
UC Irvine
ICS Technical Reports

Title
A new interpreter for data flow schemas and its implications for computer
architecture

Permalink
https://escholarship.org/uc/item/8st813hk

Authors
Arvind
Gostelow, Kim P.

Publication Date
1975

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8st813hk
https://escholarship.org
http://www.cdlib.org/

·page 2

Revised February 1976 (minor editorial changes).

1. page 17:line 18 "etc." to "etc .. This is shown in Figure 5d•"

2. page 20:line 6 " ... (Fig. 5g) ... " to " .•. (Figure 5g) .•. "

'' ; .

also:line 8 "fig." to "Figure"

also:line 11

also:line 16

" to the end first "to " •.. to the end ..• "

page ~:line 8

" ••• come out. :i • " to " ... been produced ... "

. '
page 22:: line 7

"P. Two procedures p 1 and P2 (Figure 7a) are interconnected*

(Figure 7b) by"

......

. '. f
Notice: This Material

may be protected .
by Gopyri.ghtt_aw··
(Title 17 U.S.C.}

Page 3

Abstract

The execution of a program may be viewed as the

processing of a statement in a programming language by an

underlying interpreter. This report discusses briefly ,the

.advantages of a data flow language over conventional

programming methods, and then presents a new interpreter for

a data flow language. Using as a base the data flow language

of Dennis ["First Version of a Data Flow Procedure Language"

Computation Structures Group Memo .23., Project MAC, MIT, Nov.

1973], the new interpreter magnifies the apparent asynchrony

and speed of data flow, and it does so by (quite literally)

exchanging blocks of processors for slices of

report gives details of the operation

interpreter, and identifies the consequences

interpreter on machine architecture and design.

time.

of this

of the

The

new

new

Page 5

A New Interpreter for Data Flow Schemas

and

Its Implications for Computer Architecture

1. INTRODUCTION

Our interest in data flow schemas stems from a desire to

develop \
improved architectures for computing systems~ It is our

feeling that necessary improvements in computer systems behavior

can come about only by some rather new and radical approaches to

the basic design of machines [1]. The use of a data flow

language as the computer's machine language is one such approach.

Some advantages of data flow over conventional approaches are:

(1) more functional behavior, and hence more modularity in
programming. This is achieved through the elimination of the
concept of a variable.

(2) more asynchronous data-driven control of programs; as
opposed to conventional machines, statements are ordered only by
the data constraints of the algorithm.

(3) more operations on structured data are provided at the
elementary level of the language~

Other advantages are discussed in [9].

This report discusses a new interpreter for data flow

schemas. For those familiar with data flow languages such as

Dennis' [8,12], the following is a brief description of the

functioning of the new interpreter. (For those not familiar with

data flow l~nguages, we have included an introduction in Section

Page 7

This report is organized in the following fashion: Section

2 reviews schemas in general, and Section 3 describes the new

data flow interpreter within the context of the particular · data

flow language of Dennis. Section 4 proves that the new

interpreter produces the same computation as the standard

interpreter, and Section 5 discusses some architectural

implications of this new interpreter.

2. COMPARATIVE SCHEMATOLOGY

2.1 Background

Many schemas have been devised to represent asynchronous

computation. Roughly speaking, the models fall into two general

classes: those with a random access memory and data variables

[2-4], and those without data variables [5-10]. Figure 1 gives

an indication of how programs in the two classes ~ight compute

the same function. The rules of operation are similar for both:

Figure 1a (with variables) shows computation units, initial data

conditions, and the flow of control along arcs"' The tokens shown

on the arcs rep~esent initial control conditions"' A· box may

comput~ whenever all input arcs have a token present, and llQ

output·~· contains a token. Values are read from and written

into ·the:.Yexternal memory during computation"' Figure 1b (a schema

withou~~a~iables, or data flow) shows the computation units

connected by arcs. The arcs hold tokens, and the tokens contain

the data values (thus the initial input value for f is 1, and for

g it is 2)~ A box in the data flow schema may compute whenever

Page 9

incorporation of an arbiter [9] and a non-deterministic [14]

operator~ We believe that a machine design based on Dennis' data

flow language will not be unnecessarily restrictive and will have

many of the important features that data flow languages .of the

future will require.

