
UC Irvine
ICS Technical Reports

Title
A linear time algorithm for deciding interval graph isomorphism

Permalink
https://escholarship.org/uc/item/8ss2q7bp

Authors
Lueker, George S.
Booth, Kellogg S.

Publication Date
1977

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8ss2q7bp
https://escholarship.org
http://www.cdlib.org/

A MNEAR TIME ALGORITHM

FOR DECIDING INTERVAL

GRAPH ISOMORPHISi^

Notice: This Material
George S. Lueker rv-im. x
Kellogg S."^ootlf^ UG pTOtSCtGCl

by Copyright Law
(Titie 17 U.S.C.)

Technical Report #109

Department of Information and Computer Science
University of California, Irvine

Irvine, California
92717

A LINEAR TIME ALGORITHM FOR DECIDING

INTERVAL GRAPH ISOMORPHISM

by

George S. Lueker+

and

Kellogg S. Booth++

2 ^

VoO t \Si!

+Supported by the National Science Foundation under Grant
MCS77-04410 at Irvine and by NSF Grant GJ-1052 at Princeton
University

++Supported by the National Research Council of Canada under
Grant No. A-4307 at Waterloo and by the U.S. Energy
Research and Development Agency under Contract No.
W-7405-Eng-48 at Lawrence Livermore Laboratory

Authors' addresses:

George S. Lueker
Department of Information and Computer Science
University of California, Irvine
Irvine, California 92717

Kellogg S. Bootn
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Abstr ac t

A graph is an interval graph if and only if each of its

vertices can be associated with an interval on the real line

in such a way that two vertices are adjacent in the graph

exactly when the corresponding intervals have a nonempty

intersection. An efficient algorithm for testing isomorphism

of interval graphs is implemented using a data structure

called a PQ-tree. The algorithm runs in 0(n + e) steps for

graphs having n vertices and e edges. It is shown that for a

somewhat larger class of graphs, namely the chordal graphs,

isomorphism is as hard as for general graphs.

1. Introduction.

Let G be a graph; let V be its set of vertices and let E

be its set of edges. Let n be the number of vertices and e be

the number of edges. G is said to be the intersection £raph

of a family of sets F = {S,}"? , if there is a one-to-one
1 ^ 1=1

correspondence between V and F such two vertices are adjacent

if and only if the corresponding sets have a nonempty

intersection. For example, G is said to be an interval graph

if it is the intersection graph of a family of intervals on

the real line, that is, if it is possible to set up a

one-to-one correspondence between its vertices and a set of

intervals on the real line such that two vertices are adjacent

if and only if the corresponding intervals have a nonempty

intersection. The set of intervals is called an intersection

model for G. Figure 1 gives an example of an interval graph

and its intersection model. The problem of characterizing

such graphs was posed by Hajos [8]. Since then a number of

interesting applications for interval graphs have been found;

[15] contains a survey of these applications. A somewhat

larger class of graphs is the class of chordal graphs. If C

is a cycle in a graph G, C is said to have a chord if there is

an edge in G, other than the edges of the cycle, which

connects two vertices of the cycle. A graph is a chordal

graph if every cycle in G of length greater than three has a

chord. In addition to being called chordal graphs [7], such

graphs have also been called triangulated graphs [16], rigid

circuit graphs [6], and acyclic graphs [12]. It is known that

Page 2

any interval graph is also a chordal graph [12]; in fact, it

has been shown that a graph is a chordal graph if and only if

it is the intersection graph of a family of subtrees in a tree

[7] .

Although the general problem of determining graph

isomorphism appears to be hard, for some special classes of

graphs isomorphism can be decided efficiently. For example,

for planar graphs, it can be decided in 0(n + e) time [10].

In this paper we discuss the problem of deciding isomorphism

for interval graphs and for chordal graphs. We show that for

interval graphs, isomorphism can be decided in 0(n + e) time;

for chordal graphs, on the other hand, we show it to be as

hard as arbitrary graph isomorphism. Most of the ideas in

this paper can be found in the authors' theses [2, 14],

Additional results, dealing with the complexity of isomorphism

for a class of graphs between the interval graphs and chordal

graphs, can be found in [3],

2. A characterization of interval graph isomorphism.

A clique of a graph G is a maximal subset of V all of

whose elemehts are adjacent. For each vertex v, let C(v) be

the set of cliques which contain v. The following

characterization is due to Fulkerson and Gross.

Page 3

Theorem [6J. G is an interval graph if and only if there

exists a linear ordering of its cliques such that for each

vertex v, the elements of C(v) appear consecutively within the

ordering.

In the interval graph recognition algorithm in [6], G is

immediately rejected if it fails to be a chordal graph; if G

is chordal, [6] demonstrates a polynomial time algorithm to

construct all of its cliques. It is easy to see from this

algorithm that a chordal graph has at most n cliques, and that

the sum of their sizes is 0(n + e).

The Fulkerson-Gross characterization is used in [4J to

produce the following algorithm to test whether G is an

interval graph.

Page 4

Algorithm 1. Interval graph recognition,

boolean procedure INTERVAL(G);

begin

i.f G is not a chordal graph then return false;

let TT be the set of all orderings of the cliques

of G;

tor each vertex v G V do

remove from TT those permutations which do not

have all elements of C(v) appearing consecutively;

i f TT 7^ 0

^£11 true

return false

end.

