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Summary

The coupling between transverse and longitudinal
perturbations is studied self-consistently by
considering a beam of K-V distribution. The analysis
is carried out within the context of linearized
Vlasov-Maxwell equations and electrostatic
approximation. The perturbation is assumed to be
azimuthally symmetric but axially non-uniform (k; ¢
0). It is shown that the coupling affects both {he
longitudinal and transverse modes significantly in
the high density and low frequency region. Two new
classes of Jongitudinal modes are found which would
not exist if the transverse motions of particles are
neglected. The effect of resistive wall impedance on
beam stability is also studied. It is found that the
longitudinal impedance can cause the transverse modes
also to be weakly unstable,

Introduction

For a stability analysis of a continuous beam in
a circular accelerator or storage ring, longitudinal
and transverse effects are considered separately, a
procedure which is valid because space charge forces
ave relatively weak and the characteristic
frequencies differ by orders of magnitude. In
present day r.f. 1inacs, space charge effects are
large and the frequencies in all degrees of freedom
are comparable, but deterioration of beam quality is
dominated by the effects of mismatches and non-linear
coupling in the first few drift tubes. A new
situstion arises in the use of hesvy ions to initiate
inertial confinement fusfon. In an induction linac
and in the final transport lines to a reactor, space
charge forces are large and all frequencies are of
the order of the plasma frequency, so that ome would
expect a coupling of longitudinal and transverse
effects. The purpose of the paper is to present a
first attempt to explore this regime.

Model

We consider an infinitely long contimuous beam,
circular in cross-secticn with a constant linear
external transverse fotusing force. The statiomary
configuration is characterized by a K-V distribution
in transverse coordinates and a velocity distribution
in the longitudinal direction. The beam is in a
circular pipe with arbitrary wall impedance but the
walysis of the linearized Viasov equation s
restricted to azimuthally symmetric modes and
electrostatic perturbed fields.

Tii’g 411 perturbed guantities to vary as
ei(ut-k2) viasov's equation is solved by
integration over the waperturbed orbits and Peisson's
equation hecomes an integre-differential aguation for
the elactrestatic potemtial 'lthl.n the botm radius:
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where pZ = ii {1-cos2vt) + rlcosaut - r\[aT--rT X
cosesin2vt,
RZ = a2 cos2ut,
a = beam radius,
§l = w -~ kvg,
.pz = 4xno22e2/m ~ plasma frequency,
v2 = v§ - wfi2 ~ betatron frequency,
%2 ~ betatron frequency at zero intensity,

and the longitudinal velocity distribution is taken
to be a s-function at the beam velocity, vo. The
solution of (1) is to be matched at the beam radius
to the free space solution

V(r) ~ Ko(kr)Io(kb) - Io(kr)Kolkb) -

L] ]
+ 8 11, (k03K (ke) = K (kDI (kr)] @
where b is the pipe radius and Z the wall impedance
in units of 25. For HIF, v& << and since
the bunches are in fact not very long and would
almost fill the pipe, values of ka up to unity or
greater are of interest.

Equation (1), with k = q 1s the same as the one
investigated by Gluckstern{1) for stability of
transverse modes. In that case, the

: 2
solutions of (1) are ¥V « pn( - 2"!_)+ pm( - grz_?_)
a a

where Py is the nth Ltru‘rt polynomial. Een. [1)
thea es to an (nt1) degree polynemial in -L.

the roots of which are the desired eigenvalues. With
k & 0, the aquation is pet soluble with a finite
polymemial in r, but an expansion in Logendre
polymsnials of the same argumsnt is suggested in
order to sok how these identifiod medes imteract with
longitedinal medes and with each other.

After considerable manipulation, one arrives at a
recursion relatien:
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where Ag i3 the coefricient of Py(1-rZja2) «
Pj_](l S 2r2}i€) in the expansioh (340), and .
Ag 1S the value of the potential at r = a. The
matching condition at r = a yives:

[kavy' Vg — WolAg = WoAy 4)
ﬁre Vo is the potential for r > a, given by Eqn.
2).

The other symbols ir ‘(3) and (4) are defined by:
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The frequencies of the modes found by Gluckstern are
given by Uj = 0.