For those unfamiliar with data flow languages, the remainder

of this section gives a sample program and explains its

operation; An example of a program in Dennis' Data Flow (DDF)

language is shown in Figure 2: the calculation of a root of the

function f by ~ewton-Raphson approximation (i.e., the successive

calculation of x. 1 = x. - f(x.)/f'(x.).
l+ l l l

Two initializing value tokens are required to begin the

computation. A token with value zero must be placed on the arc

inbranching to the False side of statement S1, and an initial

root approximation value token must be similarly placed on

statement S8. In addition, two initial control tokens (true and

fals~ values only) are shown as inputs to the control side of S1

and S8. Given this configuration, computation may begin. Either

S1 or S8 or both may execute. Each is a merge·statement, and by

definition of a merge, a false control token .selects for its

input a value token from the False side. The merge then simply

copies the input value onto·a new value token and the token is

output ·from the merge. The input value token and the control

token are destroyed. In the case of S1, only one output. token is

produced, but S8 produces four output tokens. Each of these four

out~ut tokens carries the same value (copied from the input value

Page 11

the truth value of the S3 result)·. Statement S16 is a

gate-if-false statement which produces an output value token

whenever an input false control token and an input value token

arrive; the output value is the same as the input value~ It is

essentially an output gate. If, however, a true control token

arrives at a iate-if-False statement, no output token is produced

at all, but the inputs are still destroyed. Thus if the error is

not acceptable to S15, a true token arrives at S14 and no answer

is produced.

At this point we come to the statements which set up the

activity for a loop. We also encounter the addition we have made

to the DDF language -- the D-box ("D" for delay). AD-box is an

identity function and simply passes the input value to the

output. We require a D-box be present at those points, and only

those points, wpere there is an initial input token in DDF. The

initial·token is then placed on the output arc of the D-box

before execution~ (In DDF the D-box essentially performs no

operation but is necessary when discussing the new interpreter.)

So, assume S3 and S 15 have both produced a true token (S.3 will be

discussed momentarily). Then S5 will produce five true control

tokens as o~tput, two of which pass through D-boxes to S1 and to

SB. SB will merge the new approximation, gated from S13; back

into the computation loop. This looping will continue until

either the error is acceptable (S15), or until we have looped

more than n times (statements S1-S6). Statements S1-S6 are

counting, in parallel with the main computation, the number of

times a new root ·has been tried~ If nd acceptable solution is

Page 13

executing on a PE for the ith time in· the current invocation of

P. Then we may speak of the activity_ "P. s" occurring for the i th

time in the current invocation of P~

As previously stated in the definition of DDF (similar

definitions are used by Kosinski and some investigators of Petri

nets), a PE can fire or begin execution whenever it has received

all its operands, except that no token may be output onto an arc

which already holds a token. Therefore in FI, to ensure that no

more than one token is output onto a data path at any one time,

we need explicit acknowledgement of the last token received on

that particular data path. That is, all the communication

between PEs must be of send/acknowledge (feedback) type as, for

example, in [15]~ Hence the name feedback interpreter.

3.2 Non-Feedback Interpreter (NFI)

It is possible, however, to relax the condition that an

operator can fire only when the output arc ·is empty. This can be

done without destroying the determinacy properties of the system.

According to Patil [13], if we can ensure that no token on any

arc is lost and that a strict

maintained on each arc,

first-in first-out condition is

then the system will still be

determinatero Unfortunately, no finite amount of memory alone on

the data paths can guarantee these conditions~

3 .. 2. 1 General Operation of NFI

Page 15

The scheme described ·below for creating activity names

removes the need for send/acknowledge, or feedback,

communication; hence the name non-feedback interpreter~ It is

imperative to understand the activity name generation procedure

in order to understand NFI.

