
UC Santa Cruz
Journal of Systems Research

Title
[Solution] Algorithmic Heap Layout Manipulation in the Linux Kernel

Permalink
https://escholarship.org/uc/item/8ss3f7w1

Journal
Journal of Systems Research, 3(1)

Authors
Ufer, Max Jens
Baier, Daniel

Publication Date
2023

DOI
10.5070/SR33160040

Copyright Information
Copyright 2023 by the author(s).This work is made available under the terms of a Creative
Commons Attribution-NonCommercial License, available at
https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8ss3f7w1
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

Journal of Systems Research (JSys) Volume 3, Issue 1, Feb 2023

[SOLUTION] ALGORITHMIC HEAP LAYOUT MANIPULATION IN THE LINUX

KERNEL

MAX J. UFER

Fraunhofer FKIE

max.jens.ufer@fkie.fraunhofer.de

DANIEL BAIER

Fraunhofer FKIE

daniel.baier@fkie.fraunhofer.de

Foreword by the Area Chair

Memory safety violations remain a constant threat for programs. On the heap, adversaries can exploit such vulnerabilities by

carefully controlling the heap layout and aligning adjacent memory objects of a particular type. Heap-layout manipulation has

long been considered a dark art. With the rise of strong protection on the backward edge, heap layout manipulation is receiving

renewed research interest and scrutiny.

This paper introduces a framework for evaluating heap layout manipulation algorithms targeting the Linux kernel allocator,

one of the prime targets of such attacks. With this framework, researchers can study heap layout modifications and potential

mitigations to protect against attacks.

- Mathias Payer , EPFL

Reviewers

• Alessandro Sorniotti, IBM Research, Switzerland

• Luca Di Bartolomeo, EPFL

• Yanick Fratantonio, Google, Austria

Artifacts

The artifact associated with this paper is an implementation of Triscale. The artifact was independently evaluated

by the Artifact Evaluation Board (AEB) led by Eric Eide . The AEB determined that the artifact was usable by a

third party and that it could be used to reproduce the main results presented in the paper. The artifact is available at

https://github.com/fkie-cad/Algorithmic-Heap-Layout-Manipulation-in-the-Linux-Kernel.

Reviews

Anonymized reviews are publicly available at: https://openreview.net/forum?id=UqszJh5h6v

Copyright and License

Licensed under Creative Common License CC-BY-NC. Copyright retained by the authors.

https://orcid.org/0000-0002-9136-6168
https://orcid.org/0000-0001-8920-0014
https://orcid.org/0000-0001-5054-7547
https://escholarship.org/uc/jsys/aeb
https://orcid.org/0000-0001-7206-8408
https://github.com/fkie-cad/Algorithmic-Heap-Layout-Manipulation-in-the-Linux-Kernel
https://openreview.net/forum?id=UqszJh5h6v
https://creativecommons.org/licenses/by-nc/4.0/

ALGORITHMIC HEAP LAYOUT MANIPULATION IN THE LINUX KERNEL

MAX J. UFER

Fraunhofer FKIE

max.jens.ufer@fkie.fraunhofer.de

DANIEL BAIER

Fraunhofer FKIE

daniel.baier@fkie.fraunhofer.de

Abstract

To evaluate the severity of a security vulnerability a se-

curity researcher usually tries to prove its exploitability by

writing an actual exploit. In the case of buffer overflows on

the heap, a necessary part of this is manipulating the heap

layout in a way that creates an exploitable state, usually by

placing a vulnerable object adjacent to a target object. This

requires manual effort and extensive knowledge of the target.

With a target as complex as the Linux kernel, this problem be-

comes highly non-trivial. At the current time, there has been

little research in terms of employing algorithmic solutions for

this. In this work, we present Kernel-SIEVE, a framework for

evaluating heap layout manipulation algorithms that target the

SLAB/SLUB allocator in the Linux kernel. Inspired by previ-

ous work that targets user-space allocators [33–35] it provides

an interface for triggering allocations/deallocations in the ker-

nel and contains a feedback loop that returns the resulting

distance of two target objects. With this, we create the (to

our knowledge) first performance benchmarks for heap layout

manipulation algorithms in the Linux kernel. We present and

evaluate two algorithms: A pseudo-random search, whose

performance serves as a baseline, and KEvoHeap, a genetic

algorithm based on Heelan’s EvoHeap [33,35]. We show that

KEvoHeap is successful at creating the desired heap layout in

all test cases and also surpasses the user-space performance

benchmarks of EvoHeap. Finally, we discuss the challenges

of applying these kinds of algorithms in real-world scenarios

and weigh different possible approaches to tackle the prob-

lems that arise. Our research results are publicly available on

GitHub [43].

1 Introduction

From a normal user’s perspective, Linux seems to fall far be-

hind other operating systems. In May of 2021, only 2.38% of

desktop computers used Linux as an operating system, in con-

trast to the overwhelming lead of Windows with 73.54% [6].

One might think that it is only used by programmers or other

computer enthusiasts. But if you take a look behind the cur-

tain, it becomes apparent what a dominant role Linux plays

for almost everyone. While not being dominant on desktops,

according to W3Tech 75.6% of the top 10 million websites

use Unix-based operating systems, of which 56.1% are Linux

systems [55]. In 2015, of the top 25 most popular websites

according to Alexa [5], only two did not use Linux. Coin-

cidentally, these two websites were live.com and bing.com,

which are both owned by Microsoft [54]. In addition to the

web, Linux is also very prevalent on mobile devices. Android,

which uses a modified Linux kernel, has by far the biggest

market share on smartphones with 72.72% [10] and is also

the overall leading operating system across all devices [11].

With such a large and distributed usage naturally comes the

attention of malicious actors such as black-hat hackers or even

Nation-State actors who try to find and exploit vulnerabilities

in the operating system itself. These kinds of Linux kernel

vulnerabilities are especially dangerous as they can lead to

full control over the device with root access on a variety of

different kinds of devices like phones, desktop computers,

servers, and today even IOT devices or cars. They are also

very valuable: Zerodium pays up to $50.000 for an exploitable

local privilege escalation bug [14].

As the kernel is an incredibly complex piece of code, con-

sisting of over 27 million lines of code [17], security-related

bugs are being reported regularly. Because of the sheer

number of bugs being reported every day, they can not all

be addressed immediately. Instead, they have to be priori-

tized [53]. One factor when evaluating a security-related bug

is if it is actually exploitable. For this, the analyst has to

create a working exploit using the presented vulnerability to

prove its exploitability. As this can be a very difficult and

time-consuming process (especially when it comes to ker-

nel exploitation), ways to automate parts of this task were

researched.

While some parts in exploit development like shellcode

creation have been successfully automatized, many tasks still

require manual effort by the exploit developer. One challenge

which one often faces when dealing with memory corruption

vulnerabilities regarding the heap is interacting with the target

in a way that brings the heap into an exploitable state. This

is often referred to as Heap Layout Manipulation [34] or

Heap Feng Shui [50]. While not much work has been done

regarding automating this process, it gained some attention

in the last years in the context of fully automatic exploit

generation [22, 23, 33–35, 56, 61].

In this paper, we will evaluate the performance of algo-

rithms designed to solve the heap layout manipulation al-

gorithm in the kernel. For this, we created Kernel-SIEVE,

a framework inspired by previous work from Sean Heelan

[33–35] to create heap layout manipulations in the Linux

https://orcid.org/0000-0002-9136-6168
https://orcid.org/0000-0001-8920-0014
live.com
bing.com

Journal of Systems Research (JSys) 2023

kernel and provide an interface for algorithms to solve them.

With this, we evaluated two algorithms: A pseudo-random

search that serves as a benchmark for further experiments,

and KEvoHeap, a genetic algorithm based on Heelan’s Evo-

Heap algorithms. In the end, we provide an outlook on the

challenges that have to be overcome to apply these kinds of

algorithms to real-world vulnerabilities and possible ways to

overcome them.

The solution we present is aimed towards a security re-

searcher that found a heap-overflow or underflow bug in the

kernel and wants to prove its exploitability. In the process of

finding a solution for the heap layout manipulation problem

we rely on tools like bpftrace [48] that require root access, but

these privileges are not needed to execute the final solution

(cf. 11).

In summary, this paper makes the following contributions:

• We present Kernel-SIEVE, a framework for evaluat-

ing heap layout manipulation algorithms that target the

SLAB/SLUB allocator in the Linux kernel.

• We propose and evaluate two algorithms for creating

desired kernel heap layouts: A pseudo-random search,

whose performance serves as a baseline, and KEvoHeap,

a genetic algorithm based on Heelan’s EvoHeap.

• We provide scripts to visualize candidate solutions in an

animated fashion.

• We provide a vulnerable kernel module that serves as a

case study containing a heap buffer overflow vulnerabil-

ity to demonstrate these types of algorithms in real-world

scenarios and their application in the exploit develop-

ment process.

Following our belief in open research, we provide everything

as open source on GitHub [43].

2 Related Work

The task of automatically adjusting heap layouts into an ex-

ploitable state is a sub-task of automatic exploit generation.

This is a relatively novel field of research, with most publi-

cations dating back only 5-10 years. In this section, we will

give an overview of the current state of research that is either

relevant to this work or give otherwise beneficial context for

the broader field of exploit automation.

2.1 Automation of Exploitation Sub-tasks

In 2018 Wu et al. proposed FUZE [59], a framework that aims

to facilitate the exploitation of use-after-free vulnerabilities

in the Linux kernel. It uses a combination of kernel fuzzing

and symbolic execution to identify system calls that can be

useful for exploiting a given kernel use-after-free vulnera-

bility. These primitives are also evaluated according to their

usefulness for actual exploitation. Building upon this they pre-

sented KEPLER [58], a framework that takes a control-flow

hijacking primitive in the kernel and generates a bootstrap-

ping payload for kernel-ROP based shellcodes. Continuing

their work, Chen et al. proposed SLAKE [23], a system that

uses a combination of static and dynamic analysis to identify

allocation and deallocation primitives in the Linux kernel. It

creates a database of kernel objects useful for exploitation and

the system calls which cause their (de-)allocation. With this,

it can also try to adjust the SLAB layout to allow exploitation

of a given Use-After-Free, Double Free, or Out-Of-Bounds-

Write vulnerability. Their most recent publication in this line

of work is KOOBE [22], a framework that aims to assist a re-

searcher while analyzing out-of-bounds write vulnerabilities

in the kernel. Given a PoC, it evaluates the vulnerability’s

capabilities and checks if they are sufficient for successful

exploitation. If yes, it tries to generate a full exploit, incorpo-

rating existing Heap Feng Shui techniques. If not, it uses a

novel kind of fuzzing to explore new capabilities of the given

vulnerability.

In 2018 Heelan et al. published a paper called "Auto-

matic heap layout manipulation for exploitation" which they

claimed to be the first one to address the topic of automatic

heap layout manipulation [34]. In their paper they presented

two evaluation frameworks for heap layout manipulation algo-

rithms: SIEVE, a framework for creating synthetic challenges

on different allocator implementations, and SHRIKE, a heap

layout manipulation system for the PHP interpreter. In addi-

tion to providing an interface for algorithmic solutions, it also

solves some real-world problems like extracting primitives

for heap layout manipulation. They used the pseudo-random

search to automatically create heap layouts and provide a

benchmarking baseline for future work.

One of the most recent works regarding the automatic ad-

justment of heap layouts is MAZE [56], a framework created

by Wang et al. It models the heap and the available interac-

tions with the allocator as a Linear Diophantine Equation and

solves it deterministically to find an interaction sequence that

results in the desired heap state. It also can discover heap

manipulation primitives through static analysis.

2.2 Automatic Exploit Generation

The automatic exploit generation challenge can be defined

in two different ways. The "easy" formulation which is used

most of the time, where the system gets a vulnerability, e.g.

in the form of a PoC program, and should output a full exploit

that (usually) spawns a shell, or the "hard" formulation, in

which the system also has to find the vulnerability by itself.

AEG [19] claims to be the first system that solves the hard

version of this challenge. It uses source code analysis and

symbolic execution to identify vulnerabilities and then gener-

ates a payload under consideration of input constraints. AEG

only targets stack overflow and format string vulnerabilities.

2

Journal of Systems Research (JSys) 2023

In 2020 Sean Heelan published his Ph.D. thesis about

"Greybox Automatic Exploit Generation for Heap Overflows

in Language Interpreters" [33]. He presented a greybox ap-

proach for generating exploits for existing heap overflow vul-

nerabilities without relying on symbolic execution or other

whitebox methods. It builds upon GOLLUM [35], a previous

publication of his which claimed to be the first framework for

automatically generating heap overflow exploits in language

interpreters. They employ a modular approach, using the

previously presented SHRIKE [34] system for solving the

heap layout manipulation problem and a new approach for

identifying new exploit primitives from tests. Their system

relies on multiple assumptions made about the target, e.g.

that a break for ASLR is available and control-flow integrity

protection is not deployed.

