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Abstract

The execution of a program may bé viewed as the
pfocessing of a statement in a pfogramming language by an
underlying interpreter. This report discusses briefly .the
-advantages of a data flow 1language over conventional
programming methods, and then presents a new interpreter for
a data flow language. Using as a base the data flow language

- of Dennis ["First Version of a Data Flow Procedure Language"

Computation Structures Group Memo 93, Project MAC, MIT, Nov.
19731, the new interpreter magnifies the apparent asynchrony
'and speed of data flow, and it does so by (quite literally)
exchanging blocks of processors for slices of time. The
report gives details of the operation of this new
o ihterpreter, and identifies thé consequences of the new

interpreter on machine architecture and design.
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A New Interpreter for Data Flow Schemas
and

Its Implications for Computer Architecture

1. INTRODUCTION

Our interest in data flow schemas stems from a desire to
develop improved architectures for computing systéms. It is our
feeliﬁg that necessary improvements in computer sfstems behavior
can come about only by some rather new and radical approaches to
the basic design of machines [1]. The use of a data flow
language as the computer's machine language 1s one such approach.

Some advantages of data flow over conventional approaches are:

(1) more functional behavior, and hence more modularity in
programming. This 1s achieved through the elimination of the
concept of a variable. : '

(2) more asynchronous data-driven control of programs; as
opposed to conventional machines, statements are ordered only by
the data constraints of the algorithm.

(3) more operations on structured data are provided at the
elementary level of the language.

Other advantages are discussed in [9].

This report discusses a new interpreter for data flow
schemas. For those familiar with data floﬁ languages such as
Dennis” [8,12], the following is a brief description of the
functioning of the new interpreter} (For those not familiar with

data flow languages, we have included an introduction in Section
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2.) The interpreter of Dennis’ data flow language specifies an
output queue length of one. That is, a maximum of one token may
be present on any arc at any one time. This implies the need for
a feedback connection from receiver to sender so that the
receiver of the token can inform the sender when the token has
been removed from the arc, thus allowing the sender to produce
further output. As 1is pointed out 1later, the maximum queue
length of one may limit asynchrony. The new interpreter, on the
other hand, imposes no limit on the number of tokens on an arc.
Furthermore, under the new interpreter it is possible for (most)
statements to be executed out of order. For example, if all
input queues to a function statement s have tokens present in
queue position i, then s may execute with the data from position
i'regardiess of the presence or absence of tokens in queue
positions i-1, i-2, ..., or i+1, i+2, .%. . We show in Section
4 that the results produced are the same as if all statements
were executed 1in sequence. Thus the new interpreter increases
the degree of asynchrony in the system over other data flow

systems and removes the need for a feedback communication system.,

The new interpreter has significant architectural
implications. It requires run-time binding of processors to each
instance of each statement’s execution. Also required is a
flexible communication system which can isolate procedure
invocations from one another. Further remarks on architectural

requirements appear in Section 5.
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This report is organized in the following fashion: Section
2 reviéws schemas in general, and Section 3 describes the new
data flow interpreter within the contex@ of the particular  data
flow languége of Dennis. Section 4 proves that the new
interpreter produces the same computation as the standard
interpréter, and Section 5 discusses some architectural

implications of this new interpreter.

2. COMPARATIVE SCHEMATOLOGY

2.1 Background

Many schemas have been devised to represent asynchronous
computation. Roughly speaking, the models fall into two general
classes: those with a random access memory and data variables
[2—4j, and those without data Variableg [5-10]. Figure 1 gives
an indiéation of how programs in the two classes ‘mighﬁ compute
thglréame funcéion. The rules of opefation‘are similar for both:
Figuré la (with”variables) shows computation units, initial data
conditions, ana>thé flow of control along arcs. The tokens shown
bn the arcs represent initial control conditions. A  box may
compute whenever all input arcs have a token present, and no

output arc contains a token. Values are read from and - written .

into the’’external memory during computation. Figure 1b (a schema
without wvariables, or data flow) shows the computation wunits
connected by arcs. The arcs hold tokens, and the tokens contain
the data values (thus the initial input value for f is 1, and for

g it is 2). A box in the data flow schema may compute whenever
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all input arcs contain a token (data is present), and no output

arc contains a token (old output data has been absorbed).

