
UCLA
UCLA Previously Published Works

Title
Cellular uptake and cytotoxicity of a near-IR fluorescent corrole–TiO2 nanoconjugate

Permalink
https://escholarship.org/uc/item/8st0h82z

Authors
Blumenfeld, Carl M
Sadtler, Bryce F
Fernandez, G Esteban
et al.

Publication Date
2014-11-01

DOI
10.1016/j.jinorgbio.2014.06.015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8st0h82z
https://escholarship.org/uc/item/8st0h82z#author
https://escholarship.org
http://www.cdlib.org/


Cellular Uptake and Cytotoxicity of a Near-IR Fluorescent 
Corrole-TiO2 Nanoconjugate

Carl M. Blumenfeld†,‡, Bryce F. Sadtler‡, G. Esteban Fernandez#, Lily Dara¶, Cathie 
Nguyen§,δ, Felix Alonso-Valenteenδ, Lali Medina-Kauweδ, Rex A. Moats§, Nathan S. 
Lewis†,‡, Robert H. Grubbs‡, Harry B. Gray†,‡,*, and Karn Sorasaenee†,‡,§,*

†Beckman Institute, California Institute of Technology, Pasadena, CA 91125 USA

‡Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, 
CA 91125 USA

#Cellular Imaging Core, The Saban Research Institute, Children’s Hospital Los Angeles, Keck 
School of Medicine of USC, Los Angeles, CA 90027 USA

¶Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of 
Medicine of USC, Los Angeles, CA 90089 USA

δDepartment of Biological Sciences, Cedars-Sinai Medical Center, David Geffen School of 
Medicine, University of California Los Angeles, Los Angeles, CA 90068 USA

§Translational Biomedical Imaging Laboratory, Department of Radiology, The Saban Research 
Institute, Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA 
90027 USA

Abstract

We are investigating the biological and biomedical imaging roles and impacts of fluorescent 

metallocorrole-TiO2 nanoconjugates as potential near-infrared optical contrast agents in vitro in 

cancer and normal cell lines. The TiO2 nanoconjugate labeled with the small molecule 2,17-

bis(chlorosulfonyl)-5,10,15-tris(pentafluorophenyl)corrolato aluminum(III) (1-Al-TiO2) was 

prepared. The nanoparticle 1-Al-TiO2 was characterized by transmission electron microscopy 

(TEM) and integrating-sphere electronic absorption spectroscopy. TEM images of three different 

samples of TiO2 nanoparticles (bare, H2O2 etched, and 1-Al functionalized) showed similarity in 

shapes and sizes with an average diameter of 29 nm for 1-Al-TiO2. Loading of 1-Al on the TiO2 

surfaces was determined to be ca. 20–40 mg 1-Al/g TiO2. Confocal fluorescence microscopy 

(CFM) studies of luciferase-transfected primary human glioblastoma U87-Luc cells treated with 

the nanoconjugate 1-Al-TiO2 as the contrast agent in various concentrations were performed. The 

CFM images revealed that 1-Al-TiO2 was found inside the cancer cells even at low doses (0.02–2 

µg/mL) and localized in the cytosol. Bioluminescence studies of the U87-Luc cells exposed to 
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various amounts of 1-Al-TiO2 showed minimal cytotoxic effects even at higher doses (2–2000 

µg/mL) after 24 h. A similar observation was made using primary mouse hepatocytes (PMH) 

treated with 1-Al-TiO2 at low doses (0.0003–3 µg/mL). Longer incubation times (after 48 and 72 h 

for U87-Luc) and higher doses (> 20 µg/mL 1-Al-TiO2 for U87-Luc and > 3 µg/mL 1-Al-TiO2 for 

PMH) showed decreased cell viability.

