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piRNA pathway gene expression in the malaria vector
mosquito Anopheles stephensi
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University of California, Irvine, CA, USA; †Program in
Public Health, University of California, Irvine, CA, USA;
and ‡Department of Microbiology and Molecular
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Abstract

The ability of transposons to mobilize to new places in
a genome enables them to introgress rapidly into
populations. The piRNA pathway has been character-
ized recently in the germ line of the fruit fly,
Drosophila melanogaster, and is responsible for
downregulating transposon mobility. Transposons
have been used as tools in mosquitoes to genetically
transform a number of species including Anopheles
stephensi, a vector of human malaria. These mobile
genetic elements also have been proposed as tools to
drive antipathogen effector genes into wild mosquito
populations to replace pathogen-susceptible insects
with those engineered genetically to be resistant to or
unable to transmit a pathogen. The piRNA pathway
may affect the performance of such proposed genetic
engineering strategies. In the present study, we iden-
tify and describe the An. stephensi orthologues of the
major genes in the piRNA pathway, Ago3, Aubergine
(Aub) and Piwi. Consistent with a role in protection
from transposon movement, these three genes are
expressed constitutively in the germ-line cells of
ovaries and induced further after a blood meal.

Keywords: Piwi, Aubergine, Aub, Argonaut 3, Ago3,
transposon, mobility.

Introduction

Transposons are mobile genetic elements that can poten-
tially spread rapidly through populations despite fitness
costs incurred by excision and insertion (McClintock,
1987). The field of vector genetics has benefitted from this
mobility; genetic modification of transposons to carry
exogenous genes into the genome has enabled the trans-
formation of mosquito species, and it is possible that the
same tools could be used to drive an antipathogen effec-
tor gene into a wild population to replace it with one unable
to transmit pathogens (Coates et al., 1998; Catteruccia
et al., 2000; Grossman et al., 2001; James, 2005;
Terenius et al., 2008). An RNA interference pathway,
called the piRNA pathway, was characterized recently in
the fruit fly, Drosophila melanogaster, and is responsible
for inhibiting the movement of transposons (Sarot et al.,
2004; Saito et al., 2006; Vagin et al., 2006; Brennecke
et al., 2007; Pélisson et al., 2007). This pathway employs
the Piwi proteins, a subfamily of the Argonautes, along
with sequence-specific small RNAs called Piwi-interacting
RNA (piRNAs), to target transposon-derived RNAs for
degradation in the germ-line tissue. This pathway enables
organisms to inhibit transposon movement and thereby to
prevent or minimize the genetic lesions these events can
cause.

The piRNA pathway was proposed to play a role in
transposon regulation in mosquitoes of the genus Aedes
based on small RNA and genomic sequencing data
(Arensburger et al., 2011; Akbari et al., 2013); however,
some notable differences are observed between
data from Aedes aegypti and those derived from
D. melanogaster. The Ae. aegypti genome has a much
higher proportion of transposon sequences (47% in Ae.
aegypti vs 15.8% in D. melanogaster) but a smaller rep-
resentation of piRNAs targeting transposons [∼20% in
Ae. aegypti compared with 50% in D. melanogaster;
(Kaminker et al., 2002; Nene et al., 2007; Smith et al.,
2007; Arensburger et al., 2011; Akbari et al., 2013)].
Furthermore, there are eight putative Piwi family genes in
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Ae. aegypti annotated in VectorBase, one with homology
to DmAgo3 and seven that show homology to DmPiwi and
DmAub. Thus, the piRNA pathway may function differently
in mosquitoes and fruit flies. However, data collected from
the mosquito genus Anopheles look more similar to cor-
responding data in Drosophila than Aedes. For example,
one-to-one orthologues exist in Anopheles gambiae for
each of the three D. melanogaster Piwi genes. Addition-
ally, anopheline mosquitoes have a relatively small
genome resulting from lower transposon representation
compared with the Ae. aegypti genome (Holt et al., 2002;
Kaminker et al., 2002; Hoa et al., 2003; Nene et al., 2007;
Zhou et al., 2007; Marinotti et al., 2013).