In 2018 Eckert, Moritz, et al. proposed HEAPHOPPER

[26], an automated approach, based on model checking and

symbolic execution, to analyze the exploitability of heap im-

plementations in the presence of memory corruption. Using

HEAPHOPPER, they were able to perform systematic analy-

sis of different, widely used heap implementations, finding

surprising weaknesses in them.

HAEPG [61] is an automatic exploit generation framework

proposed by Zhao et al. in 2020. It utilizes symbolic execution

to exploit heap-based vulnerabilities using provided exploit

templates. It takes a crashing input as an input and outputs

a complete exploit, which e.g. spawns a shell. In contrast to

other works, HAEPG can bypass NX [45] and Full RELRO

[49].

2.3 Kernel Exploitation

One of the most referenced resources for kernel exploitation

is the book “A Guide to Kernel Exploitation: Attacking the

Core” [46] by Enrico Perla and Massimiliano Oldani. It

provides a broad overview of kernel exploitation techniques

and their application on Mac OS X, Windows, and operating

systems of the UNIX family. In terms of Linux, it also gives

an introduction to the inner workings of the SLAB/SLUB

allocator. In the article “Linux kernel heap feng shui in 2022”

[44], the authors provide an overview of the Linux kernel

slab allocator implementation and its exploitation challenges

associated with kernel heap-related vulnerabilities. Major

changes in the Linux kernel that affect the exploitability of

heap-related vulnerabilities and their exploitation strategies

are discussed. Besides this, there is a large number of articles

and blog posts available going into detail on the exploitation

of Linux kernel vulnerabilities [51,62] and the exploitation of

variants like the Linux kernel fork used in Android [18, 52].

In 2022 Zeng, Kyle, et al. “Playing for K (H) eaps: Un-

derstanding and Improving Linux Kernel Exploit Reliabil-

ity.” [60] the authors provide a systematic study of the kernel

heap exploit reliability problem. Through this a generic heap

exploit model is presented. This model explains the pro-

cess of kernel heap exploitation, spanning from the moment

that an exploit starts to interact with a vulnerable system to

the moment that the exploit successfully triggers an attacker-

controlled payload.

3 Exploiting Heap Overflows

While allocating on the stack may be sufficient for variables

of static size and that are only used in the scope of a function,

it is not suited for allocations of dynamic size or allocations

that should persist after the function returns [47]. For these

cases, space can be allocated on the heap.

Data is written in

this direction

overflow source func data

Figure 1: Heap-layout for corrupting an example structure

containing a function pointer and some data.

The heap is a memory region that is controlled by a heap al-

locator. Its behavior is not defined in the ANSI C standard [16]

but depends on its implementation. The most common inter-

face used for allocating memory in user space is the malloc

function. In the Linux kernel its counterpart kmalloc is used.

When called, it allocates a contiguous block of memory of

the requested size and returns its address. More details on

the internals of kernel heap allocation will follow in the next

section.

char* copy_to_buffer_heap(char *input){

char buffer = kmalloc(16 * sizeof(char),

GFP_KERNEL);

strcpy(buffer, input);

return buffer;

}

Above you can see a simple function that allocates a 16-byte

buffer on the heap, copies the string that input points to to

that buffer, and returns its address. Here we have a potential

buffer overflow. However, now we can not overwrite the

return address like we would in case of a stack overflow,

as we overflow into the heap. On its own, this function is

not exploitable. However, this vulnerability can be used to

overwrite data in an adjacent allocated object. The listing

below illustrates how such a target may look like.

typedef struct target {

void* (*func)();

char *data;

} target_t;

This struct contains a function pointer as its first element.

If we can force the program (in this case, the kernel) to

3

Journal of Systems Research (JSys) 2023

allocate this structure on the heap and also manipulate the

heap allocator in a way that this allocation will be placed

directly next to our overflow source, as illustrated in Figure

1, we could overwrite the function pointer and also the data

pointer in the adjacent object. Now execution flow can be

redirected after triggering a call of func.

The above-described exploitation approach is only one of

many. Other ways include meta-data corruption or overwrit-

ing useful fields in different kinds of structs which may not

be function pointers but could lead to different kinds of primi-

tives like arbitrary read-write. What all these approaches have

in common is the need to place a target object next to a vulner-

able object. The process of creating an exploitable heap state

is usually called Heap Feng Shui [50], heap grooming [29] or

heap layout manipulation. Finding a solution for this problem

is not trivial and becomes even harder in the kernel because

of multiple factors:

• Indirect allocator access: While the heap allocator has

a direct interface, from an exploit writer’s perspective we

can not directly access it. The standard way to interact

with the kernel is via system calls. So what we have to

do is use those system calls that will trigger allocations

which will be beneficial to our goal. Unfortunately, as

the kernel is an incredibly complex piece of software,

triggering a system call might make multiple allocations

of the same or different objects, which cause side effects

to the heap, making it harder to achieve a useful heap

layout. These side effects will be referred to as noise for

the remainder of this work. For example, let’s assume we

have found primitives which can cause the following al-

locations: We have one primitive which solely allocates

the overflow source, and a second one, which allocates

the target, but always first allocates another object. Ad-

ditionally, we are able to trigger a deallocation of the

overflow source. If we simply call both allocation primi-

tives sequentially, the additional allocation of the second

primitive will be placed between the overflow source

and the target (we assume that for successful exploita-

tion they have to be directly adjacent)1. To solve this

problem, we can use the primitives we have to carefully

craft a heap layout which still results in the overflow

source and the target being adjacent. There are multiple

solutions for this example, but one may look like this:

We first allocate the overflow source two times, and then

trigger a free of the first one. This creates a "hole" in

memory before the overflow source. Now we trigger the

allocation of the target. The additional object, which is

created by the primitive, will now be placed in said hole,

while the target results adjacent to the overflow source.

Figure 2 illustrates this process.

1In this scenario we assume that we already have an unfragmented heap

state with a linear free list. In Section 5 we will show that this can be achieved

Data is written in

this direction

Not working:

overflow source object target

Working:

overflow source overflow source

overflow source

object overflow source target

Figure 2: Example illustration for how sub-optimal primitives

can still be used to create a desirable heap layout.

• Unknown initial heap state: When we start our exploit

and thus our manipulation of the heap layout, we do

not know the current heap state. When you execute

a user space program twice, we can at least expect to

get the same heap layout twice (assuming the use of a

deterministic heap allocator). In the kernel, it is even

worse due to multiple factors. First, when we start our

exploit, the kernel is already running. Because of the

massive complexity of the kernel and many background

threads/processes which also influence the kernel heap,

this makes it impossible to guess the initial heap state.

Secondly, executing the exploit multiple times can also

alter the heap in a way that the first execution influences

the second one. As we will see in the next section, the

kernel heap allocator keeps free objects in a free list.

For example, if the exploit triggers multiple allocations

and frees, this free list will be in a different state when

we execute the exploit the second time. As a result, the

allocator will behave differently. In Section 5 we will

show how to solve these problems methodically.

• Indeterministic behavior of the heap allocator: The

Linux kernel contains a configuration option called

CONFIG_SLAB_FREELIST_RANDOM. When enabled, this

will randomize a cache’s free list on initialization. This

option is out of scope for this work, as it is disabled in

the Linux default configuration and the approach we are

taking to solve the heap layout manipulation problem

requires a workaround for the free list randomization.

Adding a free list de-randomizer to the algorithm would

be a great starting point for further research.

4 Memory allocation in the Linux kernel

The Linux kernel is the core of many modern operating

systems. This includes Linux-based operating systems like

methodically.

4

Journal of Systems Research (JSys) 2023

Ubuntu [21] and Debian [15], but also e.g. the Android op-

erating system, as they use a modified Linux kernel at its

core [31]. While it works mostly in the background, a user

can interact with it via system calls. In this section, we will

describe how memory is managed in the Linux kernel and

which heap allocator implementations are available.

Directly on the physical memory sits the "Buddy Alloca-

tor" [32, 36] that maps physical memory pages into virtual

memory. The different user space allocators receive pages

directly from the buddy allocator and implement different

allocation strategies on these. In kernel space, on top of the

buddy allocator sits the "Slab Layer" that exposes the general-

purpose allocation interface kmalloc. There are different

implementations for the Slab Layer, but almost all modern

distributions use the SLUB allocator, which is the modern

default.

4.1 Slab-Allocation

The slab allocator is Linux’s general-purpose allocator and

sits on top of the buddy allocator [25, 32]. Slab allocation

was first used in OpenSolaris, and the Linux version of it is

heavily based on theirs [25, 39, 46]. The main purpose of the

slab allocator is to provide a way of allocating small objects in

an efficient way and cache commonly used objects to improve

allocation, initialization, and destroy timings. Over the last

30 years, slab allocation in Linux has evolved and changed

drastically. Today there are three different allocators between

which the user can decide before building the kernel: SLAB,

SLUB, and SLOB.

Cache Slab

Slab

Slab

Pages

Pages

Pages

Obj.

Obj.

Full

slab

Partial

slab

Empty

slab

Figure 3: The structure of caches and slabs.

Before we start discussing slab allocation, we need to dif-

ferentiate between a few somewhat ambiguous terms:

• slab allocation: General memory management strategy

• slab: Contiguous physical memory pages, which can

store data associated with objects

• SLAB, SLUB, SLOB: Different slab allocator imple-

mentations

One of the main data structures of a slab allocator is the cache.

A cache in terms of slab allocation manages memory for a

specific object type. One cache consists of multiple slabs,

which themselves are blocks of contiguous physical pages

of memory. The pages managed by a slab are cut into equal

chunks of the size of the target object. Figure 3 illustrates this

structure.

Internally, there are three classes of slabs in a cache:

slabs_full (containing all slabs without free chunks),

slabs_partial (containing slabs with free and non-free

chunks), and slabs_free (containing only free chunks). In-

formation about the different caches can be retrieved via

/proc/slabinfo, as shown in Figure 4. For the sake of

simplicity, we will only focus on the first five numbers that

/proc/slabinfo gives for each cache, as these are also

the most relevant for the later sections. The figure below

shows an example output for the task_struct cache. The

task_struct structure is the kernel representation of a user

space process [41]. The first two numbers show how many ac-

tive objects are held in the cache and how many are available

in total. In this example, four more task_struct objects can

be allocated, before the allocator has to create a new slab. The

third number gives the size of the chunks which are available

from that cache, so in this case 7872, which equals the size of

one task_struct. The fourth number tells how many objects

fit into one slab, and the fifth tells how many pages one slab

consists of. The relation of numbers three to five is obvious:

The total space available in the cache for task_struct is:

8 ·PAGE_SIZE = 8 ·4096 = 32768

⌊
32768

sizeo f (task_struct)
⌋= ⌊

32768

7872
⌋= 4

So, if four more task_struct objects were allocated, there

would be no partial or empty slabs left, so new slabs need to

be allocated for further task_struct allocations.

Generally speaking, there are two types of caches: Caches

of commonly used objects and sized caches. The first kind

is particularly useful as the kernel has many structures

which are allocated and deallocated many times. One

example would be the previously mentioned task_struct

structure. By keeping these objects in caches, allocation and

deallocation times can be reduced by leaving an object in its

initialized state when it is freed. When this object is allocated

again, there is no need to initialize it again. The sized caches

are not reserved for dedicated objects, but keep objects of

certain sizes. These sizes are all powers of two. When an

allocation is requested via kmalloc (the kernel’s general

allocation interface), a chunk from the next best fitting cache

is returned. For example, when we try to allocate 33 bytes,

we will actually get a 64 bytes chunk [25, 32]. The slab layer

can also be circumvented by using the vmalloc interface.

vmalloc accesses the buddy allocator directly and allocates

memory that is virtually contiguous but can be physically

scattered. As it comes with additional overhead and is slower

than kmalloc, its usage is discouraged [24].

5

Journal of Systems Research (JSys) 2023

Nowadays the SLUB allocator is used, which replaced the

original SLAB allocator as the modern default in Linux. A

description of its implementation can be found in appendix

A.

From an exploit writer’s perspective, SLUB opens up new

perspectives to heap exploitation:

• As the free list is stored as a linked list in the free chunks,

this enables possibilities for metadata-corruption via

overflowing into a free block and overwriting the pointer

to the next object.

• As the slab pages are now only packed with objects,

overflowing between page frame borders [46] could un-

der certain circumstances be easier, as no metadata is

corrupted in the process.

• One interesting property of SLUB is that it can combine

slabs that contain different objects of the same size. This

can open up new attack vectors for heap overflows, as

we are less restricted in the kind of target we overflow

into.