Graphical Abstract

Synopsis for the graphic abstract

Fluorescence (shown in red) from the corrole nanoconjugate 1-Al-TiO2 internalized in the 

glioblastoma U87-Luc cell.
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1. Introduction

Small molecules, biomolecules, and biocompatible materials for molecular imaging have 

played an important role in recent advances in biomedical and drug development 

research[1–3]. Application of contrast agents is required by many imaging modalities and 

allows for better understanding of biochemical pathways, physiological processes, and 

disease pathologies[4–8]. Many small molecules and biomolecules that function as 

molecular imaging contrast agents have been utilized in both preclinical and clinical 

settings[9]. Recent efforts have focused on nanomaterials, a stark contrast to traditional 

small molecules and oligomers[10,11]. Aside from the sizes of these materials, including 

volumes and surface areas, which essentially provide a canvas for numerous small molecule 

labeling, they exhibit properties not generally found in either bulk materials or discreet 

molecules[12–14]. Examples of widely used and studied nanomaterials for biomedical 

imaging include quantum dots for optical imaging and superparamagnetic iron oxides for 

magnetic resonance imaging[10,11].

In our work, we have employed semiconductor nanoparticulate titanium(IV) oxide (TiO2) 

covalently decorated with fluorescent corroles as a new class of optical imaging contrast 

agents for the study of cellular uptake and cytotoxic effects in cancer and normal cells. TiO2, 

found in several different crystalline structures, such as rutile, anatase, and brookite, has 

been used in a number of contexts, including photocatalysis, dye-sensitized solar cells, and 

photochromic devices[15–19]. TiO2 nanoparticles exhibit a wealth of intrinsic properties 

dependent upon several factors, including surface area, crystalline phase, and single 

Blumenfeld et al. Page 2

J Inorg Biochem. Author manuscript; available in PMC 2016 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



crystallinity. We have exploited the facile nature with which the surface can be decorated 

with corroles, which were selected as optical dyes. Many studies have shown that 5,10,15-

trispentafluorophenyl corrole and its derivatives exhibit bright and robust fluorescence 

signals in the near-IR region (λem ≥ 600 nm) and are therefore considered suitable 

candidates for optical imaging[20–23]. In addition, the chemical versatility of corroles, 

allowing for various metallation[24–26] and substitution[27,28] reactions, as well as their 

biological stability[29–31] make them attractive contrast agents.

Previously we reported the syntheses, spectroscopic characterizations, and spectral confocal 

fluorescence imaging results for a family of corrole-TiO2 nanoconjugates, namely 1-TiO2, 1-
Al-TiO2, and 1-Ga-TiO2[32]. The TiO2 nanoparticle surfaces were covalently labeled with 

chlorosulfonated corroles through a sulfonic ester linkage (Scheme 1).

Because 1-Al-TiO2 exhibits the brightest fluorescence, consistent with the emission 

properties of related molecular Al corroles[26,32,33], we chose this nanoconjugate as a 

model to study cellular uptake and cytotoxic effects.

2. Experimental

2.1. Reagents and materials

Preparation of Al(III)tpfc(SO2Cl)2 (1-Al) and the nanoconjugate 1-Al-TiO2 was reported 

previously[32]. D-Luciferin potassium salt (Promega), Hoechst 34580 (Invitrogen™), 

Hoechst 33258 (Invitrogen™), Sytox Green (Invitrogen™), and FM® 1–43FX 

(Invitrogen™) were used as received according to the provider’s instruction.

2.2. Physical Methods

Characterization of 1-Al was performed by 1H NMR, 19F NMR, electronic absorption, and 

fluorescence spectroscopies, and was reported previously[32]. Surface characterization of 1-
Al-TiO2 is outlined as follows.

2.2.1. Transmission Electron Microscopy—The morphologies of the TiO2 

nanoparticles before and after surface functionalization were imaged using a FEI Tecnai 

F30ST transmission electron microscope (TEM) operated at acceleration voltage of 300 kV. 

Images were recorded using a Gatan CCD camera. For TEM analysis, a small quantity of 

TiO2 particles was dispersed in isopropyl alcohol (IPA) by sonication. The dispersions were 

drop-cast onto C-flat™ holey carbon films on a 200 mesh Cu TEM grid (Electron 

Microscopy Sciences).

2.2.2. Absorption Spectroscopy—Calculation of the corrole 1-Al’s loading on the 

surface of TiO2 was based on the absorbance values obtained from the integrating sphere 

electronic absorption measurements described as follows.

