
UCLA
Technical Reports

Title
Hyper: A Routing Protocol To Support Mobile Users of Sensor Networks

Permalink
https://escholarship.org/uc/item/8st0m5wk

Authors
Thomas Schoellhammer
Ben Greenstein
Deborah Estrin

Publication Date
2006

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8st0m5wk
https://escholarship.org
http://www.cdlib.org/


Hyper: A Routing Protocol To Support Mobile Users of
Sensor Networks

ABSTRACT

Wireless sensor networks for environmental monitoring promise
to be a rich source of ecological, biological, and meteorological data.
However, current systems largely return data to a central location
for offline analysis, and do not support access by mobile users in
the instrumented environment. In many environmental monitoring
applications, it is critical to support users in the field so that they can
correlate manual observations with the sensor network data, engage
in system topology adjustments and calibration tasks, and perform
system management. However, it is critical that such mobile users do
not interfere with the regular data collection functions of deployed
systems.

One of the critical systems functions needed to support mobile
users of wireless sensor networks is routing. In this paper we iden-
tify key mobility usage scenarios and present Hyper, a routing layer
that enables efficient and reliable data collection for both static and
mobile users.

1 INTRODUCTION

Wireless sensor networks are an emerging technology with broad
applicability in a variety of science, engineering, civil and military
applications. For the most part, systems research to date has focused
on mechanisms to create robust self-configuring and energy efficient
systems. These systems have been designed to be taskable [10, 14]
but the usage model generally has been of a human sitting in a re-
mote location to both task behavior and analyze the data.

As we have gained experience with prototype wireless sensor net-
works in environmental monitoring applications, we have recog-
nized the need for these systems to also serve interactive users in
the field. This interactive capability arises at all stages of the sys-
tem life cycle, from design debugging, to deployment testing, and
ongoing system health maintenance, as well as for data visualiza-
tion and analysis in the field in order to support the collection of and
correlation with manual observations. At the same time it is criti-
cal to minimize the impact of such interactive use with the ongoing
activities with which the system is tasked.

The two system requirements that emerge from this interactive,
in-the-field, usage scenario are the need for a data tasking and rout-
ing architecture that supports mobile and transient queriers, as well
as a host of data analysis and visualization tools to assist the scien-
tist. This paper describes the design and performance of the system
support, and we leave the discussion of data tools to future work. We
will use examples from our experiences deploying and using WSNs
for environmental monitoring at Sensor Mountain, however we are
confident that these techniques have broad applicability.

The system, which we call Hyper, has the following features key
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to supporting mobility: fast neighborhood assessment and efficienct
tree convergence to offer a mobile user low latency access to a net-
work; multiple collection tree support for concurrent use by several
mobile users and a fixed collection microserver; a scheme for oppor-
tunistic use of high-bandwidth backchannels such as by 802.11; a
link transmission policy that infers disconnection and reduces need-
less radio use; and a storage system for delay tolerant transmission
(when routes temporarily are bad) and support of lonely mote clouds
(when routes intentionally do not exist for long periods until mobile
users connect to them).

2 DESIGN: ENABLING M OBILITY
Low-power networks typically trade responsiveness for efficiency.

The three sensor networks at Sensor Mountain totalling about 50
motes and four microservers, communicate at a very low duty cy-
cle using the Mica2’s low-power, onboard CC1000 radio [2]. Since
links typically span only 30m to 80m, a multihop collection tree is
formed to transport data to a microserver beyond this range. When
deploying a new node, or fixing an old one, a technician must be pa-
tient. Motes operate at a low duty cycle, so it may take a significant
amount of time (approximately five minutes) in order for a mote to
evaluate its neighborhood, establish link quality estimates and join
the network.

Each microserver is equipped with two radios, the CC1000 for
communicating with the motes, and a standard 802.11 radio for high-
bandwidth transmissions to other microservers and to the Internet at
large. As a result of the latter, some of the reserve is blanketed in
802.11. However due to dense foliage and other obstacles there are
many locations where it is not available.

A technician tasked with deploying a new sensor node must verify
that the new node has end-to-end connectivity to a collection sink.
From the field, this can be determined using an 802.11 backchannel
connection from the technician’s laptop directly to the sink or, when
such connectivity is not available, by walkie talkie. In the worst
case when there is no backchannel connection of any sort (either
via 802.11 or walkie talkie), then the researcher can manually in-
fer connectivity by snooping the mote radio channel for control and
data packets to verify that at least the mote’s communication with
its one hop neighbors seems correct. This is time consuming and
cumbersome.

This situation is equally challenging to the scientist that goes to
the field to make observations. Scientists want to view data while
in the field in order to verify the accuracy of that data, experiment
with stimulation and response, and to annotate the data with their
own observations. Using existing techniques, a user must rely on
802.11 to the network’s collection sink for these purposes. Current
routing implementations do not support multiple collection sinks, so
establishing even a temporary connection directly to a sensor node
will break any previous route that node may have established [2, 19].

Furthermore, to make such observations, a scientist might bring
new sensors to the field. Again though, to activate a new sensor node
even for a quick ad hoc measurement, the application scientist will
need to wait minutes for it to join the network, and again can only
verify end-to-end connectivity via 802.11 or voice radio. In addi-
tion, it may be neccessary to couch the ad hoc measurements in the



context of the surrounding sensors.
For both scientific exploration and basic maintenence an ideal

routing scheme for Sensor Mountain would allow new nodes to join
a network quickly (so that a user doesn’t have to stand and wait),
would support multiple independent routing trees simultaneously for
networks with concurrent fixed and mobile users, and opportunisti-
cally would use 802.11 to connect application scientists to the back-
end for retrieval of current and historical data. In addition it would
allow application scientists to go into the field, get quick access to
sensor data services, deploy new sensors and get results from them
quickly, and even perform calibration experiments in realtime. And
it would do all this while burdening the network as little as possible.

In the remainder of this section we discuss the mobility usage
scenario we intend to support, which is based upon our own ex-
perience deploying and maintaining sensor networks and feedback
from application scientists. We then describe a new routing protocol,
Hyper, that addresses the challenges of supporting the mobile user
efficiently, including fast neighborhood assessment and tree con-
struction, multiple tree support, quality aware retransmission, op-
portunistic use of high-bandwidth backchannels, and disconnection
tolerance.