Recently 0(n + e) algorithms have been developed to

determine whether G is chordal and to find all of its cliques

[14, 16]; nonetheless, Algorithm 1 at first appears to be

terribly inefficient, since the set TT which is being

manipulated can be very large. However, [4] shov/s how to

implement this algorithm to run in 0(n + e) time by a very

careful choice of the data structure for TT; this data

structure is called a PQ-tree, A PQ-tree is an ordered tree

whose nonterminal nodes (i.e., all nodes except the leaves)

fall into two classes, namely the P-nodes and Q-nodes; a

nonterminal node is said to be of type P or Q. Two trees T

and T' are said to be equivalent, written T = t', if one may

be obtained from the other by applying any combination

Page 5

(possibly none) ol the following two classes of

transformations, called equivalence transformations;

a) arbitrarily reordering the children of a P-node.

b) reversing the ordering of the children of a Q~node.

(A structure similar in principle to a PQ-tree was used in a

planar graph recognition algorithm [13], although it was not

described as a tree; in [4] it is shown how the idea in [13]

may be streamlined and implemented efficiently to produce

several efficient algorithms.)

A PQ-tree is proper if each P-node has at least 2

children, and each Q-node has at least 3 children. The

frontier of a PQ-tree is the ordering of its leaves obtained

by reading them from left to right. The frontier of a node t,

written F(t), is the frontier of the subtree rooted at t. An

ordering of the leaves of T is consistent with T if it is the

frontier of a tree equivalent to T, The set of all orderings

consistent with T is denoted CONSISTENT(T). Figure 2 shows a

PQ-tree and two other equivalent PQ-trees; in this and

subsequent figures, P-nodes are drawn as circles, Q-nodes as

rectangles, and leaves as dots. When it is desirable to

represent a node without specifying its type, a small triangle

will be used; large triangles will represent subtrees.

In our applications, we will let the leaves of T be the

the cliques of G. It turns out that Algorithm 1 can be

implemented efficiently by manipulating a tree T such that

TI is CONSISTENT (T). In fact, the following may be proven.

Page 6

Theorem [4]. Interval graph recognition may be performed

in 0{n + e) time. Moreover, if G is an interval graph, then

there is an 0(n + e)-time algorithm to construct a proper

PQ-tree T such that CONSISTENT(T) is precisely the set of

orderings of the cliques of G in which C(v) appears

consecutively for all v.

An implementation of this test has been programmed [17],*

the implementation contains a number of interesting ideas not

present in [4]. Also, Fischer and Ladner have made numerous

helpful suggestions about the implementation of the algorithm

[5J .

The tree guaranteed by this theorem will henceforth be

denoted T(G). We begin to attack the question of determining

isomorphism of two interval graphs G and G' by compar ing-; T (G)

and T (G ') .

The following theorem tells us that isomorphic graphs

will have equivalent PQ-trees.

Theorem 1: If and T2 are PQ-trees, with the same set

of leaves, such that CONSISTENT(T^) = CONSISTENT{T2), then

b : ^•2-

Proof; If two trees have different numbers of leaves,

they can clearly neither be equivalent nor have identical

consistent sets. Thus we may assume both trees have the same

number of leaves; let this common number be m. We now prove

the theorem by induction on m. If m=l then there is only a

Page 7

I

single PQ-tree, consisting of only one leaf node, and the

theorem is trivially true.

Assume then that the theorem is true for all trees with

less than m leaves, where m > 1. Let and 1*2 be two trees

having m leaves with CONSISTENT (T^) = CONSISTENT (T2) . Vie

claim that the roots of T^^ and Tj (necessarily nonterminal

nodes) either are both P-nodes having subtrees which can be

corresponded so that pairwise they are isomorphic or else they

are both Q-nodes whose subtrees in left-to-right order (or the

reversal) are pairv/ise isomorphic. This is sufficient to

establish that T^ = T2.

We prove the claim by first showing that each root has

the same number of subtrees, and that these subtrees partition

the leaves in tne same way; that is, we show that there- is a

one-to-one correspondence between the subtrees of Tj^ and T2

such tnat cor respond ing trees have the same sets of leaves.

Pick any subtree T' of the root of T^. its leaves appear

somewhere in T^.

Suppose these leaves occur in more than one subtree of

the root of T2. Consider two such subtrees. If either one of

these subtr ees does not consi st entirely of leaves from T'

then we have the situation on the left in Figure 3, where x

and y are leaves in one subtree of T^, z is in a different

subtree of T2, and both y and 2 are in T' but x is not. We

can reverse the entire left subtree in T2 to obtain an

equivalent tree in v;hich x separates y and z; this is shown

Page 8

on the right of Figure 3. This is a contradiction because y

and z can only be separated by leaves of T'. Thus we know

that if the leaves of T' occur in more than one subtree of

then they comprise all of the leaves of those subtrees.