3,2.2 Generating Activity Names for NFI

Suppose statement s of procedure P belongs to some loop

within P, and that s is executing for the ith time in the current

invocation of P~ Further assume that the context from which

procedure P has been called is represented by symbol u~ Then the

activity name of this execution of statement s is given by

ureP.s.i. For example, let u represent th~ context from which the

procedure ..§1!.ill (Figure 3) has been called. Assume input data has

been presented to sum which will cau?e it to loop three times-..

Figure.4 shows all activities which will be 6reated during the

course of this execution. The ith position in the vertical

dimension for a statement in Figure 4 represents the ·th 1

initiation of that statement as an activity.· All statements at

the ith level will have "u.sum. .i" in common in their activity

names. The name generation process mu~t determine the

appropriate iteration (or initiation) count i for each token

produced. This will be further discussed later.

Consider now the three activities that perform the "apply P"

operation in Figure 4. Al though not detailed in Figure 4, ·each

of these activities invokes procedure P, and thus gives rise to

an entire 3-dimensional execution structure of P in the

Page 17

f.ollowing paragraph.

· Ever y gate w a i t s for a d ~f!.l~Y .!:_Q_ ~.5::_!! as we 11 as the usu a 1

value and control tokens as shown in Figure Sc. The dummy token

carries the value j which is the number of tokens so far passed

through G .on previous executions. When a gate executes, .the gate

sends a dummy token to u.P.G.i+l with value j+l or j depending

upon whether the value token was allowed to pass through the gate

statement (j+l) or not pass (j). · Figure Sc shows the rule for a

g at~ - -~!_--:~E.. u ~ st ate rn en t ;

9~!:~-i~::~~-!~~- statement.

a corresponding rule exists for a

3.2.2.3 D-box: A D-box has the property that if the input token

. th ·th . h 1 . is e i token received, then the output token (w.ose va ue is

a copy of the input token value) will be the i+lth token sent to

the destination of the D-box. This is because a D-box is present

if and only if.an initial token was specified, and the D-box may

be said to have produced its first output token for no tokens

input. The first token input is thus the second token produced,

etc. This is shown in Figure Sd.

3.2.2.4 M.~!:_g_~: A m~E_q~ (essentially the inverse of a gate)

produces an output token on each initiation, but only requires

tokens from two of the three inputs at each initiatidn. For

example, a~~~~ control token and a value token on the True input

side is sufficient to initiate and terminate one merge operation.

Suppose a merge M has been initiated i times; then i tokens must

have been received at its control input. Furthermore, suppose j

tokens on the True input and k token~ on the False input have

Page 19

communicated through the value portion of the dummy token sent

from MC to MT or MF.

3,2,2.5 Apply: Apply statement A needs two types of arguments to

execute: a procedure Q and a list of arguments for the

procedure.· Since Q can be a procedure already active (e.g.,

consider the case when the procedure containing the apply

statement A is procedure Q - a recursive call) statement A must

cause the activity names used in this invocation of Q to be

different from the activity names currently in use. If we assume

the activity name associated with the PE that executes statement

A is u.P,A.i, then the unique activity names for statements in

the called procedure Q can be created by assigning names of the

type u'.Q._i_ where u'=u,P~Awi, Since u' is unique, u',Q._._ is

guaranteed to be unique~

A reverse process must take place when procedure Q activated

by A is terminatedi The last statement to execute in Q must send

the result tok~ns to u~P,A~i. However, there is one problem,

According to the rules for PE allocation, once a PE starts

execution it must terminate after a finite but non-zero time.

Hence, (as in [12]) we break each apply statement A into two

parts called AA (for activate) and AT (for terminate) as shown in

Figure 5f. Let us assume that the first and last statements of

e~ch procedure are begin and end, respectively. These statements

have some special properties which are described in the following

paragraph~

Page 21

wish to incorporate the notion of nondeterministic machines, then

s~veral procedures may be activated simultaneously and as soon as

the first acceptable result is produced, all domains created by

the apply will be destroyed~ Domains are discussed further in

Section 5.

