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Abstract 

Fractions knowledge is essential to everyday life, yet many 
children and adults struggle to accurately represent fractions. 
This is the first study to investigate adults’ confidence 
judgments and eye fixations as they solved fractions number 
line estimation, magnitude comparison, and magnitude 
ordering tasks. Educational implications are discussed.  

Keywords: fractions, number line estimation, magnitude 
comparison, magnitude ordering, eye tracking, confidence 
judgments 

Children’s and Adults’ Difficulty Representing 

Fractions Magnitudes 

Fluency with rational numbers—fractions, decimals, and 

percentages—is important in the everyday lives of adults. 

For example, rational numbers are essential to knowing how 

to: double a recipe, determine the total interest paid on a 

mortgage, calculate the final cost of an item on sale for 75% 

off the original price, assess the likelihood of contracting a 

communicable disease, etc. Unfortunately, children and 

adults often struggle to accurately represent fractions (see 

Siegler, Fazio, Bailey, & Zhou, 2013 for a review). 

What makes it so difficult to correctly represent fractions? 

Students often mistakenly extend their knowledge about 

whole numbers to fractions (Ni & Zhou, 2005; Siegler, 

Thompson, & Schneider, 2011). What is true of whole 

numbers is not true of all numbers in general. For example, 

12 is larger than 9, but 1/12 is not larger than 1/9. The 

uniting factor, according to Siegler and colleagues’ 

integrated theory of whole numbers and fractions, is that the 

magnitudes of whole numbers and fractions can be 

represented on number lines.  

The Common Core State Standards recommend that 

fractions instruction begin in third grade with students 

representing fractions on number lines 

(http://www.corestandards.org/Math/Content/3/NF/). Even 

though fractions instruction begins early in elementary 

school, students continue to struggle well into adulthood to 

accurately represent fractions concepts—likely because it is 

quite difficult to inhibit the plethora of whole number 

knowledge that they have amassed. In one famous example 

(Carpenter et al., 1981), more eighth graders chose incorrect 

answers (19 or 21) to a simple fractions addition problem 

(12/13 + 7/8) than chose the correct answer (2). Only about 

half of sixth and eighth graders were able to correctly order 

fractions from smallest to largest magnitude (Mazzocco & 

Devlin, 2008; NCTM, 2007). Fifth graders often make 

errors when comparing decimal fractions (Rittle-Johnson, 

Siegler, & Alibali, 2001). Though it is true that all three-

digit whole numbers are larger than all two-digit whole 

numbers, a three-digit decimal is not necessarily larger than 

a two-digit decimal (e.g., .539 < .68). Fifth, sixth, and even 

eighth graders often use non-optimal strategies as they 

estimate fractions on number lines. For instance, some 

students verbally report attending only to the denominator 

when estimating the location of a fraction (e.g., a student 

marks 3/19 closer to the 1 than to the 0 on a 0-1 number line 

because he noted that 19 is a large number; Siegler & 

Thompson, 2014; Siegler et al., 2011).  

Problems representing fractions persist into high school 

and college. Eleventh graders failed to accurately translate 

between equivalent rational numbers (e.g., .029 = 29/1000, 

Kloosterman, 2010), and college students failed to 

accurately estimate the location of common numerator 

problems on number lines (e.g., 1/60 was placed closer to 

1/1 than to 1/1440; Opfer & DeVries, 2008). 

Fractions are integral to success in algebra, and success in 

algebra is related to access to higher education, graduation 

from college, and later earning capacity (National 

Mathematics Advisory Panel, 2008). A recent longitudinal 

analysis indicated that early fractions and division 

knowledge predicted success in algebra and overall 

mathematics achievement five or six years later, even after 

controlling for other types of mathematical knowledge, 

general intelligence, working memory, and family income 

and level of education (Siegler, et al., 2012). Accurate 

knowledge of fractions is crucial to later success in life. 

Confidence Judgments 
Confidence judgments are subjective evaluations of whether 

one has given a correct response to a specific problem 

(Dunlosky & Metcalfe, 2008). In general, judgments tend to 

be overconfident (i.e., judgments are higher than actual 
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performance) when evaluating performance across a variety 

of cognitive tasks (Shepperd, Klein, Waters, & Weinstein, 

2013). Confidence judgments are strongly influenced by the 

difficulty of the material being assessed in that more 

difficult material is associated with underconfidence (i.e., 

judgments lower than actual performance), while less 

difficult material is associated with overconfidence 

(Dunlosky & Metcalfe, 2008).  

