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ABSTRACT OF THE DISSERTATION

Leveraging Latent Representations to Investigate Biological Processes

By

Michelle Nguyen Ngo

Doctor of Philosophy in Mathematical, Computational and Systems Biology

University of California, Irvine, 2023

Professor Babak Shahbaba, Chair

The advent and rapid adoption of single cell RNA sequencing technology have ushered in

an era of biological breakthroughs at the cellular level. Despite the biological and technical

variation in addition to computational challenges, the ability to isolate individual cells and

generate their sequencing libraries have enabled researchers to investigate topics such as the

discovery of cell sub-populations and ability to infer transcriptional dynamics. On this note,

we will explore the latent representations of the single cell RNA sequencing data expression

matrix to investigate two complex processes: clonal hematopoiesis and circadian rhythms.

For clonal hematopoiesis, we examine the inflammatory response of a patient with myelopro-

liferative neoplasms (MPN). Here, we present a computational approach that first identifies

ranked groups of differentially expressed genes and then uses those groups to cluster the

hematopoietic stem and progenitor cells (HSPCs). We confirm that the MPN patient shows

more response to inflammation than the unaffected patient. For circadian rhythms, we

present a new framework that accurately predicts the circadian time of transcriptomics sam-

ples. We show that this framework can aid in the development of circadian precision medicine

disease management plans and that it can also provide evidence of circadian heterogeneity

in different cell types.
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Chapter 1

Introduction

1.1 Genomics and latent representation

Rapid development of next-generation (or massively parallel) sequencing technology provides

an opportunity to characterize individual cells and their gene expression patterns rather than

bulk populations, where the gene expression patterns are an average across all the cells. In

2009, Tang et al. [113] adapted the complementary DNA (cDNA) amplification technique

for compatibility with high-throughput sequencing technology to publish the first single-cell

RNA (scRNA) sequencing study [111] and since then, many new sequencing protocols (e.g.,

Smart-seq2 [87], Drop-seq [73] and CEL-seq2 [49]) and commercial platforms (e.g., Fluidigm

C1, Clontech iCell8 and 10x Genomics Chromium) have emerged.

Several papers have reviewed and compared the foremost protocols [141, 111, 138]. The first

step of most single-cell sequencing protocols is the isolation of cells from a tissue sample,

which then determines the throughput of the method [16]. These isolated single cells are lysed

to maximize the capture of RNA molecules and then the following procedures are generally

executed: reverse transcription, synthesis of the second cDNA strand, cDNA amplification,
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preparation of the cDNA sequencing library and pooling of the cDNA sequencing libraries

[47].

Due to the samples each being an individual cell and technical challenges during the sequenc-

ing process, the resulting scRNA sequencing data expression matrix, which represents the

number of transcripts observed for each gene in a single cell, is extremely noisy and poten-

tially inaccurate. There are three main sources of variation in scRNA sequencing: technical,

allele-intrinsic and allele-extrinsic variation [122]. Technical variation arises from differences

in cell integrity and execution of single-cell sequencing protocols, such as the conversion to

cDNA and synthesis of the second cDNA strand. Allele-intrinsic variation encompasses the

inherent stochasticity of the molecular mechanisms controlling gene expression, leading two

identical copies of a given gene in the same intracellular environment to have uncorrelated

expressions [32]. Allele-extrinsic variation emerges from sources extrinsic to the process of

transcription since gene expression is also controlled by the presence and activity of regu-

lators and other molecules [122, 32]. One predominant feature of scRNA sequencing data

arising from these variations is the large amount of zeros attributed to a phenomenon known

as “dropouts”. This occurs when genes that are highly expressed in one cell are instead read

as unexpressed (zero expression) during the sequencing process and has led to widespread

inconsistencies about the source and interpretation of zeros in scRNA sequencing data [99].

Many methods have been developed to address the alleviation of these technical variations

and a selection are reviewed in [122, 5].

Despite these challenges, the ability to isolate single cells and generate their sequencing

libraries have enabled novel cell-specific biological breakthroughs such as the discovery of

sub-populations or rare types of cells, the tracking of cell development trajectories, the

identification of tumor development and heterogeneity, and the ability to infer transcriptional

dynamics and regulatory networks [138]. To this end, our lab is interested in utilizing the

latent representation of the scRNA sequencing data expression matrix to investigate two
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complex biological processes: clonal hematopoiesis and circadian rhythms.

1.2 Hematopoiesis application

The first biological process of interest, hematopoiesis, is the lifelong process of formation

and maintenance of blood cells and has two developmental waves: primitive and definitive.

In mammals, primitive hematopoiesis begins in the blood islands in the embryonic yolk sac

and is characterized by the production of large nucleated erythrocytes to facilitate tissue

oxygenation [59, 57]. However, the primitive wave is temporary and switches to definitive

hematopoiesis at different time points of development depending on the species. For exam-

ple, in mice, primitive hematopoiesis begins on embryonic day 7 and switches to definitive

hematopoiesis between embryonic days 10 and 11 [59]. Definitive hematopoiesis is charac-

terized by the presence of enucleated erythrocytes and generates hematopoietic stem cells

(HSCs) and multipotent progenitors (MPPs). Unlike the erythroid progenitors produced

during primitive hematopoeisis, these stem and progenitor cells are multipotent and have

the capability to renew [57]. In addition to the functionally distinct progenitors, the principal

location of definitive hematopoiesis also shifts from the yolk sac briefly to the fetal liver before

migrating to the bone marrow. As we focus only on definitive hematopoiesis, any reference

to hematopoiesis henceforth refers definitive hematopoiesis not primitive hematopoiesis.