4. THE FUNCTIONAL EQUIVALENCE OF DDF PROGRAMS UNDER THE FEEDBACK

AND NON-FEEDBACK INTERPRETERS

In this section we give an informal but rigorous proof that

the feedback interpreter (FI) and the non-feedback interpreter

(NFI) both produce the same results for a DDF procedure, given

the same arguments. It should be noted that all DDF statements

are functional, i.e~, they have no writeable local memory~

First, we give some definitions. An .§1:.Q a connects one

output. of a statement s to one input of a statement t~ Arc a is

then an output arc of s and an input arc of t~ In the

following, let a be an output arc of statement s in procedure P.

If p is called in context u, then vector A

associated with arc a (Figure 6a) is defined as follows:

Feedback interpreter (FI): the list of all tokens appearing in

sequence on arc a such that A(i) is the it~ token.

Note that the ith token on an arc under FI can appear

only after the i-1th .token has appeared.

Non-feedback interpreter (NFI): the list of all tokens such that

the token with activity number u.P.s~i is element A(i).

Figure 4 shows that activity UrP~s~i can occur before

Page 23

To begin, let PA(i) be a partial function on the input

vector A associated with input arc a of statement t. This

function PA(i) gives the position of the output token in the

output matrix of statement t corresponding to the input token in

position i of input vector A~ For each statement type, the

definition of PA(i) is given below~

Type 1 - function 1 predicate, apply statements

In particular, for a function (y. z·)-f(v· w· x·) as shown
l' l - l' l' l

in Figure 6 b,. Thus P1 (i)=i for all i, and for all vectors I

input to the function.

That is, position i of vector I input to a function

statement determines the output vector only in position i. This

holds for any input to any function statement. Similarly, the

relationship PI(i)=i holds for any input.to any statement of

types predicate and apply as well.

Type 2 - D-box statement

By definition, a D-box is present if and only if there is an

initial token, i.e~, the first token is produced by a D-box for

zero tokens input. The first token input will be the second

token output, etc. The D-box is present only for the purpose of

incrementing initiation numbers of tokens~

{

j if i = Ff al se (j)

Pc(i)=Pv(i)=

undefined otherwise

Page 25

These equations give the relationships among the input and

output matrix positions under FI for all statements in DDFw It

remains to show that these, and on~y these relationships are

preserved under NFiw

Case 1 - function, predicate, apply statements

By observation of Figures 5a, 5b, and the first and last

snapshots of apply in Figures 5e and 5j, the required

relationship PI(i)=i is preserved.

Case 2 - D-box

By observation of Figure 5c, PI(i)=i+1 holds under NFiw

Case 3 - Merge

There is only one output token produced at each termination

of a merge statement, and its position in the output vector is

determined by the position of the control token in the control

input vector,. To show that the proper relationship between the

input matrix and output vector of a merge under NFI is preserved,

we make the following assertions by examining the rules given in

Figure 5k,.

(a) The control part of the merge (Mc). is initiated the kth time

only after the k-1st initiation of Mc has terminated,

Page 27

positions for any s~atement in DDF holds. Since under both FI

and NFI the input matrices are the same, and the statements

calculate the same function, then the output matrices must be the

s.arne.

QED.

Corollary 1: All single statement procedures are in PEQ.

Proof - Immediate by Lemma 1.

'I1heor em 1: Let P be formed by interconnecting procedures P
1

and

P2 • If P1 and P2 are members of PEQ then P is also in PEQ.

Proof - The proof to follow uses two program pieces P1 and P2 , as

shown in Figure 7a. These two pieces are connected together in

the fashion shown in Figure 7b to form a new system. Those

inputs: to P1 which are connected to outputs of P2 are called V:

those inputs to P2 which are connected to outputs of P1 are

called u. The other inputs and outputs of P
1

and P2 remain

unconnected. The inputs to the new system are X, and the outputs

~re Y. The proof shows that the operation· of program composition

I. (=>) If X is an input matrix to P producing output matrix Y

under FI, then P will also produce Y under NFI.

(a) Let P produce matrices U, V, Y under FI. Assume P under NFI

produces output matrix y', where y' is different from Y.

Then there is an error in Y1 , or Y2 , or both.