2.1 Mobility Usage Scenario
From our experience deploying real systems at Sensor Mountain

and biologists’ experience using them, we’ve observed the following
dominant scenario for mobile users:

• Users remain in each location for several minutes.Technicians
go to a location to add a new node, add new sensors, or change
batteries. Users go to a location to verify data, annotate data, or to
directly monitor stimulus/response. These tasks are all short-lived
relative to the duty-cycled, latency-insensitive data gathering style
of many existing systems. The chief concern in supporting this
sort of behavior is in providing a connection to the mote network
as quickly as possible.

• Even when moving, users rarely switch transmission domains.
Radio links are on the order of 50m. After working with a node a
user typically moves to a neighboring node.

• Connectivity is not necessary during periods of mobility.In-
field users interact with nodes while seated near those nodes. The
only reason for movement is to relocate near other nodes. Dis-
connections caused by large movements are not problematic or
undesirable because sensor data services aren’t typically needed
during transition. Data that is stuck in-network due to the user
moving somewhere else can either be dropped in-network, or be
stored until a connection is re-established, depending on the user’s
tolerance for delay. This aspect of the usage scenario is very dif-
ferent from cellular connectivity or mobile IP, where the technical
challenge is in maintaining a connection that provides timely de-
livery through a series of hand-offs and and where disruptions in
the connection are always undesirable.

• A network often has a dedicated and stationary microserver
that collects data from it. This microserver stores the data it re-
ceives into a database and provides access to that database via
802.11 and the Internet. A mobile user with 802.11 connectivity
may access this database for current and historical sensor infor-
mation.

• Disconnected operation of sensor nodes is a common case.
Some deployment sites are so remote that it is not cost effective
or even possible to construct a multiple-hop routing tree to a per-
manent microserver-class collection sink. For theselonely cloud

deployments, sensor nodes must store the information they collect
until a user acting as adata mule can get close enough to them to
establish network connectivity and offload that data.

2.2 Routing Trees for Mobile Users
A mobile user is particularly latency sensitive; thus establishing

a connection quickly is important. In the case of connection via
802.11, Hyper relies upon standard techniques such DHCP, and thus
its latency performace is governed by their parameters. To connect
by mote radio, Hyper provides three services designed to set up an
efficient and unobtrusive connection with low latency: fast neighbor-
hood evaluation, fast tree formation, and routing support for multiple
sinks.

2.2.1 Fast Neighborhood Assessment
Two techniques for link assessment are employed widely in sen-

sor network deployments: direct measurement over a window of
time of the fraction of transmission attempts that are successful; and
indirect inference of this probability of success using a radio’s link
quality indicator (lqi) field [1]. Both techniques rely on transmission
and reception of radio packets. The former technique requires four
to eight packets, depending on the desired accuracy, to generate a
good estimate of the probability of successful transmission; the lat-
ter technique requires a single packet.

The problem is that to save energy, deployed nodes generate data
packets or special link estimation beacons at a period on the order of
minutes. Thus, a user that arrives at a site and wants access to sensor
data services must wait several minutes to establish a connection.

The fix to this problem is fairly straightforward, but is not avail-
able in any sensor network routing protocols that we know of: gen-
erate one or several link assessment packets immediately after acti-
vating a new node.

Our routing protocol uses an expected number of transmissions
(etx [6]) as its cost metric. For a link,

←→
ab , etx factors the probability

of successful transmission in each direction (
−→
ab and

−→
ba) into the cost:

etx←→
ab

= 1
p←→

ab
= 1

(p−→
ab

)(p−→
ba

)
, wherep−→

ab
is the probability that a packet

sent bya will be correctly received byb andp←→
ab

is the probability
that a packet will be both correctly received and acknowledged in a
single try. Hence, to establish anetx estimate, not only must a new
node generate link assessment packets, but its neighbors must also
generate them.

When a mobile sink arrives at a new location, it initiates neigh-
borhood evaluation by sending out a series of link beacon packets,
each of which causes one-hop neighbors to respond with a packet.
The mobile sink and its one hop neighbors can estimate the quality
of the links that connect them after only a few iterations of this “call
and respond.”

The CC1000 radio on the mica2 nodes deployed at Sensor Moun-
tain does not provide anlqi field. Thus for these deployments the
probability of success,p−→

ab
is measured directly using counts of the

number of packets transmitted and the number of packets correctly

received:p−→
ab

=
rxCount−→

ab
txCount−→

ab
. txCount−→

ab
is inferred by the receiver using

a sequence number embedded in each packet; this number incre-
ments before each transmission attempt.

Hyper’s fast link assessment protocol works as follows:

• Periodically, each node transmits a Beacon Packet (BP) contain-
ing an array of the measured ingress link qualities of its neighbors.
Nodes exchange BPs to establish bidirectional link quality.

• The mobile user sends out a Fast Beacon Packet (FastBP), which
is identical (except for the content of itstype field) to a BP; the



difference is that any node that hears a FastBP is expected to re-
spond with a BP immediately. Initially the sink’s FastBP is empty
since it has no ingress quality estimates.

• The mobile user sends out a total ofN FastBPs and waits forS sec-
onds between each FastBP in order to receive responses. Neigh-
bors each respond withN BPs.N andS are parameters that should
be tuned; increasingN improves accuracy; increasingS provides
extra time to alleviate contention in dense neighborhoods. BPs
and FastBPs serve a dual role; they may be used for estimating
ingress quality and for advertising it.

• Once neighborhood connectivity is assessed, the link layer alerts
the routing software that the fast link convergence stage has com-
pleted.

When a mote sends out a FastBP, it forces all nodes who heard it to
respond. It takes about five seconds for this fast neighborhood evalu-
ation and link quality estimation to converge. We anticipate that fast
neighborhood discovery will be used infrequently (compared to the
lifetime of the network) so the brief flurry of messages should not
impact network lifetime significantly. The protocol is designed to
operate over a MAC with carrier sensing and backoff to reduce con-
tention. At high neighborhood densities, however, contention will
result in packet loss and thus associated link cost measurements will
be artificially increased. Our protocol does not yet address this prob-
lem; the neighborhood sizes in our deployments tend to be small
enough to avoid contention. However, one simple solution, which
we leave for future work, would be for nodes to randomize the send
time of their responses over a range of packet times equal to the
neighborhood size.