The hematopoietic system is extensively organized into a cellular hierarchy, with HSCs at the

top. During hematopoiesis, HSCs can divide either symmetrically to produce two daughter

HSCs or asymmetrically to produce an HSC and daughter cell primed for differentiation

into functional, mature blood cells such as lymphocytes and granulocytes [9]. In adult

humans, approximately one million mature blood cells are produced per second [102]. Thus,

maintaining the balance of hematopoiesis is a critical and highly controlled process depending

on the individual’s needs. Under homeostatic conditions, an adequate supply of HSCs must

3



be maintained for the lifespan of the individual as mature blood cells are predominantly

short-lived and need to be continually replenished, and in the event of hematopoietic stress

such as an infection, the demand for increased production of mature blood cells needs to be

met.

However, over time, dividing HSCs may acquire mutations that are passed onto the next

generation of cells. While most somatic mutations do not have an impact on the function of

stem cells, a phenomenon called clonal hematopoiesis can occur where the mutation enables

the HSC clone to have a selective advantage over other clonal lineages and eventually have

a detectable presence in the population [9].

One such myeloid malignancy arising from clonal hematopoiesis is myeloproliferative neo-

plasms (MPNs). MPNs are a group of rare chronic cancers in the bone marrow; there

are three major MPN subtypes: myelofibrosis (MF), polycythemia vera (PV) and essential

thrombocythemia (ET). Each of these subtypes present with different clinical characteris-

tics, symptoms and prognoses. Despite the clinical distinctions, all three subtypes have been

shown to activate mutations in the JAK2, MPL, and CALR genes as well as the Janus kinase

(JAK)-signal transducer and activator of transcription (STAT) signaling pathway [43]. For

patients with the PV subtype, approximately 95% of them have detectable JAK2V 617F muta-

tions and the rest have JAK2 exon 12 mutations. The JAK2V 617F mutation is also detectable

in approximately 50 - 60% of patients with the ET or MF subtypes [43, 53]. Thus, one cur-

rent therapeutic approach is to use JAK inhibitors like Ruxolitinib [119], which inhibit the

JAK1 and JAK2 kinases.

Numerous studies have shown that chronic inflammation and most types of cancer are linked,

as chronic inflammation can create a microenvironment rich in inflammatory cells and growth

or survival factors that are favorable to the development of cancer [19, 92, 106, 140]. For MPN

in particular, inflammation plays a key role in its development, progression and symptomatic

burden. MPN patients typically have increased pro-inflammatory cytokines such as tumor
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necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) [77]. Futhermore, hematopoietic

progenitors with the JAK2V 617F mutation are resistant to inflammation [36], and many

experiments show that activation of the JAK-STAT pathway promotes MPN progression

[18, 65, 76, 53].

Thus, our lab is interested in utilizing statistical methods to leverage the information ob-

tained from current sequencing technologies to determine how inflammation affects MPN

patients compared to normal patients.

1.3 Circadian application

The second biological process of interest, circadian rhythms, is an endogeneous process gov-

erned by a biological clock with a period of roughly 24 hours. In mammals, the circadian

clock is primarily established in a hierarchical order: the suprachiasmatic nucleus (SCN) in

the brain acts as the central clock (“pacemaker”), and synchronizes and sets the circadian

rhythm in the peripheral tissues through neuronal and hormonal signals. These clocks are

a biochemical oscillator powered by transcription-translation loops. The CLOCK:BMAL1

transcription complex activates transcription of Period (Per1, Per2 ) and Cryptochrome

(Cry1, Cry2 ) genes. At high levels, PER and CRY then form a repressor complex to inhibit

their own expression by repressing CLOCK:BMAL1 activity. This negative feedback loop,

along with other post-translational modifications, generates a very robust 24 hour oscillation

of clock protein levels and activity.

Although the molecular mechanisms of this rhythm are cell autonomous and highly conserved

in the SCN and peripheral cells, they may respond and adjust to external cues such as light

[12] or feeding [86, 124]. These inputs can then lead to discoordination between internal and

external circadian patterns, which can greatly affect the general well-being of organisms. One
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commonly known circadian disruption is jet lag, which is a temporary disorder that occurs

when an individual crosses one or more time zones. The rapid change in the sleep-wake cycle

causes an individual’s internal clock to be out of sync with cues such as light in the new

time zone [121]. Other health issues often correlated with circadian disruption are mental

health problems such as depression and anxiety [123], the severity of metabolic diseases such

as diabetes and obesity [61, 89, 120], and prognosis of cancers such as melanoma and breast

[75, 104, 44, 134, 101, 45]. As circadian rhythm is so intertwined with an individual’s health,

circadian precision medicine aims to consider a patient’s circadian rhythm when developing

preventative care or disease management plans. For example, short half-life statins for

reducing cholesterol work best when taken before bedtime [137]. Thus, the first and most

important step in circadian precision medicine is to determine the internal circadian time of

the patient or tissue of focus. To this end, our lab is interested in developing efficient, robust

pipelines to predict circadian time of transcriptomic data.

1.4 Thesis Organization

In Chapter 2, we introduce an experiment to investigate the transcriptomic response to

inflammation in an MPN patient compared to a normal patient. Using a Bayesian mixture

model with shrinkage priors, we identify differentially expressed genes between the original

samples and the samples treated with a pro-inflammatory factor for each patient. Then in

Chapter 3, we present a computational pipeline using two Dirichlet process mixture models

to simultaneously cluster the rows and columns of a matrix into homogeneous submatrices.