Confidence judgments play an important role in self-

regulated learning in that confidence judgments influence 

the likelihood of correcting errors (Dunlosky & Rawson, 

2012). Increasing the accuracy of confidence judgments 

appears to be an effective non-cognitive factor in improving 

school performance (e.g., Stankov, Morony, & Lee, 2014). 

Confidence judgments yield unique benefits to learning 

mathematics. Adults with greater numeracy and more 

accurate approximate number sense (ANS) were more 

accurate in their confidence judgments than those with 

lower numeracy and less accurate ANS (Winman, Juslin, 

Lindskog, Nilsson, & Kerimi, 2014). Children with more 

accurate confidence judgments achieved greater gains in 

mathematics than those with less accurate confidence 

judgments (Rinne & Mazzocco, 2014).  

Eye Tracking 

Researchers have used the eye-tracking paradigm to 

investigate children and adults’ whole number knowledge. 

Schneider and colleagues (Schneider et al., 2008) 

investigated first through third graders’ eye fixations as they 

estimated the location of whole numbers in the 0-100 range. 

The children fixated their gaze at the endpoints (0 and 100) 

and the midpoint (50) of the number line. These eye-

tracking results corroborate with verbal reports that children 

subjectively impose reference points on number lines as 

they estimate the location of fractions (Siegler & Thompson, 

2014; Siegler et al., 2011) and results that response times 

are faster when the to-be-estimated number’s location is 

closer to subjective landmarks (Ashcraft & Moore, 2012). 

There may be a mismatch between children’s explicit 

understanding, as measured by behavioral responses and 

verbal reports, and implicit understanding, as measured by 

eye fixations (Heine et al., 2010). Though behavioral data 

indicated that first graders possessed a less accurate 

representation of numbers, their eye-tracking results were 

consistent with a more accurate representation. 

Adults’ eye movements on number line estimation tasks 

in the 0-1000 range were highly related to the correct 

location of the to-be-estimated numbers (Sullivan, Juhasz, 

Slattery, & Barth, 2011). These adults showed a preference 

for fixating near the midpoint (500) as compared to the 

regions around 250 and 750. Huber, Moller, and Nuerk 

(2014) reported eye-tracking evidence from adults as they 

compared fraction magnitudes and found that denominators 

were fixated upon more frequently than numerators.  

The Current Study 

The current study served as a first step to understanding the 

difference between adults’ and children’s understanding of 

fractions. College-aged adults completed three tasks: 1) 

position-to-number number line estimation, 2) magnitude 

comparison, and 3) magnitude ordering. After answering 

each problem, participants made a confidence judgment on a 

four-point scale ranging from not so sure to totally sure. 

Their eye fixations were tracked.  

 

Hypotheses. We expected that, on average, adults would be 

fairly accurate on our battery of tasks, but confidence 

judgments and eye fixations would serve as indicators of 

individual differences in performance. Our study 

investigated three main hypotheses. First, we expected to 

find an association between confidence judgments and 

overall performance, such that participants would report 

feeling more confident when their estimates, comparisons, 

and rank ordering of fractions were more accurate. Second, 

both confidence judgments and eye fixations were expected 

to vary by problem difficulty. For instance, we anticipated 

lower confidence judgments and longer eye fixations for 

more difficult problems. “Difficult” problems were assumed 

to be trials in which the participant is enticed to employ a 

heuristic that would lead to an incorrect answer. For the 

magnitude comparison and ordering tasks, a difficult 

problem may be one in which the larger fraction has both a 

smaller numerator and denominator (e.g., 3/4 vs. 5/16). 

Participants may decide that the larger fraction is not the 

correct response given that its component parts are smaller 

in value compared to the other fraction(s). Similarly, when 

the larger fraction has a larger denominator (e.g., 13/17 vs. 

11/15), participants may decide that the larger fraction is not 

the correct response based on the heuristic that all things 

being equal, large denominators indicate smaller fractional 

values. Another type of difficult problem may be one in 

which the fractions’ decimal equivalents are close in value.  

Participants are more accurate and respond quicker when 

the magnitudes are more distant (e.g., 1/9 vs. ½ = .11 vs. 

.50) as compared to closer (e.g., 5/6 vs. 7/8 = .83 vs. .88). 