Note that synchronization of accesses to data is not
necessary (i.e., races for data values are impossible) in data
flow since there are no shared variables. All "control flow" is
incorporated in the flow of the data itself, and the behavior is

intrinsically functional.

Further arguments in favor of data flow are mentioned 1in

[91l.

2.2 Dennis’ Data Flow Language

Of the several data flow languages, that of Dennis [12] has
been selected as the basis for further work. There are two
primary reasons for this selection. Firgt the language has well
defined semantics for data handling operations. (These are not
diécussed here, but may be found in [12] with a complete
description of the language.) These same semantics also
contribute to a significantly reduced data communications 1load,
via the use of pointers to data structures. Second, even though
this language may not yet be a mature programming language, it is
more .developed than any of the other data flow languages. It has
the expressive power of programs written wusing assignment
statements, while...do... constructions and if...then...else...
constructions. Some important properties of this language have
already been proven [8]. We expect many changes in this

language. For example, such changes may involve the
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incorporation of an  arbiter [9] and a non-deterministic [14]
operator. We believe that a machine design based on Dennis’ data
flow language will not be unnecessarily restrictive and will have

many of the important features that data flow 1languages .of the

future will require.

For those unfamiliar with data flow languages, the remainder
of this section gives a sample progfam and explains 1its
operation, An example of a program in Dennis’ Data Flow (DDF)
language 1is shown in Figure 2: the calculation of a root of the
funoﬁion f by Newton-Raphson approximation (i.e., the successive

calculation of x. = X.
i+1

i - f(Xi)/f’(Xi).

Two initializing value tokens are required to begin the

computation,, A token with value zero must be placed on the arc
inbranching to the False side of statement S1, and an initial
root approximation value token must be similarly placed on

statement S8, 1In addition, two initial control tokens (true and

iglgé Values’only) are shown as inputs to the control side of St
and S8. Given this configuration, computation may begin. Either
S1 or S8 or both may execute. Each is a merge statement, and by
definition of a merge, a false control token selects for its
input a value token from the False side. The merge then simply
copies the input value onto a new value token and the tokeh is
output from the merge. The input value token and the control
token are destroyed. 1In the case of S1, only one output token is
produced, but S8 produces four output tokens. Each of these four

output tokens carries the same value (copied from the input value
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token), but each goes to a different destination. One token goes
to S9 to compute the function f, one token goes to S10 to compute
the derivative of f, etc. Both S9 and S10 may execute with the
arrival of the output value tokens from S8. Statement S12 must

wait for more input before execution can occur.

The basic rule of operation is

a Data Flow statement may execute anytime after
the arrival of the input tokens required for its
execution, provided no tokens are present on its
output 1lines; those tokens required on input are
destroyed, the calculation is made, and output
tokens (if any) are produced in finite but

non-zero time.

Thus all precedence among statements is established by explicit
flow of data in the form of values written on tokens.

Asynchronous execution is specified by an absence of explicit

precedence, and is therefore the default behavior.

After the function and its derivative have been calculated,
the division is made; the result is the total increment in the
vaiue of x. Statements S14 and S15 test the increment against
€ - the allowed error. If the incremental change in value is
less than ¢ , then the predicate box S15 outputs a false control
token to indicate that sufficient accuracy has been attained.

Statement S5 will then output a false token to S16 (regardless of
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the truth value of the S3 result). Statement S16 is a

gate-if-False statement which produces an output value +token

whenever an input false cbntrol token and an input value token
arrive; the output value is the same as the input value. It is
essentially an output gate. If, however, a true conthol token

arrives at é gate-if-False statement, no output token is pfoduced

at all, but the inputs are still destroyed. Thus if the error is
not acceptable to S15, a true token arrives at S14 and no answer

is produced.