Thin film transflectance measurements were used to determine 1-Al loading on the TiO2 

nanoparticles. Both H2O2-etched and 1-Al-functionalized nanoparticles were dispersed in a 

polydimethylsiloxane (PDMS) polymer matrix. PDMS was chosen as it provides a 

transparent matrix for measuring the optical properties of porous solids[34]. The weights of 
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the TiO2 nanoparticles, the PDMS base (Sylgard®184 silicone elastomer base from Dow 

Corning), and the curing agent (Sylgard®184 silicone elastomer curing agent from Dow 

Corning) are provided in Table A.1 in Appendix A. The nanoparticles were first dispersed in 

a minimal amount of IPA by sonication. The dispersion of TiO2 nanoparticles in IPA was 

then mixed with the PDMS base and curing agent using a vortex mixer. The mixtures were 

cast into films onto quartz substrates and allowed to cure in air for 12 h followed by curing 

in a drying oven at 60° for 2 h.

Transflectance spectra of the H2O2-etched and 1-Al-functionalized TiO2 nanoparticle films 

were measured using a Cary 5000 UV-vis-NIR spectrometer from Agilent Technologies 

equipped with an integrating sphere (External DRA 1800), a PMT detector, a quartz-iodine 

lamp for the visible region (350–800 nm), and a deuterium lamp for the ultraviolet region 

(300–350 nm). Because the TiO2 nanoparticles diffusely scattered the incident illumination, 

the PDMS films were placed in the center of the integrating sphere to collect both the 

transmitted, T, and the reflected, R, (including the spectrally reflected and diffusely 

scattered) light with the PMT detector. The transflectance measurements allowed for the 

absorbance, A, of the films to be determined by A = −log(T+R). The concentration, C, of 1-
Al within the PDMS films was then calculated using the Beer-Lambert law, A = εCl, where 

ε is the extinction coefficient of the dye and l is the film thickness (determined by 

profilometry, see below)[35– 37]. The absorbance values at 426 and 595 nm (corresponding 

to the Soret and Q bands of the dye, respectively) for the PDMS film containing the 1-Al-
functionalized TiO2 nanoparticles, the estimated extinction coefficients of 1-Al at these 

wavelengths, and the film thicknesses are provided in Table A.2 of Appendix A. The 

absorbance values for the PDMS film containing the non-functionalized, H2O2-etched TiO2 

nanoparticles at these wavelengths are also provided, which were subtracted from the 

absorbance values of the 1-Al-functionalized TiO2 nanoparticles. The 1-Al-loading was 

determined to be 24 mg of 1-Al per gram of TiO2 based on the absorbance value of the Soret 

band and 38 mg of dye per gram of TiO2 based on the absorbance value of the Q band.

Thickness profiles of the PDMS films were measured using a Bruker DektakXT stylus 

surface profilometer. The diameter of the diamond-tipped stylus was 2 µm and a weight of 1 

mg was applied to the film. The stylus was scanned at a rate of 250 µm/s. The thickness 

profiles were used measure the average path length through the PDMS films during the 

transflectance measurements.

2.2.3. Hydrodynamic size and surface charge measurements—The mean particle 

size was determined by dynamic light scattering (DLS, Malvern ZEN 3600 Zetasizer Nano) 

measurements. Samples of 1-Al-TiO2 suspended in PBS pH 7.2 were pipetted into a low 

volume quartz cuvette with appropriate concentrations. At least nine measurements were 

performed for each sample. Each measurement comprised 20 runs with an average of 34,000 

particle counts per second. The data represent the particle size distribution parameter, which 

reports the most frequent particle size in the sample accounting for the intensity fluctuations 

of larger particles. The particle intensity was computed using Zetasizer Software version 

7.01 applying the Stokes-Einstein equation to correlate the change in the scattering intensity 

and particle movements. Plots showing the average size of the nanoparticle aggregates are 

shown in Figure A.1. The surface charge of 1-Al-TiO2 in PBS pH 7.2 was examined through 
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ζ potential measurements (Malvern ZEN 3600 Zetasizer Nano). The average ζ potential 

(Table A.3) was calculated from 20 measurements with 10–100 runs for each depending on 

the variation of the particles.