This provides evidence for the distance effect in fractions 

(Dehaene, Dehaene-Lambertz, & Cohen, 1998; Siegler et 

al., 2011). Finally, for the number line estimation task, 

difficult problems were considered to be trials in which the 

hatch mark was located far away from an experimenter-

imposed landmark (0, 1) or a participant-imposed landmark 

(midpoint). Third, we hypothesized that adults’ fixations 

would suggest the types of strategies used during each task. 

For example, we expected the number of fixations on 

denominators to predict performance when comparing or 

ordering fractions with common numerators but not 

fractions with common denominators. Finally, for the 

number line estimation task, we expected participants would 

fixate more frequently on the hatch mark indicated on the 

number line when it was located further from a subjective 

(e.g., midpoint) or objective (e.g., endpoint) landmark 

(Siegler et al, (2011) and Schneider et al. (2008). 
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What is the Value Added by Confidence Judgments and 

Eye Tracking Paradigms? To our knowledge, no previous 

studies have assessed adults’ level of confidence as they 

completed fraction number line estimation, magnitude 

comparison, and magnitude ordering tasks in an eye-

tracking paradigm. Eye tracking and confidence judgments 

will provide converging supporting evidence for previously 

reported fractions results. For instance, analyses of 

children’s verbal reports (Siegler et al., 2011; Siegler & 

Thompson, 2014) have provided insights into the types of 

strategies that participants use to solve fractions problems, 

but sometimes participants find it difficult to explicitly 

express their thought processes. Implicit fractions 

understanding may outpace explicit performance (and 

verbal reports), and eye tracking and confidence judgments 

could provide some additional insights on the 

developmental progressions in fractions learning across the 

lifespan. Knowing where adults fixate when completing 

fractions magnitude tasks could indicate why they make the 

types of mistakes that they do. These insights could inform 

educational lessons. 

Method 

Participants 

Fourteen undergraduate students were recruited from an 

introductory psychology course at a large Midwestern 

university (M age = 20 years, SD = 1.58; range = 18-23 

years; 6 males; 78% Caucasian, 14% Asian, 7% African 

American). Participants received course credit.  

All participants completed the magnitude comparison task 

before the ordering task. However, some participants (N = 

8) received these tasks first followed by the number line 

estimation task. One participant’s number line estimation 

data was not recorded due to equipment failure.  

Procedure 

Participants were seated in front of a Tobii T-60XL eye-

tracker monitor. Participants were told that they would 

complete three tasks assessing their understanding of 

fractions and that their eye movements would be recorded 

throughout the study. They were also told that, after each 

trial, they would be asked to rate how confident they were in 

their performance. Confidence judgments were based on a 

4-point scale (1-not that sure, 2-kind of sure, 3-pretty sure, 

4-totally sure) and were reported either verbally (magnitude 

comparison, ordering) or electronically (number line 

estimation). Each participant completed a non-numerical 

eye-tracking calibration exercise before beginning. 

 

Position-to-Number Number Line Estimation 
Participants estimated the position of a hatch mark on a 

number line. Each number line had a left endpoint labeled 

“0”, a right end-point labeled “1”, and a blue hatch mark 

corresponding to the location of one of the following 

fractions: 1/19, 1/15, 1/12, 1/10, 1/8, 1/7, 1/6, 1/5, 2/9, 1/4, 

2/7, 3/10, 1/3, 3/8, 5/12, 4/9, 5/9, 3/5, 5/8, 2/3, 3/4, 4/5, 5/6, 

7/8, 10/11, 13/14. Twenty-six number lines were presented 

one at a time, and participants were instructed to estimate 

the fraction located at each hatch mark. They responded by 

typing the fraction into a text box displayed below the 

number line. After each trial, participants were prompted to 

rate how confident they were in their answer. Both the 

fraction estimates and confidence judgments were made 

electronically through Qualtrics online survey software. 

Number lines were presented on the eye-tracking monitor, 

and areas of interest were created using Tobii Studio 3.2.  

 

Magnitude Comparison Participants determined which of 

two fractions was larger. Forty fraction pairs (adopted from 

Fazio et al., 2014) were presented one at a time on the eye-

tracking monitor. Each pair came from one of four ratio bins 

(determined by dividing the larger fraction by the smaller 

fraction): 1.15-1.28, 1.28-1.43, 1.48-1.65, and 2.46-2.71. 