‘At this point we come to the statements which set up the
activity for a loop. We also encounter the addition we have made
to the DDF language -- the D=box ("D" for delay). A D-box is an
identity function and simply passes the input value to the
output. We require a D-box be present at those points, and only
those points, where there is an initial®input token in DDF. The
initial token is then placed on the output arc of the D-box
before execution. (In DDF tﬁe D-box essentially performs no
operation but 1is necessary when discussing the new interpreter.)
So, assume S3 and S15 have both produced a true token (S3 will be
discussed momentarily). Then S5 will produce five true control
tokens as output, two of which pass through D-boxes to S1 and to
- 58. 38 will merge the new approximation, gated from S13; back
into the computation 1loop. This lobping will continue until
either the error is acceptable (S15), or wuntil we have looped
more than n times (statements S1-86). Statements S1-S6 are
couﬁting,vin parallel with the main computation, the number of

times a new root - -has been tried. If no acceptable solution is
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found by at least the nth iteration, then statements S1-S6 force
the approximation so far computed to be output. This will also

halt the main loop S7-S15.

3. TWO INTERPRETERS FOR DATA FLOW SCHEMAS

In this section we will describe two hypothetical computers
called FI(feedback interpreter)and NFI(non-feedback interpreter)
on which a given data flow program could be executed. We assume
that the programs specify an initial distribution of control
tokens, and that the programs are well-behaved [8,12)%
Well-behaved programs are defined to be the programs that

(1) start execution by accepting one input token per input
arc,

- (2) terminate execution and output one and only one token
per output are after a finite but non-zero time, and

(3) restore the initial distribution and value of tokens and
leave no other tokens behind in the program.

The concept of a well-behaved DDF program 1is the same as

that of properly terminating nets [4, 11],

3.1 Feedback Interpreter (FI)

The machine FI consists of an ensemble of a large number of
Processing Elements (PEs), where each PE is capable of executing
any DDF statement. 1In order to execute a program on FI, we first
assign and fix one PE to each statement of the program and then
interconnect these PEs (either logically or physically),
according to the program specifications. Thus, suppose statement

s of procedure P belongs to some loop within P and that s is
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executing on a PE for the ith time in the current invocation of
P. Then we may speak of the activity "P.s" occurring for the ith

time in the current invocation of P.

As previously stated in the definition of DDF (similar
defini;ions are used by Kosinski and some investigators of Petri
nets), a PE can fire or begin execution whenever it has received
all 1its operands, except that no token may be output onto an arc
which already holds a token. Therefore in FI, to ensure that no
more than one token is output onto a data pathiat any one time,
we need explicit acknowledgement of the last token received on
that particular data path. That is, all the communication
between PEs must be of send/acknowledge (feedback) type as, for.

example, in [15]. Hence the name feedback interpreter.

3.2 Non-Feedback Interpreter (NFI)

It is possible, however, to relax the condition that an
operator can fire only when the output arc is empt&. This can be
done without destroying the determinacy properties of the systemn.
According to Patil [13], if we can ensure that no token on any
"arc is lost and that a strict first-in first-out condition is
maintained on each arc, then the system‘ will still  Dbe
determinate@v Unfortunately, no finite amount of memory alone on

the data paths can guarantee these conditions.

3.2.1 General Operation of NFI
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The second machine that we define, called NFI, avoids the
problem of send/acknowledge communication. NFI also allows us to
speed-up computation by increasing the apparent asynchrony and
allowing more activities to be created and assigned to PEs than
in FI. The PEs in NFI are the same PEs as in FI, but in NFI the
PEs must communicate with each other by dynamically created
names. Thus in NFI, each PE in use will be assigned an activity

name. Since activity names are (can only be) created at

execution time, it is impossible to assign PEs in NFI in a static
manner., Thus all tokens must carry the activity name of the

destination PE as well as the datum.

Before we describe the procedure for creating activity names
in NFI, note that a search for the PE with the proper name must
be carried out for each token. If no PE is found, then a new PE
must be assigned to carry out the ;ctivity designated by the
activity name on the token. Thus each PE of NFI repeatedly goes
through basically the following cycle: (deadlock is not
discussed here, but is easily avoided).

(1) If a PE is free, then it is assigned an activity name A

by the -control of NFI. ( This will happen when at least one

token with activity name A has been produced by some other PE as
its output.)

(2) The PE which has been assigned activity name A, waits
for its operands to become available.

