
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
TRANSVERSE-LONGITUDINAL COUPLING IN INTENSE BEAMS

Permalink
https://escholarship.org/uc/item/8ss8j3p4

Author
Wang, T-S.

Publication Date
1981-03-01
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8ss8j3p4
https://escholarship.org
http://www.cdlib.org/


LBL-11750 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Accelerator & Fusion 
Research Division MASTED 

Presented at the 1981 Particle Accelerator 
Conference, Washington, D.C., March 11-13, 1981 

TRANSVERSE-LONGITUDINAL COUPLING IN INTENSE BEAMS 

Tai-Sen Wang and Lloyd Smith 

March 1981 

Prepared for ttw U.S. Department of Energy under Contract W-7405-ENG-48 
H t * . . , . , , 



TMNSVEKSE-LONfitTUDINM. COUrtlMB IN INTENSE WHS* 

Til-Stn F. Ming and Lloyd Smith 
Lawrence Berkeley Laboratory 
University of California 

1 Cyclotron Road 
Berkeley, Calif. 94720 

The coupling between transverse and longitudinal 
perturbations Is studied self-conslstcntly by 
considering a bean of K-V distribution. The analysis 
Is carried out within the context of linearized 
Vlasov-Maxwell equations and electrostatic 
approximation. The perturbation is assumed to be 
azimuthally symmetric but axially non-uniform (k z * 0). It is shown that the coupling affects both the 
longitudinal and transverse modes significantly in 
the high density and low frequency region. Two new 
classes of longitudinal modes are found which would 
not exist if the transverse motions of particles are 
neglected. The effect of resistive wall Impedance on 
beam stability is also studied. It Is found that the 
longitudinal impedance can cause the transverse modes 
also to be weakly unstable. 

Introduction 
For a stability analysis of a continuous beam in 

a circular accelerator or storage ring, longitudinal 
and transverse effects are considered separately, a 
procedure which is valid because space charge forces 
are relatively weak and the characteristic 
frequencies differ by orders of magnitude. In 
present day r.f. llnacs, space charge effects are 
large and the frequencies in all degrees of freedom 
are comparable, but deterioration of beam quality Is 
dominated by the effects of mismatches and non-linear 
coupling In the first few drift tubes. A new 
situation arises In the use of heavy Ions to Initiate 
inert 1*1 confinement fusion. In an induction llnac 
and In the final transport lines to a reactor, space 
charge forces are large and all frequencies are of 
the order of the plasma frequency, so that one would 
expect a coupling of longitudinal and transverse 
effects. The purpose of the paper is to present a 
first attempt to explore this regime. 

Model 
He consider an Infinitely long continuous beam, 

circular In cross-sectlcn with a constant linear 
external transverse focusing force. The stationary 
configuration is characterized by a K-V distribution 
in transverse coordinates and a velocity distribution 
in the longitudinal direction. The beam is in a 
circular pipe with arbitrary wall Impedance but the 
analysis of the linearized Vlasov equation Is 
restricted to azlauthelly symmetric modes and 
electrostatic perturbed fields. 

_ Taking all perturbed quantities to vary as 
e ' U t - M ) , viasov's equation Is solved by 
Integration ever the unperturbed orbits and Pelsson's 
equation becomes am Integra-differential equation for 
the electrostatic potential within the beam radius: 
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where P 2 - f - (l-cos2«t) + r2cos2vt - r^J-T* x 

coses1n2vt, 

R2 . a? cosz«t, 
a « beam radius, 
fl - • - kv 0 p 

2 • 4«n0z2e2/«i ~ plasma frequency, 
v 2 - v§ - ofyll - betatron frequency, 
„ 0

2 ~ betatron frequency at zero Intensity, 
and the longitudinal velocity distribution Is taken 
to be a a-functlon at the beam velocity, v 0. The solution of (1) is to be matched at the beam radius 
to the free space solution 

V(r) - K0(kr)I0(kb) - l0(kr)K0(kb) 
ml 1 {£ tI0(M>)K0(kr) - K0(kb)I0(kr)] (2) 

where b is the pipe radius and Z the wall impedance 
in units of 2 0 . For HIF, t2 « v2 and since 
the bunches are In fact not very long and would 
almost fill the pipe, values of ka up to unity or 
greater are of Interest. 