5 Kernel-SIEVE: Evaluating HLM Algo-

rithms in the Kernel

The main goal of this work is to evaluate the usefulness of

algorithmic solutions for the heap layout manipulation prob-

lem in the Linux kernel. For this, we developed a framework

called Kernel-SIEVE, which enables us to create artificial

heap layout manipulation challenges and provides an API for

candidate algorithms to solve these challenges. This frame-

work is inspired by SIEVE, the framework Heelan proposed

for evaluating heap layout manipulation algorithms on dif-

ferent allocators in user space [33]. The base challenge this

framework provides is to place two designated objects at a

certain distance in the kernel heap. These objects represent an

overflow source and a target. In this section, we will present

the aforementioned framework and go into detail on the archi-

tecture and design decisions we made due to the challenges

that arise when working in kernel space.

The architecture of Kernel-SIEVE is illustrated in Figure 5.

It consists of two components:

• Kernel Module: The kernel module is Kernel-SIEVE’s

way of interacting with the kernel heap. It can be used

to trigger the standard memory allocation operations

kmalloc, kfree, kcalloc, and krealloc. It can be

controlled via the ioctl system call. The kind of oper-

ation to perform is selected via the request parameter.

Additional information about the allocation/deallocation

to be performed are given via the struct slab_params:

struct slab_params {

size_t size;

id_t ID;

size_t nmemb;

id_t oldID;

addr_t addr;

};

The members of this struct have the following purposes:

– size: The size of the allocation to make.

– ID: An ID to associate the allocation with, for later

reference.

– nmemb: Only relevant for kcalloc: The number

of elements to allocate.

– oldID: Only relevant for krealloc: The ID of the

allocation that should be reallocated.

– addr: The resulting address of the requested al-

location. This will be filled by the kernel module

and used by the client to get information about the

heap state.

• Client: The client is a program that performs interac-

tions with the kernel module and provides an API to

candidate algorithms. The main requirement when de-

veloping the client was that it must not have any un-

foreseen side effects to the kernel heap, which would

falsify the results of candidate solutions. Modern pro-

gramming languages like Python proved not to be viable

options, as the runtime communicates with the kernel in

unpredictable ways for garbage collection, forking, etc.

Because of this, we chose to implement the client in pure

C. This gave us direct control over all interactions the

$ cat /proc/slabinfo

name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> : tunables \

<limit> <batchcount> <sharedfactor> : slabdata <active_slabs> <num_slabs> \

<sharedavail>

[...]

task_struct 836 840 7872 4 8 : tunables 0 0 0 : slabdata 210 \

210 0

[...]

Figure 4: Example output of /proc/slabinfo.

6

Journal of Systems Research (JSys) 2023

K
er

n
el

S
p

a
ce

U
se

r
S

p
a

ce

Kernel Module Kernel Heap

Client Candidate Algorithms

Interaction

Sequences

Distance

Requests
Heap

State

Interacts

Figure 5: Architecture of Kernel-SIEVE.

client performs with the kernel. An algorithm can pro-

vide the client candidate solutions via files, where each

file represents one candidate solution. This indirect form

of communication comes with the advantage, that the

programmer is free in his choice of language in which

he wishes to implement the candidate algorithm in, as

implementing complex algorithms in pure C can be quite

exhausting. The client and the algorithm are executed in

a loop via a script. The algorithm places his candidates

in a dedicated directory. The client executes the candi-

date solutions and writes the resulting distances into a

separate directory. By separating the execution of the

algorithm from the client we prevent the algorithm from

having side effects to the kernel heap from background

processes during the execution of the client.

The files, that the algorithm has to create for the client

are made of directives that are almost identical to the

ones Heelan used for communicating with his SIEVE

driver:

1. <kmalloc size ID>

2. <kcalloc nmemb size ID>

3. <kfree ID>

4. <krealloc oldID size ID>

5. <fst size>

6. <snd size>

The first four directives directly correspond to the stan-

dard allocation/deallocation interface of the kernel which

was already described in Section 4.1. All allocations are

assigned an ID, which is necessary to reference allo-

cations for frees. The last two directives are used to

allocate the two objects that eventually should be placed

at a certain distance. The client takes a file consisting

of those directives, translates them to parameters for the

kernel module, and executes them sequentially. Finally,

it calculates addr(fst) - addr(snd) and writes it to

a result file.

While implementing this framework in kernel space, we

faced certain problems that appear due to the nature of the

kernel:

• Unknown heap state: One problem everyone faces in

kernel heap exploitation is that you do not know the ini-

tial state of the heap when starting your exploit. This

problem was already outlined in Section 3. Luckily,

there is a methodical way around this called heap de-

fragmentation [23, 46]. As stated in Section 4.1, we can

use the /proc/slabinfo utility to collect information

about the current state of the cache we target. Most im-

portantly, it tells us how many active objects are in the

target cache, and how many objects are available in it

in total. When all available objects in the target cache

are exhausted, the slab allocator has to map a new page

frame into memory and create a new slab, which will

have no active objects in it. So, if we allocate enough

objects (specifically at least num_objs - active_objs),

we can fill up all partial slabs and force the allocator

to allocate a new one. If we do this every time before

executing a candidate, we can create a predictable heap

layout.

• Unstable results and reproducibility: When trying to

solve the heap layout manipulation problem algorithmi-

cally, it is essential that we can rely on the results of our

7

Journal of Systems Research (JSys) 2023

candidates to be correct and reproducible, so that if we

execute the same candidate twice, we will get the same

result twice. Unfortunately, this is easier said than done

when it comes to the kernel. The kernel runs many dif-

ferent threads in parallel, which all access the same heap.

This means that there is always the chance that another

thread performs operations on the same cache that we

target just when we execute our candidate, falsifying the

result. This is not the only problem: To not eventually

run out of memory, the client frees all allocations we

made again, clearing the slab. Due to the execution of

the candidate, we now have a free slab with a reordered

free list. This is a huge problem: The result of a candi-

date now depends on the previously executed candidates!

Our way around this is to simply create our own cache,

on which we now run our experiments. This cache will

behave the same way as any other cache would, but will

not be subject to random side effects by the kernel. There

is a simple interface to manage caches [27]:

// "include/linux/slab.h"

struct kmem_cache *kmem_cache_create();

void kmem_cache_destroy();

void *kmem_cache_alloc();

void kmem_cache_free();

The kernel module has two modes of operation: It can

either be configured to use the default kmalloc interface

or to implement our "custom cache" strategy. Here, we

create a dedicated cache for each candidate, which is

destroyed after execution. Algorithms should use the

"custom cache" mode, as this prevents the aforemen-

tioned instability problems. To be absolutely sure about

the produced solution, you can switch into the "real"

mode and check the solution with the default allocation

interface. In our experiments, the results from the "real"

mode did not differ from the "custom cache" mode, if

no other candidates were executed before.

This framework enables us to create arbitrary challenges for

candidate algorithms just like in Heelan’s SIEVE. While the

available directives allow very direct access to the allocator,

the difficulty of the challenge can be adjusted in the imple-

mentation of the algorithm, for example by only allowing

the algorithm to choose between certain combinations of di-

rectives to simulate the "indirect allocator access" problem

which was explained in Section 3. The code is available on

GitHub [43].

6 Candidate Algorithms

In this section, we will describe the algorithms that we chose

to implement and evaluate. To create a baseline to com-

pare other algorithms against, we first implemented the same

pseudo-random search that Heelan also used as a baseline [33].

This serves the additional purpose to compare the difficulty

of the problem in kernel space to the different user space allo-

cators Heelan evaluated. The second algorithm is KEvoHeap,

a genetic algorithm that is a modified version of Heelan’s

EvoHeap algorithm. We made some modifications to adjust

it to the special characteristics of the slab allocator. In the fol-

lowing sections, we will explain both algorithms in detail. A

comprehension of Heelans work can be found in in appendix

B.

6.1 Pseudo-Random Search

The algorithm we use to create a baseline for comparison is

a pseudo-random search similar to the one used in Heelan’s

work [33, 34]. It is outlined in Algorithm 6. A description of

the algorithm and its adjustments can be found in the appendix

C.

6.2 KEvoHeap

The previously described algorithm mostly serves as a base-

line, as it does not implement any real strategy. As described

before, we consider the heap layout manipulation problem

as an optimization problem regarding the distance of the

two target objects. There are many approaches for numeri-

cally solving optimization problems. One of them is genetic

algorithms. Genetic algorithms are a kind of evolutionary

algorithms, which itself is a class of optimization algorithms

that make use of basic evolutionary principles [20]. They

start with an initial set of candidate solutions (called popula-

tion), in which each is assigned a fitness value that represents

the quality of the solution. The population iteratively passes

multiple iterations (generations) in which first the offspring

is generated from the population through mutation and/or

crossover operations. The offspring then gets evaluated and

assigned a fitness value each. From the evaluated offspring

the new population is selected based on some principle aimed

towards minimizing/maximizing the fitness value. [20]. In

the following part, we will describe KEvoHeap, a genetic

algorithm based on Heelan’s EvoHeap [33] for solving the

heap layout manipulation problem in the Linux kernel.

While KEvoHeap is based on Heelan’s EvoHeap, we made

some adjustments to it to better fit it to the SLAB/SLUB

allocator. Also, the structure is different, as our Kernel-SIEVE

framework has a different execution loop than SIEVE. Here

we will explain the algorithm and point out similarities and

differences to Heelan’s EvoHeap. Algorithm 1 shows the

main routine of KEvoHeap.

Usually, a genetic algorithm consists of a main loop that

resembles the generational cycle of creating offspring, evalua-

tion and selection. In Section 5 we explained that we decided

to separate the execution of the client from the execution of

the algorithm to get rid of side effects to the kernel heap. In-

8

Journal of Systems Research (JSys) 2023

Input: target, µ, λ, mxpb, cxpb

Output: A winning individual or nothing

1 Function EvoStep(target, µ, λ, mxpb, cxpb):

2 pop← ReadPopulation()

3 dist← ReadDistances()

4 if len(pop = 0) then

5 pop← InitPopulation(µ+λ)

6 WritePopulation(pop)

7 return

8 else

9 f it← Evaluate(pop, dist)

10 for i← 0 to len(pop)−1 do

11 if f it[i] =abs(target) then

12 return pop[i]

13 end

14 survivors← Select(pop, f it,µ)

15 o f f spring← GetChildren(pop, λ,

mxpb, cxpb)

16 pop← survivors+o f f spring

17 WritePopulation(pop)

18 return

Algorithm 1: The main routine of KEvoHeap.

stead, the client and the algorithm are run alternating with

a runner script. So, although there is no main loop, it exists

implicitly. When the routine starts, the algorithm first reads

the existing population and the resulting distances of the tar-

get objects from the dedicated directories (lines 2 and 3). If

there is no existing population, that means we are in the first

iteration and have to generate a new population and write it

(lines 5 and 6). If there is, that means we are in the main cycle.

First, we evaluate the population (line 9). Then we check if

we found a solution, and if yes, return it (line 12). If not, we

first select the survivors of the current generation (line 14).

Then, we generate the offspring from the original population

and write the new population, consisting of the survivors of

the previous generation and the newly generated offspring.

The GetChildren method is listed in Algorithm 18.

GetChildren creates λ children from pop. In each itera-

tion it first selects a random individual from pop as a parent

(line 4). Then it decides based on the mutation probability

mxpb and the crossover probability cxpb whether to mutate

the parent (line 7), perform a crossover with a random dif-

ferent individual (line 12) or to simply keep it as it is (line

17). As you can see the method is identical to the one used in

EvoHeap with the small difference that we use both offspring

created from the crossover in 12, while in EvoHeap only one

is used (cf. B.1).

A detailed explanation how the algorithm represents its

individuals and how each of the genetic operators was imple-

1 Function GetChildren(pop, λ, mxpb,

cxpb):

2 children← []
3 while λ > 0 do

4 parentA←
pop[Random(0, len(pop))]

5 r← Random(0, 1)

6 if r < mxpb then

7 new← Mutate(parentA)

8 children.append(new)

9 λ← λ−1

10 else if r < mxpb+ cxpb then

11 parentB←
pop[Random(0, len(pop))]

12 newA,newB←
Crossover(parentA, parentB)

13 children.append(newA)

14 children.append(newB)

15 λ← λ−2

16 else

17 children.append(parentA)

18 λ← λ−1

19 end

20 return children

Algorithm 2: Method to generate offspring for the next

generation.

mented can be found in appendix D.

7 Evaluation

In this section, we will lay out how we evaluated the pre-

viously described algorithms. First, we describe a set of

challenges that we designed to test the effectiveness of the

different approaches. Then we show how the algorithms per-

formed on the challenges and compare them.