2.2.2 Neighborhood Evaluation and Tree Construction
Once neighborhood connectivity is established and evaluated, Hy-

per builds a collection tree. The time it takes for tree convergence to
occur is proportional to the depth of tree desired, but for most trees
it takes only about a second.

The tree routing algorithm forms a tree with minimum path costs.
Path cost is the sum of the individual link costs that make up a path.
Thus, an efficient tree can only be constructed if a good estimate of
link cost can be established.

For efficiency, the tree formation algorithm defers evaluating a
routing control packet for a time proportional to the cost advertised
within it. In this manner, useful control packets advertising good
routes will be considered before those that advertise bad routes. The
consequence is that radio use will be decreased; control packets ad-
vertising poorer routes will not propagate.

The sink initiates tree formation by transmitting a tree update
message. Tree update messages contain the transmitter’s address (to
be used as the parent in the routing tree), the address of the root,
the path cost, an epoch number to distinguish new updates from old
ones), a TTL used to limit the depth of the tree, and a time indicating
when to expect the next update.

A node that receives a tree update message waits to evaluate it for
an amount of time proportional to the cost of the link over which
the update came. It sets a “wait timer” for this purpose. If before the
wait time expires another update arrives (from a different node, but
pertaining to the same sink) then the two are compared in terms of
the path qualities they offer; the update message containing the bet-
ter path is retained. Once the wait timer expires, a node broadcasts
its own update message containing its best path cost to the sink.

Good paths propagate quickly, while poor paths propagate slowly,
or not at all. In the event that no update packets are lost, and each
node’s link estimates are accurate then the tree that is built will be

a minimum spanning tree, and each node will only send out one
update message.

Using cost-dependent delays is an optimization made popular by
SRM [7]. A tree with the same path qualities could be formed with-
out this optimization, but would be less energy-efficient, as more
messages would be transmitted. Without the optimization, a node
would receive updates from its neighbors and process them in an or-
der that has little relation to the qualities of the paths they advertise.
In the worst case—when paths are processed from worst to best—
kN messages will be sent by a network of sizeN with neigborhood
sizek. Using the control delay technique, this is reduced toN.

A route update message contains a field indicating the current
epoch duration before which the sink will initiate the process of
reforming its tree. The duration may be varied in accordance with
application requirements and environmental factors; the field prop-
agates this information to the network. Mote routing code uses this
field to determine if it has completely missed control messages from
one or more routing epochs. By default, if no routing update is re-
ceived during three such epochs, the tree is considered dead, and is
removed from the node’s routing table.

Anything that prevents update messages from being successfully
received throughout the network (such as aggressively high-rate data
traffic or temporarily poor connectivity) may result in tree destruc-
tion. Hyper provides a locking mechanism as an added precaution.
When the application knows more about the network state than what
can be inferred by the timeout mechanism, it may prevent route tear-
down by requesting a lock on a particular route’s state. This lock is
functionally equivalent to setting the tree timeout to infinity.

The control traffic overhead of maintaining a tree is one packet per
node per update period. The longer the update period the smaller the
impact of control overhead on network lifetime. However, a longer
update period also increases the amount of time, on average, it will
take to fix a route when a link truly does break (such as when a
node fails, moves, or when there are significant and sudden environ-
mental changes). To ensure that data is not lost, packets are queued
in a combination of volatile and non-volatile memory (discussed in
Section 2.3.2).

The network layer supports unicast communication from a mote
to a microserver and vice versa, and tree-oriented communication
between all motes and a microserver as these are the most com-
mon communication patterns in sensor networks [8]. It does not
support efficiently one-to-one communication from one mote to an-
other or many-to-one communication from a subset of motes to the
microserver. To achieve the former, messages may be forwarded via
the microserver. To accomplish the latter, a microserver may send
packets to all motes in the network; on the motes, logic operating
above routing may filter packets by destination group so that only a
desired subset responds.

In Hyper, route formation and maintenence is initiated by the root,
path costs are strictly increasing with depth, and each node keeps
track only of its parent for each tree to which it belongs. As a result,
loops cannot form. This is in contrast to MintRoute, the previous
state of the art in sensor network collection tree routing, and other
distance vector protocols that must implement sophisticated loop de-
tection and repair algorithms. Unlike other loop free protocols such
as the Centroute [18], Hyper avoids loops without incurring the over-
head of adding complete source routes to each packet at the expense
of maintaining routing and neighbor state at each node.

2.2.3 Multi-Tree Support
There are potentially multiple simultaneous, independent users

that want access to the network; Hyper thus supports multiple con-
current sinks. However the number of sinks is expected to be rela-



tively small compared to the number of data source nodes.
In the network, each tree is maintained independently. Therefore,

multiple trees is supported by a node by expanding the management
state for a single tree into an array of state. It is expected that each
node will connect only to a few routing trees, thus limiting the state
recorded in a mote’s RAM.

this increase in state does not consume too significant a portion of
the mote’s limited RAM.

Each state structure contains the ID of the root node, the next hop
along the path to the root (i.e. the parent), and the route cost. The
structure also maintains an indication of whether the route is active
so as to hide trees from the application that are in the process of
forming, the time when the route will next be advertised, and a time
after which time tree should be dismantled if no control messages
are received in the interim.

Since each tree is managed independently, the update messages
for more than one tree are never aggregated into a single packet.
Although doing so would reduce routing control overhead, it would
complicate tree formation. First, combining messages would inter-
fere with the route construction protocol’s reliance on delays. Hy-
per’s timing property that reduces the number of control messages
each node sends would no longer hold. For this reason, combin-
ing control messages would either lead to building inefficient trees
(and hence, spending more energy on collecting data) or potentially
could cause nodes to send many more control messages, which again
wastes energy. Second, it might lead to routing loops and other per-
sistent incorrect routing state.