Equation (1), with k . 0 Is the same as the one 
Investigated by SlucksternU) for stability of 
transverse modes. In that case, the 

solutions of (1) are V . M l - 1 § - U P ^ Y l - z£\, 

where >. Is the nth Ltgondrt polynomial. Eqn. (1) 
then reduces to an (n+1) degree polynomial In <•?, 
the roots ef which are the desired eigenvalues, with 
k n 0, the equation 1$ pet soluble with a finite 
polynomial In r*. but an expansion in Leeendre 
pelynsmlals ef the seme irgunmat is suggested in 
order te see hew these Identified modes Interact with 
longitudinal modes and with each ether. 

nipulation, one arrives at a After considerable i 
recursion relation: 
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where Ai 1s the coefficient of Pj(l-2r2/a2) + P«_i(l - 2r2/*2} In the expansion (WO), end • *o is the value of the potential at r . a. The' •etching condition at r - a uives: 
[kaV 0V»o - «o]*o - "o*l («) 

where V 0 1s the potential for r > a, given by Eqn. (2). 
The other symbols In (3) and (4) are defined by: 

Uj - 4j+1 — £ J dt e~1nt[P._l(cos2vt) -
Pj(cos2vt)], 
2 2 /• * 

V, . k ' [1+ J f dtte _ 1 n tP <(cos2vt)]. J 2(2j+l) P J o 1 
The frequencies of the modes found by Gluckstern are given by Uj - 0. 

Results 
The eigen-frequendes are given by setting the Infinite determinant of the coefficients of Aj ..in equations (3) and (4) equal to zero; they are approximated for the lower nodes by truncating the determinant at some order. Before describing the detailed results, two limiting cases should be mentioned. If the betatron frequency Is allowed to approach Infinity, we should have an accurate description of purely longitudinal phenomena. For ka « 1, one finds the well-known relation, 

*-<**(>i-$-3*)* (5) 

but also an Infinite set of frequencies, 
s^.kV 2 _Fn .. 

which describe a longitudinal notion Internal to the bean with a perturbed potential equal to zero at the edge of the beam. Here F n denotes the average value In tin* of Pn(cos 2»t). Also there appears another class of nodes with frequencies 2n« as k approaches zero. These correspond at k » 0 to a configuration In which the density remains constant In tine, end there Is no perturbed field, but a distribution In longitudinal velocity Is correlated with transverse amplitude end phase In such a way that the average axial velocity at fined radius varies slnoseleally in tine at multiples ef twice the betatron frequency. These two sets ef nodes have not been recognized before; for finite » and k they can also Interact with nore fowl liar ones to cause potential instabilities. 
*Tne factor. Iff. In two oric««t~corratpands to an an or a n of E> over the boon area In the usual longltodtnal analysis. For finite«, It becomes 

LtifU, 

Out of the sequence of an Infinite number of roots of the dispersion relation (4J, the first ten roots are shown In Fig. 1 as functions of normalized betatron frequency v/vg for values of ka - 1.0 and b/a -1.5. The transverse nodes, except for the lower T» end at the crossing of Ti and Ti, are not significantly affected by the longitudinal perturbations. The growth rate of the well known instability In the'confluent region of the two lower T3 nodes remains roughly the sane as for k - 0, but the merging point Is shifted from v/v 0 - .375 for ka > 0 to v/v0 - .39 for ka > 1.0. 
Pronounced longitudinal-transverse coupling appears 1n the high density and low frequency region, which 1s nore clearly depicted in fig. 2. The first direct impact between longitudinal and transverse nodes happens when the frequency of- Tj approaches the frequency of the i\ node, which occurs at v/v0 - .44 in Fig. 2. In that region, the frequencies of Li and T2 nodes are complex conjugate pairs; the maximum growth rate is around .0Bvo. A nore severe instability occurs when T; and Lj merge in the region from v/v 0 • .32 to •j/vp - .2. The maximum growth rate in this region 1s roughly .2v0. 
In addition to the mixing of T modes and L modes, a mild instability of growth rate about 10- 3v 0 is found when T3 crosses T) at v/v0 - .48. The two upper longitudinal modes *i and £3 appear to remain stable with Increasing values of ka. 
The effect of a resistive wall Impedance on these ten roots has been examined for the value of Z«/ck ranging from 0 to .3 which range corresponds to conditions anticipated in a linear induction accelerator. It is found that the wall Impedance affects modes Li and Ti most. The familiar mode, 

L \ , 1s unstable In the familiar way and Ti, the envelope oscillation node is weakly unstable, with growth rate of 5 x 10-*v0 at Za/ck « 0.2. 
Conclusions 

Growth rates of ~ 0.1VQ are very substantial, corresponding to an e-folding distance along an accelerator of about ten magnet periods for a 60° focusing lattice. Although the model used in this work is a simple one, the results suggest the need to watch for such effects in a three-dimensional computer simulation, which is probably needed to Investigate the problem thoroughly. A qualitative picture is at least established; only nodes which Involve an average axial field over the beam or surface notion are influenced by the wall Impedance, but at the sane tine there are new nodes involving Internal notion which must be taken into consideration. 
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Fig. 1. Real part of the first ten roots of dispersion 
relation, shown as functions of betatron frequency. 
Quantities are normalized to the zero current betatron 
frequency. The transverse nodes T n correspond to 
Gluckstern's axl-syneetrlc modes.0) l\ and 13 are the 
longitudinal nodes due to the correlation between the 
longitudinal velocity and the transverse notion. Li is 
the ordinary longitudinal node. L2 1s the lowest node 
Indicated by Eon. (6). 
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