In addition to its function in regulating transposon mobil-
ity, the piRNA pathway also may have roles relevant to
vector biology. Mosquitoes are majors vectors of viral
infections to humans and animals and molecular aspects
of mosquito – virus interactions are major foci of research.
Viral-specific piRNAs derived from D. melanogaster,
Anopheles and Aedes cell lines challenged with viral
infection have been isolated, implicating the piRNA
pathway in virus control (Chotkowski et al., 2008;
Morazzani et al., 2012; Vodovar et al., 2012; Léger et al.,
2013; Schnettler et al., 2013). The piRNA pathway also
may regulate gene expression, as a proportion of piRNAs
sequenced in D. melanogaster and Ae. aegypti are spe-
cific to endogenous protein-encoding genes (Brennecke
et al., 2007; Arensburger et al., 2011; Akbari et al., 2013).

The biology of the piRNA pathway in mosquitoes
is relevant to both applied and basic aspects of
disease vector research. Understanding the dynamics
of transposon movement in the malaria vector, An.
stephensi, and the control of this process is not only an
interesting basic question in an organism with a different
reproductive strategy from Drosophila species (vector
mosquitoes require a blood meal for the development of
progeny), but also information on transposon control in
mosquitoes is essential to proceeding intelligently with the
design of gene-drive systems based on transposons. Our
observations in An. stephensi support the hypothesis that
the piRNA pathway plays a role in transposon control in
this species: we found that Piwi, Aub and Ago3 display
expression characteristics appropriate for priming an egg
for exposure to paternal transposons: transcripts are
detectable in the germ-line tissue of adult mosquitoes,

become increasingly more abundant in the ovaries with
egg development and are found in the embryos.

Results and discussion

Gene, transcript and putative protein structures of
AsAgo3, AsAub and AsPiwi

Alignments of the An. gambiae Ago3, Ago4 (Aub) and
Ago5 (Piwi) transcript sequences with the An. stephensi
genome (Assembly: AsteI2) and transcriptome yielded
partial matches that aligned with >78% identity. According
to sequence similarity, the genes ASTEI04992,
ASTEI03833 and ASTEI06803 were designated AsAgo3,
AsAub and AsPiwi, respectively (Fig. 1, Table S1).
Genomic DNA sequences from the An. stephensi Indian
strain (VectorBase.org) were used to design primers for
gene amplification studies to determine AsAgo3, AsAub
and AsPiwi primary sequence structures and the com-
plete sequences of their corresponding transcripts. Single
transcripts were identified for both AsAgo3 and AsAub,
while amplification of the 5′-end of AsPiwi revealed a
novel, alternative first exon that aligned to the genome
within the first intron (Fig. 1A). Both of the AsPiwi tran-
scripts have the same translation start site and are pre-
dicted to produce identical proteins. Transcripts of 3895,
3615 and 3071 nucleotides (nt) in length from the start of
transcription to the beginning of the poly-adenosine
sequences were observed for AsAgo3, and AsPiwi
isoforms A and B, respectively. AsAub transcripts extend
beyond the first polyadenylation signal in the 3′-end
untranslated region (UTR), such that the transcript is >
3615 nt. Complete transcripts have been deposited in
VectorBase; the transcript sequences reported in the
present study supplement previous annotations of these
transcripts by providing: 3′- and 5′-end UTRs for both
AsAgo3 and AsPiwi; an entirely new sixth intron for
AsAub and an alternate 5′-end UTR for AsPiwi. Compari-
sons of the An. stephensi Ago3, Aub and Piwi genes with
those of An. gambiae annotated in VectorBase revealed a
number of differences: a lack of data supporting a 5′-end
UTR for AgAgo3 and 3′-end UTR for AgAub and AgPiwi;
AgAub encodes an additional intron compared with
AsAub; AsPiwi does not have the large first intron (10 170
nt) found in AgPiwi; and as noted above, AsPiwi encodes
an alternate first intron (Fig. 1A).

