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Abstract

Mapping gene networks requires large amounts of transcriptomic data to learn the connections 

between genes, which impedes discoveries in settings with limited data, including rare diseases 

and diseases affecting clinically inaccessible tissues. Recently, transfer learning has revolutionized 

fields such as natural language understanding1,2 and computer vision3 by leveraging deep learning 

models pretrained on large-scale general datasets that can then be fine-tuned towards a vast 

array of downstream tasks with limited task-specific data. Here, we developed a context-aware, 

attention-based deep learning model, Geneformer, pretrained on a large-scale corpus of ~30 

million single cell transcriptomes to enable context-specific predictions in settings with limited 

data in network biology. During pretraining, Geneformer gained a fundamental understanding of 

network dynamics, encoding network hierarchy in the model’s attention weights in a completely 
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self-supervised manner. Fine-tuning towards a diverse panel of downstream tasks relevant to 

chromatin and network dynamics using limited task-specific data demonstrated that Geneformer 

consistently boosted predictive accuracy. Applied to disease modeling with limited patient data, 

Geneformer identified candidate therapeutic targets for cardiomyopathy. Overall, Geneformer 

represents a pretrained deep learning model from which fine-tuning towards a broad range of 

downstream applications can be pursued to accelerate discovery of key network regulators and 

candidate therapeutic targets.

Mapping the gene regulatory networks that drive disease progression enables screening for 

molecules that correct the network by normalizing core regulatory elements, rather than 

targeting peripheral downstream effectors that may not be disease modifying4,5. However, 

mapping the gene network architecture requires large amounts of transcriptomic data to 

learn the connections between genes, which impedes network-correcting drug discovery 

in settings with limited data, including rare diseases and diseases affecting clinically 

inaccessible tissues. Although data remains limited in these settings, recent advances in 

sequencing technologies have driven a rapid expansion in the amount of transcriptomic 

data available from human tissues more broadly. Furthermore, single cell technologies have 

facilitated the observation of transcriptomic states without averaging genes’ expression 

across multiple cells, potentially providing more precise data for inference of network 

interactions, especially in diseases driven by dysregulation of multiple cell types.

Recently, the concept of transfer learning has revolutionized fields such as natural 

language understanding1,2 (NLU) and computer vision3 by leveraging deep learning models 

pretrained on large-scale general datasets that can then be fine-tuned towards a vast array 

of downstream tasks with limited task-specific data that would be insufficient to yield 

meaningful predictions when used in isolation. Unlike modeling approaches that necessitate 

retraining a new model from scratch for each task6,7, this approach democratizes the 

fundamental knowledge learned during the large-scale pretraining phase to a multitude 

of downstream applications distinct from the pretraining learning objective, transferring 

knowledge to new tasks (Fig. 1a, Extended Data Fig. 1a–b). The advent of the self-attention 

mechanism1,2 has further transformed the deep learning field by generating context-aware 

models that are able to pay attention to large input spaces and learn which elements are 

most important to focus on in each context, boosting predictions in a wide realm of 

applications2,8. Gene regulatory network architectures are highly context-dependent; and 

attention-based models, known as transformers, may be exceptionally suited to context-

specific modeling of network dynamics.

Here, we developed a context-aware, attention-based deep learning model, Geneformer, 

pretrained on large-scale transcriptomic data to enable predictions in settings with limited 

data. We assembled a large-scale pretraining corpus, Genecorpus-30M, comprised of 29.9 

million human single cell transcriptomes from a broad range of tissues from publicly 

available data. We then pretrained Geneformer on this corpus using a self-supervised 

masked learning objective to gain a fundamental understanding of network dynamics. 

The pretrained Geneformer accurately predicted dosage-sensitive disease genes and their 

downstream targets through a context-aware in silico deletion approach. Furthermore, fine-
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tuning Geneformer towards a diverse panel of downstream tasks relevant to chromatin and 

network dynamics using just a limited set of task-specific training examples demonstrated 

that Geneformer consistently boosted predictive accuracy. Applied to disease modeling of 

cardiomyopathy, Geneformer predicted candidate therapeutic targets whose experimental 

inhibition significantly improved cardiomyocyte contraction in an induced pluripotent stem 

cell (iPSC)-based model of the disease. Overall, Geneformer represents a pretrained deep 

learning model from which fine-tuning towards a broad range of downstream applications 

can be pursued to accelerate discovery of key network regulators and candidate therapeutic 

targets.

Geneformer architecture and pretraining

Geneformer is a context-aware, attention-based deep learning model pretrained on large-

scale transcriptomic data to enable predictions in network biology with limited data through 

transfer learning (Fig. 1a). Geneformer harnesses the recent advent of self-attention1,2 

to maintain attention over the large input space of genes expressed in each single 

cell’s transcriptome and learn which genes are most important to focus on to optimize 

predictive accuracy within the given learning objective. Importantly, network dynamics may 

vary across cell types, developmental timepoints, or disease states. Accordingly, context-

awareness is a unique strength of Geneformer’s model architecture that allows predictions 

specific to each cell context.

First, we assembled a large-scale pretraining corpus, Genecorpus-30M, comprised of 29.9 

million human single cell transcriptomes from a broad range of tissues from publicly 

available data (Fig. 1b, Supplementary Table 1). We excluded cells with high mutational 

burdens (e.g. malignant cells and immortalized cell lines) that could lead to substantial 

network rewiring without companion genome sequencing to facilitate interpretation, and we 

established metrics for scalable filtering to exclude possible doublets and/or damaged cells.

Each single cell’s transcriptome is then presented to the model as a novel rank 

value encoding where genes are ranked by their expression in that cell normalized by 

their expression across the entire Genecorpus-30M (Fig. 1c). Although the rank-based 

representation has limitations including not fully taking advantage of the precise gene 

expression measurements provided in transcript counts, the rank value encoding provides 

a nonparametric representation of each cell’s transcriptome and takes advantage of the 

many observations of each gene’s expression across Genecorpus-30M to prioritize genes 

that distinguish cell state. Specifically, this method will deprioritize ubiquitously highly 

expressed housekeeping genes by normalizing them to a lower rank. Conversely, genes such 

as transcription factors that may be lowly expressed when they are expressed but highly 

distinguish cell state will move to a higher rank within the encoding (Extended Data Fig. 

1c). Furthermore, this rank-based approach may be more robust against technical artifacts 

that may systematically bias the absolute transcript counts value while the overall relative 

ranking of genes within each cell remains more stable.

The rank value encoding of each single cell’s transcriptome then proceeds through six 

transformer encoder units1,2, each composed of a self-attention layer and feed forward 
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neural network layer (Fig. 1c). Pretraining was accomplished using a masked learning 

objective, which has been shown in other informational fields1,2 to improve generalizability 

of the foundational knowledge learned during pretraining for a wide range of downstream 

fine-tuning objectives. During pretraining, 15% of the genes within each transcriptome 

were masked, and the model was trained to predict which gene should be within each 

masked position in that specific cell state using the context of the remaining unmasked 

genes (Extended Data Fig. 1d–f). A major strength of this approach is that it is entirely 

self-supervised and can be accomplished on completely unlabeled data, which allows 

the inclusion of large amounts of training data without being restricted to samples with 

accompanying labels. We implemented recent advances in distributed GPU training9,10 to 

allow efficient pretraining on the large-scale dataset.

Context-awareness and batch integration

For each single cell transcriptome presented to Geneformer, the model embeds each gene 

into a 256-dimensional space that encodes the gene’s characteristics specific to the context 

of that cell. We first tested whether the pretrained Geneformer’s embedding of genes 

was impacted by common batch-dependent technical artifacts. We found that the gene 

embeddings were robust to sequencing platform11, preservation method12,13, and individual 

patient variability14 (Extended Data Fig. 2a). However, gene embeddings were dependent 

on the context of other genes expressed in the cell, highlighting Geneformer’s context 

awareness. When we in silico reprogrammed fibroblasts15 by artificially adding OCT4, 

SOX2, KLF4, and MYC to the front of their rank value encodings, the remaining genes 

in the transcriptome significantly shifted their embedding towards the iPSC state (Extended 

Data Fig. 2b–c). Embeddings of genes in iPSC-derived myogenic cells16 showed similar 

context awareness with in silico differentiation via MYOD (Extended Data Fig. 2d–e). 

