
given by Zi ·Qi, a vector of length nt . Multiplying the result
with the matrix Ri yields the probabilities of absorption in the
second step: Zi ·Qi ·Ri = [P(Si(2) = θ+),P(Si(2) = −θ−)].
The distribution of preference over the transient states is
given by (Zi ·Qi) ·Qi = Zi · (Qi ·Qi) = Zi · (Qi)

2. The en-
tries of the nt × nt matrix (Qi)

2 are 2-step transition proba-
bilities between the transient states, allowing for calculation
of absorption in the third step: Zi · (Qi)

2 · Ri = [P(Si(3) =
θ+),P(Si(3) = −θ−)]. Iterating these results indicates that
all the relevant probabilities can be obtained from the vector
Zi, the matrix Ri and powers of the matrix Qi. Since Qi is
a tridiagonal Toeplitz matrix (the entries on the main diago-
nal are all equal to p0

i , the entries on the diagonal above the
main diagonal are equal to p+i and the entries on the diago-
nal below the main diagonal are equal to p−i ), its eigenvalues,
eigenvectors and its powers are known and given in closed
form (Salkuyeh, 2006), making it easy to compute all the rel-
evant quantities.

We are interested in the conditional probabilities and ex-
pected hitting times for each alternative Ai, i ∈ {1, . . . ,na},
given that Ai is the first alternative to be chosen/eliminated.
Therefore, we have to determine the probability that alter-
native Ak, k ∈ {1, . . . ,na} with k 6= i, has not been cho-
sen/eliminated until time t. It is given by

P(−θ
− < Sk(T )< θ) = 1−

T

∑
t=1

Zk · (Qk)
t−1 ·Rk ·

(
1
1

)

= 1−Zk ·

(
T

∑
t=1

(Qk)
t−1

)
·Rk ·

(
1
1

)
.

The choice and elimination probability for alternative Ai at
time T is then equal to

[P(Si(T ) =−θ
−),P(Si(T ) = θ)]

=

(
Zi ·

T

∑
t=1

(Qi)
t−1 ·Ri

)
·∏

k 6=i

(
P(−θ

− < Sk(T )< θ)
)
.
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Overall, this yields probabilities

[P(chooseAi),P(eliminateAi)]

=
∞

∑
T=1

(
[P(Si(T ) =−θ

−),P(Si(T ) = θ)]
)

and expected response times

[E(Ti|chooseAi),E(Ti|eliminateAi)]

=
∞

∑
T=1

T ·
(
[P(Si(T ) =−θ

−),P(Si(T ) = θ)]
)
.

Note that the infinite sums over T have only a finite number of
nonzero addends, since P(Ni < ∞) = 1 for all i ∈ {1, . . . ,na},
thus the choice/elimination probabilities and expected re-
sponse times can be easily computed.

Context Effects Explained
Three interacting mechanisms produce similarity, attraction,
and compromise effects in the Simple Choice Tree Model:
(1) selection of pairs of attribute values for comparison based
on normalized differences, (2) the possibility to eliminate un-
wanted alternatives from the choice set, and (3) weighting
of attributes based on salience. The first mechanism leads
to a higher impact of dissimilar alternatives on the updating
probabilities and thus faster evidence accumulation for alter-
natives with more distant competitors. In the similarity and
attraction settings, this applies to the dissimilar alternative A2,
and in the compromise situation to the extreme alternatives A2
and A3. The second mechanism and the related focus weight
λ determine whether choices are more likely to be based on
eliminations or to be made directly. The greater λ, the more
likely are the choices based on eliminations. In the similarity
situation, greater λ leads to faster elimination of the dissimilar
alternative A2 and subsequent choice or elimination of either
alternative A1 or A3, that is, a small or even negative similar-
ity effect. On the other hand, smaller λ leads to more direct
choices of alternative A2 and thus a higher similarity effect.
Regarding the dissimilar alternative A2, the same is true in
the attraction situation. Greater λ leads to faster elimination
of A2 while smaller λ leads to more direct choices of alter-
native A2. However, the attraction effect is higher for greater
λ, since after elimination of alternative A2, either the domi-
nating option A1 is chosen directly or the dominated option
A3 is eliminated first. In the compromise setting, greater λ

increases the probability for the extreme options to be elim-
inated from the choice set, leaving the decision maker with
the compromise option. Smaller λ on the other hand more
likely leads to choice of an extreme option and thus a smaller
or even negative compromise effect. Attribute weights further
moderate the strengths of the context effects, but as long as
they are more or less balanced, they play a minor role in the
explanation of the similarity, attraction, and compromise ef-
fects. However, a high attribute weight is able to bias choice
towards the alternative that scores highest on that attribute,
covering any context effect.