(3) When all the operands have been received, the PE starts
execution of the desired activity and after a finite but non-zero

amount of time it terminates execution. Result tokens are then
produced.

(4)

The PE becomes free.
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The scheme described 'beléw for créating activity names
removes the need for send/acknowledge, or feedback,
. éommunication; hence the name non-feedback interpreter. It 1is
imperative to understand the activity name generation procedure

in order to understand NFI.

3.2.2 Generating Activity Names for NFI

Supposé statement s of procedure P Dbelongs to some loop
within P, and that s is executing for the i%h time in the current
invocation of P. Further assume that the context from which
proéedure P. has been called is represented by symbol u. Then'the
activity name of this execution of statement ‘s is  given by
u.P.s.i. For example, let u represent the context from which the
proéedure sum (Figure 3) has been called. Assume input data has
been presented to sum which will cause it to loop three times.
Figure 4 shows éll activities which will be created during the
course of this execution. The ith position in the vertical
dimension for a statement din Figure 4 represents the ith
initiation of ﬁhat statement as an activity. All statements at
the i'P 1evel will have "u.sum,__.1" in common in their activity
names. The name generation  process must determine the

appropriate iteration (or initiation) count i for each token

produced. This will be further discussed later.

Consider now the three activities that perform the "apply P"
operation in Figure 4. Although not detailed in Figure 4, each
of these activities invokes procedure P, and thus gives rise to

an entire 3-dimensional execution structure of P in the
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"neighborhood" of each apply P box. Since several invocations of
P might be active concurrently (this is not possible in FI), the
name-context from which P is called must be passed on to each
invocation unambiguously. Therefore, if statement t of procedure

th invocation of

P is initiated for the jth time during the i
statement s in procedure sum, then the activity name of t must be
u’.P.tej where u’ = u.sum.s.i (s refers to the statement "apply

Pl')'

We now give precise rules for the creation of activity names

in NFI for each type of statement.

3.2.2.1 Functions, predicates: These m-input n-output statements
have the property that their input and output tokens all have
identical initiation counts for any given execution. Such
function statements are represented :by a box as in Figure 5a,

while predicates are represented by a diamond as in Figure 5b.

3.2.2.2 Gates: A gate has the property that it only occasionally
sends output. Suppose a gate statement G is to be initiated for
the ith time, and so far the value token was allowed to pass
through the gate only j times. Let the output of the gate G be
connected to statement a. Now if only j tokens have passed
through the gate, then statement a must have been initiated

exactly j times. Therefore when the gate subsequently sends its

output token to a, the activity number must be u.P.a.j+1s The
value of j cannot be derived from u.P.G.i alone. Therefore, for
proper name generation, a gate must keep track of the number of

times it produces output. How this is done is described in the

o N TR . . e o T N o |
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following paragraph.

‘Every gate waits for a dummy token as well as the wusual
value and control tokens as shown in Fiqure 5c¢c. The dummy token
carries the value j which is the number of tokens so far passed
through G on previous executions. When a gate executes, the gate
sends a dummy token to u.P.G.i+l with value j+1 or j depending
upon whether the value token was allowed to pass through the gate
statement (j+1) or not pass (j). Figure 5c shows the rule for a

gate-if-True statement; a corresponding rule exists for a

gate~if~False statement.

3.2.2.3 D-box: A D-box has the property that if the input token
is the ith token received, then the output token (whose value is

th token sent to

a copy of the input token value) will be the i+l
‘the destination of the D~box. This isﬁbecause a D-box 1is presént
if and only if an initial token was specified, and the D-box may
be said to have produced its first output token for no tokens

iﬁput. The first token input is thus the second token produced,

etc. This is shown in Figure 54d.

