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1 Introduction

Climate scientists who work with computer simulation models readily ap-
preciate that the quality of their science depends upon the quality of their
simulations. Good modeling may be recognized, in part, by the serious appli-
cation of various assessment tools to help determine the credibility of model
output (Hänninen, 1995; Skiles, 1995; Shackley et al., 1998; Grassl, 2000).
As instructive as these efforts are, however, we argue below that climate sci-
entists typically fail to properly exploit a number of useful statistical proce-
dures. Moreover, their assessment efforts are too often ad hoc and lacking in
much formal justification. Modelers also typically do not appreciate that the
assessment tools are only tools. Their effective use depends upon a general
strategy of model evaluation embedded more thoroughly in an epistemology
underlying much of modern statistics. Finally, we briefly describe several
important classes of model evaluation problems for which no good solutions
exist and for which a concerted research effort is needed.

2 An Overview of Current Model Evaluation

Practice

It is common, though hardly universal, for climate scientists to “validate”
their computer models in various ways.1 Sometimes simulation output is
compared to empirical observations or to expectations from accepted theory.
If the simulation output is badly inconsistent with either, model revisions
are typically implied. For example, the output of general circulation mod-
els (GCMs) can be compared to data from ice cores characterizing climate
variation over many thousands of years in the past. If well documented pat-
terns of warming and cooling are not reproduced, the GCM may need to
be substantially revised (Barron, 1995; Crowley and Berner, 2001). There
sometimes also are forecasting assessments, such as recently conducted for
computer models of the El Niño phenomenon (Syu and Neelin, 2000b; Kerr,
2000). Weak forecasting performance can often mean problems with the
computer model. Yet another approach is to compare intermediate and final
model output to the results of laboratory experiments (Lu et al., 1997a).

1It may be more than a quibble to point out that climate scientists “validate” models
while statisticians “evaluate” models. In principle, the tools applied should be the same,
but clearly the aspirations are quite different.

2



Finally, computer experiments often are undertaken in which input data are
perturbed or in which small parts of the computer code are manipulated to
see whether the model is overly sensitive to such changes. Such studies are
common in regional scale modeling of climate impacts (Bonan, 1997) and
elsewhere (Syu and Neelin, 2000a; Moorthi, 2000).

2.1 The Use of Summary Statistics

In validation efforts such as these, statistical tools are sometimes used. For
example, it is common to compute one or more descriptive measures of “er-
ror.” Lu and his colleagues (1997b), for instance, compute (among other
things) the “root-mean-square difference” between simulation output from
their regional air quality model and measured values from local air quality
monitoring stations. Mearns and her colleagues (1997) use as a summary
measure the ratio of two crop yield means, one based on data and one based
on a climate simulation model.

Summary measures can be useful, and indeed are essential, given the large
volume of computer output commonly examined. However, many popular
summary measures throw out enormous amounts of information and as such
are at best a start in evaluating a model’s performance. If the simulation
output is arrayed in a three-dimensional spatial grid, for instance, a sin-
gle summary measure such as root-mean-square error provides no indication
whether the model reproduces the data better in some locations rather than
others. Visually inspecting the output and data on comparable maps can be
a step in the right direction, but one risks turning the exercise into a kind of
beauty contest in which the conclusions are solely in the eye of the beholder.
As a perceptual matter, is also extremely difficult to make level or ratio com-
parisons between locations separated by even modest distances (Cleveland,
1993). Soong and Kim (1996), for example, simulate a “heavy wintertime
precipitation event” in California, and supplement their summary measure
of fit (a Pearson correlation) between the simulation output and measured
precipitation with a comparison between maps of measured precipitation and
simulated precipitation. They conclude that the maps look much alike, but
it may have also been useful if they could have been more expansive and
precise. The general lesson is that the popular summary statistics which
attempt to encapsulate enormous amounts of information may obscure more
than they enlighten.