2.3. Cell Culture and Cell Viability Assay

Pathogen-free U87-LUC cell line (TSRI Small Animal Imaging and Research Laboratory)

[38] was grown in a 75-mL flask in Dulbecco’s Minumal Essential Medium (DMEM) in 5% 

CO2 at 37 °C. The cell culture medium was supplemented with 10% fetal bovine serum 

(FBS) and 1% antibiotic primocin. The cell culture medium was replenished every 2 days 

and the cells were passaged once they reached 80% confluence. Primary mouse hepatocytes 

(PMH) were isolated and cultured as previously described[39].

For U87-Luc cell culture experiments, cells plated in an 8-chamber slide (Nunc™ Lab-

Tek™, Thermo Scientific) were treated with 1-Al-TiO2 suspended in PBS over a range of 

0.002 µg/mL to 2000 µg/mL. A primary stock solution (6.3 mg 1-Al-TiO2 in 1 mL PBS) was 

prepared. The primary stock solution was further diluted to prepare secondary and tertiary 

stock solutions. Various amounts of stock solutions were added to the 8-chamber glass slide 

plated with cells to give the aforementioned range of concentrations. The final volume of 

each chamber was 300 µL. After treatment, the treated cells and controls were incubated in 

the dark in 5% CO2 at 37 °C for a period of 24, 48, and 72 h. The cells were imaged using a 

cooled IVIS® animal imaging system (Xenogen, Alameda, CA USA) linked to a PC running 

with Living Image™ software (Xenogen) along with IGOR (Wavemetrics, Seattle, WA, 

USA) under Microsoft® Windows® 2000. This system yielded high signal-to-noise images 

of luciferase signals emerging from the cells. Before imaging, 20 µL of 5 mg/mL luciferin in 

normal saline were added to each well. An integration time of 1 min with binning of 5 min 

was used for luminescent image acquisition. The signal intensity was quantified as the flux 

of all detected photon counts within each well using the LivingImage™ software package. 

All experiments were performed in triplicate.

For PMH cell culture experiments, the cells were plated in a 6-chamber slide (Falcon®, 

Primaria™). After 3 h, media was exchanged (DMEM-F12) and the cells were treated with 

1-Al-TiO2 suspended in PBS over a range of 0.0003 to 300 µg/mL. A primary stock solution 

(6.3 mg 1-Al-TiO2 in 1 mL PBS) was prepared. The primary stock solution was further 

diluted to prepare secondary and tertiary stock solutions. Various amounts of stock solutions 

were added to the 6-chamber glass slide plated with cells to give the aforementioned range 

of concentrations. The final volume of each chamber was 2000 µL. After 24 or 48 h of 

treatment, cells were double stained with Hoechst 33258 (8 mg/mL) and Sytox Green (1 

mM). Quantitation of total and necrotic cells (Sytox Green positive) was performed by 

counting cells in at least five different fields using ImageJ, as previously described[39]. All 

experiments were done in triplicate.

2.4. In Vitro Confocal Fluorescence Microscopy

The U87-Luc cells were seeded at 20,000 cells per well on an 8-chamber slide (Nunc™ Lab-

Tek™, Thermo Scientific) and allowed to grow overnight. Cells were washed with PBS and 

were incubated in serum free media mixed 1:1 with 1-Al-TiO2 for 24, 48, and 72 h at 37 °C 
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over a concentration range similar to that of the U87-Luc cell viability assay (0.002 µg/mL 

to 2000 µg/mL). Cells were then washed 3× with PBS and stained with Hoechst 33258 and 

FM® 1–43FX stains. The stained cells were kept chilled on ice without fixation until just 

prior to imaging. Z-stacked images were acquired with an LSM 710 confocal system 

mounted on an AxioObserver Z.1 inverted microscope equipped with a 40×/1.2 C-

APOCHROMAT water-immersion lens (Carl Zeiss Microimaging, Thronwood, NY). Two 

visible laser lines of 405 and 488 nm were used for fluorescence excitation. The Z-stacks 

were acquired with 0.5 µm slice intervals. The software ZEN 2010 was used for hardware 

control. To reduce blurring and noise in the raw images, they were processed with the 3D 

blind deconvolution algorithm of AutoQuant AutoDeblur software (Media Cybernetics, 

Silver Spring, MD) using the default settings for the laser scanning confocal modality. ZEN 

and Fiji ImageJ software[40] was employed to further process the deconvolved images.