Results

The eigen-frequencies are given by setting the
infinite deterwminant of the coefficients of Aj.in
equations (3) and (&) equal to zero; they are
approximated for the lower modes by truncating the
deterwinant at some order. Before describing the
detailed results, two 1imiting cases should be
mentioned. 1f the betatron frequency is allowed to
approach infinity, we should have an accurate
description of purely longitudinal phenomena. For
ka << 1, one finds the well-known relation,

2.2 2 2iv *
2 ka2 (1 b 0.
Q= —‘—up ('2-"’]!\7. 7 ) (5)
but also an infinite set of frequencies,
92 - kzlz .2 P.n (6)
T p Zn(n*1)

which describe a ‘ongitudinal motion internal to the
beam with a perturbed potential equal to zero at the
of the beam. Here Py denotes the average
value in time of Py(cos 2vt). Also there appears
anothar class of modes with frequencies 2ny as k
apprarches zero. These correspond at k = 0 to a
configuration in which the deasity remains constant
in time, and there is mo perturbed field, but a
distribution in longitudimal velocity 1s correlated
with transverse amplitude and phase in such a way
that the average axfal velocity at fimed radivs
varies sinuseidally i tiee at mltiples of twice the
betatron frequency. These two sets of medes have wot
boen recognized before; for finite v and k they can
alss interact with mere familiar emes to cause
potantial instabilities.
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Out of the sequence of an infinite mmber of
roots of the dispersion relation (4), the first ten
roots are shown in Fig. 1 as functions of mormalized
betatron fregquency vw/vwy for values of ka = 1.0 and
b/a = 1.5. The transverse modes, except for the
lower T> and at the crossing of Ty and T3, are
not significantly affected by the longitudinal
perturbations. The growth rate of the well known
instability in the confluent region of the two lower
T3 modes remains roughly the same as for k = 0, but

merging point is shifted from v/vg = .375 for
ka = 0 to Vlvo - .39 for ka = 1.0.

Pronounced longitudinal-transverse coupling
appears in the high density and low frequency region,
which is more clearly depicted in fig. 2. The first
direct impact bétween longitudinal and transverse
modes happens when the frequency of- T2 approaches
the frequency of the Ly mode, which occurs at
vivg = .44 in Fig. 2. In that region, the
frequencies of Ly and T modes are complex
conjugate pairs; the maximum growth rate is around
+0Bvg. A more severe instability occurs when Tp
and Lz merge in the region from v/vg = .32 to
vjvp = .2, The maximm growth rate in this region
is roughly 2vg.

In addition to the mixing of T modes and L modes,
a mild instability of growth rate about 10-3vg is
found when T3 crosses Ty at v/vg = .48. The
two upper longitudinal modes £ and %3 appear to
remain stable with increasing values of ka.

The effect of a resistive wall impedance on these
ten roots has been examined for the value of Zu/ck
ranging from O to .3 which range corresponds to
conditions anticipated in a linear induction
accelerator. It is found that the wall impedance
affects modes Ly and Ty most. The familiar mode,

L1, is unstable in the familiar way and Ty, the
envelope oscillation e is weakly unstable, witk
growth rate of 5 x 10~%y, at Zu/ck = 0.2.

Conclusions

Growth rates of ~ 0.1y are very substantial,
corresponding to an e-folmng distance along an
accelerator of about ten magnet periods for a 60°
focusing lattice. Although the model used in this
work is a simple one, the results suggest the need to
watch for such effects in a three-dimensional
computer simulation, which is probably needed to
investigate the problem thoroughly. A qualitative
picture is at least established; only modes which
involve an average axial field over the beam or
surface motion are influenced by the wall impedance,
but at the same time there are new modes involving
internal motion which must be taken into
consideration.
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Fi?. 1. Real part of the first ten roots of dispersion

relation, shown as functions of betatron frequency.
Quantities are normalized to the zero current betatron

frequency. The transverse modes T, correspond to
Gluckstern's axi-symmetric modes.(1) ¢y and 23 are the

longitudinal modes due to the correlaticn between the

longitudinal velocity and the transverse motion.

Ly is

the ordinary longitudinal mode. L2 is the lowest mode

indicated by Eqn. (6)

Fig. 2. Real part of the square of the Doppler shifted
Trequency (R » w-kvo) versus betatron frequency in the
high density-low frequency domain. Quantities are
normalized to vo2 and v, respectively.