Continuing the assumption that the leaves of t' are in

more than one subtree of T^, let y and z be tv^?o leaves of T'

which are in distinct subtrees of note that since has

at least one other subtree in addition to T' we can choose a

leaf X which is not in t'. By the discussion above we know

that X is in no subtree of T2 which contains leaves from T'

and thus x, y, and 2 appear in distinct subtrees in T^. This

implies that the root of T^ is a Q-node since otherwise we

could rearrange three of its subtrees as in Figure 4 and

obtain a contradiction as before. But if the root is a Q-node

we are again in trouble. We can rearrange T^^ so that x is

closer to either y or z; see Figure 5. This contradicts the

fact that if x, y, and z are in separate subtrees of the root

of T2, and if this root is a Q-node, then the relative order

of X, y, and z is determined up to reversal. We are thus left

with the conclusion that all leaves of T •" must occur within a

single subtree of T^. Thus the partition of the leaves of T^^

induced by the subtrees of its root must be a refinement of

the partition of the leaves of T2 induced by the subtrees of

its root. A symmetric argument shows that the same statement

is true if we interchange the roles of T^ and T2. Thus the

two partitions must in fact be identical, as was desired.

Wote that this implies that both roots have the same number of

Page 9

children? call this number r.

The next claim is that the roots are either both P-nodes

or both Q-nodes. If r = 2 both roots must be P-nodes, since

the trees are proper. If r >3, and the roots are of

different types, assume without loss of generality that has

a P-node root and has a Q-node root. Then we could choose

leaves x, y, and z such that we have the situation in Figure 6

in which y always occurs between x and z in T^ but not in T^^.

This verifies the second claim.

Finally, we see that the subtrees are pairwise isomorphic

(given the pairing determined by the partitioning of leaves)

by use of the inductive hypothesis. []

Theorem 1 enables us to conclude that if G and G' are

isomorphic, then T(G) and T(G') are equivalent. Now we attack

the converse problem: we wish to guarantee that if T(G) and

T(G') are equivalent, then G and G' are isomorphic.

Unfortunately, however, this is not the case; it is possible

for graphs which are not isomorphic to have equivalent

PQ-trees. Figure 7 illustrates the problem we face. In order

to overcome this problem, we will have to modify the PQ~tree

so that it gives more information about the structure of the

graph. For any vertex v in G, let the characteristic node of

V, written CHAR{v)r be the deepest node t in T such that F(t)

contains C(v). We will often use the inverse image of this

function; if t is a node in T, let

Page 10

CHAR''l(t) = {v G V|t = CHAR(v)}.

Given a subset S of the leaves of T, it is useful to classify

a node t of T as pertinent with respect to S if F(t) contains

some element of S and empty with respect to S if F(t) does not

contain any element of S; the pertinent nodes are further

classified as full with respect to S if F(t) is composed

entirely of elements of S, or partial with respect to S if

F(t) contains some elements in S and some not in S. When the

set S is clear from the context, the phrase "with respect to

S" will be omitted.

Lemma 1. Let S be a nonempty set which appears

consecutively in all elements of CONSISTENT(T). Then either

a) there is a P-node or leaf whose frontier comprises

precisely S, or

b) there is a consecutive sequence of children of a

Q-node q such that the union of the frontiers of the

nodes in the sequence is S.

Proof. Let t be the deepest node in T whose frontier

contains S. Consider three cases.

Case 1. Node t is a leaf. Then the frontier of t

contains only t, so (a) holds trivially.

Page 11

Case 2. Node t is a P-node. We will show that F(t)

comprises precisely S. Assume the contrary in order to derive

a contradiction. Since t is the deepest node whose frontier

contains S, t must have at least two pertinent children;

also, oy assumption, t must have at least one partial or empty

child. Thus, we may consider two subcases.

Subcase 2.1. Node t has an empty child. Permute the

children of t so that the empty child appears between two

pertinent children. Then clearly S is not consecutive in the

frontier; this contradicts the hypothesis of the theorem.

Subcase 2.2. Node t has a partial child t^. Let be a

leaf which descends from t^ and is in S; similarly, let be

a leaf which descends from t and is not in S. Recall that t

has at least two pertinent children, and let be a

descendant in S of a pertinent child of t other than t^. If

^e between and C^, S is clearly not consecutive in
the frontier, a contradiction. Otherwise, reverse the

frontier of t^ by reversing the children of all nodes which

descend from t^^ (including tj^ itself). Then will appear

between and C^, so we again have the desired

contrad ic tion.

Case 3. Node t is a Q-node. Let t^ ,12, . • . , t be the

children of t in order from left to right. Let t.
1

(respectively t^) be the leftmost (respectively rightmost)
pertinent child of t. Note that since t is the deepest node

whose frontier contains S, i must not equal j. Now all

Page 12

children between t. and t. must be full, since otherv/ise S
J

would not be consecutive in the frontier. Thus all that

remains to be shown is that t. and t- are full. Assume for a
1 J

contradiction that they are not both full; without loss of

generality assume that t^ is partial. Then as in Subcase 2.2,

either S is not consecutive in the frontier, or by reversing

the frontier of t^ we can prevent S from being consecutive.

This final contradiction completes the proof. []

We will now attach labels to the nodes of the PQ-trees;

these labels will consist of strings of integers which

indicate how the sets C(v) are distributed over the frontier

of tne tree. The labels are defined as follows.

a) If t is a P-node or a leaf, LABEL[t] is set to

ICHAR ^(t) I, i.e., the number of vertices of G which

have t as their characteristic node.

b) If t is a Q-node, number the children of t as

t^,t2f .. .,tj^ from left to right. For each v in

CHAR~^(t) form a pair (i,j) such that t^ is the
leftmost child of t which is pertinent and t^ is the
rightmost. Sort all of these pairs into

lexicographically nondecreasing order and concatenate

them to form LABEL[t].