(b) There can be a.n error in Y1 if an.:J only if there was an error

Page 28

in the input matrix of P1_ Similarly, an error in Y2 can be

due only to an error in the input matrix of P2� Since X1

cannot be in error, there must exist -an error in matrix V

produced under NFI.

(c) Let NFI make the first error in time in U, or V, or both, and

let this error be in position ku, or k v, or both,

respectively� (All matrix position denotations are pairs;

that is, ku and ky are each a pair specifying a single entry

in matrix U and V, respectively�)

(d) 1� Assume entry U(ku) is wrong_ Entry U(ku) depends upon

some entries in the input matrix to P1�

P
EQ

, U(k0) can be wrong if and

Since P1

only if

i'S in

some

corresponding entry in the input matrix was wrong. X

cannot be wrong, so the error must be in some entry

V(i). U(ku) could not be propuced under NFI until V(i)

has been produced. This is because every statement

requires n'on-zero time to produce output tokens after

all the required input tokens have been received. But

V(i) cannot be wrong because U(ku) was hypothesized to

be the first such error. Thus U(ku) cannot be

incorrect� Contradiction.

2. Assume V(kv) is wrong. By the same argument as above,

V(ky) cannot be wrong. Contradiction

3. If both U(ku) and V(ky) are wrong, then again by the same

arguments as above there must be entries U(i) and V(j)

w hich are wrong and which have occurred before V(kv)

and U(ky), respectively. Again, a contradiction.

Page 29

(e) Thusr there can be no y' different from Y.

iI. (<=) If X is an input matrix to P producing output matrix Y

under NFI, then P will also produce Y under FI. The proof is the

same as above, and can be stated simply by interchanging NFI and

FI-in Part I.

QED.

5. IMPLICATIONS FOR MACHINE ARCHITECTURE

A data flow program is a collection of statements or

activities which initiate when inputs have arrived, then exectite,

and produce outputs upon termination. We envision a machine

composed of a large number of s~all physical processing elements

of the type described in NFI. These PEs are interconnected by a

communication system which transport~ tokens output by one

activi~y to the in~ut of another activity. W~ note in passing

that such PEs may be built with current LSI technology.

With this view in mind, we. note the following points:

(1) There is no method to determine a priori the total
number of activities which may be generat~d by any given
invocation of a procedure. Since activities are created
dynamically, automatic allocation and deallocation of PEs to each
activity is required.

(2) Due to dynamic activity creation, there can be no
connections among particular PEs; all token traffic
logical (activity name) destination addressing.

fixed
is by

(3) ,A machine architecture that caters to the dynamic
allobation/deallocation of PEs will have inherent modularity,
i.e., it should be possible to easily increase or decrease the
total number of physical PEs ~t any time.

Page 31

6.. REI"ERENCES

[l]

[2]

_[3]

[4]

[5]

(6)

[7]

[8]

[9]

Glushkov, v. M., and M. B. Ignatyev, v.
V. A. Torqashev, 1'Recursive Machines
Technology'', !Fl~ ~~~!2£.i~t~' Stockholm, pp.

A. Myasnikov,
and Computing

65-70 (1974).

Karp, R. M. and R. E. Miller, "Parallel Program
3, pp. Schemata 1

, J. of C?1~Pl!~~~- and §.Y.§.t~f!l _§g·-~-~t!_~f::~, vol.
1 4 7-19 5 (1 9 6 9) ... - .

Slutz, D. R. The Flow-Graph Schemata Model of Parallel
Computation, Ph. D ~--. ·nrsser-tatfon; l'1AC-TR=s3' - (thesi sT ~ .. -L'UT,
Sept i968.