Furthermore, genes known to be highly context-dependent, such as NOTCH receptors, 

showed more variability in their embeddings across variable cell types14 compared to the 

known housekeeping gene GAPDH (Extended Data Fig. 3).

Next, we integrated the embeddings of genes expressed in each cell to generate cell-level 

embeddings, which encode characteristics of that single cell’s state. Using a publicly 

available aortic aneurysm dataset14 as a test case, we found that while the original data 

was impacted by inter-patient variability, Geneformer cell embeddings clustered primarily 

by cell type and phenotype as opposed to individual patient (Extended Data Fig. 4a). Given 

that the pretrained Geneformer’s cell embeddings were robust to these technical artifacts, 

we next tested whether fine-tuning would impact generalizability. Using a publicly available 

dataset11 of iPSC differentiation to cardiomyocytes assayed in parallel on the Drop-seq 

(single-cell) or DroNc-seq (single-nucleus) platform, we tested whether fine-tuning the 

model to distinguish cell types using data from one platform would reduce generalizability 

to cells assayed on the other platform. Interestingly, the fine-tuned Geneformer’s cell 

embeddings primarily clustered by cell types and showed improved integration of platforms 

compared to the original data even after batch effect removal using the ComBat17 or 

Harmony18 methods (Extended Data Fig. 4b–f).
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Although Geneformer is most focused on understanding network dynamics rather than 

cell-level annotations, we further investigated Geneformer’s performance in cell type 

annotation given it is a common application for previously published models. We compared 

Geneformer to alternative XGBoost7 and deep neural network-based6 models. These 

methods train a new model from scratch for each separate tissue using the same supervised 

learning objective as is used for the final cell type predictions in that specific tissue. 

Therefore, these approaches do not take advantage of the large amounts of data available 

more broadly that are not specifically labeled for that task. In contrast, Geneformer learns 

from large-scale unlabeled data during the self-supervised pretraining using a generalizable 

learning objective to gain fundamental knowledge that can then be transferred to a multitude 

of new and diverse fine-tuning tasks. Compared to these alternative methods, Geneformer 

boosted cell type predictions in a variety of tissues, with the gap in performance by accuracy 

and macro F1 score increasing as the number of cell type classes increased, indicating 

that Geneformer was robust in even increasingly complex multiclass prediction applications 

(Extended Data Fig. 5–6).

Gene dosage sensitivity predictions

We next tested whether Geneformer could boost predictions with limited data in a diverse 

set of downstream fine-tuning applications (Supplementary Table 2). A major challenge of 

interpreting copy number variants (CNVs) in genetic diagnosis is determining which genes 

are sensitive to changes in their dosage. Although conservation and allele frequency are 

commonly used to predict dosage sensitivity, these features do not vary across cell states 

and do not capture transcriptional dynamics that may inform contextual dosage sensitivity 

indicating which specific tissues would be affected by changes in the gene’s dosage. Using 

gene sets previously reported19–21 to be dosage-sensitive versus -insensitive, we fine-tuned 

Geneformer using only 10,000 random single cell transcriptomes to distinguish dosage-

sensitive versus -insensitive transcription factors. The fine-tuned Geneformer significantly 

boosted the ability to predict dosage sensitivity compared to alternative methods (area 

under the receiver operating characteristic curve (AUC) 0.91) (Fig. 2a, Extended Data 

Fig. 7a). Notably, pretraining with larger and more diverse corpuses consistently improved 

the predictive power in the downstream task despite using the same amount of limited 

task-specific data for fine-tuning (Fig. 2b).

We then asked whether, without any further training, the fine-tuned model could predict 

the dosage sensitivity of a recently reported set of disease genes (Fig. 2c). Collins et al. 

analyzed CNVs from 753,994 individuals to define genes whose deletion was associated 

with primarily neurodevelopmental disease with either high or moderate confidence22. 

The fine-tuned Geneformer model correctly predicted the high confidence genes to be 

dosage-sensitive in the specific context of fetal cerebral cells with 96% concordance 

with the original study. The moderate confidence genes reported by the authors were a 

much more permissive set (0.15–0.85 score vs. high confidence score cutoff >0.85). The 

fine-tuned Geneformer predicted moderate confidence genes to be dosage-sensitive in fetal 

cerebral cells with 84% concordance with the original study. Interestingly, although the high 

confidence genes, which may have a stronger effect, were predicted by Geneformer to be 

dosage-sensitive at similar rates in fetal cerebral (96%) and other cells (95%), the predicted 
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dosage sensitivity of the moderate confidence genes appeared to be more context-specific. 

The moderate confidence genes were predicted to be dosage-sensitive at a higher rate in fetal 

cerebral cells compared to neurons across any adult or developmental timepoint, consistent 

with these genes’ association with predominantly neurodevelopmental phenotypes where 

adult neurons may be less relevant. They were predicted to be dosage-sensitive at an even 

lower rate in random cells from any tissue, highlighting Geneformer’s context awareness.

We then designed an in silico deletion approach to identify genes whose deletion is predicted 

to have a deleterious effect in that particular cell context. We model gene deletion by 

removing the gene from the cell’s rank value encoding and quantifying the impact on the 

embeddings of the remaining genes in the encoding. To test this approach, we performed 

in silico deletion in fetal cardiomyocytes23 using the pretrained Geneformer without any 

fine-tuning. In silico deletion of known cardiomyopathy and structural heart disease genes 

had a significantly larger effect than the control set of known hyperlipidemia genes, which 

are expressed in cardiomyocytes and related to heart disease but whose phenotype affects 

cell types other than cardiomyocytes (Fig. 2d). In silico deletion of genes linked by a 

prior genome-wide association study24 (GWAS) to cardiac magnetic resonance imaging 

(MRI) traits relevant to cardiac disease also had a larger effect compared to the control set 

(Extended Data Fig. 7b).

Overall, genes whose deletion was predicted to have the most deleterious effect 

on cardiomyocytes were significantly enriched for human phenotypes including 

cardiomyopathy and abnormal myocardial morphology (Supplementary Table 3–4). Among 

the top 25 deleted genes with the most significant effect were transcription factors 

known to regulate myocardial development (e.g. FOXM125,26) and entirely novel dosage-

sensitive gene candidates such as TEAD4 (Supplementary Table 3). Experimental validation 

demonstrated that CRISPR-mediated knockout of novel candidate TEAD4 in iPSC-derived 

cardiac microtissues caused a significant reduction in their ability to generate contractile 

stress (force per unit area) (Fig. 2e, Extended Data Fig. 7c). TEAD4 is a transcription factor 

involved in the Hippo signaling pathway27, and future work is warranted to further examine 

its role in cardiac development.

Chromatin dynamics predictions

Bivalent chromatin structure is known to mark key developmental genes in embryonic stem 

cells (ESCs), maintaining their promoters poised for activation28. Bivalent domains consist 

of large regions of H3K27me3 harboring smaller regions of H3K4me3. We fine-tuned 

Geneformer to distinguish bivalently marked genes from those whose promoters were 

unmethylated or marked solely by H3K4me3 using transcriptomes from ~15,000 ESCs29. 

The labeled gene set used for this fine-tuning included only genes found in 56 conserved 

regions of the genome, as previously reported28. Geneformer significantly boosted the 

ability to predict bivalently marked genes compared to alternative methods (AUC 0.93 and 

0.88; bivalent versus unmethylated or H3K4me3-only, respectively) (Fig. 3a–b, Extended 

Data Fig. 7d–e). Furthermore, predictions were generalizable to the remainder of the 

genome that was excluded from fine-tuning (Fig. 3c, Extended Data Fig. 8a–c). Thus, 

by fine-tuning Geneformer using solely transcriptional data with only 56 labeled loci in 
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~15,000 ESCs, the model could predict the results of more recent studies30 that included 

genome-wide profiling of bivalent domains.