We apply this to single cell RNA sequencing data to determine if we can identify groups

of genes that are highly expressed for an inferred group of cells. Due to computational

challenges, in Chapter 4, we use the gene groups identified in Chapter 2 and extend the

analysis by leveraging the expression profiles obtained via single cell sequencing. Here, we
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present a pipeline to cluster the sequenced cells and then examine the differential expression

between the original samples and treated samples for each patient given the cell clusters.

Finally, in Chapter 5, we shift our focus to circadian rhythms and present a pipeline to

predict the circadian time of transcriptomic data.
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Chapter 2

Investigating the effect of TNF-α on

HSCs in an MPN patient

2.1 MPN Background

Myeloproliferative neoplams (MPN) are a collection of rare blood cancers resulting from mu-

tations in hematopoietic stem and progenitor cells (HSPCs). The World Health Organization

(WHO) dichotomizes MPNs into BCR-ABL1-positive or BCR ABL1-negative depending on

the presence or absence of this gene [37]; of the BCR-ABL1-negative MPNs, there are three

subtypes that make up what is referred to as the “classical MPNs”: essential thrombo-

cythemia (ET), myelofibrosis (MF) and polycythemia vera (PV). Each of the three subtypes

has differing clinical characteristics and molecular features, while sharing some similarities

in pathogenesis and symptoms – making diagnosis challenging. In general, MPN causes an

overproduction of blood cells in the bone marrow, leading to increased spleen size, fatigue

and bone marrow failure. Elevated levels of pro-inflammatory cytokines, particularly tumor

necrosis factor alpha (TNF-α), worsen MPN progression, severity and symptom burden. The
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standard therapy to treat MF patients (and later PV patients) have been JAK2 inhibitors,

but this therapeutic has been shown to alleviate the symptoms rather than treat the dis-

ease. Similarly, treatments for ET and PV are aimed at reducing the risk of thromboembolic

and cardiovascular complications and symptom burden. Currently, the only cure for MPN

is a bone marrow transplant, but due to the high mortality risk, this procedure is usually

reserved for younger patients with a specific subtype and still achieves a poor outcome [43].

Despite the clinical distinctions, all three subtypes have shown to activate mutations in the

JAK2, MPL and CALR genes and JAK-STAT signaling pathway. Notably, the JAK2V 617F

mutation is found in approximately 95% of patients with the PV subtype, and 50-60% of

patients with the ET or MF subtypes [43, 53]. The JAK2V 617F mutation increases resis-

tance to inflammation in progenitors and these mutant cells also produce pro-inflammatory

cytokines such as TNF-α while inducing surrounding normal cells to produce inflammatory

cytokines [77]. This presents an issue for MPN patients, as MPN is also suggested to be a

chronic inflammatory disease in addition to neoplastic disorder, and patients usually present

with very high levels of inflammation [50, 126, 3, 35].

One of the pro-inflammatory cytokines found in high levels in MPN patients is TNF-α, which

upregulates multiple pro-inflammatory proteins through activating the NF-κB (nuclear fac-

tor kappa-light-chain-enhancer of activated B cells) and MAPK (Mitogen-Activated Protein

Kinase) pathways [126]. TNF-α plasma concentrations were found to be 10-, 5-, and 4-fold

higher in MF, PV and ET patients than control groups respectively [36], and at least three

more studies confirm that TNF-α is elevated in MPN patients and that the pro-inflammatory

cytokine may play a role in MPN development [126]. As further investigation is needed to

determine the exact role and mechanism of TNF-α in MPN, our lab would like to examine

the differential gene expression of MPN HSCs in response to TNF-α induced inflammation

compared to a healthy (unaffected) control.
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2.2 Experiment

We used droplet-based single cell RNA sequencing (scRNA seq) to investigate transcriptional

profiling in primary human bone marrow hematopoietic stem and progenitor cells. First, we

purified mononuclear cells from fresh bone marrow aspirates from one female MPN patient

(Polycythemia Vera with 71% JAK2V 617F allele burden) as well as one unaffected, age-

matched, male individual then sorted Lineage-/CD34+/CD38- hematopoietic progenitors

by flow cytometry. Immediately following sorting, half of the cells were stimulated with

50ng/ml tumor necrosis factor alpha (TNF-α) for 4 hours at 37◦C while the other half of

cells were used as unstimulated controls. We then utilized the 10X Chromium platform

to generate single-cell droplets for the 8,129 total cells from the unaffected individual and

33,299 total cells from the MPN patient. Figure 2.1 outlines the experiment described above.

Figure 2.1: Experimental schematic. We took fresh bone marrow aspirates from one female
MPN patient and one age-matched, unaffected male individual and sorted hematopoietic
progenitors by flow cytometery. We divided each sample in half and stimulated one half of
the cells with 50ng/ml tumor necrosis factor alpha for 4 hours at 37◦C. After spinning the
cells and washing them, we immediately harvest the cells for synthesis.

2.3 Differential Gene Analysis Background

To determine the effect of a pro-inflammatory cytokine on MPN, in particular TNF-α, we

need to determine which genes are expressed at different levels between the unstimulated
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(“untreated”) and stimulated (“treated”) samples in both patients. Although our exper-

iment yielded scRNA seq data, we are initially interested in the effect of TNF-α on the

HSPCs overall. In Chapter 4, we will examine the effect of TNF-α after accounting for the

heterogeneity of the samples. Thus, we can then formulate our problem into two separate

two group tests, where we independently detect the differentially expressed genes in each

patient between the two samples.