3. Results and Discussion

3.1 Physical Characterization of 1-Al-TiO2: TEM, DLS, and Surface Characterization

TEM images of TiO2 (Figure 1) were taken before and after H2O2-etching and surface 

functionalization. The images established that the average particle size post-corrole 

functionalization is 29 nm with a standard deviation of 7 nm. These results were obtained 

through averaging over 44 particles. Absorption measurements of the particles embedded in 

a transparent polymer matrix, facilitated with the use of an integrating sphere to distinguish 

between absorption and diffuse scattering by the nanoparticles, indicated nearly identical 

absorption features in the molecular and conjugated species. These experiments afforded an 

approximate loading of 1-Al on the surfaces of ca. 20–40 mg/g TiO2 (Figure 2).

The hydrodynamic nature of 1-Al-TiO2 in PBS measured by the DLS method revealed great 

heterogeneity in size of the aggregates. While the average size of 1-Al-TiO2 in PBS was 

measured to be 200 nm in diameter, smaller and larger aggregates were observed (Appendix 

A). In addition, zeta (ζ) potential measurements of 1-Al-TiO2 in PBS exhibited moderate 

stability and revealed a negatively charged surface with a ζ potential of −27.4 (±1.25) mV at 

the concentration of 50 µg/mL.

3.2 Confocal Fluorescence Microscopy and Uptake of 1-Al-TiO2 by U87-Luc Cells

Treatment of the luciferase-transfected glioblastoma cell U87-Luc with a wide range of 1-
Al-TiO2 concentrations revealed internalization of these nanoconjugates over a period of 24, 

48, and 72 h as shown by CFM (Figure 3). We also show the Z-stacked three-dimensional 

CFM images (Figure 4) of U87-Luc cells treated with 0.02 µg/mL of 1-Al-TiO2 for 48 and 

72 h from three different perspectives.

The CFM images were taken after the cells were stained with nuclear and cell membrane 

dyes, and washed with media solution several times to remove unbound dyes and 1-Al-TiO2 

nanoconjugates. The nucleus labeled with a Hoechst stain is colored blue (λex = 405; λem = 

460 nm), the membrane labeled with the dye FM® 1–43FX is colored green (λex = 488; λem 

= 580 nm), and the nanoconjugate 1-Al-TiO2 is colored red (λex = 405; λem = 634 nm).
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While mechanisms of 1-Al-TiO2 uptake and localization into cells will be studied further, 

we propose that the 1-Al-TiO2 nanoconstruct is internalized through endocytosis, consistent 

with previous work[41–46]. We note that, based on confocal fluorescence imaging, the 

nanomaterial 1-Al-modified TiO2 appears to be suspended in the cytosol. This finding is 

consistent with the distribution pattern of TiO2 nanoconjugates in HeLa cells in a previous 

study of 1D TiO2 nanorods and nanoparticles labeled with fluorescein thiocyanate[43]. 

However, modified TiO2 labeled with alizarin red S has been shown to have perinuclear 

localization in HeLa cells, in contrast to our observations with 1-Al-TiO2[41,42]. Recent 

studies involving uptake of other modified TiO2 nanoparticles in various cell lines, such as 

mouse fibroblasts and osteoblasts, suggested cellular internalization and distribution of TiO2 

nanoparticles at the endosome/lysosome and in the cytoplasm, in accord with our 

findings[44,45]. We note that internalization of 1-Al-TiO2 into glioblastoma cells can be 

observed at very low concentrations (0.02–2 µg/mL).