7.1 Synthetic Benchmarks

To evaluate the algorithms we created a set of challenges for

the algorithms to solve. We chose a similar design for the

challenges as Heelan did [33], so we can compare the results

between the different targets. In general, there are two kinds

of challenges: Natural allocation order and reverse allocation

order. In both challenges, the target object mimicking the

overflow source has to be allocated first before the allocation

of the target object. In the "natural" challenge, a normal buffer

overflow situation is simulated, where the target allocation

must follow the overflow source. In the "reverse" challenge,

we simulate an underflow instead. Recall that the underflow

source still has to be allocated first, so already in the simplest

9

Journal of Systems Research (JSys) 2023

of cases where the algorithm has direct control about the

allocation of the target objects it has to find a slightly more

complicated solution. An example solution is shown in Figure

6. Here we first allocate a placeholder object, followed by

the allocation of the underflow source. Then, we free the

placeholder object, which places the memory slot in front of

the underflow source to the beginning of the free list of the

slab. Lastly, we allocate the target object, placing it in front

of the underflow source. The algorithms will have four kinds

Data is written in

this direction

placeholder

Allocate placeholder object

placeholder underflow source

Allocate underflow source

underflow source

Free placeholder object

underflow sourcetarget

Allocate the target object

Figure 6: A solution for the reverse allocation order challenge

without any noise.

of allocation sequences to choose from in all the challenges:

1. Allocate an object of the target caches size

2. Free a previously allocated object

3. Allocate the first target object (overflow/underflow

source)

4. Allocate the second target object (overflow/underflow

target)

For both of these kinds of challenges, we scale the difficulty by

adding a certain number of noise allocations. For each "noise",

when triggering the allocation of the overflow/underflow

source additional objects are allocated before and after the

overflow/underflow source. These noise allocations can not

be freed by the algorithms, so it has to find a way to manip-

ulate the heap surface in a way that circumvents them. We

chose to always enable the algorithm to trigger allocations

of a single object of the target cache size without any noise,

as this is also almost always possible in real-world scenarios.

For example, the add_key system call, which adds a new key

to a specified key ring, will trigger an allocation of the size

of the payload parameter on the kernel heap, so it can be

used for defragmentation and manipulation of all sized caches

without accompanying noise allocations [7, 28].

We ran the experiments on a virtual machine running

Ubuntu 20.04, kernel version 5.9.7 with free list random-

ization disabled, a 16 core Intel Xeon Gold 6130 processor,

Data is written in

this direction

placeholder placeholder

Allocate two placeholder objects

placeholder

Free first placeholder object

underflow sourcenoise allocation noise allocationplaceholder

Allocate the noisy underflow source

underflow sourcenoise allocation noise allocation

Free the second placeholder object

underflow sourcenoise allocation noise allocationtarget

Allocate the target object

Figure 7: A solution for the reverse allocation order challenge

with one noise.

and 64 gigabytes of RAM. We ran our experiments against

the SLUB allocator, as it is the modern default. While be-

ing different internally the SLAB allocator would behave the

same way in the context of our experiments, as its properties

which are relevant for the manipulation process (sorting of

objects into caches, usage and behavior of the free list etc.)

are identical.

7.1.1 Pseudo-Random Search

To evaluate the pseudo-random search we ran it on the

previously described challenges with increasing noise. For

each challenge, we ran it 100 times, with an upper limit

of 200000 candidates being generated. While a larger

number of candidates may lead to more successful runs, with

one run taking up to 10 minutes, this was the maximum

possible number given our computational resources. The

allocation-free ratio was set to 0.5. This value was determined

experimentally, as it showed the best results across all noise

levels. We created benchmarks for noise values from ranging

0 to 5, resulting in 12 experiments (two per noise value,

natural allocation order and reverse allocation order). The

results are listed in table 1. As we can see in the challenges

without noise, the "natural" challenge poses fewer problems

to the algorithms than the "reverse" challenge. While this

is as expected, it is interesting to see that with the addition

of noise, the "reverse" challenge actually becomes easier

than the "natural" challenge. The reason for this becomes

apparent if we take a look at an example solution for the

"reverse" challenge with one noise, which is shown in Figure

7. First, we allocate two placeholder objects. Then, we free

the first one, placing that slot at the beginning of the free

list. Then we trigger the allocation of the underflow source.

This results in the first noise allocation being placed in the

previously freed slot, and the placeholder object in front

10

Journal of Systems Research (JSys) 2023

Noise
Solved

Natural

Solved

Reversed

Avg. Tries

Natural

σ

Natural

Avg. Tries

Reversed

σ

Reversed

0 100% 100% 3 1.99 9 7.73

1 100% 100% 195 192.6 60 54.88

2 100% 100% 2601 1957.6 375 366.86

3 100% 100% 29648 29087.47 2795 2615.93

4 32% 100% (73900) (46873.98) 28408 27671.43

5 1% 47% - - (90961) (60256.65)

Table 1: Results of the synthetic benchmarks of pseudo-random search. For each number of allocation noise, the percentage

of successful solves is given for both the natural allocation order and the reverse allocation order. Additionally, we listed the

average number of tries needed in case of success and the standard deviation of the number of tries. The statistics in brackets are

those where not all tries succeeded, so they have to be treated with care as they only represent the successful runs.

of the underflow source. By freeing the placeholder object

afterward, we can again put this slot at the beginning of the

free list. By triggering the allocation of the target object

now, we achieve the desired layout. This is the shortest

possible solution for this specific challenge. Looking at

the "natural" version of this challenge, it requires at least

one more allocation of a placeholder object to successfully

manipulate the free list for the desired heap layout. Therefore,

the algorithm has to find a somewhat more specific solution

for this problem. This feature of the natural challenge

(requiring more allocations/frees for a minimal solution)

remains when we add more noise, and this is also reflected in

the experiment results. While pseudo-random search starts to

fail at four noise in the "natural" challenge, it still solves the

"reverse" version of it 100% of the time.

In general, pseudo-random search performs reasonably

well. In our setting, it solved all problems with up to three

noise within the 200000 tries 100% of the time. However, we

can see that the average number of tries it needs to succeed

as well as the standard deviation of tries needed grows expo-

nentially. To give some perspective regarding the execution

time, running the experiment with five noise, which was only

solved once in 100 tries, took about 10.5 hours to finish.

7.1.2 KEvoHeap

To evaluate KEvoHeap we ran it on the same set of challenges

as the pseudo-random search. To generate an initial popu-

lation we used the same pseudo-random generation method

that pseudo-random search uses to generate its candidates.

We used an initial population size of 400, µ, and λ values

of 200 each, a mutation probability of 0.9, and a crossover

probability of 0.1. These values are identical to the ones

used in the evaluation of EvoHeap [33] (besides the initial

population size) and proved to be reasonable in our exper-

iments. The maximum number of mutations was set to 5.

When choosing the kind of mutation to be performed, Mutate

was chosen with a probability of 0.7, while Spray, Hole

Spray, and Shorten were all assigned a probability of 0.1

each. These values were determined by strategic experimenta-

tion and proved to perform best. After some experiments, we

also decided to disable the "Allocate in a loop" directive (see

Section D.1), as in our scenario it seemed to rather bloat up

the candidates (especially in combination with the Spray mu-

tation) and would not reasonably contribute to finding a better

solution. As the algorithm has only one allocation directive

to choose from, there is only one size group, sub group, and

selector. The upper generation limit was set to 1000. The

results are listed in table 2.

As you can see, KEvoHeap’s performance is a big improve-

ment over pseudo-random search. As one generation consists

of 400 candidates that are evaluated, the performance for

noise values of 0 and 1 can be seen as identical to pseudo-

random search, both for the "natural" and "reverse" challenge.

This is not surprising, as the initialization routine is identical

to pseudo-random search, and pseudo-random search found

solutions for these problems with fewer attempts than the

initial population size. As the noise grows, the number of

average generations needed to solve the problem grows with

it. What is interesting to see is that in the natural challenge,

the average generations and the standard deviation grow ex-

ponentially, however, the average tries and standard deviation

of the reverse challenge seem to grow linearly, with a slightly

bigger jump at 6 noise. This could indicate that it is also

an exponential rise, but with a very low base. KEvoHeap

proceeds to solve all challenges up to 6 noise with way fewer

candidates generated than pseudo-random search. This is also

reflected in the runtime: While pseudo-random search needed

about 10.5 hours for 100 runs with five noise and natural allo-

cation order (without solving the problem most of the time),

it took KEvoHeap only about 2 hours for the same problem,

with a 100% success rate.

8 Analysis and Discussion

As stated before, KEvoHeap proved to be a vast improvement

over pseudo-random search. Figure 8 illustrates the difference

in terms of candidates being generated by both algorithms.

While both algorithms perform equally at low noise levels,

11

Journal of Systems Research (JSys) 2023

Noise
Solved

Natural

Solved

Reversed

Avg. Generations

Natural
σ Natural

Avg. Generations

Reversed
σ Reversed

0 100% 100% 1 0 1 0

1 100% 100% 1.09 0.35 1 0

2 100% 100% 3 2.09 1.24 0.77

3 100% 100% 6.87 4.3 3.05 1.83

4 100% 100% 11.62 7.24 4.75 2.32

5 100% 100% 22.85 13.97 6.37 3.29

6 100% 100% 43.25 29.78 8.2 5.8

Table 2: Results of the synthetic benchmarks of KEvoHeap. For each number of allocation noise, the percentage of successful

solves is given for both the natural allocation order and the reverse allocation order. Additionally, we listed the average number

of generations needed in case of success and the standard deviation of the numbers of generations.

0 1 2 3 4 5 6
0

20,000

40,000

60,000

80,000

100,000

Noise

C
an

d
id

at
es

KEvoHeap Pseudo-random search

0

50

100

150

200

250

G
en

er
at

io
n

s

0 1 2 3 4 5 6
0

20,000

40,000

60,000

80,000

100,000

Noise

C
an

d
id

at
es

KEvoHeap Pseudo-random search

0

50

100

150

200

250

G
en

er
at

io
n

s

Figure 8: Bar chart showing the average tries/generations needed in both algorithms with respect to the level of noise. The left

chart shows the results for the "natural" challenge, the right one shows results for the "reverse" challenge.

the number of candidates needed by pseudo-random search

starts to skyrocket at three noise in the "natural" challenge

and four noise in the "reverse" challenge. The number of gen-

erations also increases, but way slower. While in the "natural"

challenge pseudo-random search only needs approximately

twice as many candidates as KEvoHeap at two noise, it al-

ready needs almost 16 times as many candidates at four noise,

and as only 37% of the experiments succeeded and we only

look at the successful cases, the actual number is probably

even higher. Another difference between both algorithms is

the difference in the standard deviation. For pseudo-random

search the standard deviation is always approximately equal

to the mean, showing that the actual number of tries needed

to solve a problem can vary a lot2. For KEvoHeap, the stan-

dard deviation is always about half the mean, which indicates

2The results of the experiments where pseudo-random search failed at

some tries do not reflect this property, as the failed cases were not taken into

account when calculating the mean/standard deviation, so these results are

not representative for the actual performance.

that it is more stable runtime-wise. This difference between

the two algorithms is also illustrated by example for the "re-

verse" challenge with three noise in Figure 9. The box plots

clearly show the difference in stability regarding the number

of candidates that have to be generated. While the number

of candidates has its median at 1933.5 for pseudo-random

search, numbers go even up to 12042, and from the quartiles,

you can see that the results are widely distributed. In contrast,

the results from KEvoHeap are way closer together, and there

are no extreme outliers. The superior results of KEvoHeap

outline the advantages of a structured approach as opposed

to a (pseudo-)random approach. The fact that candidate so-

lutions can be improved in small steps by changing small

parts of it makes the fitness function very smooth, which is a

good property for a successful genetic algorithm [20]. While

the algorithm still contains plenty of random components,

their design and the selection process guide the algorithm

towards better solutions. This results in the improved results,

execution time, and stability.

12

Journal of Systems Research (JSys) 2023

KEvoHeap PRS
0

5,000

10,000

C
an

d
id

at
es

0

10

20

30

G
en

er
at

io
n

s

Figure 9: Box plot illustrating the distribution of numbers of

candidates generated for the "reverse" challenge with three

noise.

When comparing our results to the benchmarks created by

Heelan for heap layout manipulation in user space [33–35]

we can see that both algorithms perform way better when

targeting the kernel heap. In our setting even pseudo-random

search can solve all problems up to three noise with reason-

able effort. In user space, pseudo-random search was able to

solve the problems without noise most of the time, but perfor-

mance dropped rapidly when any noise was introduced. In the

kernel, we can see that the introduction of noise increases the

number of candidates that have to be generated exponentially,

but real problems only occur if multiple noise allocations are

present. EvoHeap drastically improved the success in user

space with an average 95.3% success rate across all synthetic

benchmarks and all targeted allocators with up to four noise.