Determining the genomic distances over which transcription factor binding influences 

downstream expression is valuable for interpreting regulatory variants and inferring 

target genes from transcription factor genome occupancy data. Chen et al. previously 

systematically integrated thousands of transcription factor binding and histone modification 

profiles assayed by chromatin immunoprecipitation sequencing (ChIP-seq) with thousands 

of gene expression profiles to identify two classes of transcription factors with distinct 

ranges of regulatory influence31. We fine-tuned Geneformer to distinguish these long- 

versus short-range transcription factors using only single cell transcriptomes from ~34,000 

cells undergoing iPSC to cardiomyocyte differentiation11 with no associated ChIP-seq or 

genomic distance data. Again, Geneformer significantly boosted the ability to predict the 

regulatory range of transcription factors compared to alternative methods, whose predictions 

were near random (Fig. 3e, Extended Data Fig. 8d). Thus, fine-tuning the pretrained 

Geneformer model was able to improve predictions even for this higher-order transcription 

factor property of regulatory range, a particularly challenging characteristic to infer from 

transcriptional data alone.

Network dynamics predictions

Determining the hierarchy in gene networks enables the design of therapies targeting 

normalization of core regulatory elements that drive the disease process, rather than 

correction of peripheral downstream effectors that may not be disease modifying. We 

previously mapped the NOTCH1 (N1)-dependent gene network governing cardiac valve 

disease and identified central regulatory nodes whose correction had broad restorative 

impact on the network at large4,5. Mapping the network hierarchy required large amounts 

of transcriptional perturbation data from patient-specific cells with isogenic controls to learn 

the connections between genes.

We tested whether Geneformer could be fine-tuned to distinguish central versus peripheral 

factors within the N1-dependent gene network using only single cell transcriptional 

data from ~30,000 normal endothelial cells (ECs) from the Heart Atlas32 without any 

perturbation data. Again, Geneformer significantly boosted the ability to predict central 

versus peripheral factors compared to alternative methods (AUC 0.81) (Fig. 4a, Extended 

Data Fig. 8e). Additionally, fine-tuning the pretrained Geneformer on the Heart Atlas ECs32 

was able to distinguish N1 downstream targets from non-targets without any perturbation 

data, further demonstrating the model’s ability to encode key features of gene network 

dynamics and again significantly boosting predictions compared to alternative methods (Fig. 

4b, Extended Data Fig. 9a).

To investigate the threshold for minimal data needed for fine-tuning, we fine-tuned the 

pretrained Geneformer with progressively smaller numbers of normal ECs from the Heart 

Atlas32 to distinguish central versus peripheral factors within the N1-dependent gene 

network. We found that nearly equivalent predictive potential was retained even when 

reducing the fine-tuning data to only 5,000 ECs (Fig. 4c). Then, to determine whether 
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Geneformer could generate meaningful predictions using an even more miniscule number of 

fine-tuning training examples when the task-specific data was more relevant to the learning 

objective, we fine-tuned the pretrained Geneformer using only 884 ECs from healthy versus 

dilated aortas14. Interestingly, Geneformer was able to distinguish central versus peripheral 

factors in the N1-dependent network with fine-tuning on this very minimal data to a better 

degree than the alternative methods’ predictions trained on the larger dataset of ~30,000 

ECs32, demonstrating the strength of pretraining in enabling predictions from increasingly 

limited data (Fig. 4d, Extended Data Fig. 9b). More than twice as many general cardiac ECs 

were needed to gain similar predictive potential as was possible from fine-tuning with the 

more relevant data from healthy versus dilated aortas, suggesting that the minimum amount 

of fine-tuning data needed is dependent on both the specific application and relevance of the 

data to that task.

Pretraining encoded network hierarchy

To investigate how the model was learning network dynamics during the pretraining stage, 

we examined the pretrained Geneformer attention weights. The trained attention weights of 

the model for each gene reflect 1) which genes that gene pays attention to and 2) which 

genes pay attention to that gene. These attention weights are iteratively optimized during 

training to generate gene embeddings that best inform the correct answer for the given 

learning objective. Each of Geneformer’s six layers has four attention heads that are meant 

to learn in an unsupervised manner to pay attention to distinct classes of genes to jointly 

improve predictions without prior knowledge of any gene’s biological function.

When examining the attention weights in aortic ECs14, we found that 20% of attention heads 

significantly attended transcription factors more than other genes, indicating that specific 

attention heads learned, in an entirely self-supervised manner, the relative importance of 

transcription factors in distinguishing cell states (Fig. 4e). Furthermore, specific attention 

heads significantly attended central regulatory nodes to a greater degree than peripheral 

genes within N1-dependent network in ECs (Extended Data Fig. 9c). Concordantly, these 

centrality-driven attention heads consistently attended to a significantly greater degree the 

highest ranked genes in each cell’s unique rank value encoding in aortic ECs, smooth 

muscle cells, T cells, and macrophage/monocyte/dendritic cells (which each have different 

sets of highest ranked genes based on cell type context) (Extended Data Fig. 9d).

Interestingly, attention heads in the earliest layers were consistently the most diverse in 

terms of gene ranks they attended, suggesting the model initially orients to the observed 

cell state through a joint survey of distinct portions of the input space. The middle layers 

were most broad in terms of gene ranks they attended, and the final layers were dominated 

by centrality-driven attention heads that focused on the highest ranked genes that uniquely 

define each cell state (Extended Data Fig. 9c–d).

In silico gene network analysis

Given the gene embeddings reflect the joint output of the attention weights of the network, 

we tested whether the pretrained Geneformer already encoded network connections between 
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transcription factors and their targets prior to fine-tuning. We determined the genes whose 

embeddings in fetal cardiomyocytes23 were most impacted by in silico deletion of GATA4, 

a known congenital heart disease gene. In silico deletion of GATA4 had a significantly 

higher effect on genes known to be most significantly dysregulated by GATA4 variants 

in a previously reported iPSC disease model of GATA4-related heart defects33 (Extended 

Data Fig. 9e). Notably, direct GATA4 targets (as defined by ChIP-seq33) were significantly 

more impacted by in silico deletion of GATA4 in fetal cardiomyocytes compared to indirect 

targets (Fig. 5a). Analogously, in silico deletion of TBX5, another known congenital heart 

disease gene, in fetal cardiomyocytes23 more significantly impacted its direct targets (as 

defined by ChIP-seq34) compared to indirect targets and housekeeping genes (Extended 

Data Fig. 9f). These data suggest that in silico perturbation can be applied to model gene 

network connections.

Interestingly, the GATA4 variant studied in the iPSC disease model disrupts the interaction 

of GATA4 with its binding partner, transcription factor TBX533. We tested whether our in 

silico deletion approach could model the effect of deleting these two genes in combination 

(Fig. 5b). Indeed, in silico deletion of GATA4 or TBX5 alone had a significantly more 

deleterious effect on their known co-bound targets33 compared to housekeeping genes. 

Furthermore, in silico deletion of both GATA4 and TBX5 in combination had an even 

greater impact on their known co-bound targets than the sum of their individual in silico 

deletion, suggesting Geneformer recognized their cooperative action at these co-bound 

targets.

In silico treatment analysis

We next tested whether our in silico perturbation strategy could be applied to model 

human disease and reveal candidate therapeutic targets (Fig. 6a). First, we fine-tuned 

Geneformer to distinguish cardiomyocytes35 from non-failing hearts (n=9) or hearts 

affected by hypertrophic (n=11) or dilated (n=9) cardiomyopathy with an overall out-of-

sample accuracy of 90% (Fig. 6b, Extended Data Fig. 10a). We then determined the 

genes whose in silico deletion or activation in cardiomyocytes from non-failing hearts 

significantly shifted the fine-tuned Geneformer cell embeddings towards the hypertrophic 

or dilated cardiomyopathy states (Fig. 6c–d; Extended Data Fig. 10b–c, Supplementary 

Table 5–11). Overall, the model identified 447 genes whose loss was predicted to shift 

cardiomyocytes towards the hypertrophic cardiomyopathy state, which were enriched 

for pathways including Titin binding36 and sarcomere organization37 known to impact 

hypertrophic cardiomyopathy pathogenesis. The model identified 478 genes whose loss was 

predicted to shift cardiomyocytes towards dilated cardiomyopathy, which were enriched for 

pathways involved in muscle contraction38 and mitochondrial39 function.