Many tools have been developed for differential gene expression analysis on bulk RNA se-

quencing data. Several of these, such as DESeq, DESeq2 [70] and edgeR [95], in addition to

classical statistical methods such as the Wilcoxon and t-test, can also be applied to scRNA

seq data. However, scRNA seq differs from bulk RNA seq in several ways with the most

crucial difference being that bulk RNA seq measures the average gene expression across the

cell populations in a sample while scRNA seq measures the gene expression of each individual

cell in a sample. The number of bulk RNA seq samples (typically the number of replicates

per condition) is also much smaller than the number of individual cells sequenced in scRNA

seq. To address these differences, several methods such as waddR [100] and MarcoPolo [63]

have been developed for differential gene expression analysis on scRNA seq data specifically.

While there is no general consensus on which method is the “best” for determining differ-

ential genes with scRNA seq data [125, 83], all these methods find biologically meaningful

differential genes and many have overlapping results. However, they all determine whether

a gene is differential or not by a cutoff.

We are interested in not only finding the differential genes but also in ranking the groups

of differentially expressed genes. To do so, we begin with a two group test to compare the

genes between the unstimulated and stimulated samples in each patient. In 2008, Efron in-

corporated Bayesian methods to the classical two group model to control the false discovery

rate (FDR) in large-scale testing situations [31] such as microarrays. Extending this idea,
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Denti et al. [23] proposed a Bayesian mixture model with shrinkage priors to partition the

region of interest into varying degrees of relevance; in our case, we will be partitioning the

genes into varying degrees of differentiation.

2.4 Method

2.4.1 Pre-processing

For quality control, we filter out cells with mitochrondrial expression greater than 7% and

any suspected dead or empty cells, doublets or multiplets. Each retained cell has at least 10

genes expressed, and we remove any genes where there are no (zero) expression in both the

untreated and treated samples. Genes with zero expression in one sample but expressed in

the other sample are kept for further analysis. Each data set is then normalized to account

for any bias such as differences in sequencing depth per cell. The gene counts for each cell

are divided by the total counts for that cell and then multiplied by a scale factor of 104. The

normalized count data X is then log-transformed: log2(X + 1).

2.4.2 Calculating the distance between each sample

To compare the unstimulated sample with the stimulated sample for each patient, we use

the two sample Wilcoxon rank sum test. This is a non-parametric alternative to the two

sample t-test and checks if the distributions of the two groups differ significantly from each

other. That is, suppose the distribution of expression for a given gene in the unstimulated

sample is A and the distribution of expression for the same gene in the stimulated sample

is B. The Wilcoxon test attempts to detect whether B departs from A. For each gene, the

two-sided Wilcoxon rank sum test yields a W statistic, p-value and z-score. However, for
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modeling convenience, we will work with the z-scores instead of the p-values. The p-values

are transformed into z-scores using the percentage point function outlined in [129]. For each

sample, the transformed z-scores are then centered to have a mean of zero. In the following

sections, we outline how we will group the transformed z-scores to derive a ranking of the

groups of differentially expressed genes.

2.4.3 Dirichlet Process

The Dirichlet process (DP) is a stochastic process that defines a distribution over distribu-

tions such that its marginal distributions are Dirichlet distributed [34, 103]. Formally, let

G0 be a distribution over some probability space Ω and α be a positive real number. Then

a stochastic process G is said to be a Dirichlet process with parameter α if for any finite

partition (A1, ..., Ak) of the probability space Ω, the vector (G(A1), ..., G(Ak)) is random and

has a Dirichlet distribution with base distribution G0 and concentration parameter α. That

is, G ∼ DP (α,G0) if (G(A1), ..., G(Ak)) ∼ Dirichlet(αG0(A1), ..., αG0(Ak)). The concen-

tration parameter α can then be thought of as a precision (inverse variance) parameter, and

the base distribution G0 can be thought of as a mean parameter (i.e., the mean of the DP).

Given its partitioning properties, the Dirichlet process is often used in Bayesian non-parametric

approaches such as Dirichlet process mixture models. Dirichlet process mixture models (DP-

MMs) remove the need to pre-specify the number of clusters by placing a DP prior over the

cluster parameters and can be intuitively thought of as an infinite dimensional generalization

of finite mixture models that incorporates automatic model selection. Consider a Bayesian
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mixture model with K clusters and then extending K → ∞:

xi|zi, θk ∼ F (θzi)

zi|π ∼ Multinomial(π)

θk ∼ G0

π|α ∼ Dirichlet
( α

K
, . . . ,

α

K

)

Here x1, . . . , xn is the observed data and drawn from a mixture of distributions with the

form F (θ), θ is the mixing distribution over G, and z is the cluster assignments for each

observation [84]. However, taking the limit of the model such that K → ∞ is not trivial;

instead, one can use other constructions to emulate the Dirichlet process. One construction

of the Dirichlet process uses the stick breaking representation [103] to define the cluster

weights. For the stick breaking process, suppose we have a stick of length one. We can break

off a piece of the stick, with probability z1 ∼ Beta(1, α), so that π1 = β1. We continue

breaking off pieces from the remainder of the stick according to zk ∼ Beta(1, α), and πk is

calculated from the broken off piece:

zk ∼ Beta(1, α)

πk = zk

k−1∏
j=1

(1 − zj)