The resultant labeled tree is denoted T^(G). This labeling is

illustrated in Figure 8.

Page 13

Theorem 2. A labeled PQ-tree contains enough information

to reconstruct G up to isomorphism.

Proof. Given a labeled PQ-tree T, we construct a graph

G' on a set V' of vertices which contains the following

elements.

a) For each leaf or P-node t with label m, there are m

vertices, namely, (t,r), for l£r<m; these

correspond to the m elements of CHAR~^(t).

b) For each Q-node q with label

LABELIql = (ij,ji),(ij,j2,j„),

there are m vertices, namely the quadruples

('I' rj j.) / i-or l<r<m.

In view of the definition of the labels, these

correspond in a natural way to elements of CHAR"^(q).

Associate with each vertex v' G V' a set C'(v') as follows.

If v has the form (t,r), let C'(v') be the set of elements of

F(t). If v' has the form (q,r,i,j), let C'{v') be the total

Page 14

set of elements of the frontiers of the through j child

of q. By Lemma 1 and the definitions 'of the labels, if v and

v' are corresponding elements of V and v', then C(v)=C ' (v').

Form G' by letting v' and w' be adjacent if and only if C'(v')

and C'(w') intersect. Then since vertices of G are adjacent

if and only if they are contained in a common clique, G and G'

are isomorphic. []

In order to describe the test for. isomorphism, we define

the following relations. Two labeled PQ-trees T and T' are

L-identical, written T=j^t ', if they are isomorphic as ordered

trees, and corresponding nodes have equal labels. Two labeled

PQ-trees T and T' are L-equivalent, written T = t', if T can
~JLi

be made L-identical to T' by any sequence of equivalence

transformations, providing we always appropriately modify

labels of Q-nodes whose children are reversed. It is not hard

to see that the required change for a Q-node with k children

can be performed by

a) replacing each pair (i,j) in LABEL[q] by the pair

(k+1-j,k+l-i), and

b) re-sorting the pairs into lexicographically

nondecreasing order.

Page 15

Theorem 3. Two graphs G and G' are isomorphic if and

only if T^^(g) = Tj^(G') .

Proof. This follows easily from Theorem 1 and Theorem 2. []

3. The interval graph isomorphism algorithm.

Let N be the number of nodes in the PQ-tree under

consideration. A method for labeling a. PQ-tree is shown in

Algorithm 2. It is assumed that each node has a field CCOUNT

which tells the number of children. Moreover, each node has a

field NUMBER; if the sequence of children of a node, from

left to right, is t^^, t2, ..., t,^, then NUMBER[t.] is i. It i

easy to number the nodes in 0(N) time.

. s

Page 16

Algorithm 2. Labeling a PQ-tree.

procedure LABEL(T);

~ begTn
for eacn node t in T

beg in
t is a Q-node

then LABEL[tj <- the empty string;
else LABEL[t] <-0;

comment. FCOUNT[tJ will contain the number
of full children of t;

FCOUNT[t] <- 0;
comment SCOUNT[tj will contain the number

of descendants of t which are in C(v);
SCOUNT[t] <- 0;

end;

VLOOP; for each vertex' v in V do

beg in
QUEUE <- a list of all elements of C(v);
comment nodes found to be full will be

added to QUEUE;
FLIST <- a list of all elements of C(v);
for all leaves C in C(v) ^

SCOUNl'lC] <- 1;
FLOOP: while QUEUE is not empty do

begin
remove an element t from the head of QUEUE;
if SCOUNT[tJ lC(v) I then

begin
t" <- PARENT[t];
FCOUNT[f] <- FCOUNT[t'J + 1;
SCOUNTlt'J <- SCOUNT[t'] P SCOUNT[t];
£f FCOUNT[t'j = CCOUNT[t'J then

beg in
comment t' is full;
append f to the end of QUEUE;
append t' to FLIST;
for all children t" of t" do

remove t" from FLIST;
end ;

end;
end FLOOP;

Page 17

t <- any element of FLIST;
if IFLISTI = 1

then ^f t is not a Q-node
then LABEL[t] <- LABEL[t] + 1
else append the pair (1,CCOUNT[t]) to

LABEL [t]
else

begin
<l <- PARENT [t];
LEFT <- CCOUNT[q];
RIGHT <- 0;
for each element t of FLIST do

begin
LEFT <- min(LEFT,NUMBER[tj);
RIGHT <- max(RIGHT,NUMBER[t]);

end ;
append the pair (LEFT,RIGHT) to LABEL[q];

end;
RESET; reset all the modified FCOUNT and SCOUNT

fields to zero;
end VLOOP;

SORT: for each Q-node q do
sort the pairs in LABEL Iq] into lexicographically

nondecreasing order;
end.

Page 18

Lemma 2. Algorithm 2 is correct and can be implemented to run

in 0(n + e) time.