3.2.2.4 Merge: A merge (essentially the inverse of a gate)
produces an output token on each initiation,'but only reguires
tokens from two of the three inputs at‘ each initiation. For
example, a true control token and a value token on the True input
side is sufficient to initiate and terminate one merge operation.
Suppose a merge M has been initiated i times; then i tokens must
have been received at its control input. Furthermore, suppose j

tokens on the True 1input and k tokens on the False input have
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been absorbed in the past 1 initiations. Then i=j+k, and
subsequently arriving tokens on the control, True, and False
inputs would bear the activity names u.,P.M.i+1, wu.P.M:.j+1, and
u.P.M.k+1, respectively. In general, the activity names of
tokens input to the same execution of a merge operation will not
be the same, and thus we have a problem of coordinating the

inputs. Tokens with different activity names cannot go to the

same PE.

Our solution to this problem is to break each merge
statement M into three parts called MC’ M, and MF' and let each
part be executed by a separate PE; thus each input is received
by each part separately. Since the MC, Mp, and MF parts of a
merge may be 1in different planes, knowledge of the current
initiation number of each part is needed for proper
communication. The complete operating description of each part

is given in Figure Sey

As can be seen from Figure 5e, MC waits for a control token

and for a dummy token with value [j,k] at the i=j+k-1 initiation.
Depending upon the value of the control token, it either sends a
dummy token with value i to u.P,MT.j or to u«P.Mpske It also
sends a dummy token with value [j+1,k] or [j,k+1] to the control
box MC of the next initiation of the merge. The activity name of
the next initiation of MC is u.P.MC.i+1. Both Mg and My wait for
the arrival of a value token and a dummy token. One of MT and MF
receives both input tokens and fires. Then it sends a token to

the next statement with activity name wu.P.a.k, where k was
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communicated through the value portion of the dummy token sent

from Mo to M; or Mp.

3.2.2.5 Apply: Apply statement A needs two types of arguments to
execute: a procedure Q and a list of arguments for the
procedure.' Since Q can be a procedure already active (e.g.,
consider the «case when the procedure conﬁaining the ‘apply
statement A is procedure Q - a recursive call) statement A must
causé the activity names wused in this invocation of Q to be
different from the activity names currently in use. If we assume
the activity name associated with the PE that executes statement
A is u.P.A.1, then the unique activity names for statements in
the called procedure Q can be created by assigning names of the
type u'qu_i~‘where u'zu.P<Avi. Since u’ is unique, u’.Q._._ is

guaranteed to be uniques

A reverse brocess must take place when procedure Q activated
by A is términatedg The last statement to execute in Q must send
the result tokens to u.P.A.i. However, there 1is one problem.
According to the rules for PE allocation, once a PE starts
execution it must terminate after a finite but non-zero time.
Hence, (as in [12]) we ©break each apply statement A into two
barts called AA (for activate) and Ag (for terminate) as shoWn in
Figure 5F, Let us assume that the first and last statements of
each procedure are begin and end, respectively. These statements

have some special properties which are described in the following

paragraph.
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Complete specification of a program must include the
information regarding the distribution and value of initial
tokens in the procedure. The begin statement contains precisely
this information. The activate portion of the apply statement A
sends all input tokens required by the procedure Q to the begin
statement of Q (Figure 5g). Statement begin in turn sends all
initial, input, and dummy tokens to the various statements within
the procedure Q (Figure 5h). If procedure Q terminates (note

that Q is well behaved) one and only one result token is produced

on each output arc, and these in turn are sent to the end
statement of Q (Figure 5i). The special statement end first
determines the context from which Q was called (context u’) and
then passes all result tokens to the terminate portion of the
apply (which exists in environment u) with activity name W.PiAg.i

(Figure 5j). Ar simply copies the u.P.:.i part of activity names

and outputs these tokens (Figure 5k).

It is obvious that all activity names with prefix u.P (or
prefix u’.Q) are related to each other in some manner. We will
call the set of PEs with common activity name prefix u.P the
domain of procedure P when called from context u. When a
procedure terminates it may leave behind some initial and dummy
tokens in its domain. Therefore one task of AT is to free all
the PEs in the domain of a procedure after the result tokens have
been produced. The signal to free these PEs is produced by AT as
shown in Figure 5k. We have also shown throughout Figure 5 a
token ©being sent from AA to A« This is done in anticipation of

a later broadening of the scope of the apply statement. If we
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wish to incorporate the notion of nondeferministic machines, then
several procedures may be activated simultaneously and as soonbas
the first acceptable result is produced, all domains created by
the apply will beidestroyedw Domains are discussed further in

Section 5.