By construction, if the number of clusters K → ∞, we have
∑∞

k=1 πk = 1. The stick-breaking

process orders mixture components such that the weights are stochastically decreasing for

each index k [38]. We choose a high index N as an upper bound on the number of clusters

and use a truncation approximation to the Dirichlet process. Note that the stick breaking

process is also referred to as the Griffiths-Engen-McCloskey (GEM) distribution.
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The stick breaking representation of the Dirichlet process mixture model is as follows:

xi|zi, θk ∼ F (θzi)

zi|π ∼ Multinomial(π)

θk|G0 ∼ G0

π|α ∼ SB(α)

2.4.4 Horseshoe Mixture Model

Using the model presented in [23], we aim to cluster the centered z-scores into multiple

groups of varying significance. The group containing z-scores with the lowest variance will

represent the null distribution and thus can be interpreted as the scores corresponding to

unchanged genes. The other groups will represent varying degrees of differential expression

and can be ranked accordingly. At minimum, we will obtain two groups: (1) a group of

non-significant z-scores corresponding to unchanged genes and (2) a group of significant

z-scores corresponding to the differentially expressed genes in response to TNF-α induced

inflammation.

From [23], we consider the following model for the vector of n centered z-scores {zi}ni=1 for

each gene i:

zi = Inβi + ϵi

ϵi ∼ N (0, σ2)

where β = {βi}ni=1 is the vector of means, ϵ = {ϵi}ni=1 ∼ Nn(0,Σ) is the noise term, and

Σ = σ2In for simplicity. To impose regularization on the means (i.e., shrink the means

corresponding to the unchanged genes to zero), we assume a discrete mixture of continuous
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scale mixtures of Gaussians as the prior distribution for β:

zi|βi, σ
2 ∼ N (βi, σ

2)

βi|τ, λ, ζi, σ2 ∼ N (0, σ2 · τ 2 · λ2
ζi

)

ζi|π ∼
L∑
l=1

πlδl(·)

λ ∼ C+(0, 1)

π ∼ SB(α)

σ2 ∼ Γ(1, 1)

τ ∼ fixed in fitting = 0.0001

Here, π is the vector of mixture weights, τ ∈ R+ is the global shrinkage parameter, λ =

{λζi} ∈ R+ is the local (mixture component) shrinkage parameters. The augmentation of the

model with latent membership labels {ζi}ni=1, where ζi ∈ {1, ..., L}, links each z-score with a

cluster and enables us identify and rank the different groups of z-scores by significance.

To fit this model, we use a Bayesian non-parameteric approach; we adopt the stick breaking

representation of the Dirichlet process as the prior distribution for the mixture weights π

and fix the value of τ 2 to 0.0001. We ran 10,000 iterations for the burn-in period and used

the next 10,000 iterations for inference. More details on the model, posterior inference, and

post-processing can be found in [23].

2.4.5 Post-processing

Once we have the posterior samples, we can partition the z-scores into groups of similar

significance. To do so, we take the cluster membership labels ζ(t) = {ζ(t)1 , ..., ζ
(t)
n } for iteration

t = 1, ..., T and construct the posterior similarity matrix (PSM). Each entry [i, j] in the PSM
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contains the posterior probability that zi for gene i and zj for gene j are clustered together:

PSMi,j =

∑T
t 1

(ζ
(t)
i =ζ

(t)
j )

T
, for i, j = 1, ..., n

Since the PSM yields estimates of the proportion of times two z-scores are clustered together

during the T MCMC iterations, we subtract the PSM from 1 to obtain a dissimilarity (or

distance) matrix: 1− PSM. Hierarchical clustering using Ward linkage is then applied to the

dissimilarity matrix to partition the z-scores. The number of partitions chosen is the mode

of the total number of clusters identified over all the MCMC iterations.

We define a cluster as a significant cluster if the minimum centered z-scores in that cluster

have a magnitude greater than two. All other clusters are deemed as “non-significant” or

“non-differential”.

2.5 Results

2.5.1 Gene Groups for the Unaffected Patient

From the framework described in Chapter 2, we obtain 16 groups (clusters) of genes for the

unaffected patient. Table 2.1 below shows how many genes are assigned to each cluster for

both the unaffected patient and MPN patient. For both patients, the non-significant clusters

(those with smaller numbered labels) contain the majority of the genes which corroborates

previous findings that not all genes will contain information we can leverage to determine

whether our findings have any biological significance.
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Cluster 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Patient 013 (unaffected) 1050 2979 6525 856 585 913 1141 692 402 204 359 189 251 315 559 75 —

Patient 025 (MPN) 6113 3197 1474 900 1037 576 856 1282 1257 789 399 354 134 155 1140 238 130

Table 2.1: The number of genes in each cluster for the unaffected and MPN patients.

Figure 2.2 shows the distribution of centered z-scores prior to clustering, a plot of the β’s

(means) against the centered z-scores, and a plot of the centered z-scores colored by its

assigned gene group. Note that the majority of the centered z-scores are around zero,

indicating there is no statistical difference in the expressions of those genes between the

stimulated and unstimulated groups for this patient. When we inspect Figure 2.2, we see

that the framework has imposed regularization on the means and shrunk the genes that

did not change much in expression to zero. We can also visually examine the gene cluster

assignments in Figures 2.2D. The cluster labels are ranked in order of significance; the lower

the label, the more the centered z-scores are close to zero. In the “non-significant” clusters,

the peak of the distributions are centered roughly around zero while the “significant” clusters

are more bimodal, with no centered z-scores around zero. Since we define significant clusters

as any cluster where the minimum centered z-scores have a magnitude greater than 2, we

obtain nine significant gene clusters for the unaffected patient. We will examine the genes

in the most significant cluster for both the unaffected and MPN patients in Section 2.5.3.
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Figure 2.2: A. Distribution of centered z-scores prior to clustering; B. a plot of the posterior
means of the means against the centered z-scores; C. a plot of the centered z-scores colored
by its assigned gene group; D. distributions of the centered z-scores for each gene cluster.
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2.5.2 Gene Groups for MPN patient

Similarly, we obtain 17 groups (clusters) of genes for the MPN patient. Figure 2.3 shows

the distribution of centered z-scores prior to clustering, a plot of the β’s (means) against

the centered z-scores, and a plot of the centered z-scores colored by its assigned gene group.