Then, we performed in silico treatment analysis in cardiomyocytes from hypertrophic or 

dilated cardiomyopathy patients to determine whether inhibition or activation of specific 

pathways would shift the cell embeddings back towards the non-failing heart state 

(Fig. 6e, Extended Data Fig. 10d, Supplementary Table 12–15). Top enriched pathways 

for hypertrophic cardiomyopathy pointed to candidate cardiomyocyte-specific therapeutic 

targets including ADCY5, disruption of which is associated with longevity and protection 
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against cardiomyopathy in mouse models40, as well as druggable targets41 including 

SRPK3, a downstream effector of MEF242 which is known to play a critical role in 

myocardial cell hypertrophy43.

We then performed experimental validation to determine whether inhibition of Geneformer-

predicted therapeutic candidates for dilated cardiomyopathy could improve cardiomyocyte 

function in an experimental model of the disease. Titin (TTN) truncating mutations are the 

leading cause of dilated cardiomyopathy in humans and are found in ~20% of affected 

patients36. iPSC-derived cardiac microtissues harboring a truncating variant (TTN+/−) in 

the A-band are known to exhibit reduced contractile stress compared to isogenic TTN+/+ 

controls36. Strikingly, CRISPR-mediated knockout of both Geneformer-predicted targets 

GSN and PLN in the TTN+/− cells significantly improved the contractile stress of the TTN+/

− cardiac microtissues, validating these genes as promising candidate therapeutic targets 

for this disease (Fig. 6f–g, Extended Data Fig. 10e). These findings provide experimental 

validation in support of the utility of Geneformer as a tool for discovery of candidate 

therapeutic targets in human disease.

Discussion

In sum, we developed a context-aware deep learning model, Geneformer, pretrained on 

large-scale transcriptomic data to enable predictions in settings with limited data. Through 

the observation of a vast number of cell states during the pretraining process, Geneformer 

gained a fundamental understanding of network dynamics, encoding network hierarchy 

in the model’s attention weights in a completely self-supervised manner. Geneformer’s 

ability to predict dosage-sensitive disease genes through the context-aware in silico deletion 

approach represents a valuable asset for interpretation of genetic variants, including 

prioritization of GWAS hits driving complex traits, and the specific tissues they are 

expected to affect. Experimental validation of a novel dosage-sensitive gene candidate 

in fetal cardiomyocytes, TEAD4, supports the utility of Geneformer for driving novel 

biological insights in human development. Applied to disease modeling of cardiomyopathy 

using a limited number of patient samples, Geneformer predicted candidate therapeutic 

targets whose experimental targeting in an iPSC disease model led to significant functional 

improvement. In silico treatment analysis using limited data may thus enable therapeutic 

discovery in innumerable diseases that have been previously impeded by limited data due to 

being rare or affecting clinically inaccessible tissue.

Furthermore, we found that pretraining with larger and more diverse corpuses consistently 

improved Geneformer’s predictive power, consistent with observations that large-scale 

pretraining allows training of deeper models that ultimately have greater predictive 

potential in fields including NLU, computer vision, and mathematical problem-solving44. 

Additionally, exposure to hundreds of experimental datasets during pretraining also 

appeared to promote robustness to batch-dependent technical artifacts and individual 

variability that commonly impact single cell analyses in biology. These findings suggest that 

as the amount of publicly available transcriptomic data continues to expand, future models 

pretrained on even larger-scale corpuses may open opportunities to achieve meaningful 

predictions in even more elusive tasks with increasingly limited task-specific data. Overall, 
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Geneformer represents a pretrained deep learning model whose fundamental understanding 

of network dynamics can now be democratized to a broad range of downstream applications 

to accelerate discovery of key network regulators and candidate therapeutic targets in 

settings with limited data.

Methods

Assembly and rank value encoding of transcriptomes in Genecorpus-30M

Assembly and uniform processing of single cell transcriptomes—We assembled 

a large-scale pretraining corpus, Genecorpus-30M, comprised of 29.9 million (29,900,531) 

human single cell transcriptomes from a broad range of tissues from publicly available data 

(Fig. 1b, Supplementary Table 1). We excluded cells with high mutational burdens (e.g. 

malignant cells and immortalized cell lines) that could lead to substantial network rewiring 

without companion genome sequencing to facilitate interpretation. We only included 

droplet-based sequencing platforms to assure expression value unit comparability. Overall, 

561 datasets were included and stored as uniform files in the .loom HDF5 format including 

metadata from the original studies as row (feature) and column (cell) attributes described 

below.

Publicly available datasets containing raw counts were collected from National Center for 

Biotechnology Information (NCBI) Gene Expression Omnibus (GEO), NCBI Sequence 

Read Archive (SRA), Human Cell Atlas, European Molecular Biology Laboratory-European 

Bioinformatics Institute (EMBL-EBI) Single Cell Expression Atlas, Broad Institute Single 

Cell Portal, Brotman Baty Institute (BBI)-Allen Single Cell Atlases, Tumor Immune Single-

cell Hub (TISCH) (excluding malignant cells), Panglao Database, 10x Genomics, University 

of California, Santa Cruz Cell Browser, European Genome-phenome Archive, Synapse, 

Riken, Zenodo, National Institutes of Health (NIH) Figshare Archive, NCBI dbGap, 

Refine.bio, China National GeneBank Sequence Archive, Mendeley Data, and individual 

communication with authors of the original studies11,23,29,32,45,47–153. Additional resources 

for collecting information about suitable studies included Entrez Direct tools and the dataset 

summary from Svensson et al., Database 2020154. Tools utilized in conversion of data 

to uniform .loom HDF5 files included loompy, scanpy155, anndata, scipy, numpy, pandas, 

Cellranger, and LoomExperiment.

Row feature attributes included Ensembl annotations for the gene ID, ID version (if 

provided by original study), name, and type (e.g. protein coding, miRNA, mitochondrial, 

etc). Annotation data was retrieved from Ensembl and MyGene156. Column cell attributes 

included a unique Genecorpus-30M cell ID comprised of the dataset name, sample name, 

and cell barcode from that dataset. The dataset and sample names were also included as 

separate individual attributes such that the cell barcode can be derived by subtracting these 

from the unique Genecorpus-30M cell ID if needed. Column cell attributes also included the 

major organ included in the dataset, which we annotated as one of the following categories: 

adipose, adrenal, airway, bladder, bone, bone_marrow, brain, breast, cord_blood, decidua, 

ear, embryo, endothelial, esophagus, eye, heart, immune, intestine_unspecified, kidney, 

large_intestine, liver, lung, lymph_node, lymphatic, muscle, nasal, pancreas, placenta, 

pluripotent_stem_cell, prostate, skin, small_intestine, spleen, stomach, testis, thymus, tonsil, 
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various, yolk_sac. Column cell attributes also included the specific organ(s) included in the 

dataset based on metadata provided by the original study. If the original study included cell 

type annotations, we included these as a cell type column attribute for each cell as well. We 

also included the sequencing platform used.

Column cell attributes also included several calculated measurements for each cell: the 

total number of read counts, the percentage of mitochondrial reads, the number of genes 

Ensembl-annotated as protein-coding or miRNA genes, and whether the cell passed the 

quality control metrics we established for scalable filtering of the cells to exclude possible 

doublets and/or damaged cells. Only cells that passed these filtering metrics were used 

for downstream analyses in this work. Specifically, datasets were filtered to retain cells 

with total read counts within three standard deviations of the mean within that dataset 

and mitochondrial reads within three standard deviations of the mean within that dataset. 

Ensembl-annotated protein-coding and miRNA genes were used for downstream analysis. 

Cells with less than seven detected Ensembl-annotated protein-coding or miRNA genes were 

excluded as the 15% masking used for the pretraining learning objective would not reliably 

mask a gene in cells with fewer detected genes. Ultimately, 27.4 million (27,406,217) cells 

passed the defined quality filters.

Rank value encoding of single cell transcriptomes—We developed a novel rank 

value encoding method that provides a nonparametric representation of each single cell’s 

transcriptome, ranking genes by their expression within that cell normalized by their 

expression across the entire Genecorpus-30M (Fig. 1c). This method takes advantage of 

the many observations of each gene’s expression across Genecorpus-30M to prioritize 

genes that distinguish cell state. Specifically, this method will deprioritize ubiquitously 

highly-expressed housekeeping genes by normalizing them to a lower rank. Conversely, 

genes such as transcription factors that may be lowly expressed when they are expressed 

but highly distinguish cell state will move to a higher rank within the encoding (Extended 

Data Fig. 1c). Furthermore, this rank-based approach may be more robust against technical 

artifacts that may systematically bias the absolute transcript counts value while the overall 

relative ranking of genes within each cell remains more stable.