One must also wonder about how well the underlying properties of pop-
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ular summary statistics sometimes are appreciated. To take a very simple
example, root-mean-square-error depends on a quadratic loss function im-
plying a) that larger deviations between the data and the output are given
especially heavy weight in the computations and b) that “overpredictions”
have the same scientific import as “underpredictions.” The former means
that the root-mean-square error is being driven by the tails of the disparity
distribution, and outliers can dominate the results. The latter means that
simulation values that are too large are treated the same as simulation val-
ues that are too small. If these consequences comport well with the scientific
issues at hand, all is well. If they do not, misleading conclusions can follow.
(And there are usually a number of alternative procedures.) The point is that
the underlying properties of summary statistics need to be carefully consid-
ered. For popular summaries of multivariate relationships, such as regression
analysis and principal components analysis, this can be a demanding exer-
cise even though over the past two decades, there have been great advances
in diagnostic tools that can help enormously (e.g., Cook, 1998a). Unfortu-
nately, for a wide variety of recent computer intensive procedures, such as
those popular in data mining, many performance characteristics are not even
well understood.

Finally, the data used as “ground truth” are almost never what the name
implies. There are commonly important biases and noise. In addition, most
data are heavily processed before they are used. Indeed, the data are often
derived from an auxiliary set of data processing computer models whose
impact can be dramatic. Sometimes, and perhaps unavoidably, the models
used in that processing may be same ones that created the output requiring
evaluation in the first place. As an example, in compensation for instrument
errors and/or gaps in the observational network, the ”ground truth” data set
may be constructed using a first-guess field provided by the same forecast
model that is being assessed. Even if two nominally independent models are
employed, however, the independence has can questioned because as some
have claimed, “climate or forecast models are more like each other than they
are like the atmosphere” (Daley and Mayer 1986).

Such complications are certainly not news to climate scientists, but there
seems to be too little appreciation of the fact that summary statistics can be
badly distorted and that sometimes these statistics can be altered to better
respond the real properties of the data. For example, if noise is a signifi-
cant problem and if the variance of the noise can be estimated, correlation
coefficients can be corrected for attenuation.
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2.2 The Use of Statistical Inference

It is also common to apply formal statistical inference in model evaluations.
For example, Mearns, Rosensweig and Goldberg (1997) consider simulated
crop yields under different climate change scenarios over nearly 100 years,
and use a Kolmogorov-Smirnov 2-sample test to evaluate differences between
the cumulative distributions of yields (over years) from the different simula-
tions. Confidence intervals are also popular. Williams, Shaw and Mendelsohn
(1998), for instance, study the impact of climate changes on the value of land
used for farming. They supplement conventional tests on differences between
means for GCM-based predictions and data-based estimates, with bootstrap
95% confidence intervals to calibrate average differences between the two.

In certain situations, tests and confidence intervals can be very instruc-
tive, but they may be misleading as well. One key assumption usually is
independence. For example, each output value from the simulation model
is assumed to be independent of every other output value. This usually is
untrue on its face. If tests are undertaken nevertheless, one risks being se-
duced by falsely high precision, and the null hypothesis may well be rejected
when it should not have been. Ideally, one would like to take any dependence
properly into account before such tests are implemented. There is also the
deeper question of what it means to apply statistical tests to deterministic
models; there is no well-defined chance mechanism whose impact needs to be
assessed and as a result, one is well down the slippery slope toward statistical
ritual (Berk and Freedman, 1995, Berk, 1995).

This point warrants some elaboration. With conventional “frequentist”
statistical inference, the estimated probabilities are based on a thought ex-
periment in which the data set is generated a limitless number of times by
a chance mechanism, with every replicate generated independently of every
other. For deterministic computer simulation models, there is a mismatch
between this thought experiment and how the data were actually produced.
If one ran the models over and over again, the output would be effectively
identical. There is no stochastic component.

One can certainly introduce variation into the outputs by changing the
inputs to each simulation or by changing the computer code before each
simulation began. Indeed, this is often done by climate scientists under the
rubric of sensitivity analysis. But there are at least two serious problems.