Additionally, each bin included five types of trials (two of 

each); relative to the smaller fraction, the larger fraction had 

either 1) a larger numerator and an equal denominator (e.g., 

7/10 and 6/10); 2) an equal numerator and a smaller 

denominator (e.g., 16/17 and 16/20); 3) a larger numerator 

and a larger denominator (e.g., 15/20 and 5/8); 4) a larger 

numerator and a smaller denominator (e.g., 13/14 and 

12/16); or 5) a smaller numerator and a smaller denominator 

(e.g., 7/11 and 10/20).  

Participants were encouraged to respond as quickly and 

accurately as possible. The fractions remained on the screen 

until the participant responded. After each trial, participants 

provided verbal confidence judgments.  

 
Magnitude Ordering Participants ordered sets of fractions 

from smallest to largest. On each of ten trials, participants 

saw three fractions on the eye-tracking monitor, each 

outlined with a colored rectangle. The fraction on the left 

was outlined in red, the middle fraction in green, and the 

fraction on the right in blue. Participants made verbal 

responses by specifying the color of the fraction (rather than 

the fraction itself) when ordering (e.g., “blue, red, green”).  

There were five types of trials (two of each); relative to 

the other two fractions, the larger fraction had either 1) an 

equal numerator and smaller denominator (e.g., 3/4, 3/15, 

and 3/6); 2) a larger numerator and an equal denominator 

(e.g., 8/9, 6/9, 3/9); 3) a larger numerator and a larger 

denominator (e.g., 13/17, 7/15, and 2/9); 4) a larger 

numerator and a smaller denominator (e.g., 10/15, 5/20, and 

1/19); or 5) a smaller numerator and a smaller denominator 

(e.g., 4/6, 5/20, and 7/17). The fractions remained on the 

screen until the participant ordered all three fractions. After 

each trial, participants provided verbal confidence 

judgments. The experimenter recorded all responses. For 

both the magnitude ordering and comparison tasks, 

confidence judgments were recorded, and areas of interest 

were created in Tobii Studio 3.2. 

 

2573



Results 

Hypothesis 1: Confidence & Accuracy 

Position-to-Number Number Line Estimation The 

accuracy of number line estimates were measured by 

percent absolute error (PAE): PAE = (|Participant’s 

Estimate – Correct Answer|)/Numerical Range. For 

example, if the location of a hatch mark corresponded to 3/4 

on a 0-1 scale, and a participant estimated its location to be 

2/5, the PAE would be 35% ([|.40-.75|]/1 * 100). Smaller 

PAEs indicate more accurate estimates. On average, 

participants were not very confident in their estimates (M = 

2.33, SD = .73), and these judgments were not associated 

with overall PAE (M = 5.31, SD = 1.84%), r = -.07, p >  

.05. Table 1 shows PAE and confidence judgments for each 

trial type; SDs are in parentheses in all Tables. 

 

Table 1: Number line estimation performance 

 

Location of Hatch Mark           PAE    Confidence 

       (max = 4) 

Close to “0”      11.11% (5.20%)      2.42 (.66) 

Close to midpoint  4.50% (4.17%)    2.42 (.75) 

Close to “1”      5.40% (4.76%)    2.35 (.65) 

Between landmarks  3.96% (1.90%)    2.23 (.64) 

 

 

Magnitude Comparison Confidence was high (M = 3.45, 

SD = .37) and associated with overall accuracy (M = 

89.68%, SD = 12.71%), r = .753, p < .01. Table 2 shows 

mean accuracy and confidence judgments for each bin. 

Confidence judgments and accuracy were correlated within 

Bins 1 (r = .64, p = .014), 2 (r = .72, p < .01), and 4 (r = .65, 

p = .012). Confidence judgments were also related to 

accuracy on trials with equal numerators (e.g., 16/17 vs. 

16/20), r = .80, p = < .01, when the larger fraction had both 

a larger numerator and denominator (e.g., 15/20 vs. 5/8), r = 

.57, p < .05, and when the larger fraction had both a smaller 

numerator and denominator (e.g., 7/16 vs. 8/21), r = .67, p = 

.01. 