Figure 1. Gene structure comparisons and phylogenetic relationships of the Anopheles stephensi Piwi family genes. (A) Schematic representations of
transcription products for An. stephensi Ago3, Aub and Piwi detected in samples of ovaries collected at 48 h post-blood meal. Exons and introns are
represented by boxes and lines, respectively, with the length in nucleotides indicated below each. Untranslated regions (UTRs) are coloured green,
open-reading frames are blue, predicted protein-binding domains are represented by orange circles and the polyA tail is the curved line at each 3′-end.
(B) Phylogenetic tree generated from alignment of predicted amino acid sequences for Piwi family proteins in An. stephensi (As), Anopheles gambiae
(Ag), Aedes aegypti (Aae), and Drosophila melanogaster (Dm). Bootstrap values between genes are listed between each pair of corresponding nodes.
Genes from other mosquito species are represented: AA, Anopheles albimanus; AC, Anopheles christi; AD, Anopheles darlingi; AI, Anopheles dirus; AF,
Anopheles funestus; AM, Anopheles minimus; AP, Anopheles epiroticus, AQ, Anopheles quadriannulatus and AR, Anopheles arabiensis. The digits
following species name designations are arbitrary and correspond to the gene names listed in Table S1.
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The encoded amino acid sequences predicted from all
three transcripts using the ExPASy online translate tool
(http://web.expasy.org/translate) encode both PAZ and
PIWI domains (Höck & Meister, 2008) as predicted using
the SMART online protein domain prediction tool [http://
smart.embl-heidelberg.de/ (Fig. 1A)]. Additionally the
AsPiwi predicted proteins have a conserved domain of
unknown function (DUF 1785) present in Argonautes and
co-occurring with PIWI domains (Kurscheid et al., 2009;
Su et al., 2009; Poulsen et al., 2013; Zheng, 2013).

Predicted amino acid sequence alignments show a high
percent identity between An. stephensi Ago3, Aub and
Piwi and putative orthologous proteins in D. melanogaster
(48, 49 and 44%, respectively) and An. gambiae [77, 89
and 72%, respectively (Fig. S1)], supporting the conclu-
sion that these genes represent one-to-one orthologue
pairs (Fig. 1B). Interestingly, AsAub and AsPiwi were more
similar to each other than to either DmAub or DmPiwi, as
reported previously for these proteins in An. gambiae
(Hoa et al., 2003). Analysis of other available anopheline
genomes (VectorBase) identifies one orthologous gene
corresponding to each of the three Piwi proteins in all
species, with a few exceptions. Three Piwi genes in An.
albimanus are predicted to encode two Piwi orthologues
and no Aub orthologue. Four Piwi genes were identified

for Anopheles minimus, whose genome encodes two
putative Ago3 orthologues in addition to Aub and Piwi
orthologues, and Anopheles dirus, whose genome
encodes two putative Piwi orthologues in addition to Ago3
and Aub orthologues (Fig. 1B). When amino acid
sequences from all seven Aedes aegypti Piwi subfamily
members were included in the analysis, Aub-like and Piwi-
like orthologues segregated as predicted in earlier reports
(Fig. 1; Akbari et al., 2013). A higher amino acid sequence
diversity at the N-termini of the An. stephensi piRNA com-
ponents is consistent with findings in D. melanogaster;
therefore, these sequences were used as the basis for
designing corresponding probes for hybridization in situ
(Brennecke et al., 2007).

Stage- and tissue-specific transcript abundance

Quantitative real-time PCR (qPCR) was used to detect
and measure the accumulation of AsAgo3, AsAub and
AsPiwi transcripts at embryonic, larval, pupal and adult
developmental stages, and in ovaries and carcasses of
adult females (Fig. 2). All three piRNA pathway gene tran-
scripts are most abundant at 48–72 h post-blood meal in
the ovaries and also are significantly more abundant in
early embryos (0–2 h) than at any other stage analysed
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Figure 2. Abundance profiles of AsAgo3, Aub and Piwi transcripts during development. Each histogram represents data (average ± SEM) of three
biological replicates normalized to the embryo sample. Adult female 0 h post-blood meal samples were collected before blood-feeding. Embryos were
collected between 0 and 2 h following oviposition. P values for all comparisons are listed in Table S2.
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(Table S2). This expression profile is consistent with
microarray data collected for these genes in An. gambiae,
although in those experiments, transcript abundance for
all three genes increases significantly by 24 h post-blood
meal (P = 0.00005, P = 0.0021 and P = 0.006 for AgAgo3,
AgAub and AgPiwi, respectively; Marinotti et al., 2005).
Transcription of zygotic genes does not occur earlier
than 1–2 h after egg-laying in fertilized embryos of
D. melanogaster (Zalokar, 1976; Pritchard & Schubiger,
1996). Assuming a similar regulation of the zygotic
genome exists in An. stephensi, transcripts present in
early embryos represent those deposited maternally
during ovary development. These combined data support
the hypothesis that AsAgo3, AsAub and AsPiwi genes are
expressed at the appropriate time and place to repress
transposon expression and remobilization.