First, in order to justify formal statistical inference, these changes would
have to be produced by a well understood and implemented chance mech-
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anism, which is usually not the case in sensitivity analysis (e.g., Moorthi,
2000). It cannot be overemphasized that altering inputs or model features in
a fixed manner (i.e., without a chance mechanism) does not suffice; the out-
puts formally are still deterministic and frequentist tests still do not apply.

Second, even if chance variation can be introduced for comparisons be-
tween models or between a model and data, analyses based on that variation
miss the point; the question at hand is to characterize any existing dispari-
ties. To introduce a new source of error, even by a chance mechanism, would
lead to tests that do not address the original comparisons of interest. That is,
a problem is created that can be solved rather then solving the real problem
at hand.

Of course, one could argue that the introduced uncertainty is an attempt
to represent chance processes that are actually present in the empirical world,
but lost in the deterministic simulation code. If so, one must wonder why
chance processes were not built into the code to begin with. Moreover, this
view requires that one have good theory and empirical support for the chance
mechanism proposed. Otherwise, the simulation risks characterizing some
science fiction world, not the one science cares about. Can a modeler really
make the case, for instance, that random variation in each of several ini-
tializing conditions behaves as if drawn independently and at random from
a particular joint distribution, with constant parameters (e.g., means and
variances)? Note that there are perhaps a half dozen assumptions implied,
all of which need to be at least approximately true for the actual phenomena
being modeled. We are skeptical that in most cases such assumptions could
withstand much scrutiny (Berk et al., 1995; Berk and Freedman, 1995). For
example, the empirical observations used to initialize GCMs are not read-
ily conceptualized as proper random variables from some joint distribution,
in part because they share the same difficulties as ground truth data and
in part because they are typically not generated by well understood chance
mechanisms.

It is also possible to reformulate the problem so that the model is prop-
erly treated as deterministic, and uncertainty is introduced by the ground
truth data alone. The summary statistics from the simulation are taken as
fixed population values. And given those population values, coupled with
certain assumptions, one can construct the probability density or distribu-
tion of the summary statistics from the data (i.e., the sampling distribution)
under a limitless number of independent “trials” by which the data could
in principle be generated. Conventional tests and confidence intervals then
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naturally follow. However this assumes that the data are generated by a well
understood chance mechanism (e.g., probability sampling). As noted above,
ground truth data commonly have extremely complex properties not well
captured in a frequentist thought experiment. More likely, the data are a
population or a convenience sample. In the first case there is no uncertainty,
and the thought experiment of limitless independent trials does not apply.
In the second case, there is typically no way properly to represent the chance
process by which the data were produced (Berk and Freedman, 1995). Then,
conventional tests and confidence intervals do not apply.

To further complicate matters, there are other kinds of uncertainty linked
to such things as how well the underlying physics is represented in the com-
puter code or to the values of certain parameters. These cannot easily be
placed in a frequentist framework. The Bayesian alternative, based on sub-
jective probabilities, could in principle be applied, but uncertainty that comes
from potential problems with the computer model itself are not well handled
by Bayesian approaches either, unless the computer model is reformulated
from the ground up. For example, one could in principle place a prior joint
probability distribution on all of the model’s parameters, but this is not usu-
ally the way simulation models are conceptualized and would be a Herculean
task requiring yet another set of assumptions.

2.3 What do the Experts Say?

The broad set of problems described above are not aberrations. A recent
collection of didactic papers on the analysis of climate variability includes
three chapters addressing model validation, all of which rely heavily on over-
all summary statistics and hypothesis tests. Frankignoul (1999) argues for
the use of conventional t-tests and its multivariate generalizations. Briffa
(1999) makes the case for bivariate Pearson correlations (and associated sta-
tistical tests) and eyeball inspection. Livezey (1999) considers resampling
procedures borrowed from statistics for situations in which conventional dis-
tributional assumptions cannot be met. These didactic expositions of how
model assessment should be done would seem to encourage many of the diffi-
culties just described. It is not surprising, therefore, that even when climate
scientists try to do the right thing, the model evaluations can be unsatisfying
(e.g., Greve, 2000; Van Minnen et al., 2000, section 4.2).