4. THE FUNCTIONAL EQUIVALENCE OF DDF PROGRAMS UNDER THE FEEDBACK

AND NON-FEEDBACK INTERPRETERS

In this section we give an informal but rigorous proof that
the feedback interpreter (FI) and the non-feedback interpreter
(NFI) both produce the same results for a DDF procedure, given
the same arguments. It should be noted that all DDF statements

are functional, i.e., they have no writeable local memory.

First, we give some definitions. :An arc a connects one
output of a statement s to one input of a statement t: Arc a is

then an output arc of s and an input arc of t. In the

following, 1let a be an output arc of statement s in procedure P.
If P is called in context u, then vector A

associated with arc a (Figure 6a) is defined as follows:

Eeedback ihterpreter (FI): the 1list of all tokens appearing in
séquence on arc a such that A(i) is the ith token.
’Note that the i'P token on an arc under FI can appear

only after the i-1th‘token has appeared.
Non-feedback interpreter (NFI): the list of all tokens such that
| the token with activity number u.P.s.i is element A(i).

Figure 4 shows that activity u.P.s.i can occur Dbefore
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activity u.P.s.i-1 occurs.

The input (output) matrix (Figure 6b) of a statement s in

P is an ordered set of all vectors A associated with arecs input
to (output from) statement Si Similarly, the

input (output) matrix of a procedure P is an ordered set of all

vectors A associated with ares input to (output from) procedure

Ps Two procedures P1 and P, (Figure Ta) are infprnnnnected*
(Figure Tb) by connecting j output arcs of P1 to j input arcs of
P2, and connecting k output arcs of P2 to k input arcs of P1.
Lastly, let Ppq be the class of all procedures in DDF such that

if P is a member of Ppqs» then for any input matrix, P under FI

produces the same output matrix as P under NFI.

The following lemma shows that all individual statements in
DDF produce the same results under FI or under NFI, thus proving

that PEQ is nonempty.

Lemma 1: Given identical input matniceé, statements in DDF

under FI and under NFI produce identical output matrices.

Proof -

I. To prove this lemma, we first observe the behavior of each
statement type under FI and define the relationships which exist
between input matrix positions and output matrix positions.

¥This general method of interconnecting two asynchronous systems
is from Patil [13],
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To begin, let PA(i) be a partial function on the input
vector A associated with input arc a of statement t. This

function P (i) gives the position of the output token in the

output matrix of statement t corresponding to the inputbtoken in
position 1 of input vector A. For each statement type, the

definition of PA(i) is given belows

Type 1 - function, predicate, apply statements

In particular, for a function (yi’zi)=f(vi’wi’xi) as shown
in Figure 6b. Thus P (i)=i for all i, and for all vectors I

input to the function.

That is, position 1 of vector I input to a function
statement determines the output vector only in position i. This
hdlds for any input to any function stgtement. Similarly, the
relationship Pi(i):i holds for any winput~to any statement of

types predicate and apply as well.

Type 2 - D=-box statement

By definition, a D-box is present if and only " if there is an
initial token, i.e., the first token is produced by a D-box for
zero tokens input. The first token input will be the second
token output, etc. The D-box is present only for the purpose of

incrementing initiation numbers. of tokens.
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For Type 3 (merge) and Type 4 (gate) statements, we need to
define a function which counts the number of true and false
control tokens arriving on a control input. Let Ftrue(i) be a
function giving the position in the control input vector

corresponding to the ith true control token appearing in sequence

on the control input line, starting at position 1. Similarly,
let Ffalse(i) be the input position corresponding to the ith
false control token. Both Ftrue(i) and Ffalse(i) may be seen as
counters looking for the ith true or false tokens, respectively,

in the control input vector. Given a control input vector,

functions Ftrue(i) and Ffalse(i) are uniquely defined.