In the kernel, KEvoHeap, our variant of EvoHeap, even sur-

passed the user space results with a 100% success rate with up

to six noise. We did not run experiments with more than six

noise allocations as we evaluated this as an unrealistic setting

to appear in the real world, but the rate of increase in required

generations suggests that more noise can theoretically still be

added before we have to increase the generation limit. The

success of KEvoHeap can be attributed to certain properties

of slab allocation. The process of sorting objects of certain

sizes in assigned memory regions (or caches) can make it

harder to pair a vulnerable object with a suitable target, as

both have to be allocated in the same cache. However, in

terms of heap layout manipulation, it enables the previously

described defragmentation, which is a big advantage from

an attacker’s point of view. With defragmentation, we can

disregard all allocations that were performed previously to

our attack by forcing the creation of a new empty slab. This

is in many ways advantageous, as the problem is reduced

to circumventing the accompanying noise allocations of the

overflow source and target. When tackling problems in real-

world scenarios in the future it will also be a big advantage

that it is almost always possible to trigger single allocations in

a targeted cache, e.g. with add_key as previously described

(see Section 7.1). Due to this simplification, the question

arises if an optimization approach like a genetic algorithm

might be unnecessarily sophisticated. Even for user space

targets, Heelan mentioned that he considered simulated an-

nealing as an alternative to genetic algorithms but disregarded

it as genetic algorithms according to the literature proved to

create better results at the cost of higher computational ef-

fort [33]. As the problem in kernel space seems to be easier

to solve, it might be good to reconsider simulated annealing

to further reduce the computational effort.

9 Application in Realistic Settings

As we saw in the evaluation on the synthetic benchmarks,

KEvoHeap can be very effective at crafting desired heap lay-

outs. However, there are still some challenges to overcome

to make it applicable to real-world scenarios. In this section,

we will present some of them and propose possible solutions

for them. Finally, we present the exploitation of a vulnera-

ble kernel module that serves as a case study for real-world

scenarios.

9.1 Accessing Distance of Target Objects

In the Kernel-SIEVE framework, the kernel module gives

us access to information about the current state of the ker-

nel heap. We use this to calculate the distance of the two

target objects, which serves as feedback to KEvoHeap or

any other potential algorithm. In a realistic scenario, where

our candidates consist of several subsequent system calls, we

do not have this feedback, and without this, an optimization

algorithm can not work. Additionally, a system call might

allocate not one, but multiple different objects in one or mul-

tiple caches, so initially it is not even clear which object is

the relevant one, be it overflow source or target. To tackle

this, we have to specify which is our object of interest and

find a way to extract the information needed for the feedback

loop. After some experiments we concluded that this problem

can be solved by using one of the several tracing mechanisms

the Linux kernel provides. In particular kprobes [2], bpf-

trace [48], and ftrace [3] seem to be viable tools for this, and

we successfully implemented solutions using both kprobes

and bpftrace respectively.

9.2 Instability of Results after Multiple Execu-

tions

In Section 5 we explained that additional problems arise when

we try to execute multiple manipulation attempts in a row.

One of the main problems is that subsequent attempts influ-

ence each other because they reorder the free list of the target

slab. In Kernel-SIEVE we deal with this by creating a sepa-

rate cache that we have full control over, so we can destroy

and recreate it between each candidate execution. When we

13

Journal of Systems Research (JSys) 2023

deal with a real vulnerability we do not have this kind of con-

trol, as the target objects (and the accompanying noise) will

be placed in the designated caches. The main problem that we

have is that the kernel is in a different state when we executed

one candidate than it was before, and this state influences the

following candidates. So what if we could execute one candi-

date, and then reset the state of the kernel to the way it was

previous to the execution? This would solve all our problems,

as now each candidate gets executed with an identical starting

state. In reality, something similar is possible. QEMU [12] is

a widely adopted open-source emulator and virtualizer that

among other things can be used to run an operating system

as a virtual machine. It comes with a feature to create snap-

shots that not only save the current disk state, but also the

RAM and CPU state, which can be used to restore the com-

plete state of a system at a specific point in time [4]. Using

this we could reset the VM after each candidate. Of course,

this brings some performance drawbacks, but as KEvoHeap

proved to be very efficient in the synthetic benchmarks it is

fair to assume that performance should still be acceptable. We

see this approach as very promising, as it does not require

additional per-case analysis and works equally for each target.

However, it requires some structural changes. As the entire

virtual machine gets reset in the process of evaluating the

candidates, the algorithm has to be run outside of the virtual

machine. The framework would have to trigger the execu-

tions of the candidates from the outside and extract the results

before reset. We implemented a proof-of-concept prototype

using this approach that confirmed our assumptions. Figure

10 illustrates how we decoupled the algorithm from the virtual

machine that runs the candidates.

A runner script first sets up the QEMU virtual machine.

This includes starting the virtual machine, loading the kernel

module, and starting a simple bind shell using netcat [8]

that we use later to issue commands, transfer candidates and

extract results. Then we enter the main loop of the genetic

algorithm. We first query KEvoHeap to generate a batch of

candidates (either the initial population, or, on subsequent

calls, the next generation). Then we transfer the whole batch

to the VM using scp [9]. Now that everything is in place

for the execution, we use QEMU-Monitor [13], a tool for

managing running QEMU instances, to save the state of the

virtual machine. To finally run the candidates, we use our

bind shell to run each candidate individually. We extract

the result in a similar way, and then reload our saved state

for the next execution. With this approach we were able to

solve heap layout manipulation problems with the actual sized

caches, not relying on the custom cache mode. This came

with a performance drop: While the number of generations

needed to solve a problem did not change, executing one

generation of 400 candidates took about 3 minutes. For the

challenge with five noise and natural allocation order this

results in an expected runtime of 69 minutes to solve a single

problem. Running a benchmark like we did in Section 7.1.2

Runner KEvoHeap QEMU

Initialize

Create
candidates

Transfer candidates

Save state

Execute candidate

Extract distance

Restore saved state

Reset loopReset loop

Generation LoopGeneration Loop

Figure 10: Sequence diagram for the prototypical solution

utilizing QEMU’s savevm feature.

with 100 runs would result in an estimated 115 hours. This

is an enormous increase in runtime in contrast to the 2 hours

it took with the custom cache mode, but one hour to find a

valid solution is still within reason. Also it might be possible

to further boost the performance, but this is beyond the scope

of this work.

Figure 15 (cf. appendix D.5) provides a comparison of

the runtimes of running 100 experiments using KevoHeap,

pseudo-random search, and fast-reset-KEvoHeap. Notice

that we used a logarithmically scaled y-axis, as fast-reset-

KEvoHeap’s runtime is significantly longer due to the signifi-

cant performance drop that comes with the fast reset method.

This makes it hard to visually compare to the other runtimes

without scaling. Because of the very long execution times,

we only estimated the runtimes of fast-reset-KEvoHeap using

the average generations needed and the measured runtime per

generation. From the plot, you can see that while the perfor-

mance drop is large, because of the superiority of KEvoHeap

14

Journal of Systems Research (JSys) 2023

the runtime of pseudo-random search approaches the runtime

of fast-reset-KEvoHeap rapidly with rising noise levels. The

measurements of pseudo-random search lose meaning start-

ing at four noise, as not all runs are successful, so the runtime

to solve the 100 problems is actually higher. Keeping this in

mind, the runtime of pseudo-random search probably super-

sedes the runtime of the fast-reset-KEvoHeap at five or six

noise.

9.3 Application of KEvoHeap in real-world

vulnerabilities

In order to prove the usage of our approach we created a vul-

nerable kernel module which contains a heap buffer overflow

vulnerability. This kernel module serves as a case study for a

real vulnerability in the Linux kernel.

Its behaviour is quite simple: It can be queried to allocate a

buffer and to write/print data to/from said buffer. Before and

after the buffer gets allocated noise allocations will be made

to make exploitation non-trivial.

Our exploit performs heap layout manipulation to shape

the heap into an exploitable state utilizing KEvoHeap.

Internally KEvoHeap uses kmalloc and kfree to create

the desired kernel heap layout. In order to find a solution

for this, we or respectively an attacker need an identical

vulnerable Linux kernel version with root privileges. This lab

environment is running KEvoHeap to identify appropriate

allocations and deallocations to bring the Linux kernel heap

into an exploitable state. This means that the target objects

are placed next to each other. To identify these allocations,

bpftrace is used, which requires root privileges. Figure 11a

illustrates this in a simplified manner. The fact that the target

kernel as well as the KEvoHeap kernel module and bpftrace

are executed within QEMU is omitted on behalf of simplicity.

An attacker or respectively a security researcher can use

these allocations and deallocations via various system calls.

We use the shmget/shmctl system calls to allocate objects in

the kmalloc-256 cache. These calls trigger (de)allocations

of objects, which are of appropriate size. A suiting series of

allocations and deallocations are then found with KEvoHeap.

KEvoHeap will generate candidates consisting of calls to

the kernel module and shmget/shmctl, which will then be

inserted into a general corpus program which takes care of

setup and teardown. The generated candidates are then build

and executed.

Once KEvoHeap has found a solution, it can be used as

part of the exploitation process to manipulate the heap into

an exploitable state. Figure 11b outlines this.

By doing this, we have shown that KEvoHeap is able to

automatically convert the kernel heap to a suitable state even

in the case of real-world vulnerabilities. This exploit and

the vulnerable kernel module can be found in our GitHub

repository [43].

10 Conclusion

In this paper, we presented Kernel-SIEVE, a framework for

evaluating heap layout manipulation algorithms that target

the SLAB/SLUB allocator in the Linux kernel. With this,

we created the (to our knowledge) first performance bench-

marks for heap layout manipulation algorithms in the Linux

K
e

rn
e

l
S

p
a

ce

KEvoHeap

Client

syscalls

candidate solutions

bpftrace

monitor

distances

U
se

r
S

p
a

ce

KEvoHeap

Kernel Module
Kernel

Heap

(a) Generate solutions for heap layout manipulations

K
e

rn
e

l
S

p
a

ce

syscalls

U
se

r
S

p
a

ce

Kernel

Vulnerability

Defragmentation

Trigger Overflow

KEvoHeap solution

Heap Massage

kernel heap layout

manipulation

syscalls

Exploit

Kernel

Heap

(b) Applying results from KEvoHeap in an exploit

Figure 11: Application KEvoHeap in real-world vulnerabilities

15

Journal of Systems Research (JSys) 2023

kernel. Moreover, we proposed and evaluated two algorithms:

A pseudo-random search, whose performance serves as a

baseline, and KEvoHeap, a genetic algorithm based on Hee-

lan’s EvoHeap [33, 35]. We have shown that KEvoHeap is

successful at creating the desired heap layout in all test cases

and also surpasses the user-space performance benchmarks

of EvoHeap. Besides that, we discussed the challenges of

applying these kinds of algorithms in real-world scenarios

and weigh different possible approaches to tackle these prob-

lems. Finally we have shown the application of KEvoHeap in

a real-world scenario utilizing our case study.

While further research into this topic is necessary we believe

that this research has taken the art of automating kernel ex-

ploits one step further.

References

[1] Avr libc: Standard c library for avr-gcc. https://

nongnu.org/avr-libc/. Accessed: 17.06.2021.

[2] Kernel probes (kprobes). https://www.kernel.org/

doc/html/latest/trace/kprobes.html. Accessed:

22.03.2022.

[3] The linux kernel documentation: ftrace.

https://www.kernel.org/doc/html/latest/

trace/ftrace.html. Accessed: 20.07.2021.

[4] Qemu documentation: Disk images. https:

//qemu.readthedocs.io/en/latest/system/

images.html, 2020. Accessed: 02.07.2021.

[5] Alexa: The top 500 sites on the web. https:

//www.alexa.com/topsites, 2021. Accessed:

22.05.2021.

[6] Desktop operating system market share world-

wide. https://gs.statcounter.com/os-market-

share/desktop/worldwide, 2021. Accessed:

22.06.2021.

[7] Linux manual page: add_key(2). https://man7.org/

linux/man-pages/man2/add_key.2.html, 2021. Ac-

cessed: 12.07.2021.

[8] Linux manual page: nc(1). https://linux.die.net/

man/1/nc, 2021. Accessed: 23.07.2021.

[9] Linux manual page: scp(1). https://www.man7.org/

linux/man-pages/man1/scp.1.html, 2021. Ac-

cessed: 23.07.2021.

[10] Mobile desktop operating system market share world-

wide. https://gs.statcounter.com/os-market-

share/mobile/worldwide, 2021. Accessed:

22.06.2021.

[11] Operating system market share worldwide. https://

gs.statcounter.com/os-market-share, 2021. Ac-

cessed: 22.06.2021.

[12] Qemu. https://www.qemu.org/, 2021. Accessed:

02.07.2021.

[13] Qemu-monitor documentation. https:

//qemu.readthedocs.io/en/latest/system/

monitor.html, 2021. Accessed: 23.07.2021.

[14] Zerodium exploit acquisition program. https://

www.zerodium.com/program.html, 2021. Accessed:

22.05.2021.

[15] The Debian-Project . Debian: The universal operating

system. https://www.debian.org/, 2021. Accessed:

20.07.2021.