 

Table 2: Magnitude comparison performance 

 

Fraction Magnitude  Accuracy Confidence 

Ratio     (max = 4) 

Bin 1 (1.15-1.28)  86% (15%) 3.39 (.34) 

Bin 2 (1.28-1.43)  87% (19%) 3.40 (.39) 

Bin 3 (1.48-1.65)  94% (10%) 3.44 (.39) 

Bin 4 (2.46-2.71)  91% (17%) 3.57 (.43) 

 

 

Magnitude Ordering Confidence judgments were high (M 

= 3.31, SD = .45) and associated with overall accuracy (M = 

80.24%, SD = 18.04), r = .73, p < .01. Confidence 

judgments were also related to accuracy on trials in which 

the fractions shared a common dominator, and the largest 

fraction had a larger numerator (e.g., 8/9 vs. 3/9 vs. 6/9), r = 

.82, p < .01, and when the largest fraction had a larger 

numerator and smaller denominator (e.g., 13/14 vs. 12/16 

vs. 7/18), r = .64, p = .01. Table 3 shows mean accuracy and 

confidence judgments for each type of trial. 

 

Table 3: Magnitude ordering performance by trial type 

 

Largest Fraction         Accuracy    Confidence 

Characteristics         (max = 3)         (max = 4) 

Larger Num/Equal Denom        93% (19%)     3.68 (.56) 

Equal Num/Smaller Denom      83% (25%)     3.57 (.51) 

Larger Num/Larger Denom       68% (33%)     2.82 (.64) 

Larger Num/Smaller Denom     88% (21%)          3.39 (.66) 

Smaller Num/Smaller Denom   62% (31%)          3.07 (.47) 

 

Hypothesis 2: Confidence, Fixations, & Problem 

Difficulty 

Position-to-Number Number Line Estimation As 

predicted, participants’ confidence judgments were lowest 

on trials in which the hatch mark was between landmarks 

(see Table 2). Moreover, participants were significantly 

more confident when the hatch mark was close to “0” 

compared to when it was not near a landmark, t(13) = 2.21, 

p = .045. Interestingly, confidence was highest for “close to 

0” trials even though participants were significantly less 

accurate on these trials compared to the other trial types (all 

ps < .05). 

Overall, participants fixated on the hatch mark (M = 2.15, 

SD = .69; range = 1.07-3.79) more often than both the 

endpoints, “0” (M = 1.24, SD = 1.18, range = 0-6.57), t(24) 

= -3.13, p < .01, and “1” (M = 1.24, SD = 1.73; range = .29-

5.36), t(24) = -2.85, p < .01. Contrary to our predictions, 

fixations on the hatch mark, midpoint, and endpoints did not 

vary by problem difficulty.  

 

Magnitude Comparison As predicted, participants were 

more confident on “easier” trials. Table 1 shows that 

confidence was highest on trials with the largest magnitude 

differences (i.e., bins 3 and 4). Consistent with the distance 

effect, Bin 4 confidence judgments were significantly higher 

than trials within Bin 1, t(13) = -2.56, p = .024, and Bin 2, 

t(13) = -2.92, p = .012. Contrary to our predictions, 

participants were more confident when the larger fraction 

had both a smaller numerator and denominator (M = 3.50, 

SD = .43) than when both fractions shared a common 

denominator (M = 3.31, SD = .56), t(13) = 2.40, p = .03. 

Confidence was also higher when the fractions shared a 

common numerator compared to denominator (M = 3.53 vs. 

3.31, respectively), t(13) = 2.58, p = .02.  

Fixations also varied by problem difficulty. On “easy” 

trials, participants tended to fixate longer on the larger, 

correct fraction while the reverse was found for more 

difficult trials (see Table 4). 
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Table 4: Average fixation duration to correct and 

incorrect fraction 

 

Largest Fraction         Correct          Incorrect 

Characteristics         Fraction         Fraction 

Larger Num/Equal Denom         .95 (.16) .81 (.18) 

Equal Num/Smaller Denom    1.00 (.30) .86 (.13) 

Larger Num/Larger Denom      .89 (.28) .89 (.30) 

Larger Num/Smaller Denom    .90 (.16)        .95 (.15) 

Smaller Num/Smaller Denom  .74 (.18)        .83 (.22) 

 

 

Magnitude Ordering As predicted, participants’ 

confidence judgments were significantly higher for “easy” 

trials (i.e., when the fractions shared a common numerator 

or denominator) compared to “difficult” trials (i.e., when the 

largest fraction had a larger denominator, or both a smaller 

numerator and denominator) (all ps < .05). Confidence was 

also significantly higher for trials in which the largest 

fraction had a larger numerator and smaller denominator 

compared to when it had both a larger numerator and 

denominator, t(13) = 3.89, p < .01. 

Hypothesis 3: Fixations & Strategy Use 

Position-to-Number Number Line Estimation As 

mentioned above, participants tended to fixate on the hatch 

mark more so than the endpoints or midpoint.  