3.3 Cytotoxicity in U87-Luc Cells

It is well documented that TiO2 nanoparticles exhibit various degrees of cytotoxic activity 

upon photoactivation by UV-vis light due to formation of reactive oxygen species[43,44,46]. 

A study of water-soluble single-crystalline TiO2 nanoparticles in melanoma A-375 cells 

revealed that in the absence of UV light the TiO2 nanoparticles were essentially non-toxic 

and thus biocompatible[46]. However, upon irradiating these cells with UV light less than 

20% of the melanoma cells survived at a TiO2 concentration of 400 µg/mL. Therefore, in an 

attempt to understand the cytotoxic effects of the 1-Al-TiO2 conjugate independently of its 

phototoxic properties, we treated the glioblastoma cell U87-Luc in the absence of UV-vis 

irradiation with the same range of 1-Al-TiO2 concentrations as in the cell internalization 

studies (0.002–2000 µg/mL). The cells were incubated over a period of 24, 48, and 72 h 

prior to bioluminescence cell viability assays[38,47]. Based on the bioluminescence signal 

of the firefly luciferin from living U87-Luc cells, which is related to the level of cellular 

ATP, the cytotoxic assay showed that the nanoconjugate 1-Al-TiO2 had essentially no 

cytotoxic effect on the glioblastoma cells after 24 h of treatment (Figure 5) and, therefore, 

could be considered biocompatible. The cytotoxic effect became more apparent as the cells 

were exposed to the corrole-TiO2 nanoparticles for extended periods of time at higher 

concentrations (> 200 µg/mL). For example, only ca. 65% and ca. 30% of the 

bioluminescence signal from the live cells was observed after 48-h and 72-h treatments at 

2000 µg/mL, respectively. Our viability study of the U87-Luc cells treated with 1-Al-TiO2 

was also consistent with a study performed on mouse fibroblast cells, using the MTT assay, 

showing that the cytotoxic effects of TiO2 at various concentrations (3–600 µg/mL) were 

negligible after 24 h of treatment, whereas the 48-h treatment of these cells with the 

nanoparticle showed a decrease in cell viability at higher concentrations[44]. Another study 

on the cytotoxicity effect of unmodified 1D and 3D TiO2 nanostructures on HeLa cells also 

showed that these nanoparticles were relatively nontoxic at concentrations up to 125 µg/mL 

in the absence of light[43].
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3.4 Cytotoxicity in Primary Mouse Hepatocytes

Additionally, to determine the cytotoxic effect of the nanoconjugate 1-Al-TiO2 on non-

cancerous cells, we treated primary mouse hepatocytes (PMH) with 1-Al-TiO2 at various 

concentrations (0.0003–300 µg/mL) for 24 and 48 h (Figure 6) in the absence of UV-vis 

irradiation. Similar to the results observed for cancerous U87-Luc cells, 1-Al-TiO2 was 

essentially nontoxic in non-cancerous PMH at up to 3 µg/mL after both 24 and 48 h of 

treatment. Only at higher concentrations did the proportion of the live PMH drop below 

80%. We note that the PMH behaved similarly after 24-h and 48-h treatments with various 

doses of 1-Al-TiO2, suggesting that low 1-Al-TiO2 concentrations had minimal cytotoxic 

effects on the viability of these non-cancerous cells. The PMH were more susceptible to the 

cytotoxic effects of 1-Al-TiO2 than the U87-Luc cells; it is reasonable that non-cancerous 

cells, especially primary cells, would be less tolerant towards exogenous non-native 

agents[48,49]. Nonetheless, the intense fluorescence exhibited by 1-Al[26,33] would allow 

for the potential use of the nanoconjugate 1-Al-TiO2 as an optical imaging agent observable 

by confocal fluorescence microscopy even at low concentrations (0.02–2 µg/mL) below the 

cytotoxic thresholds for both cancerous and non-cancerous cells.