The localization of Piwi gene transcripts was deter-
mined at different times during ovary development.
AsAgo3, AsAub and AsPiwi antisense RNA probes hybrid-
ized to transcripts in the cytoplasm of the nurse cells and
oocytes of primary follicles, collectively the germ-line
tissue, and in the previtellogenic secondary and tertiary
follicles, which represent the earliest visible stages of
oocyte development, that do not progress further until
subsequent blood meals (Fig. 3). Diffuse signals corre-
sponding to the three piRNA pathway gene transcription
products are seen in oocytes at 24 h post-blood meal.
These signals are barely distinguishable visibly at 36 h
post-blood meal and undetectable at 48 h post-blood

meal. As transcript abundance measured by qPCR at this
stage was 2–4 fold higher than in ovaries from unfed
females, we speculated that the transcripts in the oocytes
at 48 h post-blood meal were still present but either too
diffuse to detect using hybridization in situ or that the
endochorion at this stage was developed enough so that
the hybridization and/or detection components of the
assay could not penetrate the primary follicle. Further-
more, no transcripts were detected in either experimental
or control groups of embryos collected 0–2 h after
oviposition, although this stage also has abundant tran-
scripts based on qPCR analyses. These transcripts are
probably those deposited into the oocyte by nurse cells
during development. It is also evident from these images
that by 48 h post-blood meal, the secondary follicles rep-
resent an important contributor to the transcript quantities
measured in qPCR, indicating that new transcript present
at this time point is not likely in the primary follicle. It is
reasonable, based on the data presented here, to hypoth-
esize that AsAgo3, AsAub and AsPiwi are expressed early
in the primary, secondary and tertiary follicles after a blood
meal and that their transcripts are accumulated and
present in the oocytes throughout development. Strong,
nonspecific background staining was seen at 48 h post-
blood meal superficially around the egg floats and at all
stages in the trachea in both control and experimental
groups.

In summary, these combined data support the con-
clusions that piRNA pathway gene transcripts in An.
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Figure 3. Spatial localization of AsAgo3, Aub and
Piwi transcripts in ovaries. Whole-mount hybridization
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stephensi are abundant and enriched in the germ-line
tissue during follicle development and are present in
newly-laid embryos. These expression properties are con-
sistent with a role in germ-line protection from transposon
mobilization. Future experiments will focus on addressing
whether transposon repression is indeed a role of the
piRNA pathway in this important vector mosquito species.

Experimental procedures

An An. stephensi strain maintained in our laboratory since 2004
was founded with mosquitoes provided by Dr Marcelo Jacobs-
Lorena (Johns Hopkins University). This line was used for all
experiments reported in the present study. Mosquitoes were
maintained at 27 °C and 77% humidity with 12h light:12h dark
daily cycles and 30-min dusk and dawn transitions. Larvae were
fed a diet of powdered fish food (Tetramin; Tetra Werke, Melle,
Germany) mixed with yeast. Adults were provided 10% sucrose
ad libitum. Anaesthetized mice were used for blood feeding adult
females.

Samples for qPCR analyses were prepared from whole mosqui-
toes, dissected ovaries or carcasses (all tissues excluding the
ovaries). RNA was extracted from 50 individuals for each sample
(except embryos, where ∼300 were used) by homogenization in
Trizol reagent (Invitrogen, Carlsbad, CA, USA) followed by chlo-
roform extraction and RNA purification using the Zymo Clean and
Concentrator 25 (Zymo Research, Irvine, CA, USA). Samples
were treated with DNase RQ1 (Promega, Madison, WI, USA) and
tested for genomic DNA contamination. cDNA was synthesized
using the iScript kit (Bio-Rad, Hercules, CA, USA) and used
directly for qPCR reactions with Kapa Sybrfast supermix (Kapa
Biosystems, Wilmington, MA, USA). All primers were optimized
for annealing temperatures and cDNA concentrations; at least
three technical and biological replicates each were used for each
data point. Primers and corresponding amplification efficiencies
are listed in Table S3. Bio-Rad software (version 3.0) was used
for statistical analysis with the default two-sided t-test and a
P-value threshold of 0.025 was set for significance.