Again, note that the majority of the centered z-scores are around zero, indicating there

is no statistical difference in the expressions of those genes between the stimulated and

unstimulated groups for this patient. When we inspect Figure 2.3, we see that the framework

has imposed regularization on the means and shrunk the genes that did not change much

in expression to zero. We can also visually examine the gene cluster assignments in Figure

2.3D. The cluster labels are ranked in order of significance; the lower the label, the more

the centered z-scores are close to zero. In the “non-significant” clusters, the peak of the

distributions are centered roughly around zero while the “significant” clusters are more

bimodal, with no centered z-scores around zero. Since we define significant clusters as any

cluster where the minimum centered z-scores have a magnitude greater than 2, we obtain

fourteen significant gene clusters for the MPN patient. Compared to the unaffected patient,

the difference in gene expression between the unstimulated and stimulated samples are much

greater in the MPN patient. The centered z-scores for the unaffected patient range from

approximately -10 to 20 while the range for the MPN patient is an order of magnitude larger:

approximately -150 to 100. We will examine the genes in the most significant cluster for both

the unaffected and MPN patients in next section.
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Figure 2.3: A. Distribution of centered z-scores prior to clustering; B. a plot of the posterior
means of the means against the centered z-scores; C. a plot of the centered z-scores colored
by its assigned gene group; D. distributions of the centered z-scores for each gene cluster.
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2.5.3 Examining the Gene Clusters’ Biological Relevance

In the previous two sections, we described the results of the framework and how many

significant gene clusters we found in the unaffected and MPN patients. Here, we examine

the most significant clusters (i.e., the ones with the highest cluster labels) to determine if

the clusterings have any biological relevance and/or significance.

Figure 2.4: Top 15 biological processes for the most significant cluster in the unaffected
patient (A) and MPN patient (B), sorted by their adjusted p-values.

Figure 2.4 shows the top 15 biological processes for the most significant gene cluster in each

patient. The most important cluster in the unaffected patient is cluster 16, where the top

10 differentially expressed genes (with respect to the magnitude of their log2 fold change)

are: PLAU, IL2RA, ICAM1, MIR3142HG, NFKB2, MAFF, KDM6B, HIVEP2, CD83 and
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IER5. These genes are enriched for positive regulation of transcription by RNA polymerase

II (GO:0045944), as well as the NF-κB signaling pathway (KEGG 2021 Human) and TNF-

alpha effects on cytokine activity, cell mobility, and apoptosis (BioPlanet 2019).

In the MPN patient, the most significant cluster is 17 and the top 10 differentially expressed

genes here (again, with respect with to the magnitude of their log2 fold change) are: CXCL8,

NFKBIA, MIR155HG, IER3, BIRC3, TNFSF10, TNFAIP8, SOD2, NFKB1 and CXCL3.

These genes are enriched for cytokine-mediated signaling pathway (GO:0019221) and negative

regulation of apoptotic process (GO:0043066). They also significantly correspond to several

expected pathways: the lipid and atherosclerosis and NF-κB signaling pathways (KEGG

2021 Human); TNF-alpha effects on cytokine activity, cell mobility, and apoptosis (BioPlanet

2019); and IL-18 signaling pathway WP4754 (WikiPathway 2021 Human).

Our framework confirms that the MPN patient has a higher response to inflammation than

the unaffected patient [35]. Craver et al. performed a preliminary analysis on the same

data and suggested a MPN cells have a dampened apoptotic response to TNF-α [21]; we

can corroborate this statement. Firstly, the term negative regulation of apoptotic process

(GO:0043066) was enriched for the MPN samples. Furthermore, the unaffected patient’s

stimulated sample highly expressed genes involved in the caspase cascade (e.g., CASP2,

CASP6, CASP8 ) when compared to the unstimulated sample. Our framework assigned the

three aforementioned genes to the second-most differential (“significant”) cluster; two other

caspases were assigned the third and fourth-most differential clusters respectively and the

rest were found to not be significantly differentially expressed. In the MPN patient, most

of the capases were found to be more highly expressed in the unstimulated sample with the

exception of CASP3 and CASP7. However, the highest rank our framework assigned any of

the capases in the MPN patient is 14, so the fourth-most differential cluster.
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2.6 Discussion

In this computational framework, we investigated the differential gene expression between

an untreated sample and a sample treated with TNF-α in an unaffected patient and a MPN

patient. We begin by performing a Wilcoxon ranked sum test on each of the genes in the

unstimulated and stimulated samples in each patient. After converting the test statistics

to z-scores and centering them, we then use a Horseshoe mixture model based approach to

simultaneously shrink the means corresponding to the non-differentially expressed genes to

zero while clustering all the means. Notably, our framework is able to capture not just the

most significant differentially expressed genes but several groups of significant differentially

genes and rank these groups. This enables us to explore more differentially expressed genes

and how that response differs between the two patients rather than finding just a group of

significant differentially expressed genes and taking the top n genes.