Transport over an alternate routing structure such as an any-to-any
multicast tree might reduce redundant transmissions when multiple
users request the same data. However, we determined that form-
ing this sort of routing structure, determining which data requests
are shared, and scheduling multicast transmissions was too compli-
cated and error prone for resource-constrained mote networks with
severely limited debugging visibility.

Therefore, Hyper employs a different sort of optimization. When
sinks request the same data and when there is 802.11 connectivity,
Hyper determines whether a data set is already available from a sink
with 802.11 connectivity before it tries to form a tree. A longer dis-
cussion of this optimization is provided in Section 2.3.1.

Even when 802.11 is not available, the cost of redundant transmis-
sion of data is not that great. First, The number of concurrent sinks
in the network is low (usually no more than two) so data will not be
duplicated more than a few times. Second, it is rarely the case that
two independent mobile users will require data sets with significant
overlap. Third, users without 802.11 connectivity to each other are
usually geographically separated. Thus even when they request the
same data, there would be little opportunity to share a transport path.

2.2.4 Ad Hoc Sensor Deployment and Node Rebirth
Sensor nodes are activated by researchers and technicians alike.

Application scientists may want to temporarily augment a sensor
deployment with their own sensors—for evaluation of these sensors,
investigations into cross-modality correlation, or for collection from
sophisticated sensors that are too sensitive or require too much en-
ergy to deploy permanently. Technicians change batteries in existing
nodes.

Both types of users must verify that their new sensors are com-
municating properly and both are sensitive to long delays in this
process. Rather than forcing users to wait until the start of the next
route construction epochs of each sink in the network, Hyper pro-
vides afast join mechanism that allows a new sensor node to graft
onto existing routing trees immediately.

A new node first invokes the fast link convergence protocol to

determine to which of its neighbors it is best connected. A ”Route
Graft” message is then sent to this neighbor. In reply, the neigh-
bor sends a ”route reply,” which contains the IDs of all roots that it
knows about, and the timeout for each of the roots. The new node
adds this information to its routing state, marking the replying neigh-
bor as its parent for all trees. The new node then sends a message to
each of its sinks to indicate that it is alive. Each root may then ini-
tiate a full tree reformation for improved efficiency if it deems it
necessary.

The goal of the fast join protocol is to get a node connected to
the network as fast as possible. The protocol does not necessarily
form the most efficient routes possible from a new node to its sinks.
Routes will, however, be improved at the beginnings of subsequent
tree building epochs.

2.3 Efficient Data Collection
Data collection must be efficient, whether to a static node or mo-

bile one. We employ several mechanisms in conjunction with Hy-
per’s tree routing protocol to provide more efficient operation for
both; of these, one mechanism addresses challenges specific to mo-
bile users. These features include opportunistic use of an 802.11
backchannel, a protocol for quickly inferring disconnection and re-
acting to it, and mechanistic support for mobile interaction with a
cloud of intentionally disconnected motes.

2.3.1 Opportunistic Use of a Backchannel
When a user wants access to sensor data services, 802.11 and

mote radio connectivity are assessed. Sensor Mountain has signif-
icant 802.11 coverage, but there are some regions where it does not
reach.1

There are several reasons to use Wifi when available. First, 802.11
connectivity may simplify the process of data acquisition for the
mobile node. Rather than contend with mote link assessment and
route establishment, a mobile node may connect to an established
collection sink and collect sensor data by proxy. In doing so, the
mobile node makes use of existing IP services such as ssh. Sec-
ond, historical data may be available only by 802.11. An established
sink may log the data it receives to a database to be later retrieved.
Third, an established sink may already be collecting the data a mo-
bile node needs. This notion was first suggested in Section 2.2.3.
Finally, forming a collection tree can put undue strain on a network,
particular one that is bandwidth limited. It will also consume energy,
both in tree setup and during data collection. Using a backchannel to
access sensor network services reduces the number of routing con-
trol messages that motes must process. Since each new collection
tree would generate its own control traffic, using a microserver that
already maintains a tree for background collection as a proxy will
save energy and reduce network strain.

It usually makes sense for a mobile node to use an 802.11 backchan-
nel to an established sink. There are several reasons, however, to use
a mote collection tree directly instead of 802.11. In terms of the en-
ergy consumption of the network, it might be more efficient to form
a new tree than to use an existing one. This is the case when the data
source is much closer to the mobile user than to the fixed collection
sink and the data rate is significant.

Cosider a network with two microserver-class devices: an estab-
lished collection sink (S) and a mobile node (MN). Let mi, i =
1, ...,k be the set of sensors that produce data thatMN needs, and
let cost(mi, X) be the energy expended in routing a data packet di-
rectly from motemi to microserverX. WhenS is not already col-

1The ubiquotous presence of Wifi on traditional computing plat-
forms suggests that it will be available to many future sensor net-
work deployments as well.



lecting data thatMN needs, it is more efficient to form a collec-
tion tree rooted atMN than to use a tree established toS when:
t(

Pk
i=1 cost(mi, MN))+RouteCtrlMN < t(

Pk
i=1 cost(mi, S)), where

t is the number of data packets that need to be collected each route
formation epoch andRouteCtrlMN is the cost to maintain a routing
tree rooted atMN for one epoch. Ast → ∞, the relative contribu-
tion of RouteCtrlMN becomes negligible. Cost correlates to network
distance, suggesting that it will more often be reasonable forMN to
establish a collection sink to close-by nodes than to ones far away.

Even so, sometimes it is reasonable to forsake efficiency for sim-
plicity. This is particularly the case for short-lived data requests.
Even if forming a tree is more efficient than using an efficient one
the savings may be slight and will be outweighed by the benefits of
using an unobtrusive and robust backchannel.

2.3.2 Disconnection Assessment
To provide reliable data delivery we couple persistent storage to

a stop-and-wait radio link acknowledgement scheme. The former is
used to queue packets while a node is disconnected from the net-
work. The latter is used to overcome radio transmission errors. This
section discusses how Hyper uses this mechanism, and in particular,
how it uses its retransmission policy to differentiate disconnection
from short-lived bad luck.