Rapid amplification of cDNA Ends (RACE) was performed with
the SMARTer RACE kit (Clontech, Mountain View, CA, USA).
cDNA was synthesized using the Clontech reagents and RNA
collected from ovaries dissected 48 h post-blood meal. Gene
amplification reactions were performed using Phusion High Fidel-
ity Master Mix from New England Biosystems (Beverly, MA,
USA). Nested RACE reactions were performed with touchdown-
PCR cycles on separate preparations of 5′- and 3′-end cDNA
templates as described in the Clontech protocol. RACE and
nested-RACE products were run on agarose gels and selected
amplicons were cloned into the pCR-Blunt II TOPO plasmid.
Plasmids were transformed into and amplified in chemically com-
petent TOP10 Escherichia coli, and sequenced using M13
forward and reverse primers. Consensus mature transcript
sequences have been deposited in GenBank with accession
codes KJ808821 (PiwiA), KJ808822 (PiwiB), KJ808823 (Ago3)
and KJ808824 (Aubergine).

Predicted amino acid sequences of Ago3, Aubergine and Piwi
were downloaded from Vectorbase.com for all the Anopheles
species available and for Ae. aegypti. Orthologous sequences of

D. melanogaster were obtained from the National Center for
Bioinformation Technology (http://www.ncbi.nlm.nih.gov). The
resulting alignment was fed to MRBAYES to simultaneously test for
10 models of amino acids evolution (Ronquist et al., 2012). Phy-
logeny analyses were performed with RAxML through the Cipres
Gateway Portal imposing the WAG mutation model and 1000
bootstrap resamplings of the original datasets. CONSENSE

(PHYLIP version 3.5c, Felsenstein, 1993) was used to generate
an unrooted consensus tree that was visualized by TREEVIEW

(http://taxonomy.zoology.gla.ac.uk/rod/treeview.html).

Hybridization in situ of ovaries was performed according to the
protocol described by Juhn & James (2012). Briefly, ovaries were
dissected from 5–10 mosquitoes and fixed in a 4% formaldehyde
solution for 1 h. Samples were treated with proteinase K, post-
fixed and hybridized using digoxigenin (DIG)-labelled antisense
and sense-RNA probes generated with the DIG RNA-labelling kit
(Roche, Indianapolis, IN, USA). The 5′ RACE product clones
were used as a template for amplification with M13 forward and
reverse primers and each PCR product was used as a substrate
for the RNA-labelling reactions. After overnight hybridization with
the labelled probe, samples were treated with RNase A to remove
unbound probe and incubated with anti-DIG-alkaline phos-
phatase (AP)-conjugated antibody (Roche) overnight at 4 °C.
Colorimetric detection of probe localization was performed by
incubation with NBT/BCIP (Roche) as a substrate for 5–7 h in the
dark. Samples were incubated overnight in glycerol, and mounted
and visualized using bright-field microscopy.
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Figure S1. Alignment of Piwi protein family functional domains. Alignment
of portions of predicted amino acid sequences encoding putative functional
domains of (A) Ago3 and (B) Aub and Piwi from Anopheles stephensi,
Anopheles gambiae, Aedes aegypti and Drosophila melanogaster. The
DUF1785 (domain of unknown function 1785), PAZ and PIWI domains are
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represented in the An. stephensi sequences in cyan, yellow and green,
respectively. Asterisks mark fully-conserved residues, colons represent
residues with strongly-conserved properties, and periods mark residues
with weakly-conserved properties as scored by the Gonnet PAM 250 matrix
and determined by alignment using CLUSTAL OMEGA (Goujon et al., 2010;
Sievers et al., 2011).

Table S1. Piwi gene identification codes.

Table S2. P values from statistical analysis using two-sided t-tests of
tissue and time point expression as measured by real-time quantitative
PCR.

Table S3. List of primers.
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