To accomplish this, we first calculated the nonzero median value of expression of each 

detected gene across all cells passing quality filtering from the entire Genecorpus-30M. We 

aggregated the transcript count distribution for each gene in a memory-efficient manner by 

scanning through chunks of .loom data using loompy, normalizing the gene transcript counts 

in each cell by the total transcript count of that cell to account for varying sequencing depth, 

and updating the gene’s normalized count distribution within the t-digest157 data structure 

developed for accurate online accumulation of rank-based statistics. We then normalized the 

genes in each single cell transcriptome by that gene’s nonzero median value of expression 

across Genecorpus-30M and ordered the genes by the rank of their normalized expression 

in that specific cell. Of note, we opted to use the nonzero median value of expression rather 

than include zeros in the distribution so as not to weight the value by tissue representation 

within Genecorpus-30M, assuming that a representative range of transcript values would 

be observed within the cells in which each gene was detected. This normalization factor 

for each gene is calculated once from the pretraining corpus and is used for all future 
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datasets presented to the model. The provided tokenizer code includes this normalization 

procedure and should be used for tokenizing new datasets presented to Geneformer to ensure 

consistency of the normalization factor used for each gene.

The rank value encodings for each single cell transcriptome were then tokenized based 

on a total vocabulary of 25,424 protein-coding or miRNA genes detected in a median of 

173,152 cells within Genecorpus-30M. The vocabulary also included two additional special 

tokens for padding and masking. The tokenized data was stored within the Huggingface 

Datasets158 structure, which is based on the Apache Arrow format that allows processing of 

large datasets with zero-copy reads without memory constraints. Of note, this strategy is also 

space-efficient as the genes are stored as ranked tokens as opposed to the exact transcript 

values, and we only store genes detected within each cell rather than the full sparse dataset 

that includes all of the undetected genes.

Geneformer architecture and pretraining

Geneformer architecture—Geneformer is composed of six transformer encoder units1,2, 

each composed of a self-attention layer and feed forward neural network layer with the 

following parameters: input size of 2048 (fully represents 93% of rank value encodings 

in Genecorpus-30M), 256 embedding dimensions, 4 attention heads per layer, and feed 

forward size of 512 (Fig. 1c). Geneformer employs full dense self-attention across the 

input size of 2048. Depth was chosen based on the maximum depth for which there was 

sufficient data to pretrain as it has been established that this approach yields the greatest 

predictive potential in other informational fields including NLU, computer vision, and 

mathematical problem-solving44. Additionally, we maximized the amount of context (input 

size) considered by the model with full attention based on the number of genes standardly 

detected in each cell within the pretraining corpus. Additional parameters were as follows: 

non-linear activation function: rectified linear unit (ReLU); dropout probability for all fully 

connected layers: 0.02; dropout ratio for attention probabilities: 0.02; standard deviation 

of the initializer for weight matrices: 0.02; epsilon for layer normalization layers: 1e-12. 

Modeling was implemented in pytorch and using the Huggingface Transformers library159 

for model configuration, data loading, and training.

Geneformer pretraining and performance optimization—Pretraining was 

accomplished using a masked learning objective, which has been shown in other 

informational fields1,2 to improve generalizability of the foundational knowledge learned 

during pretraining for a wide range of downstream fine-tuning objectives. During 

pretraining, 15% of the genes within each transcriptome were masked, and the model was 

trained to predict which gene should be within each masked position in that specific cell 

state using the context of the remaining unmasked genes. A major strength of this approach 

is that it is entirely self-supervised and can be accomplished on completely unlabeled 

data, which allows the inclusion of large amounts of training data without being restricted 

to samples with accompanying labels. Pretraining hyperparameters were optimized to the 

following final values: max learning rate: 1e-3; learning scheduler: linear with warmup; 

optimizer: Adam with weight decay fix160; warmup steps: 10,000; weight decay: 0.001; 
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batch size: 12. Tensorboard was used for experimentation tracking, and the model was 

pretrained for 3 epochs.

As the input size of 2048 is considerably large for a full dense self-attention model 

(for example, BERT1,2 input size is 512) and transformers have a quadratic memory and 

time complexity O(L2) with respect to input size, we implemented measures to optimize 

efficiency of large-scale pretraining. The trainer from the Huggingface Transformers 

library159 was used for pretraining with the substitution of a custom tokenizer to implement 

dynamic, length-grouped padding, which minimized computation on padding and achieved 

a 29.4x speedup in pretraining. This process takes a randomly sampled megabatch and 

then orders minibatches by their length in descending order (to ensure that any memory 

constraints are encountered earlier). Minibatches are then dynamically padded, minimizing 

the computation wasted on padding due to being length-grouped. We also implemented 

recent advances in distributed GPU training9,10 to allow efficient pretraining on the large-

scale dataset using Deepspeed, which partitions parameters, gradients, and optimizer states 

across available GPUs, offloads processing/memory as possible to CPU to allow more 

to fit on GPU, and reduces memory fragmentation by ensuring long and short term 

memory allocations do not mix. Overall, pretraining was achieved in approximately 3 days 

distributed across 3 nodes each with 4 Nvidia V100 32GB GPUs (total 12 GPUs).

Geneformer fine-tuning

Fine-tuning of Geneformer was accomplished by initializing the model with the pretrained 

Geneformer weights and adding a final task-specific transformer layer. The fine-tuning 

objective was either gene classification or cell classification as indicated in Supplementary 

Table 2. The trainer from the Huggingface Transformers library159 was used for pretraining 

with the substitution of a custom tokenizer as described above and a custom data 

collator for dynamically labeling gene or cell classes as indicated in Supplementary 

Table 2. To demonstrate the efficacy of the pretrained Geneformer in boosting predictive 

potential of downstream fine-tuning applications, we intentionally used the same fine-tuning 

hyperparameters for all applications. It should be noted that hyperparameter tuning for 

deep learning applications generally significantly enhances learning and so it is likely 

that the maximum predictive potential of Geneformer in these downstream applications is 

significantly underestimated. Hyperparameters utilized for fine-tuning were as follows: max 

learning rate: 5e-5; learning scheduler: linear with warmup; optimizer: Adam with weight 

decay fix160; warmup steps: 500; weight decay: 0.001; batch size: 12. All fine-tuning in 

Supplementary Table 2 was performed with a single training epoch to avoid overfitting.

The number of layers frozen from fine-tuning are indicated in Supplementary Table 2. 

Generally, in our experience, applications that are more relevant to the pretraining objective 

benefit from more layers being frozen to prevent overfitting to the limited task-specific 

data, whereas applications that are more distant from the pretraining objective benefit from 

fine-tuning of more layers to optimize performance on the new task. Fine-tuning results for 

gene classification applications were reported as AUCs +/− standard deviation and F1 score 

calculated based on a 5-fold cross-validation strategy where training was performed on 80% 

of the gene training labels and performance was tested on the 20% held-out gene training 
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labels, repeating for 5 folds. Of note, because the fine-tuning applications are trained on 

classification objectives that are completely separate from the masked learning objective, 

whether or not task-specific data was included in the pretraining corpus is not relevant to the 

classification predictions, as demonstrated in Extended Data Fig. 1f.

We then fully fine-tuned the dosage sensitivity and bivalency classification models using 

all gene training labels in order to test their ability to generalize to out-of-sample data. 

We tested whether, without any further training, the model fine-tuned to distinguish dosage 

sensitive versus insensitive genes could predict dosage sensitivity of a recently reported 

set of disease genes from Collins et al., which analyzed CNVs from 753,994 individuals 

to define genes whose deletion was associated with primarily neurodevelopmental disease 

with either high (>0.85 score) or moderate (0.15–0.85 score) confidence22. Predicted dosage 

sensitivity of these gene sets was tested in the context of 10,000 randomly sampled cells 

from Genecorpus-30M, neurons across any adult or developmental timepoint defined as 

TUBB3-marked cells from Genecorpus-30M, or fetal cerebral cells from the Fetal Cell 

Atlas23. We also tested whether, without any further training, the model fine-tuned to 

distinguish bivalent versus single Lys4-marked genes by training on the 56 highly-conserved 

loci would generalize to the genome-wide setting30.