[16] American National Standards Institute. Ansi x3.159-

1989 "programming language c.", 12 1990.

[17] Tim Anderson. Linux in 2020: 27.8 million

lines of code in the kernel, 1.3 million in sys-

temd. https://www.theregister.com/2020/01/06/

linux_2020_kernel_systemd_code/, 2020. Ac-

cessed: 22.05.2021.

[18] Ashfaq Ansari. Android kernel exploitation.

https://cloudfuzz.github.io/android-kernel-

exploitation/, 2020. Accessed: 24.05.2021.

[19] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert,

Edward J Schwartz, Maverick Woo, and David Brumley.

Automatic exploit generation. Communications of the

ACM, 57(2):74–84, 2014.

[20] David Beasley, David R Bull, and Ralph Robert Martin.

An overview of genetic algorithms: Part 1, fundamentals.

University computing, 15(2):56–69, 1993.

[21] Canonical. Ubuntu: Enterprise open source and linux.

https://ubuntu.com/, 2021. Accessed: 20.07.2021.

[22] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun

Qian. Koobe: Towards facilitating exploit generation

of kernel out-of-bounds write vulnerabilities. In 29th

USENIX Security Symposium (USENIX Security 20),

pages 1093–1110, 2020.

[23] Yueqi Chen and Xinyu Xing. Slake: Facilitating slab

manipulation for exploiting vulnerabilities in the linux

kernel. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Secu-

rity, pages 1707–1722, 2019.

[24] Jonathan Corbet. On the proper use of vmalloc().

https://lwn.net/Articles/57800/, 2003. Ac-

cessed: 30.06.2021.

16

https://nongnu.org/avr-libc/
https://nongnu.org/avr-libc/
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://qemu.readthedocs.io/en/latest/system/images.html
https://qemu.readthedocs.io/en/latest/system/images.html
https://qemu.readthedocs.io/en/latest/system/images.html
https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://man7.org/linux/man-pages/man2/add_key.2.html
https://man7.org/linux/man-pages/man2/add_key.2.html
https://linux.die.net/man/1/nc
https://linux.die.net/man/1/nc
https://www.man7.org/linux/man-pages/man1/scp.1.html
https://www.man7.org/linux/man-pages/man1/scp.1.html
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share
https://gs.statcounter.com/os-market-share
https://www.qemu.org/
https://qemu.readthedocs.io/en/latest/system/monitor.html
https://qemu.readthedocs.io/en/latest/system/monitor.html
https://qemu.readthedocs.io/en/latest/system/monitor.html
https://www.zerodium.com/program.html
https://www.zerodium.com/program.html
https://www.debian.org/
https://www.theregister.com/2020/01/06/linux_2020_kernel_systemd_code/
https://www.theregister.com/2020/01/06/linux_2020_kernel_systemd_code/
https://cloudfuzz.github.io/android-kernel-exploitation/
https://cloudfuzz.github.io/android-kernel-exploitation/
https://ubuntu.com/
https://lwn.net/Articles/57800/

Journal of Systems Research (JSys) 2023

[25] Andrea Di Dio. The slab allocator in the linux

kernel. https://hammertux.github.io/slab-

allocator, 2020. Accessed: 25.05.2021.

[26] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan

Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-

gna. {HeapHopper}: Bringing bounded model check-

ing to heap implementation security. In 27th USENIX

Security Symposium (USENIX Security 18), pages 99–

116, 2018.

[27] Christoph Lameter et al. Linux kernel v5.9.7: Source

code of slab.h. https://elixir.bootlin.com/

linux/v5.9.7/source/include/linux/slab.h,

2022. Accessed: 21.03.2022.

[28] Linus Torvalds et al. Linux source code

v5.9.7. https://cdn.kernel.org/pub/linux/

kernel/v5.x/linux-5.9.7.tar.xz. Accessed:

12.05.2021.

[29] Chris Evans. What is a "good" mem-

ory corruption vulnerability? https:

//googleprojectzero.blogspot.com/2015/06/

what-is-good-memory-corruption.html, 2015.

Accessed: 12.05.2021.

[30] Sanjay Ghemawat and Paul Menage. Tcmal-

loc: Thread-caching malloc. http://goog-

perftools.sourceforge.net/doc/tcmalloc.html,

2000. Accessed: 17.06.2021.

[31] Google. Android open source project: Ker-

nel. https://source.android.com/devices/

architecture/kernel/, 2020. Accessed:

20.07.2021.

[32] Mel Gorman. Understanding the Linux virtual memory

manager. Prentice Hall Upper Saddle River, 2004.

[33] Sean Heelan. Greybox Automatic Exploit Generation

for Heap Overflows in Language Interpreters. PhD

thesis, University of Oxford, 2020.

[34] Sean Heelan, Tom Melham, and Daniel Kroening. Au-

tomatic heap layout manipulation for exploitation. In

27th USENIX Security Symposium (USENIX Security

18), pages 763–779, 2018.

[35] Sean Heelan, Tom Melham, and Daniel Kroening. Gol-

lum: Modular and greybox exploit generation for heap

overflows in interpreters. In Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communi-

cations Security, pages 1689–1706, 2019.

[36] Kenneth C Knowlton. A fast storage allocator. Commu-

nications of the ACM, 8(10):623–624, 1965.

[37] Christoph Lameter. The slub allocator. https:

//lwn.net/Articles/229984/, 2007. Accessed:

28.05.2021.

[38] Christoph Lameter. Slub: The unqueued slab allo-

cator. https://lwn.net/Articles/223411/, 2007.

Accessed: 28.05.2021.

[39] Christoph Lameter. Slab allocators in the

linux kernel: Slab, slob, slub. https:

//events.static.linuxfound.org/sites/events/

files/slides/slaballocators.pdf, 10 2014.

Accessed: 25.05.2021.

[40] Doug Lea. A memory allocator. http:

//gee.cs.oswego.edu/dl/html/malloc.html, 2000.

Accessed: 17.06.2021.

[41] Robert Love. Linux kernel development. Pearson

Education, 2010.

[42] Sean Luke and Liviu Panait. Fighting bloat with non-

parametric parsimony pressure. In International Con-

ference on Parallel Problem Solving from Nature, pages

411–421. Springer, 2002.

[43] Daniel Baier Max Ufer. Github repository containing

kernel-sieve, pseudo-random search and kevoheap.

https://github.com/fkie-cad/Algorithmic-

Heap-Layout-Manipulation-in-the-Linux-

Kernel, 2022. Accessed: 19.01.2023.

[44] Vitaly Nikolenko Michael S. Linux kernel heap feng

shui in 2022. https://duasynt.com/blog/linux-

kernel-heap-feng-shui-2022, 2022. Accessed:

29.07.2022.

[45] PaX-Team. Pax non-executable pages design & im-

plementation. https://pax.grsecurity.net/docs/

noexec.txt, 2003. Accessed: 04.01.2021.

[46] Enrico Perla and Massimiliano Oldani. A Guide to Ker-

nel Exploitation: Attacking the Core. Elsevier Science,

2010.

[47] Dennis M Ritchie, Brian W Kernighan, and Michael E

Lesk. The C programming language. Prentice Hall

Englewood Cliffs, 1988.

[48] Alastair Robertson. bpftrace. https://github.com/

iovisor/bpftrace, 2022. Accessed: 25.07.2022.

[49] Huzaifa Sidhpurwala. Hardening elf binaries

using relocation read-only (relro). https:

//www.redhat.com/en/blog/hardening-elf-

binaries-using-relocation-read-only-relro,

2019. Accessed: 04.01.2021.

17

https://hammertux.github.io/slab-allocator
https://hammertux.github.io/slab-allocator
https://elixir.bootlin.com/linux/v5.9.7/source/include/linux/slab.h
https://elixir.bootlin.com/linux/v5.9.7/source/include/linux/slab.h
https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.9.7.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.9.7.tar.xz
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://source.android.com/devices/architecture/kernel/
https://source.android.com/devices/architecture/kernel/
https://lwn.net/Articles/229984/
https://lwn.net/Articles/229984/
https://lwn.net/Articles/223411/
https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf
https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf
https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf
http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html
https://github.com/fkie-cad/Algorithmic-Heap-Layout-Manipulation-in-the-Linux-Kernel
https://github.com/fkie-cad/Algorithmic-Heap-Layout-Manipulation-in-the-Linux-Kernel
https://github.com/fkie-cad/Algorithmic-Heap-Layout-Manipulation-in-the-Linux-Kernel
https://duasynt.com/blog/linux-kernel-heap-feng-shui-2022
https://duasynt.com/blog/linux-kernel-heap-feng-shui-2022
https://pax.grsecurity.net/docs/noexec.txt
https://pax.grsecurity.net/docs/noexec.txt
https://github.com/iovisor/bpftrace
https://github.com/iovisor/bpftrace
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro

Journal of Systems Research (JSys) 2023

[50] Alexander Sotirov. Heap feng shui in javascript. Black

Hat Europe, 2007:11–20, 2007.

[51] "sqrkkyu", "twzi". Attacking the core: Kernel exploit-

ing notes. http://phrack.org/issues/64/6.html,

2007. Accessed: 12.05.2021.

[52] Maddie Stone. Bad binder: Android in-the-wild exploit.

https://googleprojectzero.blogspot.com/2019/

11/bad-binder-android-in-wild-exploit.html,

2019. Accessed: 24.05.2021.

[53] Ward Thomas. How to triage bugs. https://

wiki.ubuntu.com/Bugs/Triage, 2017. Accessed:

22.05.2021.

[54] Steven J. Vaughan-Nichols. Can the internet exist with-

out linux? https://www.zdnet.com/article/can-

the-internet-exist-without-linux/, 2015. Ac-

cessed: 22.05.2021.

[55] W3Techs. Usage statistics of operating systems for

websites. https://w3techs.com/technologies/

overview/operating_system, 2021. Accessed:

22.06.2021.

[56] Yan Wang, Chao Zhang, Zixuan Zhao, Bolun Zhang,

Xiaorui Gong, and Wei Zou. Maze: Towards automated

heap feng shui. In 30th USENIX Security Symposium

(USENIX Security 21), 2021.

[57] Karsten Weicker. Evolutionary algorithms and dynamic

optimization problems. Der Andere Verlag Berlin, 2003.

[58] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. Ke-

pler: Facilitating control-flow hijacking primitive evalu-

ation for linux kernel vulnerabilities. In 28th USENIX

Security Symposium (USENIX Security 19), pages 1187–

1204, 2019.

[59] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui

Gong, and Wei Zou. Fuze: Towards facilitating exploit

generation for kernel use-after-free vulnerabilities. In

27th USENIX Security Symposium (USENIX Security

18), pages 781–797, 2018.

[60] Kyle Zeng, Yueqi Chen, Haehyun Cho, Xinyu Xing,

Adam Doupé, Yan Shoshitaishvili, and Tiffany Bao.

Playing for {K (H) eaps}: Understanding and improving

linux kernel exploit reliability. In 31st USENIX Security

Symposium (USENIX Security 22), pages 71–88, 2022.

[61] Zixuan Zhao, Yan Wang, and Xiaorui Gong. Haepg: An

automatic multi-hop exploitation generation framework.

In International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment, pages 89–

109. Springer, 2020.

[62] Jordy Zoma. An introduction to kernel exploita-

tion. https://pwning.systems/posts/an-

introduction-to-kernel-exploitation-part1/,

2021. Accessed: 24.05.2021.

18

http://phrack.org/issues/64/6.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://wiki.ubuntu.com/Bugs/Triage
https://wiki.ubuntu.com/Bugs/Triage
https://www.zdnet.com/article/can-the-internet-exist-without-linux/
https://www.zdnet.com/article/can-the-internet-exist-without-linux/
https://w3techs.com/technologies/overview/operating_system
https://w3techs.com/technologies/overview/operating_system
https://pwning.systems/posts/an-introduction-to-kernel-exploitation-part1/
https://pwning.systems/posts/an-introduction-to-kernel-exploitation-part1/

Journal of Systems Research (JSys) 2023

Appendix

In the following, we first briefly describe the implementation

of the SLUB allocator. Then the algorithms of Heelan’s work

are summarized. After that, we give detailed information

about the different algorithm implementations used in this

paper.

A The SLUB Allocator

We will quickly go over the implementation of the SLUB

allocator, which replaced the original SLAB allocator as the

modern default in Linux.

Christoph Lameter developed the SLUB in 2007 out of

frustration over the SLAB implementation [37, 38]. His two

main complaints were:

1. The many different queues used in the SLAB implemen-

tation made the code quite complex.

2. In larger systems, the number of queues and objects

in these queues can grow exponentially, which wastes

memory which is only tied up in control structures.