 

Magnitude Comparison Consistent with Huber et al.’s 

(2014) results, participants tended to fixate more on 

denominators (M = 2.34, SD = .53) than numerators (M = 

1.78, SD = .74), t(39) = -5.58, p < .01. Contrary to our 

predictions, however, participants were no more likely to 

fixate on numerators when the denominators were equal (M 

= 1.64 and 2.37, respectively) or on denominators when the 

numerators were equal (M  = 2.27 and 1.82, respectively), 

ps > .05.  

 

Magnitude Ordering Participants tended to fixate more on 

numerators (M = 4.13, SD = 1.05) than denominators (M = 

3.44, SD = 1.28), t(29) = 3.15, p < .01. Note that this is a 

pattern that differed from the magnitude comparison task 

results. Although fixations on the numerators did not vary 

by trial type, fixations on the denominator did. Interestingly, 

participants looked at the denominators more on trials in 

which the numerators were more informative (e.g., 6/9, 3/9, 

8/9) compared to trials in which the denominators were 

more informative (e.g., 3/15, 3/4, 3/6), (M = 2.26, SD = .60, 

and M = 2.11, SD = 1.72, respectively), t(13) = 2.92, p < 

.01.  

Discussion 

Understanding fractions is difficult because prior knowledge 

about number, specifically knowledge about number 

magnitudes, often conflicts with correct fraction 

interpretation. For example, larger whole number integers 

indicate increasingly greater magnitudes (e.g., 20 is larger 

than 5), however, the same number presented as a 

denominator indicates a smaller magnitude (e.g., 1/20 is 

smaller than 1/5). The current study was the first to 

investigate attention to different features of fractions 

comparing objective, behavioral data (e.g., eye tracking) and 

self-reports (confidence judgments) across three different 

fraction tasks.  

Consistent with our first hypothesis, adults’ confidence 

judgments were associated with accuracy in both the 

fraction magnitude comparison and ordering tasks. This 

association was not found in the position-to-number line 

estimation task, however. Although the average PAE was 

fairly low, participants tended to report being less confident 

in their performance. It is possible that participants found 

the position-to-number version of the number line task to be 

particularly difficult and underestimated their performance. 

Moreover, accuracy on this task was not associated with 

accuracy on the other two tasks suggesting that this version 

of the number line estimation task may not tap the same 

kind of magnitude knowledge as the comparison and 

ordering tasks.  For example, participants could have solved 

the number line task simply by choosing a denominator, 

segmenting the line based on that number, and then 

counting up the line until they reached the hatch mark. 

Future work will need to determine whether this version of 

the number line estimation actually taps fraction magnitude 

knowledge.   

In line with our second hypothesis, confidence judgments 

varied by problem difficulty. “Easier” problems tended to 

receive higher confidence judgments. Fixation patterns also 

varied by task difficulty, but only for the magnitude 

comparison task. Participants tended to fixate longer on the 

larger fraction when it shared a common numerator or 

denominator with the comparison fraction, suggesting a link 

between strategy and accuracy. 

Contrary to our third hypothesis, participants tended to 

look at uninformative problem components (e.g., greater 

looking at the denominators in the comparison task even 

though they were equal). Moreover, during number line 

estimation, participants tended to fixate on the hatch mark 

regardless of its distance from the endpoints or midpoint. 

These findings suggest that even adults sometimes use poor 

strategies when assessing fraction magnitude. Interestingly, 

the magnitude comparison and ordering tasks promote 

different fixation patterns.  The latter task is inherently more 

difficult than the comparison task (i.e., three magnitude 

comparisons as compared to two). Perhaps this level of 

difficulty led participants to quickly default to an immature 

strategy (i.e., focusing only on numerators; see Siegler & 

Thompson, 2014 for a similar result). Future research will 

need to determine why two tasks that tap the same kind of 

knowledge promote different strategies (e.g., focusing on 

numerators vs. denominators). 

The current study has educational implications and was a 

first step to understanding how to help children who are just 

beginning to learn about fractions. Given that even adults 
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tend to focus on uninformative components when 

comparing fractions (e.g., common denominators), 

instructors should emphasize that looking at denominators, 

for example, is most informative when the numerators are 

equal. In addition, highlighting trials on which the student 

was confident, yet incorrect, may help learners more 

accurately calibrate their confidence level and more 

effectively allocate their resources for studying fractional 

values.    
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