Geneformer gene embeddings, cell embeddings, and attention weights

Gene embeddings—For each single cell transcriptome presented to Geneformer, 

the model embeds each gene into a 256-dimensional space that encodes the gene’s 

characteristics specific to the context of that cell. Contextual Geneformer gene embeddings 

are extracted as the hidden state weights for the 256 embedding dimensions for each gene 

within the given single cell transcriptome evaluated by forward pass through the Geneformer 

model. Gene embeddings analyzed in this study were extracted from the second to last 

layer of the models as the final layer is known to encompass features more directly related 

to the learning objective prediction while the second to last layer is a more generalizable 

representation.

Cell embeddings—Geneformer cell embeddings, which encode characteristics of that 

single cell’s state, are generated by averaging the embeddings of each gene detected in 

that cell, resulting in a 256-dimensional embedding. We utilized the second to last layer 

embeddings as discussed above (except for the disease modeling application as discussed in 

the Supplementary Information Methods).

Attention weights—Each of Geneformer’s six layers has four attention heads that are 

meant to learn in an unsupervised manner to pay attention to distinct classes of genes 

to jointly improve predictions without prior knowledge of any gene’s biological function. 

Contextual Geneformer attention weights are extracted for each attention head within each 

self-attention layer for each gene within the given single cell transcriptome evaluated by 

forward pass through the Geneformer model.
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In silico perturbation

We designed an in silico perturbation approach where the rank of given genes is perturbed 

to model their inhibition or activation. The effects of the in silico perturbation are measured 

at the cell and gene embedding level, modeling how the perturbation affects the cell’s state 

and the regulation of downstream genes within the gene network, respectively. In silico 

deletion was modeled by removing the given gene from the rank value encoding of the 

given single cell transcriptome and quantifying the cosine similarity between the original 

and perturbed 1) cell embeddings to determine the predicted deleterious impact of deleting 

that gene in that cell context, or 2) gene embeddings of the remaining genes in the single 

cell transcriptome to determine which genes were predicted to be most sensitive to in silico 

deletion of the given gene. In silico deletion can be performed with a single gene or multiple 

genes being deleted. In silico activation was modeled by moving a given gene(s) to the front 

of the rank value encoding (similarly to the in silico reprogramming strategy discussed in 

the Supplementary Information Methods where genes were artificially added to the front of 

the rank value encoding to model cellular reprogramming by these factors). In theory, more 

subtle downregulation and activation could be modeled by shifting genes up or down within 

the rank value encoding to a subtler degree.

Please refer to the Supplementary Information Methods for complete methods including 

analysis of context dependence and robustness to batch-dependent technical artifacts, 

attention weight analysis, in silico perturbation analysis, alternative modeling approaches, 

cell type annotation fine-tuning application, disease modeling approach, scRNA-seq sample 

collection and preprocessing, and experimental testing of Geneformer-predicted targets in 

engineered cardiac microtissues.
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Extended Data

Extended Data Fig. 1 |. Geneformer transfer learning strategy.
a, Schematic of standard modelling approach, which necessitates retraining a new model 

from scratch for each new task. b, Schematic of transfer learning strategy. Through a 

single initial self-supervised large-scale pretraining on a generalizable learning objective, 

the model gains fundamental knowledge of the learning domain that is then democratized 

to a multitude of downstream applications distinct from the pretraining learning objective, 
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transferring knowledge to new tasks. c, Transcription factors are normalized by a statistically 

significantly lower factor (resulting in higher prioritization in the rank value encoding) 

compared to all genes. Housekeeping genes on average show a trend of a higher 

normalization factor (resulting in deprioritization in the rank value encoding) compared 

to all genes (*p<0.05 by Wilcoxon, FDR-corrected; all genes n=17,903, housekeeping 

genes n=11, transcription factors n=1,384; error bars=standard deviation). d, Pretraining was 

performed with a randomly subsampled corpus of 100,000 cells, holding out 10,000 cells 

for evaluation, with 3 different random seeds. Evaluation loss was essentially equivalent 

in the 3 trials, indicating robustness to the set of genes randomly masked for each cell 

during the pretraining. e, Pretraining was performed with a randomly subsampled corpus of 

100,000 cells, holding out 10,000 cells for evaluation, with 3 different masking percentages. 

15% masking had marginally lower evaluation loss compared to 5% or 30% masking. 

f, Pretraining was performed with a randomly subsampled corpus of 90,000 cells and 

the model was then fine-tuned to distinguish dosage-sensitive vs. -insensitive transcription 

factors using 10,000 cells that were either included in or excluded from the 90,000 cell 

pretraining corpus. Predictive potential on the downstream fine-tuning task was measured by 

5-fold cross-validation with these 10,000 cells, demonstrating essentially equivalent results 

by AUC, confusion matrices, and F1 score. Because the fine-tuning applications are trained 

on classification objectives that are completely separate from the masked learning objective, 

whether or not task-specific data was included in the pretraining corpus is not relevant to the 

downstream classification predictions.
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Extended Data Fig. 2 |. Geneformer was context-aware and robust to batch-dependent technical 
artifacts.
a, Effect of gene versus the indicated batch-dependent technical artifact on pretrained 

Geneformer gene embeddings (*p<0.05 by Wilcoxon, FDR-corrected; NS: non-significant). 

We found that the gene embeddings were robust to sequencing platformM11, preservation 

method13,12, and individual patient variability14. b, UMAP of pretrained Geneformer cell 

embeddings of cells undergoing iPSC reprogramming appropriately captured temporal 

trajectory of reprogramming (cell types as annotated by original study15; iPSC negative 

or positive refers to expression of marker TRA-1–60). Cell embeddings suggested that 

cells which do not progress to the iPSC state bifurcate into an alternative fate compared 

to cells that progress to the iPSC state after the day 12 stage. c, Compared to in silico 

reprogramming with random genes, in silico reprogramming of fibroblasts by artificially 

adding OCT4, SOX2, KLF4, and MYC (OSKM) to the front of their rank value encodings 

significantly shifted the gene embeddings from their initial fibroblast state to the embedding 

of that gene in the iPSC state (*p<0.05 by Wilcoxon). d, UMAP of pretrained Geneformer 

cell embeddings of cells undergoing iPSC to myoblast differentiation at the earlier S1 

(PAX3+) and later S2B (PAX3+/MYOD+) stages (cell types as annotated by original 

study16). e, Compared to in silico differentiation with random genes, in silico differentiation 
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of the early-stage myogenic cells by artificially adding MYOD to the front of their rank 

value encodings significantly shifted the gene embeddings from their earlier state to the 

embedding of that gene in the later MYOD+ myogenic state (*p<0.05 by Wilcoxon).

Extended Data Fig. 3 |. Geneformer encoded context-specificity of key NOTCH pathway genes.
Known context-dependent NOTCH genes showed higher variance in their contextual 

embeddings across variable aortic cell types compared to housekeeping gene GAPDH.
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Extended Data Fig. 4 |. Geneformer pretrained and fine-tuned cell embeddings were robust to 
batch-dependent technical artifacts.
a, While original data (left) was highly affected by patient batch effect, cell embeddings 

generated by pretrained Geneformer (right) (without fine-tuning) clustered primarily by cell 

type and phenotype. Of note, affected individuals 1, 2, and 4 had the phenotype of ascending 

only aortic aneurysm, which is a different phenotype than aortic aneurysm that includes the 

root. b, Imbalance in the number of genes detected in each of the two platforms (single-

cell Drop-seq versus single-nucleus DroNc-seq), which may result in batch-dependent 

technical artifacts. c, Cell embeddings from each layer of the Geneformer model fine-tuned 

to distinguish the indicated cell types (as annotated by original study11) using only the 
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Drop-seq data. As the cells pass through each layer, the model successively extrudes them 

from each other to derive separable embeddings that distinguish the cell types. d, Cell 

type predictions on the DroNc-seq data by the model fine-tuned only on the Drop-seq 

data (out of sample accuracy 84%). Of note, inaccurate predictions were predominantly in 

predicting that cardiomyocyte type 2 was type 1, as expected given the minimal examples 

of cardiomyocyte type 2 in the Drop-seq data. e, The imbalance of cardiomyocyte type 1 

and 2 between the platforms also suggests that these cellular subtypes may be an artifact 

of variable gene detection between the two platforms. f, Geneformer fine-tuned with only 