Even more to the point are the conclusions from a recent workshop on
evaluating complex computer models held at the Los Alamos National Lab-
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oratories, sponsored by the the National Research Council’s Committee on
Applied and Theoretical Statistics and by the National Institute of Statis-
tical Science.2 Perhaps the key conclusion was that model evaluation is a
daunting enterprise and solutions do not yet exist for a variety of important
problems. Specific difficulties include a lack of adequate “ground truth” data,
characterizing and propagating uncertainty, and making more than superfi-
cial comparisons between large, high-dimensional output and the available
data. There was also agreement, however, that whether because of “culture”
or the incentives that modelers face, conventional model evaluation practice
typically fails to exploit a host of modern strategies and procedures from
statistics and applied mathematics (Berk et al., 2000a). Sophisticated sta-
tistical tools are certainly appreciated and applied in climate science (Daley,
1993; Xue et al., 1994; Jiang et al., 1995; Wilks, 1995; Ghil and Yiou, 1996).
However, these techniques are used primarily in empirical, data-driven stud-
ies, not in computer model evaluations.

3 Potential Statistical Contributions

Most of the work that has appeared in statistical journals addressing com-
puter simulation models focuses on the sensitivity of the simulation output
to variation in simulation input. Some work considers methods to decompose
variation in model output as a function of simulation input (Saltelli et al.,
1999; Archer et al., 1998). In principle, one can then learn which inputs are
most important in driving model outputs. Related other work examines how
best to develop statistical models of input/output relationships (Currin, et
al., 1991; Haylock and O’Hagan, 1996; Lim et al., 1997; Kennedy et al., 1999;
Schoenberg et al., 2000), often with the intent of designing sets of computer
simulation experiments so that one is able to make good use of each com-
puter run (Sacks et al., 1989). Computer simulations can be very costly. The
strategy, therefore, is to choose in a highly informed manner which computer
simulations to run.

At the same time, there are a range of existing statistical tools that could
be easily transferred to model evaluation problems. Obvious examples are
the tools used in data analysis. One treats the computer inputs and outputs
as a virtual world that needs to be described in much the same way that one

2Over 100 modelers, mathematicians, and statisticians participated in the two-day
workshop.
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would try to describe the relationships between measured variables in the real
world. When there are “ground-truth” data as well, their relationships to the
virtual output data are another essential analysis. An effective description of
the virtual world would provide insights into how the computer simulation is
performing, which in our view is a necessary step before deciding what about
the model is satisfactory and what about the model is not. The “how” might
be summarized in a few simple statistics, but more likely would require at
least several different kinds of summaries addressing different features of the
simulation. In addition, statistical graphics are likely to be essential because
patterns in the data, not easily represented by numerical summaries alone,
can sometimes be critical.

From this perspective, one could draw on the long-standing tradition
of exploratory data analysis (Mosteller and Tukey, 1977; Cleveland, 1993)
which, thanks to modern computing, is enjoying remarkable growth. Exam-
ples include sophisticated smoothers (Chambers et al., 1979; Hastie and Tib-
shirani, 1990), graphical regression (Cook, 1998a), data mining (Breiman et
al., 1993; Hand, 1998), and dimension reduction procedures such as sliced in-
verse regression (Duan and Li, 1991) and principal Hessian directions (Cook,
1998b). However, the goal remains the same: to exploit as much of the
available information as possible to gain understanding about what may be
going on. While for some this is merely a “blue-collar” enterprise, it is no
less essential than in scientific work more generally.

In addition to statistical tools and strategies that might be effectively
transferred, there are a host of unsolved model evaluation problems on which
modelers, applied statisticians, and statistician might jointly make important
contributions. Building on the Santa Fe workshop noted earlier (Berk et al.,
2000a), we list very briefly below some key issues. Readers interested in the
technical details are urged to examine the workshop report.