The goals of SLUB were to provide better scalability and

performance, while at the same time simplifying the general

slab structure. Additionally, SLUB also vastly extended the

debugging capabilities of the slab allocator. Today, SLUB has

replaced SLAB as the default allocator in the Linux kernel.

SLUB indeed simplified the general slab structure. In

SLUB, a slab only consists of allocated and/or free memory

chunks, without any metadata at the beginning. This reduces

the need for padding for alignment.

The free chunks form a linked list which is used to keep

track of them. On allocation, the first element in this list is

simply returned and removed from the list. The kernel stores

a pointer to the free list together with information about the

number of blocks in use and the total number of objects in the

page frame in the struct page. This is a control structure

that the kernel assigns to each physical memory page. It

provides general information about the context in which the

page is used. SLUB also keeps an array of slabs that are

associated with single CPUs to avoid cache line bouncing.

If these are not being used, they are simply put back into

the partial list. In contrast to SLAB, there is only one list

that manages slabs per cache, the partial list. Full slabs

are simply forgotten until they become partial again. This

reduces the aforementioned memory complexity which could

become problematic in SLAB. Figure 12 illustrates these

structures [25, 37, 38].

B Heelans work

The main work we build on is Sean Heelan’s Ph.D. thesis

about "Greybox Automatic Exploit Generation for Heap Over-

flows in Language Interpreters" [33]. Heelan breaks the prob-

lem of automatic exploit generation into several sub-problems,

one of them being the Heap Layout Problem, which he also al-

ready addressed in previous publications [34,35]. For this, he

developed a framework for evaluating heap layout manipula-

tion algorithms on different allocators called SIEVE. SIEVE

consists of a driver that can be linked in combination with any

allocator that exposes the standard allocation interface from

the ANSI C standard [16], which are most importantly the

functions malloc, free, calloc, and realloc. The driver

takes a file as input that consists of a set of directives that

instruct the driver to perform certain allocation operations.

The directives are of the following form:

1. <malloc size ID>

2. <calloc nmemb size ID>

3. <free ID>

4. <realloc oldID size ID>

FP FP FPFree Free FreeObject Object Object Padding

Page Frame

NULL

kmem_cache

cpu_slab

node
...

kmem_cache_node

partial_list

list_lock

...

page

slab_list

objects

inuse

freelist
...

Figure 12: Structure of a slab used by the SLUB allocator.

19

Journal of Systems Research (JSys) 2023

5. <fst size>

6. <snd size>

The first four directives are used to trigger the standard mem-

ory allocation functions. The ID parameter assigns an ID to

the allocations, which can be used to reference them again

in a free or a realloc. The last two directives trigger the

allocation of an object of a given size, which can be used to

simulate an overflow/underflow source and a target. After

executing the given directives, the driver returns the distance

of the target allocations. With this, you can create challenges

with the objective to place the target objects relative to each

other at a certain distance. Allocation noise can be simulated

by creating interactions from multiple directives that cause

side effects. For example, instead of letting an algorithm

simply allocate the overflow source, we can add an allocation

of an object right after the source, which the algorithm then

has to circumvent for being successful. The SIEVE frame-

work also offers a Python API that helps with the creation of

different kinds of challenges.

Heelan provided two algorithms for solving the heap lay-

out manipulation problem: A pseudo-random search, and a

genetic algorithm called EvoHeap. Algorithm 3 shows how

the pseudo-random search generates candidates and executes

them.

In each iteration of the loop in the Search function, the

algorithm assembles a new candidate and executes it. If the

distance returned equals the target distance, the candidate is

returned. If after a set number of iterations no solution can be

found, it returns None. The ConstructCandidate function

takes care of the pseudo-random generation of candidates.

It takes two arguments: The maximum length of a candi-

date m and a parameter r that probabilistically weights the

number of allocations and frees performed in the candidate.

First, the length of the candidate is determined by taking a

random number between 1 and m (line 11) and a random

index for the allocation of the first target object (line 12).

Then it iterates the indices of the candidate. At the previously

picked f stIdx the algorithm inserts the provided sequence

to allocate the overflow source (line 15). On any other in-

dex, the algorithm either appends an allocation sequence

or a free sequence, depending on a probability-based on

r. The AppendAllocSequence and AppendFreeSequence

pick one of the available allocation/free sequences with equal

probability. The AppendFreeSequence function redirects to

AppendAllocSequence if no allocation is available for free-

ing. At last, the algorithm appends the sequence for allocating

the target object (line 21) and returns the candidate.

While this algorithm performs almost no search strategy, it

still produces some good results. Heelan evaluated it on three

different allocators (avrlibc [1], dlmalloc [40] and tcmalloc

[30]) with synthetic challenges. The core of the challenges

was to place the two objects directly adjacent, either normal

or reversed. Additional experiments were performed with

1 Function Search(g, d, m, r):

2 for i← 0 to g−1 do

3 cand←Init(ConstructCandidate(m,

r))

4 dist← Execute(cand)

5 if dist = d then

6 return cand

7 end

8 return None

9 Function ConstructCandidate(m, r):

10 candidates←
Init(GetStartingState())

11 len← Random(1, m)

12 f stIdx← Random(0, len−1)

13 for i← 0 to len−1 do

14 if i = f stIdx then

15 AppendFstSequence(cand)

16 else if Random(0, 100) ≤ r then

17 AppendAllocSequence(cand)

18 else

19 AppendFreeSequence(cand)

20 end

21 AppendSndSequence(cand)

22 return cand

Algorithm 3: Pseudo-random search algorithm to find a

solution that places two target objects at a certain distance

in memory. g is the number of candidates to try, d the

target distance, m the maximum size of the candidates,

and r the allocation-free ratio [33].

the addition of allocation noise in the form of allocations

before and after the allocation of the first target object, i.e. the

overflow source. The starting state of the candidates was taken

from the initialization routines of Python, PHP, and Ruby.

The pseudo-random search was actually able to solve the

majority of challenges as long as no noise was added with g =
500.000, r = 98, and m = 1000 . For avrlibc, it even solved

all challenges without noise (normal and reversed), and 99%

of the challenges using dlmalloc. The success rate dropped

drastically when noise was introduced. When adding 4 noise

allocations before and after the overflow source, the success

rate averaged at 37% and went down to 17% at dlmalloc for

the reversed challenge.

As an alternative to a simple pseudo-random search, Heelan

proposed EvoHeap, a genetic algorithm for the heap layout

manipulation problem.

B.1 EvoHeap

The main routine of EvoHeap is shown in Algorithm 4. First,

an initial population is generated randomly (line 2) and gets

20

Journal of Systems Research (JSys) 2023

evaluated (line 3). If this initial population already contains

a valid solution, the population and their fitness values are

returned (line 5). If not, the main cycle is entered. In each

generation, λ children are generated from the existing popula-

tion via the GetChildren function and get evaluated (lines

7+8). The GetChildren function takes the mutation proba-

bility mxpb and the crossover probability cxpb and creates

the offspring by randomly selecting parents from the popula-

tion and performing mutations and crossovers based on the

provided probabilities (see Algorithm 5). The internals of the

mutation operator will be explained in detail in chapter 6.2

when we present our modified version of this algorithm for

the kernel. For now, it is enough to know that it can either

insert or remove allocation/free sequences from a candidate in

different ways. The crossover operator implements some kind

of two-point crossover which will also be gone into some

more detail in chapter 6.2. If one of the children contains

a valid solution, the children and their fitness values are re-

turned (line 10). Otherwise, a new population for the next

generation gets selected via a (µ+λ) selection strategy using

a mixture of elitist and double tournament selection. Details

on this will also be given in chapter 6.2, as we use the same

selection strategy as EvoHeap. Then the cycle starts from the

beginning and a new generation is entered. If after g gener-

ations no solution has been found, the current population is

returned with their corresponding fitness values.

1 Function EvoHeap(g, popsz, µ, λ, mxpb,

cxpb):

2 pop← InitialisePopulation(popsz)

3 popF ← Evaluate(pop)

4 if SolutionFound(popF) then

5 return pop, popF

6 while g > 0 do

7 ch← GetChildren(pop, λ, mxpb,

cxpb)

8 chF ← Evaluate(ch)

9 if SolutionFound(chF) then

10 return ch, chF

11 pop, popF ←
Select(µ,pop+ ch,popF + chF)

12 g← g−1

13 end

14 return pop, popF

Algorithm 4: The main routine of EvoHeap. g is the

maximum number of generations to run. mxpb and cxpb

are the mutation/crossover probabilities.

EvoHeap showed significant improvements over the

pseudo-random search during evaluation. On average, Evo-

Heap solved 95.3% of all of the synthetic challenges, while

1 Function GetChildren(pop, λ, mxpb,

cxpb):

2 children← []
3 while λ > 0 do

4 parentA←
pop[Random(0, len(pop))]

5 r← Random(0, 1)

6 if r < mxpb then

7 new← Mutate(parentA)

8 else if r < mxpb+ cxpb then

9 parentB←
pop[Random(0, len(pop))]

10 new← Crossover(parentA,

parentB)

11 else

12 children.append(parentA)

13 λ← λ−1

14 end

Algorithm 5: The routine that creates λ offspring from

the population pop using the mutation probability mxpb

and the crossover probability cxpb.

pseudo-random search solved about 51% of all challenges.

Heelan labeled certain specific challenges as "very-hard", of

which pseudo-random search was only able to solve about

8% of. EvoHeap was able to solve 80% of these challenges,

again showing the massive improvement it brought. Both

algorithms were also evaluated in a realistic scenario, where

they should solve heap layout manipulation problems in the

PHP interpreter. EvoHeap here also surpassed pseudo-random

search by solving 84.2% of the problems on average, in con-

trast to 61% solved by random search. In addition to the

quality of the solutions, EvoHeap was also faster at finding

these solutions most of the time. In the synthetic benchmarks,

EvoHeap was faster 74% of the time, and pseudo-random

search was only faster on problems that Heelan labeled as

"very-easy". On the PHP benchmarks, EvoHeap was always

faster than pseudo-random search (only considering problems

that both algorithms solved), with a time difference averaging

at 600 seconds.

C Pseudo-Random Search

In the following we show our implementation of the pseudo-

random search with minor adjustments to the one used in

Heelan’s work (cf. Algorithm 6).

The search is made pseudo-random by the r parameter

that defines the ratio of allocations to frees. In our ex-

periments, 90 proved to be a good value if noise is low,

but it depends on the challenge. With increasing noise,

a lower value can be useful to increase the number of

21

Journal of Systems Research (JSys) 2023

Input: g, m, r

Output: A set of candidate solutions

1 Function GenerateBatch(g, m, r):

2 candidates← []
3 for i← 1 to g do

4 candidates.append(

5 ConstructCandidate(m, r)

6)

7 end

8 return candidates

9 Function ConstructCandidate(m, r):

10 len← Random(1, m)

11 f stIdx← Random(0, len−1)

12 for i← 0 to len−1 do

13 if i = f stIdx then

14 AppendFstSequence(cand)

15 else if Random(0, 100) ≤ r then

16 AppendAllocSequence(cand)

17 else

18 AppendFreeSequence(cand)

19 end

20 AppendSndSequence(cand)

21 return cand

Algorithm 6: Method to pseudo-randomly generate a

batch of candidate solutions. g is the total number of

candidates to generate. m is the maximum number of

directives per candidate. r is the ratio of allocations to

frees.

frees generated. To customize the challenges we have to

implement the AppendFstSequence, AppendSndSequence,

AppendAllocSequence, and AppendFreeSequence func-

tions. As you can see in comparison to Heelan’s imple-

mentation of pseudo-random search [33], we left out the

GetStartingState function, which can be used to create

a starting heap configuration, emulating previous allocations.

In the case of heap layout manipulation in the kernel, this

would not increase the difficulty of the challenge, as we could

also always just perform defragmentation again to flatten the

heap surface.

The AppendFstSeqence/AppendSndSequence functions

should return the respective sequences for allocating the

first/second target object. The simplest form would be the sim-

ple instruction "fst <size>"/"snd <size>", but they can

also consist of multiple other directives to simulate noise.

The AppendAllocSequence function should choose between

available allocation sequences with equal probability. The

AppendFreeSequence function should choose a random se-

quence from the available free sequences. If there is no

allocation available to free, it simply redirects the call to

AppendAllocSequence.

D KEvoHeap

In this section, we will explain how KEvoHeap represents

its individuals and how each of the genetic operators was

implemented.

D.1 Individual Representation

For KEvoHeap we use the same individual representation that

Heelan used in EvoHeap. The individuals are designed in a

way that decouples them from the actual code of the candidate

solution.

Each interaction that is available to the algorithm gets

mapped to a representative ID3. The algorithm then only

acts on these IDs. That means that the user has to provide a

mapping function that translates these IDs to their counter-

part instructions and vice versa. By this, the algorithm does

not need to know specifics about the problem it should solve.

Figure 13 illustrates the translation cycle performed by the

algorithm.