Type 3 - merge statement

Po(i)=i
Pp(i)=Etrue(i) X
PF(i)=Ef§.l§§(i)

Type 4 - gate statement

(a) gate-if-True: There are two input vectors C and V (V for
value). Not every input produces an output, so the input-output

relationships are

j if i = Ftrue(j)

undefined otherwise

(b) gate-if False:
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J Af i = Ffalse(j)

Po(1)=Py(i)=

undefined otherwise

These equations give the relationships among the input and
output matrix positions under FI for all statements in DDF. It
remains to show that these, and only these relationships are

preserved under NFI.

Case 1 = function, predicate, apply statements

By observation of Figures 5a, 5b, and the first and Ilast

snapshots of apply in Figures 5e and 5Jj, the required

relationship PI(i)zi is preserved.
Case 2 - D=-box
By observation of Figure 5c, PI(i);i+1 holds under NFI.

Case 3 - Merge

There is only one output token produced at each termination
of a merge statement, and its position in the output vector is
determined by the position of the control token in the control

input‘ vector. To show that the proper relationship between the
input matrix ahd output vector of a merge under NFI is preserved,
we make the following assertions by examining the rules given in

Figure 5k.

(a) The control part of the merge (MC) is initiated the kth " time

only after the k-1S% initiation of Mc has terminated.
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(b) The value of the dummy token received by Mc at the kbR

initiation is <i,j> (where k=i+j-1) if i-1 true control

tokens and j-1 false control tokens have so far been
received.

(c) If the kth control token is true then a dummy token with
value Kk is sent to ih jnitiation of MT- This is precisely
Ftrue(i) which is Pp(i). Similarly in the case of a false
token, a dummy token with value k is sent to the jth
initiation of Mg, which is precisely Efalse(j)=Pp(Jj).

(d) Either My or Mp will output a token which will go to output

vector position k, that is, PC(k)=ka

Case 4 - Gate-if-True (Similarly for gate-if-False)

Since a gate does not output a token on every termination,
the input-output relation for a gaté is partial.: We make the
following assertions about the execution of a gate wunder NFI
(please see Figure 5d).

st
(a) The k°P initiation of a gate occurs only after the k-1

initiation has terminated.

(b) The value of the dummy token received by the gate at the kth
initiation is i if i-1 true control tokens have previously
been received.

(¢) If and only if the kP control token received is true (i.e.,
Ftrue (i)=k) then an output token will be produced and it
will go into the ith position of the output vector. This is

precisely the definition of P.o(k) and Py (k).

II. Thus, the proper relationship between input and output
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&

positions for any statement in DDF holds. Since under both FI
‘and NFI the input matrices are the same, and the statements

calculate the same function, then the output matrices must be the

same.

QED.
Corollary 1: All single statement procedures are in PEQ‘
Proof - Immediate by Lemma 1.

Theorem 1l: Let P be formed by interconnecting procedures Pl “and

If P

P and P2 are members of PEQ‘ then P is also in PEQ‘

2° 1
Proof - The proof to follow uses two program pieces Pl and P2' as
shown in Figure 7a. These two pieces are connected together in
the fashion shown in Figure 7b to form a new system. Those
inputs. to P1 which are connected to outﬁuts of P2 are called v;

those inputs to P, which are connected to outputs of Pl are

2
called U. The other inputs and outputs of Pl and Py remain
unconnacted. The inputs to the new system are X, and the outputs
are Y. The proof shows that the operation of program composition

is closed 6ver P
, EQ°

I. (=) If X is an input matrix to P producing output matrix Y

under FI, then P will also produce Y under NFI.

(5) Let P produce matrices U, V, Y under FI. Assume P under NFI
produces output matrix Y ', where Y  is different from Y.
Then there is an error in Yl' or Y,, or both.

(b) There can be an error in Yl if and only if there was an error




Page 28

in the input matrix of P;, Similarly, an error in Y, can be

due only to an error in the input matrix of P2‘ Since X1
cannot be 1in error, there must exist an error in matrix V
produced under NFI.

(c) Let NFI make the first error in time in U, or V, or both, and
let this error be in position kU, or ky, or both,
respectively. (All matrix position denotations are pairs;
that is, k; and ky are each a pair specifying a single entry
in matrix U and V, respectively.)