In doing so, we were able to confirm that the MPN patient responds more to inflammation

than the unaffected patient, as stated in [35]. For the MPN patient, not only does the

most significant gene cluster predominantly correspond to inflammatory responses but the

difference between the unstimulated and stimulated samples are an order of magnituded

larger than the unaffected patient. One next step would be to compare the differential genes

between the two patients (i.e., unstimulated samples for the unaffected patient and MPN

patient, stimulated samples for the unaffected patient and MPN patient). We expect that

the MPN patient will have more inflammatory markers than the unaffected patient in both

cases.

Other approaches that determine which genes are differentially expressed given at least

two samples can also be applied here. However, if we “ignore” heterogeneity and treat the

unstimulated and stimulated samples for each patient where each column (cell) is a “sample”,

then the dimensionality of these data matrices is a limitation. For example, DESeq2 [70]
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(and its predecessor DESeq) were developed for bulk RNA seq and have been successfully

applied to scRNA seq data. Both are based on the negative binomial distribution and

fit a generalized linear model to each column (sample); as we have 3046 genes and 15103

“samples” for each treatment, this method will be computationally intensive. edgeR [95]

and limma [94] can also be used for differential analysis and are more efficient for larger

samples than DESeq2, but they were not designed to handle more than a couple thousand

of samples.

Although our framework is also computationally intensive, we can extract more information

such as the degree to which a given gene belongs to a gene cluster. With our large sample

size, fitting the Horseshoe mixture model and calculating the posterior similarity matrix are

very computationally expensive. As sequencing technologies improve, the ability to scale the

inference will be crucial.
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Chapter 3

Conjoined Dirichlet Process

Michelle N. Ngo1, Dustin S. Pluta1, Alexander Ngo, Babak Shahbaba

1 Equal contribution

3.1 Foreword

In Chapter 2, we introduced an experiment to investigate how TNF-α affects a normal patient

versus a MPN patient. We identified differentially expressed genes between the unstimulated

samples (not treated with TNF-α) and the samples treated with TNF-α in each of the two

patients. Now we extend that analysis by investigating the differentially expressed genes

between the unstimulated and treated samples among the different cell populations in each

of the two patients.

Within the HSPCs, there are several different populations with distinct self-renewal and re-

populating capacity as well as lineage differentiation. Kleppe et al. used single cell profiling

to demonstrate that there is cellular heterogeneity in cytokine secretion in the hematopoietic
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cells of MF patients compared to normal hematopoietic cells [65]. Recently, Tong et al. also

used single cell profiling to show that JAK2 mutant HSCs in ET patients are biased toward

the megakaryocyte (Mk) lineage, and responsible for expanding the Mk-primed HSC subpop-

ulation in ET patients [116]. Our Lin-/CD34+/CD38- hematopoietic stem and progenitor

cells should also display some heterogeneity, at the very least between stem and progenitor

cells.

Since single cell data is inherently noisy, a big challenge for researchers is how one should

pre-process the expression data to filter out background noise to reflect biological significance

since all downstream analyses are dependent on these pre-processing steps. To identify the

different cell populations (i.e., cluster the cells), a common and popular approach is to first

identify the highly variable genes in the expression matrix of interest [4, 5, 11, 71, 133]. The

idea is that only the genes with higher-than-expected variances are informative in clustering

the cells into homogeneous populations as they contribute the most to cell-to-cell variability.

However, highly variable gene selection may be sensitive to outliers, normalization techniques

and depends on the number of selected genes. This may also limit the ability to define rare

cell populations as the selected highly variable genes are generally the genes with the highest

expression variance across the whole data set of interest which potentially corresponds to

the most dominant cell types. For more details and a general comparison on tools for highly

variable gene selection, please refer to [133] or for comparison using scRNA seq data from

hematopoietic stem and progenitor cells and mature blood cells, see [139].

In this chapter, we explore using information from both the genes and cells simultaneously

to create partitions in the data. These partitions can be thought of as joint gene-cell clusters

(“biclusters”) and help us investigate the heterogeneity in hematopoietic stem and progenitor

cells without explicitly selecting for highly variable genes.
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3.2 Introduction

Biclustering, or co-clustering, is a technique used for sorting heterogeneous data into homo-

geneous blocks by allowing for simultaneous clustering of the rows and columns of a matrix.

This technique has various important applications, including text mining and biological gene

expression analysis. In text mining, biclustering text data from a document corpus allows for

identification of document-word combinations with high co-occurrence. Extracted biclusters

represent combinations of words and documents that form a (latent) topic. Biclustering has

been particularly popular in the past several decades for gene expression microarray analy-

ses. The method is used to group genes into similar conditions to study the functional roles

of genes. More recently, biclustering is being used to analyze single cell RNA sequencing

data. Here, the method is usually used to study cell proliferation by grouping cells into

developmental stages and identifying the genetic drivers for each stage.

Current biclustering methods generally impose restrictive assumptions on the biclustering

structure or data-generating mechanisms. However, in real-world applications, which are

often exploratory, an appropriate model and bicluster structure can be difficult to specify.