Transient disconnections happen suddenly and without warning.
They occur alike on links that have been characterized as good and
bad although bad links experience them more often.[5] Longer last-
ing link failures can be caused by environmental factors (e.g. bad
weather), node death, and mobility.

Broken links lead to broken routes. Broken routes are resolved
by probing the link to detect if it has recovered, and alternatively
by constructing a new route that doesn’t use the bad link. A faulty
link is probed to see if the packet crosses the link successfully. Suc-
cess causes the route to be activated again. If a route update arrives,
regardless of what neighbor it was received from, then the route is
considered to be activated again.

Hyper will retransmit a packet some number of times. If it is never
acknowledged, disconnection (or extremely poor link quality) will
be inferred, and the packet will be queued for later transmission
when conditions improve. Acknowledgments, retransmissions, and
flash usage all increase the energy consumption of the node. Since
both the energy required to store a packet in flash and to transmit
it over the radio are great with respect to other mote operations, re-
ducing unnecessary transmissions and storage transactions will save
energy.

When a packet destined for a sink fails to traverse a link, it gets
queued for later transmission. Until the route is fixed, all packets that
must cross the link to reach their destination are similarly queued.
The queue is made up of a volatile queue (in RAM) and a non-
volatile queue (in flash). The volatile queue is small relative to the
size of the non-volatile queue, and is helpful during small periods of
disconnection to avoid costly writes to flash.

The scheme we employ usesetx as an indicator of how hard a
radio should try to deliver a packet before giving up. Hyper adjusts
the number of transmission attempts it will make,k←→

ab
, in proportion

to the number of transmission attempts it should take,etx←→
ab

. Pre-
vious work suggessts thatetx is a good metric to use for link cost.
(In Section 3.1, we verify this empirically and show thatetx accu-
rately estimates the number of transmissions that will be required
to communicate a packet.) If a packet is not successfully transmit-
ted afterk←→

ab
transmissions, disconnection is assumed. This has two

consequences. First, less energy will be wasted retransmitting pack-
ets over a broken link. Second, energy will not be wasted by prema-
turely queuing a packet that would have had a good chance of being

transmitted successfully.
To understand why a variable retransmission scheme improves

performance, consider two extreme cases: a fixed retransmission
scheme that makes exactly one transmission attempt before assum-
ing disconnection (k←→xy = 1,∀←→xy ), and one that makes an infinite
number of attempts (k←→xy = ∞,∀←→xy ). Since the probability of suc-
cessful transmission,p←→xy , even over good links, is never 1, the for-
mer case will incorrectly assume disconnection and incur the cost
of queueing a packet with probability 1− p←→xy . Clearly, in the lat-
ter case, packet transmission attempts will continue even when there
is a disconnection, thus wasting energy by unnecessarily using the
radio. Thus, a retransmission policy that setsk←→xy too low leads to
wasted energy due to excessive use of storage. On the other end
of the spectrum a retransmission policy that is too aggressive will
lead to wasted energy in the form of fruitless transmissions during
periods of disconnection. The goal then is to employ a policy that
identifies and uses a midpoint in this tradeoff space. Enough effort
should be expended in order to communicate the packet (and avoid
using storage), but periods of disconnection should be detected in
order to avoid wasteful transmissions. In essence, a good policy will
correctly identify those periods of disconnection.

2.3.3 Supporting Lonely Clouds of Motes
Support for collections of motes that are intentionally discon-

nected from IP-capable infrastructure is critical because they provide
data for locations that lack even ad hoc server support. Lonely motes
experience long-term disconnections, during which data is stored to
flash, followed by brief periods of connection when data is commu-
nicated in bulk.

When a mobile user interacts directly with the network and then
moves, disconnections are inevitably introduced. While the mobile
user is transitioning from one location to the next data can be stored
at each node to ensure reliability. When the mobile user re-establishes
contact with the network, the data can then be sent towards the sink.
Local storage is important to survive both transient or accidental as
well as long-term disconnections.

3 EVALUATION

In this section we present empirical evidence that Hyper’s link
estimator accurately captures the state of the wireless channel, that
the fast link convergence protocol provides a reasonable estimate of
link quality in only a few seconds, and that high quality trees can
be built in at most a few seconds. We show analytically that Hyper
is able to infer disconnections, while avoiding the use of persistent
storage when there is not a disconnection.

3.1 etx as a Link Metric
Efficient routing trees cannot be assembled without accurate es-

timates of underlying link qualities. Theetx link metric, which was
first demonstrated to be effective for 802.11[6], has already beenap-
plied to several sensor network routing protocols including MintRoute
and CentRoute. Since several sensor network radios do not provide
etx values directly, we confirm that the beaconing technique intro-
duced in Section 2.2.1 generates accurate results.

We evaluatedetx as a link metric in an office setting, an outdoor
urban setting, as well as in dense foliage and found that in practice
it works well. In each scenario, we deployed two nodes, one as a
sender and the other as a receiver and adjusted the distance between
these nodes to create links of varying quality.

The experiment consisted of two steps. The first was to use Hy-
per’s periodic beaconing procedure to estimateetx. Once theetx sta-
bilized for a particular link configuration, the second step was to
measure how many transmissions were required of the sender to suc-



cessfully deliver a packet to the receiver. Success was identified by
reception of an acknowledgment packet. We limited the number of
transmission attempts for a single packet to at most twenty. Over all
scenarios we collected more than 500,000 such samples.

Figure 1 summarizes our results. For each of several ranges ofetx
values, [1,2), [2,3), [3,4), and [4,5), we constuct a CDF describing
the number of transmission attempts that were actually required to
transmit a packet. Results from all deployment scenarios are com-
bined.

Let p←→
ab

be the probability that a packet is successfully transmitted

and acknowledged over link
←→
ab on the first try. The probability of

success on theith try then isp←→
ab
· (1− p←→

ab
)i−1 and the probability

that a message is communicated successfully inN or fewer trans-
missions,P(N)←→

ab
is

PN
i=1 p←→

ab
· (1−p←→

ab
)i−1 = 1− (1−p←→

ab
)N . We

useP(N) and the relationp←→
ab

= 1
etx←→

ab
to construct a theoretical dis-

tribution of transmissions required to deliver a packet foretx values
of 2, 3, and 4.