(d) 1. Assume entry U(kU) is wrong. Entry U(kU) depends upon

some entries in the input matrix to PT‘ Since P1 is in
PEQ: U(kU) can be wrong if and only w K some
corresponding entry in the input matrix was wrong. X
cannot be wrong, so the error must be 1in some entry
V(i). U(ky) could not be produced under NFI until V(i)
has been produced« This 1s because every statement
requires non-zero time to produce output tokens after
all the required input tokens have been received. But
V(i) cannot be wrong because U(kU) was hypothesized to
be the first such error. Thus U(kU) cannot be
incorrect. Contradiction.

2. Assume V(kv) is wrongs. By the same argument as above,
V(kv) cannot be wrong. Contradiction

3. If both U(kU) and V(kv) are wrong, then again by the same
arguments as above there must be entries U(i) and V(j)
which are wrong and which have occurred before V(kv)

and U(kv), respectivelys Again, a contradiction.
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(e) Thus, there can be no Y  different from Y.

II. (<=) If X is an input matrix to P producing output matrix Y
under NFI, then P will also produce Y under FI. The proof is the

same as above, and can be stated simply by interchanging NFI and

FI . in Part I.

QED.

5. IMPLICATIONS FOR MACHINE ARCHITECTURE

A data flow program is a collection of statements or
activities which initiate when inputs have arrived, then execute.
and produce outputs upon termination. We envision a machine
composed of a large number of small physical processing elements
of fhe type described in NFI. These PEs are interconnected by a
communication system which +transports tokens output by one
_activity to the‘input of another activity. We note 1in passing

that such PEs may be built with current LSI technology.

~With this view in mind, we note the following points:

(1) There is no method to determine a priori the total
number of activities which may be generated by any given
invocation of a procedure. Since activities are created
dynamically, automatic allocation and deallocation of PEs to each

activity is required.

(2) Due to dynamic activity creation, there can be no fixed
connections among particular PEs; all token traffic 1is by
logical (activity name) destination addressing.

(3) A machine architecture that caters to the dynamic
allocation/deallocation of PEs will have inherent modularity,
i.e., it should be possible to easily increase or decrease the
total number of physical PEs at any time.
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(4) Activity name management is very important. Because of
the large number of names which may be generated and the "length"
of these names (due to procedure calls), it 1is necessary to
partition the system by constructing firewalls which surround
procedures in execution. These firewalls serve to hold the
domain of a procedure’s invocation. Since the domain has name
u.P, only the s.i part of an activity name is carried by tokens
within the firewalls. Also, when tokens with activity name A are
output from a PE, the communication system must search to Ffind
the PE with activity name A. These same firewalls also provide
bounds on the activity name search space.

(5) Automatic PE deadlock avoidance is necessary, and is
accomplished by the implementation given in Figure 5: once a PE
initiates execution, it is always able to complete execution and
to be deallocated.

(6) No global control memory is necessary in order for the
data flow interpreter to operate. All information required for
the creation of activity names is carried by the tokens
themselves. This allows a completely distributed control.
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Asynchronous computation with variables
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Figure 1b

Asynchronous computation without variables - data flow




mitial
\;wot

%

newbon-raphson

Figure 2

A program in Dennis' Data Flow language
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Figure 5a

T

Operation on activity names by function boxes




Figure 5b

Operation on activity names'bypredicateboxes
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Figure 5c

Operation of a gate-if-True box on activity names
under both true and false input tokens




Figure 5d

Operation on activity names by a D-box
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Figure 5e

Operation of a merge statement on activity names
with a true input token
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Figure 5f

The activate and terminate portions of apply




Figure 5g

Activate causes the creation of a domain for the called procedure,
and begin is the first statement of that called procedure
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Figure 5h

begin starts the execution of the called procedure by outputtlng
the 1n1t1al dummy, and argument tokens
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Figure 5i

Result tokens pass through the end statement at end of the called procedure




Figure. 5j

. .The result tokens are returned to the calling procedure's domain
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Figure 5k

The called procedure domain is destroyed and the results
are distributed in the calling procedure's domain
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Figure 6a

Vector A associated with arc a with a sequence of values -
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.. Figure 7a
: Two program pieces P1 and P2
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The connection of Pl and P2 to form a new system