Figure 2: Simulations of choice probabilities for changing
focus weight λ in the similarity, attraction, and compromise
situation. There is a positive similarity effect for smaller λ

and a negative similarity effect for larger λ (upper left) and
vice versa for the attraction effect (upper right). The com-
promise effect (lower left and right) shows for larger λ and is
reversed for smaller λ.

We ran several simulations to illustrate these mechanisms.
The available choice alternatives were A1 = (70,30), A2 =
(30,70) and A3 = (70,30) for the similarity effect, A3 =
(65,25) for the attraction effect, A3 = (90,10) for the asym-
metric compromise effect, or A3 = (50,50) for the symmetric
compromise effect. The attribute weights were ω0 = 0.1 and
ω1 = ω2 = 0.45, and the focus weight λ varied between 0
and 1 in steps of 0.1. For each data point we ran 10000 sim-
ulations and the resulting choice probabilities are presented
in figure 2. According to the simulations, the similarity ef-
fect is opposed to the attraction and the compromise effect.
The similarity effect is strongest for low λ, whereas the at-
traction and the compromise effect are strongest for high λ.
This prediction is consistent with the finding that the attrac-
tion and the compromise effect are positively correlated with
each other and negatively correlated with the similarity ef-
fect (Berkowitsch et al., 2014). Note that λ is assumed to be
a global weight that does not change between trials but may
vary between participants.

Conclusion
We propose a revised and simpler version of the 2N-ary
Choice Tree Model (Wollschlaeger & Diederich, 2012), the
Simple Choice Tree (SCT) Model. It predicts choice proba-
bilities and response times in multi-alternative multi-attribute
preferential choice from description and accounts for several

1355



effects observed in these situations, including the similarity,
attraction, and compromise effect. The SCT Model shares
several aspects with existing models: Like Decision by Sam-
pling (DbS; Stewart, Chater, & Brown, 2006), it proposes
binary ordinal comparisons and frequency accumulation as
basic mechanisms. In DbS, however, pairs of attribute values
are chosen at random and reference values may be sampled
from long-term memory as well as from the given context.
Only advantageous comparisons are counted and the model
is not able to account for the above mentioned context ef-
fects, nor does it provide solutions for choice probabilities
or choice response times. Multi-alternative Decision Field
Theory (MDFT; Roe et al., 2001) and the Leaky Compet-
ing Accumulator (LCA) Model (Usher & McClelland, 2001,
2004) provide such solutions only for fixed stopping times.
Both models, like the SCT Model, are based on pairwise dif-
ferences of attribute values. To account for the similarity,
attraction, and compromise effect simultaneously, however,
additional non-linear mechanisms (among others leakage and
inhibition, cf. the original 2NCT Model) are required, pre-
venting the models from providing mathematically tractable
solutions for optional stopping times. Elimination by Aspects
(EBA; Tversky, 1972) proposes ”a covert elimination process
based on sequential selection of aspects” (p. 296). As an early
example for a cognitive process model, it does not make any
predictions about choice response times and accounts only
for the similarity effect. The SCT model mimics EBA for
high values of the focus weight λ, where mostly disadvanta-
geous comparison outcomes are considered and decisions are
based on the elimination of choice alternatives. The Multi-
attribute Linear Ballistic Accumulator Model (MLBA; True-
blood, Brown, & Heathcote, 2014), basically a deterministic
version of MDFT, provides analytic solutions for expected
response times and choice probabilities like the SCT Model.
However, it is unclear if and how the response times are re-
lated to the actual integration of information. Furthermore,
the model has mostly been applied with fixed stopping times
until now. Additional mechanisms allow the MLBA model
to account for the compromise effect (a curved subjective
value function) and the similarity effect (a higher weight on
supportive information as compared to disconfirmatory evi-
dence). The latter is comparable to low values of the focus
weight λ in the SCT Model. To summarize, the SCT Model
combines aspects of competing models in a new way, yielding
qualitatively new explanations for the context effects and ad-
ditionally predicting correlation patterns amongst the effects.
It provides mathematically tractable solutions for both choice
probabilities and expected choice response times for optional
stopping times, by that outperforming existing models.
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