The empirically derived CDFs match very closely to the ones for
the theoretical binonial distributions. We draw two conclusions from
these results. First, since the shapes of the distributions are simi-
lar, it appears that the probability that a transmission will succeed
in i transmissions is geometric for real links. Second, the fact that
the empirical distribution of transmission attempts for a measured
etx matches the theoretical distribution for a givenetx, provides evi-
dence that the measuredetx is accurate.

3.2 Fast Link Convergence
The goal of fast link convergence is to get an estimate of the link

quality between a new node and all of its neighbors in a short period
of time. To do this several beacon requests are sent. Any node that
hears a beacon request sends a beacon response in reply. In the ab-
sence of collisions, we would like to get an estimate of link quality
to±10%.

The problem is that the faster the call and respond protocol oper-
ates, the more likely it is that temporarily excessive contention will
aversely skew link quality estimates. This problem is exacerbated in
sufficiently dense networks where the replies from a node’s multi-
tude of neighbors will inevitably collide.

To quantify the relationships at a particular beaconing rate be-
tween neighborhood density and the accuracy of link cost measure-
ments, we ran experiments that involved a varying number of ac-
tive nodes in a single-hop communication domain. For these exper-
iments, theetx for each link was known to be close to 1. At the
onset of each experiment, a newly activated node sent a fast beacon
packet (FastBP). All nodes that received this packet responded with
a beacon packet (BP). For each experiment, this call and response
was repeated ten times; the period between calls was fixed at 0.5
seconds.

In figure 2 the number of messages sent by the neighbors of a
newly activated node is plotted for various densities. The average
number of BP responses sent by each of these nodes is very close to
the number of FastBPs sent by the new node.

Over the range of densities the number of FastBP packets received
by the neighbors only deviates slightly from the maximum. This in-
dicates that in the space of 0.5 seconds neighbor responses aren’t
colliding with the next request.

In Figure 2, we also plot the number of responses that the new
node heard from each neighbor for various densities. As the num-
ber of neighbors increases the deviation from the maximum also in-
creases, growing beyond 20% for nine neighbors. This suggests that
the number of collisions increases as the density increases. Clearly,
as the neighbor size increases beyond nine, this problem only grows
worse. This suggests that the MAC layer only does a reasonable job

of avoiding collisions among a group of synchronized senders for
neighborhoods of size up to around five to seven. In that range, the
number of responses heard by the new node differs from the ideal
by about 10%. The major limitation in our current implementation
of fast link convergence is its reliance on the MAC to do effective
collision avoidance.

Fast link convergence need not provide perfect link estimates. It
is a way to get some idea of the neighborhood size and link quality
in a small amount of time. It needs to be fast enough so that in a
short amount of time the technicians can determine if configuration
adjustments are needed.

3.3 Tree Building
We evaluated Hyper’s routing protocol in terms of the quality and

depth of trees produced and the cost and speed of their construction;
we found that for a fairly large network, Hyper was able to build low
cost trees in about one second.

To build and maintain a tree, each mote participating in the proto-
col generates one route update message for every update generated
by the root. This level of overhead is the same as for the popular
MintRoute protocol. Likewise, the size of each control message, the
overhead per data message, and the amount of state maintained for
MintRoute and Hyper are comparable. Figure 3 lists their respec-
tive RAM use, transport headers and control overhead. Hyper incurs
this extra overhead to provide greater functionality, including sup-
port for multiple trees, link and route locking, and runtime control
of the route update rate.

To test the protocol’s responsiveness we ran several experiments
over a 27-node Mica2 testbed with a routing diameter of about six
hops. Hyper delays the processing of route update messages for a
time proportional to the cost of the route being advertised. We varied
this proportionality constant,c, and measured its effects on latency
of tree construction and quality of the routes constructed in terms
of pathetx and the depth of the trees produced. For each value ofc
hundreds of route updates were sent, causing thousands of measure-
ments to be made from the set of nodes.

We instrumented the network to transmit paths and associated
costs over a wired serial backchannel in order to measure the time
it takes to form a routing tree from a root to every node in the net-
work. Each node transmitted this information over the backchannel
immediately before transmitting a route update packet over its radio.
The serial packets were timestamped upon arrival at a PC. The la-
tency in forming a path from a node to its root was computed as the
difference in time between when the node and root transmitted their
respective update messages.2

Figure 4, figure 5 and figure 6 depict CDFs generated using the
aforementioned testbed. Curves in each graph are associated with
the various values ofc we tested, namely 100ms, 50ms, 20ms, and
10ms. The unpredictable contribution of various MAC, radio trans-
mission, and processing delays could interfere with our delay-sensitive
tree formation algorithm. To measure the impact of nondeterministic
delay, we use the CDFs from our 100ms tests as a basis to compare
with experiments for the other three values, as this largestc should
be least impacted.3

We find that to form low cost trees in a short period of time a value

2Differences in transmission time over serial and processing time
on the PC were not incorporated into these measurements. However,
since serial transmission is fairly deterministic and PC processors
are fast, these differences should be at most on the order of several
milliseconds.
3To confirm that the 100ms experiments were not aversely impacted
by the aforementioned nondeterminism, we compared the results
from these experiments with results forc = 1000ms and found only
negligible differences in the path qualities produced.
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Hyper MintRoute
State per Neighbor 22 B 19 B
Routing Header for Data Packets 10 B 7 B
Routing Control Message Size 21 B 15 B
Total RAM Allocation 2,113 B 1,560 B

Figure 3—Hyper and MintRoute use comparable amounts of mem-
ory for managing neigbors and for general protocol operation, and
incur similar numbers of bytes of overhead when sending control
packets and application data.

of c between 50ms and 100ms works well. Figure 4 shows CDFs of
path costs for each of the four values ofc. The further a path cost
CDF is to the left side the more desirable it is, indicating that a
higher percentage of paths in the topology have a lower cost. The
50ms CDF is almost identical to the 100ms CDF, which indicates
that although the 50ms tree was built more quickly than the 100ms,
the path cost was not impacted. Increasingc above 50ms provides
little or no benefit in terms of reducing the path cost, as oncec is
large enough to overcome the effects of nondeterministic timing de-
lays in other software and hardware layers, the protocol will operate
precisely as intended. Whenc is sufficiently low, on the other hand,
nondeterministic delays induce incorrect protocol behavior.