Drop-seq data automatically integrated DroNc-seq data such that the fine-tuned Geneformer 

cell embeddings primarily clustered by cell types and showed improved integration of 

platforms compared to the original data even after batch effect removal using the ComBat17 

or Harmony18 methods.
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Extended Data Fig. 5 |. Geneformer boosted predictions in multiclass cell type annotation.
a, Predictive potential (as measured by accuracy and macro F1 score) of Geneformer fine-

tuned for cell type annotation in the indicated human tissues as compared to XGBoost 

(CaSTLe) and deep neural network-based (scDeepSort) methods. The top bar graph 

indicates the number of cell type classes for each tissue; the gap in performance of 

Geneformer compared to alternatives increased as the number of cell type classes increased, 

indicating that Geneformer was robust in even increasingly complex multiclass prediction 

applications. b, Lung, c, large intestine, or d, pancreas out of sample predictions by 
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Geneformer fine-tuned to distinguish cell types in each tissue (training on 80% of cells, 

predictions on held-out 20% of cells).

Extended Data Fig. 6 |. Embedding dimension activations distinguish cell types in fine-tuned 
Geneformer model.
a, Kidney, b, liver, c, blood, d, spleen, e, brain, or f, placenta out of sample predictions 

by Geneformer fine-tuned to distinguish cell types in each tissue (training on 80% of 

cells, predictions on held-out 20% of cells). g, Specific embedding dimension activations 

distinguish each lung cell type in the fine-tuned model.
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Extended Data Fig. 7 |. Geneformer boosted predictions in a diverse panel of downstream tasks.
a, Confusion matrices and F1 score for Geneformer predictions vs. alternative methods 

(as described in Fig. 2a) for downstream task of distinguishing dosage-sensitive vs. 

insensitive transcription factors. b, Effect on cardiomyocyte embeddings from in silico 

deletion of genes linked by prior transcriptome-wide association study (TWAS)-prioritized 

GWAS24 to cardiac MRI traits relevant to cardiac pathology (left ventricular (LV) end 

diastolic volume (EDV), LV end systolic volume (LVESV), LV ejection fraction (LVEF), 

and stroke volume (SV)) compared to in silico deletion of control cardiac disease genes 
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expressed in cardiomyocytes but whose pathology occurs in non-cardiomyocyte cell 

types (hyperlipidemia). (*p<0.05 by Wilcoxon, FDR-corrected; center line=median, box 

limits=upper and lower quartiles, whiskers=1.5x interquartile range, points=outliers). c, 
Quantitative PCR (QPCR) data of CRISPR-mediated knockout of TEAD4 in iPSC-derived 

cardiomyocytes (n=3, *p<0.05 by t-test; center line=median, box limits=upper and lower 

quartiles, whiskers=1.5x interquartile range, points=experimental replicates). d, Confusion 

matrices and F1 score for Geneformer predictions vs. alternative methods for downstream 

task of distinguishing bivalent vs. non-methylated genes (56 highly conserved loci28). e, 
Confusion matrices and F1 score for Geneformer predictions vs. alternative methods for 

downstream task of distinguishing bivalent vs. Lys4-only methylated genes (56 highly 

conserved loci28).
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Extended Data Fig. 8 |. Geneformer boosted predictions in a diverse panel of downstream tasks.
a, Confusion matrix and F1 score for Geneformer predictions vs. alternative methods (as 

described in Fig. 2a) for downstream task of distinguishing genome-wide30 bivalent vs. 

Lys4-only methylated genes with model fine-tuned only on 56 highly conserved loci28. 

b, ROC curve of Geneformer fine-tuned to distinguish genome-wide bivalent vs. Lys4-only-

methylated genes using limited data (~15K ESCs), compared to alternative methods. c, 
Confusion matrices and F1 score for Geneformer predictions vs. alternative methods for 

downstream task of distinguishing genome-wide bivalent vs. non-methylated genes with 
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model fine-tuned on 80% of genome-wide loci and predicting on 20% of out of sample loci. 

d, Confusion matrices and F1 score for Geneformer predictions vs. alternative methods for 

downstream task of distinguishing long- vs. short-range transcription factors. e, Confusion 

matrices and F1 score for Geneformer predictions vs. alternative methods for downstream 

task of distinguishing central vs. peripheral genes within the N1-dependent network in 

endothelial cells.

Extended Data Fig. 9 |. In silico deletion strategy revealed network connectivity.
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a, Confusion matrices and F1 score for Geneformer predictions vs. alternative methods (as 

described in Fig. 2a) for downstream task of distinguishing N1-activated vs. non-targets. 

b, Confusion matrix and F1 score of Geneformer predictions of central vs. peripheral 

genes within the N1-dependent network in endothelial cells (ECs) with model fine-tuned 

only on 884 ECs from healthy or dilated aortas14. c, Pretrained Geneformer attention 

weights in aortic ECs demonstrated that specific attention heads learned in a completely 

self-supervised way the relative centrality of the top most central versus most peripheral 

genes in the N1-dependent gene network (higher valence=more central) (*p<0.05 Wilcoxon, 

FDR-corrected). d, Pretrained Geneformer contextual attention versus gene rank in rank 

value encoding in the indicated aortic cell types, which each have different sets of highest 

ranked genes based on cell type context (higher rank is leftward on x axis) (*p<0.05 

by Wilcoxon, FDR-corrected, * position = side with higher attention). All cells used for 

analysis had the same number of genes so that the rank values would be comparable. e, 
In silico deletion of GATA4 was significantly more deleterious to the previously reported 

highest confidence GATA4 targets33 than to housekeeping genes. f, In silico deletion of 

TBX5 was significantly more deleterious to previously reported TBX5 direct targets34 

than to housekeeping genes or TBX5 indirect targets. In (d-e): *p<0.05 by Wilcoxon, 

FDR-corrected; center line=median, box limits=upper and lower quartiles, whiskers=1.5x 

interquartile range, points=outliers.
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Extended Data Fig. 10 |. Geneformer fine-tuned cardiomyocyte embeddings clustered by 
phenotype.
a, While original data (left) was highly affected by patient batch effect, cell embeddings 

generated by pretrained Geneformer (right) (without fine-tuning) clustered primarily 

by cell type. b, UMAP of cardiomyocyte embeddings from the model fine-tuned 

to distinguish cardiomyocytes in non-failing hearts from cardiomyocytes in patients 

with hypertrophic or dilated cardiomyopathy. c, Gene sets significantly associated with 

hypertrophic or dilated cardiomyopathy states by Geneformer in silico deletion disease 
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modeling significantly overlapped with genes differentially expressed in those respective 

disease states (differentially expressed vs. non-failing) compared to the overlap of those 

differentially expressed genes with background genes (the remainder of the genes detected 

in cardiomyocytes that were not significantly associated with hypertrophic or dilated 

cardiomyopathy by Geneformer disease modeling) (*p<0.05 by X2 test, FDR-corrected). d, 
Pathway enrichment for genes whose in silico deletion in cardiomyocytes from hypertrophic 

cardiomyopathy patients significantly shifted embeddings towards the non-failing state and 

away from the dilated cardiomyopathy state, suggesting candidate therapeutic targets. e, 
QPCR data of CRISPR-mediated knockout of indicated genes in TTN+/− iPSC-derived 

cardiomyocytes (n=3, *p<0.05 by t-test). Center line=median, box limits=upper and lower 

quartiles, whiskers=1.5x interquartile range, points=experimental replicates.
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Fig. 1 |. Geneformer architecture and transfer learning strategy.
a, Schematic of transfer learning strategy with initial self-supervised large-scale pretraining, 

copying pretrained weights to models for each fine-tuning task, adding fine-tuning layer, 

and fine-tuning with limited task-specific data towards each downstream task. Through the 

single initial self-supervised large-scale pretraining on a generalizable learning objective, 

the model gains fundamental knowledge of the learning domain that is then democratized 

to a multitude of downstream applications distinct from the pretraining learning objective, 