Gostelow, K. P. and V. G. Cerf r G. Estrin, S.
Volansky, ,, Proper Termination of Flow-of-Control in Programs
Involving Concurrent Processes 11

, Proceedings of ACM National
C~!!-~~J;-~Q~~ 1 Boston, vol. 2, pp. 742::.75-4·- {Aug: -I97if~- --- ·-- -

Holt, A. W. and F. Commoner, uEvents and Conditions 11
,

Record of the Project MAC Conference on Concurrent Systems
and-Par afl el Computaf Ion~-- vbo~Js--Hofe·~---Mass. -; .. PP~--- -3:...:sx·-·(j u11e 19-7 0)-~·---~·~ --- -~-- - - ~--·~ ·~- ---~-·-· -- -·~

Keller, R. M., Vector Replacement Systems: A Formalism for
Mo~~Ji~~J Asynchr-O'nous---···sysferns :~-- 1fii ___ J.f7, ·cs ·-tabor a tor y,
Department ~t ~f~~fiic~l ~riiirie~ring, Princeton University
(Dec. 1972, revised Jan. 1974).

Rodriguez, J. E. A Grar;>h Model for Parallel Computation,
Ph. o. thesis, Mrr, -- De-par-tment._o'f Erectr ica1 Erii fneed~n\j,
MAC-TR-64, Cambridge, Mass. (Sept. 1967).

Dennis, J. B. and J. B. Fosseen, J.· P. Linderman,
·Data Flow Schernas 11

, Symposium on 1I'heoretical ~-~()q~_~IT_!~~!!-9.,
N 0 v 0 s i bi r s k , us s R , pp . Is 1~2· 16 .. (Aug-~·-- --19 7 2 f ~- -

Kosinski, P. R., 11 A Data Flow Language
Systems Programming", Proceedings of ACM
Inter face Meeting, SIGPLAN Notfc_e.s - vol. --- 8, s 9-=9· .~c -(s e Pt-~ .. -1913 > -.-· -- · -· - - · -- - ·- ·· -

for Operating
SIGPLAN-SIGOPS

No. ---9 ~ - .. pp··.-

[10] Bahrs, A., "Operation Patterns (An Extensible Model of an
Extensible Language) 1

, Symposium Theoretical ~f~g~~~~~ng,
Novosibirsk, USSR pp. 217~246; - (Aug :·---·i972):

[11] Gostelow, K. P., 11 Computation Modules and Petri Nets",

[12]

Proceedings of Third ACM-IEEE Milwaukee Symposium on
Automatic ··--computation· "and control; -·1)p.- _.345-354 ··(Apr ii
1 915) : -. -- -- ·- .. -- - _, .. ·- -·

Dennis, J. B., "First Version of
Lanquage", Computation Structures
MAC, MIT (Nov.· 1973-, -revfsed Aug.

a Data Flow Procedure
Group Memo 93, Project

19 7 4--; . May l 9 7 5-f •

33

Figure la·

Asynchronous computation with variables

3

Sl4t:ti.

¢
SIS: I

newton-raphson

Figure 2

A program in Dennis' Data Flow language

Figure 4

Three-dimensional activity space of procedure sum
. under particular input data ·

Figure Sb

Operation on activity names by predicate boxes

D

Figure Sd

Operation on activity names by a D-box

I

__ __.._,...._.., .L • • • ~

ach'vafe-

Mt1 mtZ

»t •••. .1..

----•nt1 tl... i
I . .

/;v+=Mf~~
nt1

1 1t

Figure 5£

The activate and terminate portions of apply

' ~
'
' ' \

~w.iwde. l
. . tttl

\
1 Y\.

1
• bil1. ~ : +~1

--~M

\·
\)'\ 1

\ ~
1 . ~

\
\

\
\

' ' '

Figure Sh

"'"'

begi~ starts the execution of the called procedure by outputting
the initial, dummy, and argument tokens

' \
\

'
'

' '

Figu,re.5j

.........

' ,,

.)\

--

.The result tokens are returned to the calling procedure's domain

'

t:

S:

A= Iv, l\tz I · .. j vd ·

Figure 6a

Vector A associated with arc a with a sequence of values

~l·~ fl ~

U~

v fl

. Figure 7a

u
v

. Two program pieces P1 and P2

u

~ Pz ~~ v

Figure 7b

Ii 0 Ii

x=(~:)

The connection of P1 and P
2

to form a new system

y

Y=(~)