• Data for Model Evaluation — How does one collect better data for
model evaluation or better assess the properties of existing data? For
example, how might adjoint methods (Talagrand and Courtier, 1987)
be used to design formal sampling plans taking into account especially
important locations in time and space. There are several traditions in
statistics that might be exploited, such as adaptive sampling (Thomp-
son and Seber, 1996) and model-based sampling (Cumberland, 1998).
One advantage of such methods (and probability sampling more gener-
ally), is that uncertainty resulting from sampling error can be properly
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represented. This is not true for “convenience samples” or “judgment
samples,” which are not collected using explicit chance mechanisms.

• Computer Experiments — How does one design and implement com-
puter experiments when computation is costly? This is an area in which
there has already been significant statistical work, as noted above. Mat-
ters are substantially more complicated when it is not clear in advance
exactly what analyses will be undertaken (which is almost always the
case). There are a number of new developments on model-robust de-
signs (Li and Nachtsheim, 2000) that could well be useful.

• Comparing Model Output to Data — What features should one examine
when making comparisons between very high dimensional model output
and data? How then are systematic comparisons to be undertaken such
that important scientific information is not obscured beneath layers
of statistical manipulations? Current practice relies very heavily on
eyeball assessments, but surely one can do better. For example, one
might try to formalize what is done in good eyeball assessments building
on insights from the statistical literature on imaging and vision (Ogden,
1997; Zhu, 1997; Simhadri et al., 1998). In addition, data mining and
dimension reduction (noted above) could play a very important role.

• Statistically Equivalent Models (SEMs) — How can one develop sta-
tistical approximations of computer code to employ as substitutes for
the computer code? Such approximation can bring with them a wide
variety of benefits including a wealth of diagnostic tools that would
otherwise be unavailable for model evaluation. One example is model
checking plots (Cook, 1998a) in which model-based output and model-
free output are formally compared. Insofar as the statistical model em-
ulates key feature of the computer model, statistical diagnostics such
as this can be used to make inferences about the computer model.

• Competitive Statistical Models (CSMs) — How can one make better
use of statistical models developed to characterize the same empirical
phenomena as computer models? If such statistical models do a better
job fitting the data and/or forecasting, the computer model is not using
all of the available information, or that information is not being prop-
erly exploited. Indeed, it may sometimes be possible for the statistical

10



model to suggest precisely where the computer model is inadequate
(Berk et al., 2000b).

• Sensitivity Analysis — What statistical methods may be used in sensi-
tivity analyses as alternatives to adjoint techniques when the statistical
methods are more easily developed and/or provide more instructive re-
sults? For example, are there variations on, or generalizations of, the
concept of influence (Cook, 1986) that might be instructively applied?

• Uncertainty Analysis — There are many different kinds of uncertainty
linked to computer models, some associated with data used as inputs,
with the parameterizations, with the level of resolution employed, with
the nature of boundary conditions, with the numerical methods, with
the basic science itself, and many more. Some of these are not easily
conceptualized with conventional statistical methods, let alone com-
bined in useful and practical ways. Clearly, there is important work to
do characterizing uncertainty.

4 Conclusions

Few would dispute that a far better job could be done evaluating computer
models used in climate science. The real issue here, therefore, is what role
statistics can play. For many climate scientists, statistics may seem to be
little more than applied mathematics. As such, the discipline of statistics
at best offers some useful tools that can sometimes help in model evalua-
tion. For some climate scientists, this provides enough motivation to import
snippets of statistical technology. However, for statisticians the statistical
procedures rest on a world view and set of related concepts that give the
mathematics meaning. Absent an understanding of that world view and its
related concepts, it is all to easy to overlook instructive statistical procedures,
to use such procedures ineffectively, or simply to get it wrong.

At the same time however, statisticians hardly have all the answers. In-
deed, for some of the most important and interesting problems, they have
no answers at all. The good news is that a wonderful, joint research agenda
for modelers, applied mathematicians, and statisticians is implied. But it
will take a concerted and cooperative effort from all stakeholders to make
significant progress.