EvoStep

ReadPopulation()

WritePopulation()

Candidates

Map to IDs

Translate to

directives

Figure 13: The translation cycle of the genetic algorithm.

At the beginning of each evolution step, the algorithm uses

the user-provided mapping to translate the directives of the

candidates to their respective IDs. When the new population

is written at the end, they are translated into actual directives

in a similar fashion.

Each individual represents a candidate solution that is made

of multiple directives. The algorithms represent the directives

as 128-bit integers. Figure 14 shows how the coding works.

The first 8 bits define the type of the directive. The interpreta-

tion of the rest depends on the type.

• Allocate: The Allocate directive represents an interac-

tion sequence that results in the allocation of an object.

It is very likely that we do not have one single primitive

to trigger allocations in the target cache but can choose

between multiple different, which are also different in

behavior and quality. For example, we might have one

3As you will see later, it is actually not just a simple ID but they are also

sorted into groups to provide some hierarchies between different primitives,

but to illustrate the general principle we can just assume that each interaction

gets mapped to a simple ID.

22

Journal of Systems Research (JSys) 2023

Allocate

Allocate

in loop

Free

Source,

Destination

Type

Allocation ID

- Size Group Sub Group Selector

Type

Loop ID

Rep Size Group Sub Group Selector

Type

Allocation ID

-

Type

-

-

[0-7 | 8-23 | 24-31 | 32-39 | 40-63]

Figure 14: The representation of the directives after Heelan

[33]. Each directive is represented by a 128-bit integer. The

type field is always the first, the following fields depend on

the type.

primitive that triggers a single allocation in the target

cache, and a second one that triggers multiple allocations

at once. Most of the time we would probably prefer to

use the primitive that allows us more granular control

about the allocations made. But in certain situations a

primitive that triggers multiple allocations can be very

useful, e.g. to "flatten" the heap structure after a noisy

previous allocation. To tackle these different kinds of

allocation primitives they can be sorted into groups and

sub-groups, which themselves can be assigned probabil-

ities. When e.g. a new allocation is generated through

mutation (as we will see later), the kind of allocation

will be drawn according to the given probability distri-

bution. The first group, the group of the highest order,

is called the "Size Group". In Heelan’s algorithm that

targeted user space allocators, this group was used to

differentiate between primitives that trigger allocations

of objects of different sizes. Due to the nature of slab

allocation, this kind of grouping is not applicable here,

as an allocation of diverging size would either be placed

in a different cache or if the difference is small enough

to still be placed in the same cache, would still behave

the same way as all other allocations, as all allocations

in a cache are placed in a chunk of equal size (as de-

scribed in Section 4.1)4. We still decided to keep the

group structure the same, as it allows very fine control

between different primitives. If the user decides that this

fine control is not necessary, he can simply provide only

one group. Here, the "Size Group" can differentiate be-

tween allocations of one or multiple objects. Each "Size

Group" is divided into one or multiple "Sub Groups".

4As mentioned before, Linux also offers the SLOB allocator as an alter-

native. Here objects are not stored in caches but a simple free list. While the

SLOB allocator is out of scope for this work, a "Size Group" in the original

sense would be applicable here, as objects of different sizes can be placed

next to each other.

These are just another layer of control for defining a

probability distribution over interaction sequences of the

same size but different quality. The actual primitive used

is finally selected via the "Selector" field. Each allo-

cation is then assigned a 64-bit "Allocation ID". This

ID can be referenced by a "Free" directive to free said

allocation. By using 64-bit for generating the ID we can

simply generate these IDs randomly while mutating or

recombining individuals without having to worry about

ID collisions.

• Allocate in a loop: The Allocate in a loop direc-

tive simply performs an "Allocate" directive multiple

times. The fields are identical to those of the "Allocate"

directive with an additional "rep" field that defines how

often the allocation should be repeated.

• Free: The Free directive triggers a free of a previous

allocation. The allocation is referenced by the 64-bit

allocation ID.

• Source/Destination: The Source/Destination direc-

tives trigger an allocation of the Source/Destination ob-

ject. They require no additional parameters.

D.2 Mutation

As described before, the mutation is one of the basic opera-

tions a genetic algorithm performs to generate offspring by

altering a single individual. Our mutation operator is very

similar to the one used in EvoHeap [33]. When the Mutate

function is called from within GetChildren (Algorithm 18),

a number of mutations to be applied is drawn from a geomet-

rically decreasing probability distribution between 1 and a

maximum set by the user.

For each mutation to be applied the algorithm chooses

randomly5 from one of the following available operators:

• Mutate: The Mutate operator first selects a random

number of Allocate and/or Free directives. Each of

the selected Allocate directives are with equal proba-

bility then either changed to an allocation using a dif-

ferent primitive or to a Free of a previous allocation (if

possible). A Free directive on the other hand is either

changed into an Allocation directive using a random

primitive drawn from the provided probability distribu-

tion of the groups and selectors or is changed to free a

different previous allocation (if possible).

• Spray: The Spray operator inserts a new sequence of

Allocation directives into the individual at a random

offset. The primitives used in the allocation are drawn

from the provided distribution but are all identical. The

length of the sequence is randomly drawn from an inter-

val provided by the user.

5Based on a probability distribution provided by the user.

23

Journal of Systems Research (JSys) 2023

• Hole Spray: The Hole Spray operation first generates

a sequence of identical allocations just like the Spray

operator but follows it up with a series of Free directives

which free every second allocation made in the sequence.

The length of the sequence is also drawn randomly from

a user-provided interval, just like in the Spray operator.

The combined sequence is placed at a random position

in the individual.

• Shorten: The Shorten operator simply removes a con-

tiguous section of directives from the individual.

EvoHeap also uses two additional operators: Allocation

Nudge and Free Nudge. These two are alternate versions of

the Spray and Hole Spray operators which only differ in

the maximum length of the generated sequences. The Nudge-

Operators should generate short sequences, while the normal

ones could also generate sequences of very large length. We

chose to remove this kind of differentiation in KEvoHeap for

the following reason: As we apply defragmentation to the

kernel heap right before we execute the candidate, we start

allocating objects in an empty slab. That means, that most

likely all our allocations will take place in one single page

frame. If we allow the algorithm to make a huge number of

allocations, we will most certainly exhaust the slab, which

will cause the creation of a new slab on a new page frame.

This will probably result in the second target object being

allocated on a different page frame than the first one, so the

target objects will not be adjacent to each other6. Because of

this, we only allow sequences to be generated that will not

exhaust the complete slab. As this leaves us with a rather

small maximum length, we do not need a second operator for

a different length class.

D.3 Crossover

The crossover is the other operation a genetic algorithm uses

to create offspring. Just like in EvoHeap we use a modi-

fied version of a two-point crossover [33, 57]. In the classic

two-point crossover, two individuals of equal length swap

a sequence between two set offsets. To cope with the fact

that our individuals can be of different lengths, we select a

sequence of random length starting from a random offset in

each individual and swap them. This can possibly create in-

valid individuals, e.g. by removing an allocation from an

individual that is freed later on or removing the allocation of

the source or the destination. While it is possible to simply let

the algorithm filter these in the selection process, it is more

efficient to prevent this from happening. For this, we employ

6Technically this is not always true, as overflowing over page borders

is possible and can lead to successful exploitation [46]. As SLUB does not

keep metadata at the beginning of a slab, the objects could theoretically even

be directly adjacent. However, this would require manipulating the buddy

allocator in addition to the slab allocator. While this is possible, it is much

more reasonable to assume that we can find a simpler solution inside the slab.

some kind of "housekeeping" routine. If we by accident re-

move the allocation of one of the target objects, we add it

again manually. Additionally, we check the individual for

double frees or frees of IDs that have not been allocated, and

remove those.

D.4 Selection

At the beginning of each EvoStep that is not the first the ex-

isting population has to be evaluated. The Evaluate function

takes the current population and the distances that were re-

turned from the client and assigns each individual a fitness

value that we try to minimize. The fitness is calculated accord-

ing to the following formula:

f itness(d) =











264 if d is "error"

264−1 if d > 0

abs(d) otherwise

(1)

The distance that the client returns is calculated as (srcAddr−
dstAddr), where srcAddr is the address of the first target

object, and dstAddr the address of the second object. If the

client returns an error the fitness of the individual is set to the

maximum, 264. If the distance is larger than zero the objects

have been allocated in the wrong order. We set the fitness

to 264−1 so we can distinguish them from execution errors.

Otherwise, we simply set the fitness to the absolute value

of d. This calculation assumes that we try to allocate the

target after the source, simulating an overflow. If we want to

simulate an underflow, the target has to be allocated before the

source. This can be achieved by simply changing the second

condition from d > 0 to d < 0.

The Select function is listed in Algorithm 7. It is identical

to the one Heelan used in EvoHeap [33]. First, we divide

the population into two groups: The noerr group contains

all individuals that did not result in an error. The orderok

group contains all groups that did not cause an error and also

allocated the target objects in the correct order, so have a

fitness lower than 264−1. If the orderok group is not empty,

the offspring will be selected from it, otherwise, we select

from the noerr group. In the unlikely case that all executions

resulted in an error, we select from the whole population. For

selection we use a mix of elitist selection and double tour-

nament selection, which are both standard genetic algorithm

selection functions [42, 57]. The weighting between both

strategies is set via the e parameter. The third parameter of

SelBest and SelDoubleTourn tells how many individuals

should be selected. Elitist selection simply returns the µ · e
individuals with the best fitness. Double tournament selec-

tion is an a bit more sophisticated approach for selection. In

standard tournament selection, a random set of individuals is

taken from the population, from which the best according to

their fitness is selected. This process gets repeated as often

as the number of individuals that should be selected. In dou-

ble tournament selections, the individuals have to pass two

24

Journal of Systems Research (JSys) 2023

tournaments: First, two individuals are selected via standard

tournament selection. These two then participate in a parsi-

mony tournament, in which the shorter individual is selected

according to a user-provided probability between 0.5 and 1.

This selection strategy puts a penalty on very long individuals.

As through mutation individuals can grow rapidly in size, this

strategy proved to counterbalance this growth [33, 42]. In our

experiments we saw that it is most effective to use a value

of 0.5 for e, splitting the selection in half between elitist and

double tournament selection. The code for both algorithms is

available on GitHub [43].

1 Function Select(pop, f it, µ):

2 noerr← [],noerrFit← []
3 orderok← [],orderokFit← []
4 i← 0

5 while i < len(pop) do

6 if f it[i] ̸= 264 then

7 noerr.append(pop[i])
8 noerrFit.append(f it[i])

9 if f it[i] ̸= 264−1 then

10 orderok.append(pop[i])
11 orderokFit.append(f it[i])

12 i← i+1

13 end

14 if len(orderok) > 0 then

15 pop← orderok

16 f it← orderokFit

17 else if len(noerr) > 0 then

18 pop← noerr

19 f it← noerrFit

20 e← GetFracElitism()

21 b← SelBest(pop, f it, µ · e)
22 r← SelDoubleTourn(pop, f it,

µ · (1− e))
23 return b+ r

Algorithm 7: The selection routine [33]. pop is the popu-

lation, f it their fitnesses, and µ the number of individuals

to select. It implements a (µ+ λ) strategy, as both the

parents and the children are taken into consideration.

D.5 Evaluation Fast-reset-KEvoHeap

Figure 15 provides a comparison of the runtimes of running

100 experiments using KevoHeap, pseudo-random search,

and fast-reset-KEvoHeap.

0 1 2 3 4 5

100

101

102

103

104

Noise
M

in
u

te
s

KEvoHeap PRS Fast-reset-KEvoHeap

Figure 15: Bar plot illustrating the execution time of running

100 experiments with natural allocation order and different

noise levels across KEvoHeap and pseudo-random search

with the custom cache implementation, and KEvoHeap utiliz-

ing the fast reset strategy. The values for fast-reset-KEvoHeap

were estimated using the average generations needed for

KEvoHeap to solve the respective problems.

25

	Introduction
	Related Work
	Automation of Exploitation Sub-tasks
	Automatic Exploit Generation
	Kernel Exploitation

	Exploiting Heap Overflows
	Memory allocation in the Linux kernel
	Slab-Allocation

	Kernel-SIEVE: Evaluating HLM Algorithms in the Kernel
	Candidate Algorithms
	Pseudo-Random Search
	KEvoHeap

	Evaluation
	Synthetic Benchmarks
	Pseudo-Random Search
	KEvoHeap

	Analysis and Discussion
	Application in Realistic Settings
	Accessing Distance of Target Objects
	Instability of Results after Multiple Executions
	Application of KEvoHeap in real-world vulnerabilities

	Conclusion
	The SLUB Allocator
	Heelans work
	EvoHeap

	Pseudo-Random Search
	KEvoHeap
	Individual Representation
	Mutation
	Crossover
	Selection
	Evaluation Fast-reset-KEvoHeap