Proof. tve begin the proof of correctness by showing that

during each pass through VLOOP,

a) if CHAR(v) is a P-node or leaf, say t, then LABEL[t]

is incremented, while

b) if CHAR(v) is a Q-node q, the pair (LEFT,RIGHT) is

appended to LABEL[q], where LEFT (respectively-RIGHT)

is the NUMBER of the leftmost (respectively rightmost)

pertinent child of q.

c) LABEL[x] is unchanged for other nodes x.

In tne algorithm, FCOUNT[t] gives the number of full children

of t, and SCOUNT[tJ gives the number of descendants in C(v) of

t. QUEUE contains nodes which are found to be full. At each

iteration of FLOOP, a full node t is removed from QUEUE. If

SCOUNT[t] 7^ |C(v)|, i.e., if F(t) does not contain C(v), then

the field FCOUNT of the parent t' of t is incremented. If

FCOUNT[t'J becomes equal to CCOUNT[t'], i.e., if t' is found

to be full, then t' is added" to the queue. By a simple

induction on the level of nodes, we may conclude that the

nodes added to FLIST are precisely the full nodes in the tree.

However, a node is deleted when its parent is added, so we

conclude that at the end of FLOOP, FLIST contains a node t if

and only if t is full but the parent of t is not.

Page 19

Now let t=CHAR(v) and consider two cases.

Case 1. Node t is full. Then by the above remarks, at

the end of FLOOP the only node remaining on FLIST is t.

Looking at the algorithm, we see that LABEL[t] is modified

accordingly to its definition; if t is a P-node or leaf, its

LABEL is incremented; if t is a Q-node, the pair

(1 ,CCOL)NT [tj) is added to LABEL[t], since all children of t

are full.

Case 2. Node t is not full. Then by Lemma 1 and the

above remarks, the nodes on FLIST must form a consecutive

sequence of siblings whose frontiers together comprise

precisely C(v); moreover, their parent must be a Q-node q and

must be the characteristic node of v. Then in the algorithm,

LEFT and RIGHT become the numbers of the leftmost and

rightmost elements of this sequence, and the pair (LEFT,RIGHT)

is added to LABEL [q] , as desired.

We now know that at the termination of VLOOP, LABEL[t] is

correct for all P-nodes and leaves; moreover, for all Q-nodes

q, LABEL[q] contains the correct pairs, possibly in the wrong

order. Thus after the lexicographic sorts performed in step

SORT, the tree is correctly labeled.

To see that the algorithm is linear, first consider the

time spent in VLOOP. Note that since T is proper each node

nas at least two children. From this it follows readily that

the number of full nodes with respect to a set S is linear in

Page 20

|S|. Thus the number of passes through FLOOP for any vertex

is 0(|C(v)|); summing this over all vertices gives 0(n + e).

At first glance, step RESET may seem to require time

proportional to the number of nodes in the tree; however, if

we maintain a list of nodes whose fields are changed, we may

reset their count fields to 0 in 0(|C(v)|) time. The

remainder of the processing for a vertex is also easily seen

to be 0(|C(v)I), so the amount of time spent in VLOOP is

linear. Now consider the time spent in the sorts in step

SORT. We use Algorithm 3.1 of [1], so the time for one sort

is bounded by the length of LABEL[q] plus the range of values

of the elements of LABEL[q]. From the definition of the

labels, a bound is

0(|CHAR~1(q)I + CCOUNT[q]). (1)

Summing (1) over all Q-nodes gives 0(n + N) , v/hich is 0(n).

[]

To test for L-equivalence of trees, we may use the

following algorithm, which is based on the tree isomorphism

algorithm in 11]. The algorithm places a labeled tree T into

a form which is canonical for L-equivalence; that is, T and

T' are L-equivalent if and only if the algorithm maps them

into the same tree. A bit of explanation of the notation used

in the algorithm will be helpful. LABEL^(q) denotes the label

q would have if its children were reversed. A[t] is a

sequence which is associated with a node t during the

Page 21

algorithm; it consists of a string over the positive integers

and the symbols 'C', 'P', and 'Q/. The index of a sequence in

a family of sequences is defined as follows. Given a family

of sequences ^^2/ ...,, sort them into lexicographically

nondecreasing order. Eliminate duplicates. If a sequence A

* ' * t his the i element in the resulting ordering of distinct

sequences, we say that i is the index of A in the family.

When performing a sort, we shall arbitrarily adopt the

collating sequence

'C' < 'P' < 'Q' < 1 < 2 <

Two consecutive vertical bars (M) will be used to indicate

concatenation of sequences.

Page 22

Algorithm 3. Transformation of a labeled PQ-tree into

canonical form for L-equivalence.

' procedure CANONICAL(T);
begin

for m <- 0 to height(T) do

LOOP: begin

for each leaf C at level m do

Cloop: A[C] <- LABEL [C] || 'C';

for each P-node p at level in

Ploop: beg in

rearrange the children of p into an order

t^, t2f •. • ft|^ so that the sequence
3 [tj^] ,a [t2] ,. . . [tj^] is nondecreasing ;

A[p] <- LABEL [p] II 'P' II

/a[t2] f»»"ce[tj^] f
end ;

for each Q-node q at level m do

Qloop: begin comment let tj^,t2, . • • ,t,^ be the
children of q, in order from left to right;

LI <- LABEL[q];

L2 <- LABEL'^[qJ;
A1 <- LI II 'Q' II a[t^] ,a[t2] ,. .. ,a[tj^] ;
A2 <- L2 II 'Q' II a[tj^] ,a[tj,_3] ,...,a[t^];
if A1 < A2

then A[q] <-^ Al

else

begin

reverse the order of the children of q;

A[qJ <- A2;

LABEL[q] <- L2;

end;

end;

INDICES: <- {A[t]|t is at level m};

for each t at level m do

a[t] <- the index of A[t] in

end.

m'

end ;

Page 23

liemma 3. Algorithm 3 correctly places a labeled PQ-tree

into canonical form. That is, if and are L-equivalent,

and the algorithm transforms them into and T^,

respectively, then T '̂ and are L-identical.