11



5 References

Archer, G., Salteli, A. and Sobol, I.M. (1997) “Sensitivity Measures, ANOVA
like Techniques, and the Use of Bootstrap,” Journal of Statistical Com-
putation and Simulation, 58, 99-120.

Barron, E.J. (1995) “Climate Models: How Reliable are their Predictions?,”
Consequences: The Nature and implications of Environmental Change,
1(3), 17-27

Berk, R.A., Bickel, P., Campbell, K., Keller-McNulty, S., and Kelly, E.,
and Sacks, J. (2000a) “Workshop on the Statistical Approaches for the
Evaluation of Complex Computer Models, Working paper (under re-
view), Statistics Group, Los Alamos National Laboratory, Los Alamos,
New Mexico.

Berk, R.A., Bond, J., Lu, R., Turco, R. and Weiss, R.E. (2000b) “Computer
simulations as experiments: using program evaluation tools to assess
the validity of interventions in virtual worlds,” in L. Bickman (ed.) Re-
search Design: Donald Campbell’s Legacy, pp 195-214, Newbury Park,
CA: Sage Publications

Berk, R.A., Western, B. and Weiss, R. (1995) “Statistical Inference for
Apparent Populations.” In Marsden, P. (ed.) Sociological Methodology,
1995, pp 178-203, Cambridge, UK: Blackwell Publishing.

Berk, R.A., and Freedman, D. (1995) “Statistical Assumptions as Empiri-
cal Commitments.” In Blomberg, T., and Cohen S. (eds.), Law, Pun-
ishment and Social Control: Essays in Honor of Sheldon Messinger :
245-248, New York: Aldine de Gruyter.

Bonan, G.B., (1997) “Effect of Land use on Climate in the United States,”Climate
Change 3, 449-486.

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1993) Classi-
fication and Regression Trees New York: Chapman & Hall.

Briffa, K.R. (1999) “The Simulation of Weather Types in GCMs: A Re-
gional Approach to Control Run Validation.” In von Storch, H., and
Navarra, A. (eds.), Analysis of Climate Variability: Applications of
Statistical Techniques, New York: Springer.

12



Chambers, J.M., Cleveland, W.S., Kleiner, B., and Tukey, J. (1983) Graph-
ical Methods for Data Analysis, Boston: Duxbury Press.

Cleveland, W.W. (1979) “Robust Locally Weighted Regression and Smooth-
ing Scatterplots.” Journal of the American Statistical Association 74:
829-836.

Cleveland, W.S. (1993) Visualizing Data, Summit, New Jersey: Hobart
Press.

Cook, R.D. (1986) “Assessment of local influence” (with discussion) Journal
of the Royal Statistical Society, Series B, 48: 133-155.

Cook, R.D. (1998a) Regression Graphics: Ideas for Studying Regressions
Through Graphics. New York: John Wiley.

Cook, R.D. (1998b) “Principal hessian directions revisited” (with discus-
sion). Journal of the American Statistical Association, 91, 84-100

Crowley, T.J. and Berner, R.A. (2001) “ CO2 and Climate Change.” Sci-
ence, 292: 870-872.

Cumberland, W.G. (1998) “Ratio, Regression, and Related Estimates in
Sample Survey Methodology,” in Encyclopedia of Biostatistics, P. Ar-
mitage and T. Colton (eds, New York: John Wiley.

Currin, C., Mitchell, T., Morris, M., and Ylvisaker, D. (1991) ”Bayesian
prediction of Deterministic Functions, with Applications to Design and
Analysis of Computer Experiments,” Journal of the American Statis-
tical Association, 86, 953-963.

Daley, R. (1993) Atmospheric Data Analysis. Cambridge: Cambridge Uni-
versity press.

Daley, R., and Mayer, T. (1986) “Estimates of global analysis error from
the Global Weather Experiment Observational Network.” Monthly
Weather Review, 114: 1642-1653.

Duan, N., and Li, K.C. (1991) “Slicing Regression: A Link-Free Regression
Method.” Annals of Statistics, 19: 505-530.