transferring knowledge to new tasks. b, Tissue representation of Genecorpus-30M. NOS=not 

otherwise specified. c, Pretrained Geneformer architecture. Each single cell transcriptome 

is encoded into a rank value encoding that then proceeds through 6 layers of transformer 

encoder units with parameters: input size of 2048 (fully represents 93% of rank value 

encodings in Geneformer-30M), 256 embedding dimensions, 4 attention heads per layer, 
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and feed forward size of 512. Geneformer employs full dense self-attention across the input 

size of 2048. Extractable outputs include contextual gene and cell embeddings, contextual 

attention weights, and contextual predictions.
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Fig. 2 |. Geneformer boosted predictions of gene dosage sensitivity with limited data.
a, ROC curve of Geneformer fine-tuned to distinguish dosage-sensitive versus -insensitive 

transcription factors (TFs) using limited data (10,000 cells) compared to alternative 

methods: support vector machine (SVM), random forest (RF), or logistic regression (LR) 

trained on gene ranks (-r) or counts (-c) or non-pretrained attention-based models with the 

same architecture as Geneformer (6 layers (L)) or shallower (4, 3, or 1L) with retained 

depth-to-width aspect ratios. b, Larger and more diverse pretraining corpuses improved 

predictive potential in downstream task of distinguishing dosage-sensitive versus -insensitive 

TFs using the same limited task-specific data (10,000 cells). Diverse corpuses were 

randomly sampled from Genecorpus-30M, whereas non-diverse corpuses were randomly 

sampled from an esophageal dataset45. c, Fine-tuned Geneformer’s contextual dosage 

sensitivity predictions in (i) random cell types, (ii) neurons (including adult), and (iii) 

fetal cerebrum for neurodevelopmental disease genes newly reported by Collins et al. 

2022. Authors reported either high or moderate confidence gene sets with the indicated 

posterior inclusion probability (PIP) scores. d, In silico deletion of genes associated 

with disease driven by cardiomyocyte pathology (cardiomyopathy and structural heart 

disease) had a more deleterious effect on cardiomyocyte embeddings compared to control 

cardiac disease genes expressed in cardiomyocytes but whose pathology occurs in non-

cardiomyocyte cell types (hyperlipidemia). Validation with experimental data from patients 

with cardiomyopathy (see Fig. 6) demonstrated that in silico deletion of genes distinguishing 

the cardiomyopathy state was also predicted to be more deleterious than in silico deletion 

of control genes. (*p<0.05 Wilcoxon, FDR-corrected; points=outliers). e, Contractile 

stress (force per unit area) of cardiac microtissues derived from WT iPSCs, exposed to 

either control treatment or guides promoting CRISPR-mediated knockout of Geneformer-

predicted dosage-sensitive gene TEAD4. (control n=12, TEAD4 n=11; p<0.05 Wilcoxon; 

points=replicates). In (d-e): center line=median, box limits=upper and lower quartiles, 

whiskers=1.5x interquartile range.
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Fig. 3 |. Geneformer boosted predictions of chromatin dynamics with limited data.
a-b, ROC curve of Geneformer fine-tuned to distinguish bivalent vs. (a) non-methylated or 

(b) Lys4-only-methylated genes in 56 conserved loci from Bernstein et al. Cell 2006 using 

limited data (~15K ESCs), compared to alternative methods. c, ROC curve of Geneformer’s 

genome-wide predictions of bivalent vs. Lys4-only-methylated genes after fine-tuning on 

only 56 loci as in (b). d, ROC curve of Geneformer fine-tuned to distinguish long- vs. 

short-range TFs using limited data (~38K cells from iPSC to cardiomyocyte differentiation), 

compared to alternative methods. (Alternative methods described in Fig. 2.)
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Fig. 4 |. Geneformer encoded gene network hierarchy.
a, ROC curve of Geneformer fine-tuned to distinguish central versus peripheral genes 

within the N1-dependent gene network using limited data (~30K ECs), compared to 

alternative methods. b, ROC curve of Geneformer fine-tuned to distinguish N1 activated 

versus non-target genes using limited data (~30K ECs), compared to alternative methods. c, 
ROC curve of Geneformer fine-tuned to distinguish central versus peripheral genes within 

the N1-dependent gene network using increasingly limited data (1K-30K ECs). d, ROC 

curve of Geneformer fine-tuned to distinguish central versus peripheral genes within the 

N1-dependent gene network using increasingly limited but more relevant data (884 ECs 

from healthy or dilated aortas). AUC was higher than alternative methods trained on larger 

dataset of ~30K ECs (Fig. 3a). e, Pretrained Geneformer attention weights of transcription 

factors indicated that the model learned in a completely self-supervised way the relative 

importance of transcription factors, which were more highly attended than other genes 

in 20% of attention heads (p<0.05, Wilcoxon rank sum, FDR correction) and were more 

attended in earlier layers (p<0.05, Wilcoxon rank sum). (Alternative methods described in 

Fig. 2.)
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Fig. 5 |. In silico deletion revealed network connections.
a, In silico deletion of GATA4 was significantly more deleterious to previously reported 

GATA4 direct targets33 than to housekeeping genes, previously reported NOTCH1 targets4, 

previously reported NKX2–5 targets46, or GATA4 indirect targets33 (*p<0.05 Wilcoxon, 

FDR-corrected; center line=median, box limits=upper and lower quartiles, whiskers=1.5x 

interquartile range, points=outliers). b, In silico deletion of GATA4 or TBX5 alone was 

significantly more deleterious to previously reported GATA4/TBX5 co-bound targets33 than 

to housekeeping genes; in silico deletion of the combination of GATA4 and TBX5 was even 

more deleterious to co-bound targets, significantly more than to housekeeping genes and 

significantly more than the sum of the effect of GATA4 or TBX5 alone on co-bound targets 

(*p<0.05 Wilcoxon, FDR-corrected).
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Fig. 6 |. In silico treatment revealed candidate therapeutic targets.
a, Fine-tuning Geneformer to distinguish cardiomyocytes from non-failing hearts or hearts 

affected by hypertrophic or dilated cardiomyopathy defines the embedding position of 

each cell state. Then, disease modeling (left) can be performed by in silico deleting or 

activating random genes within non-failing cardiomyocytes to define the random distribution 

(gray cloud) and thereby identify genes whose in silico deletion or activation shifts the 

embedding significantly towards either the hypertrophic or dilated cardiomyopathy state. 

The reverse approach is taken for in silico treatment analysis (center and right). b, Out-

of-sample predictions of Geneformer fine-tuned to distinguish cardiomyocytes from non-

failing hearts or hearts affected by hypertrophic or dilated cardiomyopathy. Accuracy: 90%, 

precision: 82%, recall 87%. (Training data: non-failing n=9, hypertrophic n=11, dilated 

n=9, total 93,589 cells; out-of-sample data: non-failing n=4, hypertrophic n=4, dilated n=2, 

total 39,006 cells). c, Hierarchical clustering of fine-tuned Geneformer cardiomyocyte cell 

embeddings. d, Overlap of genes whose in silico deletion in cardiomyocytes from non-

failing hearts significantly shifted the fine-tuned Geneformer cell embeddings towards the 
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hypertrophic or dilated cardiomyopathy states and Gene Ontology terms enriched for each 

state. e, Distribution of mean embedding shift in response to in silico deletion of candidate 

therapeutic targets in cardiomyocytes from hypertrophic cardiomyopathy (n=104 genes). f, 
Contractile force of cardiac microtissues derived from WT iPSCs or iPSCs with a TTN 
truncating mutation modeling dilated cardiomyopathy (WT n=11, TTN+/− n=12, *p<0.05 

Wilcoxon). g, Contractile stress (force per unit area) of cardiac microtissues derived from 

TTN+/− iPSCs exposed to either control treatment or guides promoting CRISPR-mediated 

knockout of Geneformer-predicted therapeutic targets. (TTN+/− +control treatment n=22, 

TTN+/− +CRISPR guides targeting knockout of PLN n=22, GSN n=7, ESRRG n=9, 

or HMGB1 n=11; p<0.05 Wilcoxon, FDR-corrected). In (f-g): center line=median, box 

limits=upper and lower quartiles, whiskers=1.5x interquartile range, points=experimental 

replicates.
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