Proof. Suppose we run the algorithm once on and once

o" 1'2. Let i and j each be 1 or 2; i and j may or may not be

equal. Let t (respectively t') be a node at level m in T.
1

(respectively T), if t is a node in a tree , define

^a^^a^ to be the subtree in which is rooted at t^; that
is the tree which includes t^ and all of its

ad a

descendants. We prove by induction on m that the following

four statements are equivalent:

a) T. (t) Tj (t')
b) A[t] = A[t']

c) T^(t)

d) a[t] = a[t']

Note that the lemma will then follow immediately from (a) and

(c) if we let t (respectively t') be the root of

(respectively T^).

Basis (m=0). Then t and t' are leaves. Thus (a) and (c)

are trivially equivalent; they are also equivalent to (b)

from step Cloop of the algorithm. If i=j, (b) <==> (d)

follows directly from the fact that the index function is

one-to-one. If i^j , note that the set found in the

algorithm when executed on T is the same as the set iA,, found
-1- 0

when the algorithm is executed on T„. This follows from the

Page 24

fact that if two trees are L-equivalent, the set of subtrees

of level m in one tree may be put into a one-to-one

correspondence with the set of subtrees at level m in the

other tree in such a way that corresponding subtrees are

L-equivalent; then letting m=0 and using the fact that

(a) <= => (b) , we see that must be the same for and T2.

Thus again (b) <-=> (d) follows from the fact that the index

function is one-to-one.

Inductive step. Assume that t and t' are a level m and

we know that (a) through (d) are equivalent for nodes at lower

levels. We begin the proof of the inductive step by showing

that (a) ==> (b) for t and t'. Note that t and t' have the

same type since they are roots of L-equivalent subtrees.

Consider three cases.

Case 1. Nodes t and t' are leaves. Then the argument of

the basis holds.

Case 2. Nodes t and t' are P-nodes. Since

'̂ ^(t) Tj(t'), we must have LABEL [t] =LABEL [t'] . Let the
children of t (respectively t') be (respectively

^^r^r=l^* hgain since Tj^(t) T̂ (t') , it must be that
there exists a one-to-one correspondence between the t^ and

t^ such that subtrees rooted at corresponding nodes are

L-equivalent. Thus by the inductive hypothesis the tv/o

multisets and {a[t^]}^^^ are the same.
Therefore block Ploop in the algorithm must assign the same

sequence to A[t] and A[f']. Thus (a) ==> (b) .

Page 25

Case 3. t and t' are Q-nodes. As in Case 2 let the

children of t (respectively t') be (respectively

^^r^r=l^' Mote that as in the previous case there must be a
one-to-one correspondence between the t^ and t^ such that

subtrees rooted at corresponding nodes are L-equivalent,

However, since children of Q-nodes can only be reversed, the

only two possibilities are

LABEL[t] = LABEL[t'] . (2a)

=1, (2b)

alt^l = altp (2c)

or

LABEL[t] =LABEL^[t'] (3a)

^i^^r^ -L ^j^^k+l-r^

a[tr] = „ (3c)

where in both cases part (c) follows from the inductive
a

hypothesis. In either case, the set of values {A1,A2}

calculated in the algorithm for t must be the same as that

calculated for t'. Then since A[t] and A[t'] are each chosen

Page 26

to be the lexicographically smaller of A1 and hi, they must be

equal. Thus (a) ==> (b).

This completes the proof that (a) ==> (b).

Next we show that (b) ==> (c). Note from the algorithm

that if A[tJ=A[t'] we can decompose these strings to deduce

that

LABEL[tj=LABEL[t']. (4)

t and t' have the same type, and (5)

a[t^] = a[t^], for l<r<k (6)

where the sequence ' ^2' ° (^-'̂ spectively t^ , t^ , .. ., tj^)

is the sequence of children of t in T\ (respectively of t' in

Tj) after the pass through LOOP for nodes of level m. By the

inductive hypothesis (6) yields

Then (4), (5), and (7) yield

Ti(t) =L

completing the proof that (b) ==> (c).

Page 27

Part (c) ==>' (a) since all transformations made to trees

during the algorithm are equivalence transformations. Thus so

far we have shown that

(a) <==> (b) <-=> (c).

Finally, (b) <==> (d) by an argument identical to that

used in the basis. This completes the induction. []

Lemma 4. Algorithm 3 may be implemented to run in 0(n) time.