It takes about 15ms to transmit a route update packet over the
CC1000’s 19.2 kbps radio. It is no surprise, therefore, that the qual-
ity of path construction is reduced whenc approaches this transmis-
sion time. In Figure 4, the curves for 20ms and 10ms values ofc
show this increase in path cost. There are two reasons for this degra-
dation of quality. First, a decrease in control update delays increases
the number of nodes on average that transmit during each unit of
time; this may increase contention for the channel and may result in
the loss of packets that would have advertised better routes. Further-
more, the accumulation of MAC and processing delays may become
significant, particularly as a route update travels over several hops.
Under the right conditions, an advertisement for a good route might
be delayed longer than one for a bad route and a node, therefore,
might bind to a bad route before hearing about the good one. Since
Hyper only sends one route update packet per node, this poor deci-
sion would be sustained until the next route update epoch.

Even with an adequately largec, it is always the case that poor
paths might form when control packets are lost. The impact of these
poor (albeit rare) paths can be minimized by microsever interven-
tion. Since route update epochs can be changed at runtime, a root
that deems a newly constructed path to be sufficiently bad may gen-
erate another routing update immediately. On the flip side, if a rout-
ing tree seems to be especially stable then the microserver can in-
crease the route update period, reducing the control overhead.

Figure 5 shows that the latency to build a tree is directly affected
by c whenc is significantly larger than other sources of delay in the
system. However, whenc is on the same order as the other sources
of delay, its influence on tree formation latency is decreased. The la-
tency CDFs of Figure 5 for 20ms and 10ms illustrate this. For clarity
of presentation, This figure is cut off on the right hand side. A very
small percentage of paths can sometimes take a very long time to
converge. This may happen, for instance, when due to packet loss,
a node only hear a route update from a very poor neighbor with a
correspondingly highetx. The delay can be on the order of tens of
seconds.

Lastly, we look at the distribution of path length (measured in
hops) for each wait constant. Although the hop count of a path and
the etx of path are not neccessarily related (both short paths with
high cost and long paths with low cost can exist) the number of hops
does enforce a lower bound on theetx for a path. It is impossible for
theetx of a path to be less than the hop count.

As previously noted, larger values ofc generated higher quality
paths. This can also be seen in the hop CDFs. In figure 6 the CDFs
for the hop count from the root to each node is plotted. The increased
number of hops that 10ms exhibits has several effects. First, the la-
tency in forming a path is increased because the update must cross
more hops. This increased latency is more than made up for by the
decreased wait constant of 10ms. However, there is a hidden latency
cost as well. The latency experienced by a message going from a
node to the sink is also increased by the longer paths. Lastly, the in-
creased number of hops translates to increased number of transmis-
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Figure 4—Path cost CDFs for wait constants of 100ms, 50ms, 20ms
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sponds in an increase in tree construction latency, smaller wait con-
stants are preferred. However, below 20ms, timing interference from
other software layers and radio contention reduce the efficiency of
the trees Hyper produces.

sions required to communicate data (the dominant cost in long-lived
deployments).

The cost of collecting sensor data is the dominant energy cost
over the lifetime of a deployment. Therefore, the more sensor data
that is required over the lifetime of a deployment the more careful
the root should be in building and maintaining its tree. Hyper not
only creates low cost routing trees, but in very little time as well.
Because Hyper can build trees in under a second, it is very suitable
for a “delay intolerant” user.

3.4 Inferring Link Disconnection
Except during fast link convergence, the constrained energy bud-

get of a deployed mote dictates thatetx be estimated as seldomly as
possible, usually on the order of minutes. In this section we evaluate
ouretx-based retransmission policy in terms of the energy savings it
provides when a link’s quality temporarily and rapidly degrades and
when the link suddenly goes down.

For a givenetx, a link problem can be inferred when more than
etx transmissions have been made without success in an attempt to
deliver a data packet. Once it is determined that the link is bad, the
packet and successive packets may be queued in RAM and flash
until either the link recovers or a new route is found. This section
demonstrates how dynamic adjustment of the retranmission policy
in accordance withetx will prevent unnecessary and costly stores to
persistent memory and unnecessary radio transmissions.

The general form of retransmission policies that we consider is:

• Try to send a packet over a linkk times. Before each attempt, set
a timer. If an acknowledgement is not received before this timer
expires, retransmit the packet.

• If no acknowledgment is received afterk tries then store it for later
transmission. Store all subsequent packets as well until conditions
improve.

• After the link is positively reassessed using the periodic beacon-
ing mechanism, or a new route is constructed, remove the head-
of-line packet from storage and attempt to transmit it. Continue
transmitting packets from storage until there are none left or until
another link problem is encountered.

Figure 7 presents the probability of storing a packet that several
retransmission policies incur by incorrectly assessing a previously
good link as broken. We experiment with three fixed policies, where
nodes all make 1, 3, and 10 transmission attempts respectively be-
fore queueing a packet in storage for later delivery, and two dynamic
policies, where nodes makeetx and 2·etx transmission attempts. All
of these policies are trivial to implement on a mote. We measure the
probability of a packet being stored when it didn’t need to be.

Data is binned byetx into the ranges [1,2), [2,3), [3,4), and [4,5).
Using the derived CDFs first presented in Figure 1, we calculate the
probability of using storage for each retransmission policy. Figure 7
shows that for values ofetx close to 1 all retransmission policies
perform similarly because the probability of failure is small. For the
static retransmission policies, as the value ofetx increases the stor-
age probability also increases. However, the dynamic retransmission
policies (those dependent on theetx value) show that sending a num-
ber of times proportional to theetx uses very little storage across the
range ofetx values.