4. Conclusions

In summary, we report detailed characterization of 1-Al-TiO2, a nanoconjugate that 

potentially could be used as a metal oxide nanoprobe for optical imaging, owing to intense 

fluorescence as well as its biocompatibility. The biological studies suggest that 1-Al-TiO2 is 

essentially nontoxic at concentrations up to 3 and 2000 µg/mL for normal mouse liver cells 

and glioblastoma U87-Luc cells, respectively, within the first 24 h of treatment. The PMH 

viability, however, dropped at higher concentrations (> 3 µg/mL) after 24-h and 48-h 

treatments and the U87-Luc cell viability also declined at higher concentrations (> 20 

µg/mL) after 48-h and 72-h treatments. We also would like to note, for example, that 

comparable to our PMH cytotoxic assay over the concentration range for 1-Al-TiO2 of 

0.0003–300 µg/mL, superparamagnetic iron oxide nanoparticle used in MRI was studied for 

their cytotoxicity in fetal stem cell lines over a low concentration range (5–35 µg/mL)[50]. 

Another example includes PDMAEMA-modified ZnO QDs functioning as contrast agents in 

monkey kidney cells over a concentration range of 50–800 µg/mL[51]. More importantly, 

our CFM studies demonstrated that the nanoconjugate 1-Al-TiO2 was internalized in U87-

Luc cells even at a relatively low concentration (0.02 µg/mL). Although further detailed 

localization and internalization mechanism studies should be performed, our current work 

has revealed that there is random suspension of 1-Al-TiO2 in the cytosol even after 72-h 

treatment. Notably, the observation of near-IR fluorescence of 1-Al-TiO2 over a non-toxic 

concentration range (0.002–2000 µg/mL) in U87-Luc after 24-h treatment suggests that 

corrole-TiO2 nanoconjugates could be very promising candidates for use as biological 

imaging agents.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We examined a potential use of the corrole nanoconjugate 1-Al-TiO2 as 

an optical imaging contrast.

• 1-Al-TiO2 showed biocompatibility in both primary mouse hepatocyte 

and the glioblastoma U87-Luc.

• 1-Al-TiO2 was internalized by U87-Luc cells even after a long-term 

treatment (72 h).

• 1-Al-TiO2 showed intense near-IR fluorescence inside U87-Luc cells 

even at low doses of treatment (0.02–2 µg/mL)

• We reported detailed characterization of 1-Al-TiO2, including its 

hydrodynamic size, surface charge, and corrole loading.
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Figure 1. 
TEM images of TiO2 nanoparticles before and after dye-functionalization. Images of the 

initial TiO2 nanoparticles (a and d). Images of the nanoparticles after H2O2-etching (b and 

e). Images of the nanoparticles after 1-Al functionalization (c and f). The top scale bar refers 

to images a, b, and c and the bottom scale bar refers to images d, e, and f.
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Figure 2. 
Absorbance spectra of H2O2-etched TiO2 nanoparticles embedded in a PDMS polymer 

matrix before (blue, long dashed line) and after 1-Al functionalization (red, solid line), as 

well as the absorption spectrum of PDMS on quartz (black, short dashed line). The 

absorption spectra were measured in transflectance mode where both transmitted and 

reflected lights were collected employing an integrating sphere.
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Figure 3. 
CFM images of U87-Luc cells incubated with 0.02 µg/mL 1-Al-TiO2 (red) for 24 h (a), 48 h 

(b), and 72 h (c) and stained with dyes to mark the membrane (green) and nucleus (blue).
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Figure 4. 
Z-stacked CFM images of individual U87-Luc cells taken at 0.5-µm z-slice intervals from 

top to bottom after (a) 48 h and (b) 72 h of treatment with 0.02 µg/mL 1-Al-TiO2.
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Figure 5. 
Cell viability plot of U87-Luc cells treated by 1-Al-TiO2 at various concentrations (0.002–

2000 µg/mL) using a bioluminescence assay.
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Figure 6. 
Cell viability plot of PMH treated with 1-Al-TiO2 at various concentrations (0.0003–300 

µg/mL) using a Syntox Green live-dead assay.
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Scheme 1. 
TiO2 surface labeling with 1-Al forming sulfonic ester linkages between the corrole and the 

surface.
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