Proof. Let nnodes^ be the number of nodes at level m; let

nchatm be the number of vertices whose characteristic node is

at level m. It is easy to establish that for each level m, a

bound on the total length of the sequences A[t] at level ra, as

well on their range of values, is

O(nnodes^_^ + nnodes^ + nchar^^) . (8)

We will now show that the time used in the pass

tnrough LOOP is bounded by (8). First consider the three

statements beginning with that labeled INDICES. Recall that

to calculate the indices, we must sort the sequences A for

nodes at level m. If we use Algorithm 3.2 in [1], the time

for the sort is bounded by the total length of the sequences

plus the maximum value of an element of a sequence. Thus (8)

gives a time bound. When we actually perform the sort, the

Page 28

sequences A[t] are used as keys in records which also contain

the value of t, so that when the sequences are sorted, the t's

are also ordered. It is then a straightforward task to number

the sequences in lexicographically increasing order, assigning

duplicates the same number, and thus to find the index to be

assigned to a[t] for each t in time bounded by (8).

Now consider the time spent in LOOP for each type of

node. (As in [1], we note that a list of vertices at each

level may be obtained in linear time by a preorder traversal

of the tree.) Statement Clbop clearly takes constant time.

The implementation of block Ploop is rather indirect; we use

the same trick used in the tree isomorphism algorithm in [1].

First set a list CHILDLIST for each P-node to the empty list.

Recall that v/e have available, from the previous pass through

LOOP, a list of all nodes t at level ra-1 in order of

nondecreasing A[t]. Scan this list in order; for each node t

with a P-node parent p, add t to the end of CHILDLIST[p].

When this has been done, each CHILDLIST appears in

nondecreasing order, so block Ploop can clearly be done in

0 (nnodes^_^+nnodeSj^) time; thus the bound of (8) holds.

Finally, consider the cost of block Qloop. Recall the

method discussed earlier for calculating LABEL^[q] from

LABELlq]. If q is a node with k children, then a bound on the

number of pairs in LABEL[qJ is 0(|CHAR~^(q)|), and a bound on

the range of values in LABEL[q] is 0(k). Thus the calculation

of label'- [qj can be performed in 0(| CHAR~^ (q) |+k) time through

Page 29

the use of Algorithm 3.1 of [1]. Summing over all Q-nodes at

level m gives (8). The remaining steps of block Qloop can

easily be done, for all Q-nodes at level m, in time bounded by

(8). Thus the time spent in the block labeled Qloop during

this pass is bounded by (8).

We nave now shown that each part of LOOP can be performed

in time bounded by (8); summing over all m, we obtain 0(N +

n) , which is linear. []

Theorem 4. Interval graph isomorphism may be decided in

0(n+e) time.

Proof. Given interval graphs G and G', proceed as

follows. First construct the trees T(G) and TMG"); as

mentioned earlier, this can be done in 0(n + e) time [4]. Use

the algorithms presented in this section to obtain

corresponding proper canonical labeled PQ-trees T and T'.

Determine whether these are L-identical; this can be done in

linear time by a preorder scan of trees. By Theorem 3, T and

T' are L-identical if and only if G and G' are isomorphic.

[]

Note that we have done more than decide isomorphism

efficiently; we have produced a compact (0(n) space)

canonical representation for interval graphs. Note that if v;e

have already computed the canonical representation, we may

test two graphs for isomorphism in 0(n) time; thus, for

example, if we were searching a large list of graphs for

Page 30

duplicates, we could precompute the canonical forms and then

quickly make the necessary comparisons.

4. Chordal graph isomorphism is hard.

It is interesting to ask whether the efficient test for

isomorphism outlined above may be extended to a larger class

of graphs. One class of graphs which might be considered is

the class of chordal graphs. As mentioned in the

introduction, the class of chordal graphs properly contains

the class of interval graphs [12]. We now show that it would

be optimistic indeed to try to extend the isomorphism

algorithm presented here to cover the class of chordal graphs.

The method is very similar to that used in [9] to prove that

isomorphism for certain other graphs is as hard as for

arbitrary graphs.

Theorem 5. Arbitrary graph isomorphism is polynomially

reducible to chordal graph isomorphism. (See [11] for more

information about polynomial reducibility.)

Proof. Define a mapping M from an arbitrary graph

G=(V,E) to a graph G'=(V',E') as follows. To avoid confusion,

elements of V' will be called points and elements of E' will

be called lines. V' contains a point for each vertex and each

edge of G; call these v-points and e-points respectively. E'

contains a line connecting each pair of v-points as well as a

line connecting each v-point and e-point whose corresponding

Page 31

elements in G are incident. Formally,

V' = V U E, and

E'={{v,w}|v and w are adjacent vertices in G}

{{v,u}|v G V, u G E, and v is incident with u}.

See Figure 9. It is apparent that this mapping may be carried

out in polynomial time.

, iNext we show that G' is chordal. Consider any cycle of

length greater than three in G'. We examine two cases.

Case 1. The cycle contains only v-points. Then it

certainly has a chord, since all v-points are adjacent.

Case 2. The cycle contains e-point. Then the two points

adjacent to this point must be v-points, and hence are

adjacent; thus we have the desired chord.

Now assume that G has at least four vertices; this

creates no serious loss of generality, since we are only

concerned with the asymptotic behavior of the algorithms. We

will show that G' contains enough information to enable us to

reconstruct G, up to isomorphism. First note that we can tell

which points of C' are v-points and which are e-points: since

all v-points are adjacent, all have degree at least equal to

n-1, which is greater than 2; on the other hand, an e-point

always has degree 2, since it always is adjacent to exactly

two v-points. Finally, we can tell whether vertices of G are

adjacent by checking whether the corresponding v-points are

adjacent to a common e-point. Thus we can reconstruct G from

Page 32

G' up to isomorphism.