When a disconnection does occur it is best to store data directly
to flash without making any transmission attempts. In the case that a
disconnection occurs suddenly, each retransmission policy will gen-
erate some number of useless transmissions before determining the
link is bad. The more transmission attempts a node makes when in
a disconnected state, the more wasteful it is. In this respect, a fixed



transmission policy that makes many transmission attempts before
giving up will perform well when the link is in a connected state
because it will seldomly use storage when it doesn’t have to, but
will perform horribly when disconnected. Conversely, a fixed pol-
icy that transmits only a few times before resorting to storage will
perform well when in a disconnected state, but poorly when in a
connected state. Becauseetx provides an estimate of just how much
effort should be required to communicate a packet, a retransmission
policy that is proportional to theetx will be efficient in both states.

4 RELATED WORK

Several sensor network projects have focused on support mobil-
ity. However, the focus has been on autonmous mobile sensors and
sensing a phenomenon in motion, not on a mobile sensor network
user, such as a technician or application scientist. Common themes
include coverage and exploration [9] [4], pursuer/evader games and
target tracking [11] [15] [3], and data muling [17].

Several tree collection protocols have been designed and imple-
mented specifically for sensor networks. Of these, MintRoute [19]
is the most widely used. MintRoute provides ad hoc tree routing for
wireless sensor networks. Like several other protocols, MintRoute
usesetx in order to abstract the variations in channel quality [6].
Hyper and MintRoute both use distance vector routing, in so far
as they both advertise global state locally. In MintRoute, nodes in-
dependently and periodically beacon their routing state in order to
establish a route to the sink. Hyper differs from MintRoute in that
route updates are only triggered by the sink. As a result loops cannot
form in Hyper. Therefore, unlike MintRoute, Hyper does not need to
employ techniques like poison reverse or split horizon. Furthermore,
Hyper also allows motes to participate in multiple independant rout-
ing trees simultaneously, which MintRoute does not support.

A second sensor network routing protocol, Centroute, uses a com-
bination of source routing (which prevents loops), and centralized
path computation (on a micorserver) in an effort to relieve motes of
the burder of making routing decisions. In contrast to Hyper, each
mote can only interact with a single microserver at a time.

Hyper builds high quality trees quickly and uses adaptive timers
to reduce control overhead. This is similar to [7] in how the decision
to send control messages is made. In [7] the delay before sending
requests or repair packets is a function of the distance between the
node that triggered the request or repair and the potential respon-
der. Thus, nearby nodes respond before those that are far away.We
use a similar idea. Control messages are forwarded after delaying an
amount of time proportional to the quality of the link overwhich the
control message arrived. If a control message advertising a shorter
path to the same sink arrives before that delay expires then the pre-
vious message is discarded. In this manner, good paths propagate
quickly through the network, while poor paths propagate slowly, or
not at all.

To ensure reliability, persistent storage is used to queue packets.
This is particularly important forlonely clouds. Unlike traditional
IP networks where an end-to-end path is the common case, in sen-
sor networks link quality can change frequently. In addition, sensor
nodes can be deployed in remote regions where there is neither ac-
cess to an 802.11 backchannel nor to the Internet in general. Motes
may act as long-lived data loggers for extended periods of time, with
a “data mule” periodically visiting in order to offload sensor data.
Storing data persistently in the event of disconnection is critical for
efficient reliability and is discussed in detail in [12].

5 FUTURE WORK

Hyper provides a robust and efficient routing substrate that sup-
ports the mobility requirements of field researchers and technicians.
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However, there are several steps left before we can integrate this
work into systems that habitat scientists already use.

First, although we have done extensive indoor and outdoor testing
of Hyper itself, we haven’t yet tested the operation of Hyper in our
target environments when integrated with real applications running
above it. In the near term, we will be deploying Hyper as part of a
sensor data collection application at Sensor Mountain in an experi-
mental testbed in the woods near our other deployed systems. From
this deployment we hope to learn how well Hyper responds to vary-
ing user requests in the face of considerable RF fluctuation due to
severe weather changes.

Second, we will augment our fast convergence protocol to figure
neighborhood density into its timing. The idea is to decrease the bea-
coning rate to a level the underlying MAC can tolerate. Third, Hyper
currently expects underlying MAC transmission and backoff timings
similar to what the CC1000 driver and link code in TinyOS [13] pro-
vide. To generalize Hyper to work over most CSMA MACs, we will
add more accurate timestamping to account for transmission, pro-
cessing and other MAC-level delays. These delays, then, will be fac-
tored into the SRM-style delays Hyper uses when processing route
control messages. By carefully accounting for these delays, Hyper
will be able to support protocols with very different timing profiles,
such as low power listening (LPL [16]) for communication on low
duty cycle devices.

6 CONCLUSION
To the best of our knowledge, Hyper is the first sensor network

routing protocol that explicitly supports a mobile user, allowing di-
rect access to sensor network services while minimizing route con-
struction latency and building high quality routes.

Like several distance vector protocols, Hyper ensures that each
node sends at most one routing update per tree building epoch. Un-
like these protocols, since construction is initiated by the root, the
routing code does not need to include techniques (such as split-
horizon or poisonous reverse) to construct loop-free trees. Further-
more, it usesetx to produce trees that are inexpensive to use.

With Hyper, a sensor node may participate in multiple trees simul-
taneously, with the potential to produce different data, at different
rates for each collection sink. Most importantly, support for multi-
ple trees enables the use of the network by mobile researchers and
technicians, even when the network is already forwarding data to a
stationary collection sink.

To support mobile users further, a new node can join an existing
network within seconds using our fast link convergence protocol;
once a node evaluates its neighborhood, it may form a tree. Trees
can be built very quickly, often in less than a second and in only a
few seconds for very deep trees. Furthermore, newly activated sensor
nodes may be grafted to existing trees quickly.

Finally, Hyper is disruption tolerant. When a link’s quality de-
grades significantly or disappears altogether, hyper employs RAM
and flash storage to queue packets for later delivery. This has two
consequences. First, it saves energy during temporary network dis-
ruptions, because packets aren’t transmitted until conditions improve.
Second, it provides support for motes that have been deployed inten-
tionally or otherwise in environments with no radio connectivity to
a collection sink. Suchlonely motes may queue packets for hours or
months until a mobile user comes within range to collect them.
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