13



Frankignoul, C. (1999) “Statistical Analysis of GCM Output.” In von
Storch, H., and Navarra, A. (eds.), Analysis of Climate Variability:
Applications of Statistical Techniques, New York: Springer.

Ghil, M., and Yiou, P. (1996) “Spectral Methods: What They Can and Can-
not Do for Climate Time Series.” In Anderson, D.T.L., and Willebrand,
J. (eds.) Decadal Climate Variability: Dynamics and Predictability.
NATO ASI Series, Vol I 44, Berlin: Springer-Verlag.

Grassl, H. (2000) “Status and improvement of Coupled Circulation Models.”
Science, 288: 1991-1997.

Greve, R. (2000) “On the Response of the Greenland Ice Sheet to Green-
house Climate Change,” climate Change, 46, 289-303.

Hand, D.J. (1998) “ Data mining: statistics and more?” The American
Statistician 52: 112-118.

Hänninen, H. (1995), “Assessing Ecological Implications of Climate Change:
Can We Rely on Our Simulation Models?,” Climate Change, 31, 1-4.

Hastie, T.J., and Tibshirani, R.J. (1990) Generalized Additive Models, Lon-
don: Chapman Hall.

Haylock, R. G. and O’Hagan, A. (1996) “On inference for outputs of com-
putationally expensive algorithms with uncertainty on the inputs.” In
J.M. Bernardo et al (eds.) Bayesian Statistics 5 : 629-637, London:
Oxford University Press.

Jiang, N., Ghil, M., Neelin, J.D., (1995) “Forecasts of Equatorial Pacific
SST Anomalies Using and Autoregressive Process Using Singular Spec-
trum Analysis,” Experimental Long-lead Forecast Bulletin 4(1): 24-27.

Kennedy, M., Oakley, J., and O’Hagan, A. (forthcoming, 2000). ”Un-
certainty Analysis and Other Inference Tools for Complex Computer
Codes.” In J.M. Bernardo et al (eds.), Bayesian Statistics 6, London:
Oxford University Press.

Kerr, R.A. (2000) “Second thoughts on Skill of El Niño Predictions,” Sci-
ence, 290, 257-258.

14



Li, W. and Nachtsheim, C.J. (2000) “Model-robust factorial designs,” Tech-
nometrics, 42, 4, 345-352).

Lim, Y.B., Sacks, J, Studden, W.J., and Welch, W. J. (1997) “Design and
Analysis of Computer Experiments When the Output is Highly Corre-
lated Over the Input Space,” Technical Report # 62, National Institute
of Statistical Sciences, Research Triangle, North Carolina.

Livezey, R.E., (1999) “Field Intercomparison.” In von Storch, H., and
Navarra, A. (eds.), Analysis of Climate Variability: Applications of
Statistical Techniques, New York: Springer.

Lu, R., Turco, R.P. and Jacobson, M.A. (1997a),“An Integrated air Pollu-
tion Modeling System for Urban and Regional Scales: 1. Simulations
for SCAQS 1987,” Journal of Geophysical Research, 102, 6063-6079.

Lu, R., Turco, R.P. and Jacobson, M.A. (1997b),“An Integrated air Pollu-
tion Modeling System for Urban and Regional Scales: 2. Simulations
for SCAQS 1987,” Journal of Geophysical Research, 102, 6081-6098.

Mearns, L.O., Rosensweig, C., and Goldberg, R. (1997, “Mean and Variance
Change in Climate Scenarios: Methods, Agricultural Applications, and
measures of Uncertainty,” Climate Change, 35, 367-396.

Moorthi, S. (2000) “Application of Relaxed Arakawa-Schubert Cumulus
Parameterization of the NCEP Climate Model: some Sensitivity Ex-
periments,” in Randall, D. A. (ed.) General Circulation Model Devel-
opment: Past Present and Future, New York: Academic Press.

Mosteller, F., and Tukey, J. (1977) Data Analysis and Regression, Reading,
MA: Addison-Wesley.

Ogden, R.T. (1997) Essential Wavelets for Statistical Applications and Data
Analysis, Boston: Birkhäuser.
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