We may theretore reduce the problem of testing

isomorphism of and G2 to the problem of testing isomorphism

of b{G^) and M(G2), establishing the theorem. []

Page 33

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design
and Analysis of Computer Algorithms, Addison-Wesley,
Reading, Mass., 1974.

[2] K. S. Booth, PQ-tree algorithms. Ph. D. dissertation.
Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, California,
1975. (Also available as UCRL-51953 from Lawrence
Liverraore Laboratory, Livermore, California, 1975).

13J K. 8. Booth, Problems polynomially equivalent to graph
isomorphism. Technical Report CS-77-04, Department of
Computer Science, University of Vvaterloo, Waterloo,
Ontario, Canada, 1977.

14J K. S. Booth and G. S. Lueker, Testing for the consecutive
ones property, interval graphs, and graph planarity using
PQ-tree algorithms, JCSS 13, No. 3 (December 1976), pp.
335-379.

15] M. Fischer and R. Ladner, private communication.

[6] D. R. Fulkerson and 0. A. Gross, Incidence matrices and
interval graphs. Pacific J. Math. 15 (1965), pp. 835-855.

[7] F. Gavril, The intersection graphs of subtrees in trees
are exactly the chordal graphs, J_^ Comb. Theory, 16
(1974), pp. 47-56.

[8] G. Hajos, Uber eine Art von Graphen, Internationale
Math. Nachrichten, 11 (1957), p. 65.

[9] D. Hirschberg and M. Edelberg, On the complexity of
computing graph isomorphism.. Technical Report TR-130,
Computer Science Laboratory, Department of Electrical
Engineering, Princeton University, Princeton, N. J.,
August 1973.

110] J. E. Hopcroft and R. E. Tarjan, Isomorphism of planar
graphs, in Complexity of Computer Computations, R. E.
Miller and J. W. Thatcher, eds.. Plenum Press, New York,
1972, pp. 131-152,

[11] R. M. Karp, Reducibility among combinatorial problems, in
Complexity of Computer Computations, R. E. Miller and J.
W. Thatcher, eds.. Plenum Press, New York, 1972, pp.
85-104.

[12] C. G. Lekkerkerker and J. Ch. Boland, Representation of a
finite graph by a set of intervals on the real line.

Page 34

Fund. Math. 51 (1962), pp. 45-64

[13J A. Lerapel, S. Even, and I. Cederbaum, An algorithm for
planarity testing of graphs, in Theory of Graphs:
International Symposium: Rome, July, 1966, P.
Rosenstiehl, ed.,'Gordon and Breach, Ne\7~York, 1967, pp.
215-232.

[14] G. S. Lueker, Efficient algorithms for chordal graphs and
interval graphs, Ph. D. Dissertation, Program in Applied
Mathematics and Department of Electrical Engineering,
Princeton University, Princeton, N. J., 1975.

[15] F. S. Roberts, Discrete Mathematical Models, with
ications to SocTal, Biological and Environmental

Problems, Prentice-Hall", Englewood Cliffs, N. j77~T976.

[16] D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic
aspects of vertex elimination on graphs, SIAM J. Coraput.
5 (1976) , pp. 266-283 .

[17] S. M. Young, Implementations of PQ-tree algorithms.
Masters Thesis, Department of Computer Science,
University of Washington, Seattle, Washington, 1977.

Page 35

M:

'igure 1. An interval graph G and an intersection model M for GL-:

Page 36

T:

T1

D E

D E

T":

H F G

D

igure 2. A PQ-tree T and two equivalent trees. T' arid T"i We may
conclude that ABCDEFGHI,,. DECBAFHGI, and lABCEDHFG are ' '
elements of CONSISTENT(T).

Page 37 .

or

X y
y X

'igure 3. Two different ways to orient by reversing the frontier of
a subtree.

igure 4. Two different ways to orient' by permuting subtrees of
P-node root. ! .

Page 38

or

y z z y

versus

T2:

Figure 5. Two possible frontiers for , at least one of which is
inconsistent with T2 having a Q-node root.

T •
1*

X

versus

Y.

Page 39

T-,

Figure 6. Two possible frontiers for (with a P-node root) , at
least one of which is inconsistent with T2 having a
Q-node root.

A model for G:

A model for G ;

1

C.

A PQ-tree T for G or G':

I
I
I
I

C.

c,

Page 40

Figure 7. G and G' are riot ismorphic, but T is a proper PQ-tree
for either. For brevity and clarity, graphs are represented
in this figure by their intersection models. Cliques are
indicated by showing a"point on the real line which is
contained in all of the intervals corresponding to the
vertices of the clique.

Page 41

T;

(1,2) (2.3) (3,4)

0

11 .

(1,2) (2;3) (2,4) • (3,4)

2

Figure 8. Labelled PQ-trees T and T' for G and G', respectively,
of Figure 7.

Page 42

G : V,

M

/

G' = M(G) :

Figure 9. Example of the mapping M used in the reduction of
arbitrary graph isomorphism to chordal graph isomorphism.