To address these limitations in current methods, we propose the Conjoined Dirichlet Process

(CDP): a novel, non-parametric probabilistic biclustering method based on dual Dirichlet

processes to identify biclusters with strong co-occurrences in both rows and columns. The

name of the method derives from its usage of two conjoined Dirichlet process mixture models

(DPMMs), akin to conjoined twins (see Figure 3.1). CDP provides the following advantages:

1) the number of biclusters is determined by the data and prior, and does not require select-

ing a number of clusters á priori, 2) fewer modeling assumptions compared to parametric

alternatives, 3) estimated biclusters may overlap arbitrarily, and 4) efficient computational

methods allow applications to high dimensional data, making applications to text and gene

expression data practical.
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The paper is organized as follows. In Section 3.3 we describe existing biclustering methods.

In Section 3.4 we provide some background on DPMMs, particularly focusing on the parallel

MCMC sampler for DPMMs. In Section 3.5 we discuss and provide details of our proposed

biclustering method. In Section 5.2 we apply our method to simulated, text, and single cell

RNA sequencing data sets, and present the results. Finally, in Section 5.4 we present our

conclusion.

3.3 Previous Methods

Briefly, biclustering algorithms are based on four heuristics: greedy, divide-and-conquer,

exhaustive enumeration, or distribution parameter identification [85].

Hartigan [48] proposed the first biclustering algorithm in 1972, but the technique was not

popular until 2000 when Cheng et al. [17] applied it to gene microarray data. Other pop-

ular gene microarray biclustering algorithms include Kluger et al.’s spectral model [66] and

Lazzeroni et al.’s plaid model [68].

While many biclustering algorithms have been developed for gene microarray analyses, one of

the first applications for biclustering was text mining. Dhillon et al. proposed two different

biclustering algorithms for simultaneously partitioning documents and words: spectral co-

clustering [24], and a co-clustering algorithm based on information theory [25]. Kluger et

al.’s spectral model [66] for gene microarray analyses is based on Dhillon et al.’s spectral

model [24].

More recently, biclustering has been applied to single cell RNA sequencing (scRNA seq)

data. Biclustering methods specific to this application include BackSPIN [136] and QUBIC2

[131].
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Rugeles et al. [98] developed Dual Topics for Bicluster (DT2B), a biclustering method

based on a generalized latent Dirichlet allocation (LDA) model [8]. Unlike the previous

models, DT2B avoids the constraints of a model structure. However, the algorithm requires

a discretized data set, pre-specification of the number of row and column clusters, and

threshold values.

By using a DPMM instead of a LDA model, we bypass the need to specify the number of

biclusters, make strong modeling assumptions, and particular data format.

3.4 Background

3.4.1 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a hierarchical Bayesian model used to infer latent fea-

tures in collections of discrete data. Initially proposed to estimate and describe population

structure from genotype data [91], it is also commonly used for the classification of documents

based on word frequencies [8].

In the context of document classification, LDA posits that for a corpus of documents, the

probability distribution of words for a given document is determined by a set of latent

“topics” associated with that document. LDA infers these latent topics from observed word

frequencies for each document to produce a clustering or classification of documents in the

corpus.
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Figure 3.1: Plate diagram and description of included variables and parameters. Rows r
and columns c are clustered separately through the DPMMs defined by ϕr and ϕc. After
updating according to Algorithm 1, heavy biclusters can be extracted from ϕr, ϕc, and θ (the
joint distribution of latent cluster assignments given by zr, zc).

3.4.2 Parallel Sampling of DPMMs

To review the explanation of Dirichlet process mixture models (DPMMs), please refer to

Chapter 2.4.3. DPMMs have been largely computationally heavy to implement. [15] par-

allelized the MCMC sampler for DPMMs by utilizing a restricted Gibbs sampler to fix the

number of clusters before proposing splits and merges. Since the number of clusters are

fixed, each of the Gibbs sampler steps can be done in parallel. Furthermore, to increase

efficient cluster splits, they augment each cluster with two sub-clusters, labeled z̄i ∈ {l, r} to

denote whether each data point xi is associated with the left or right sub-cluster. Additional

auxiliary variables introduced are the sub-cluster weights π̄k ∈ {π̄k,l, π̄k,r} and parameters

θ̄k ∈ {θ̄k,l, θ̄k,r} of cluster k. The auxiliary variables for the sub-clusters are analogous in

function to the variables for the regular clusters. In this augmented restricted Gibbs sampling

algorithm, we now sample a regular cluster assignment and then a sub-cluster assignment

for each data point. Splits and merges, to either split a cluster into its two sub-clusters or

merge two sub-clusters into one new cluster, are proposed and accepted with probability

min(1, H), where H ∈ {Hsplit, Hmerge} is the Hastings ratio for the respective action.

[27] extended this implementation to enable parallelization on multiple multi-core machines

instead of a single multi-core machine. The authors note that sampling cluster parameters

θk is parallelizable over the clusters, sampling cluster assignments zi is independently com-
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puted for each data point xi, and proposing cluster splits is parallelizable. For computational

efficiency, they rely on a distributed-memory model and utilize sufficient statistics to com-

municate between the cores as well as the between the machines. The sufficient statistic

T for a multinomial cluster (e.g. for document classification or single cell RNA sequenc-

ing data analysis) is T =
∑N

i=1 xi ∈ Nd
0 , where d is the dimension of the data points xi.

The aggregation of the sufficient statistics for each cluster allows for the sampling of cluster

parameters across multiple parallelized worker processes. Splits and merges are proposed

similarly to [15] on the master process, with mappings of old cluster assignments to new as-

signments broadcasted to all worker processes to individually update its data points. Using

this multi-machine, multi-core implementation considerably speeds up our model and allows

us to handle high dimensional data.

3.5 Conjoined Dirichlet Process (CDP)

CDP is a probabilistic biclustering method that provides several important characteristics

in the context of gene-cell count analysis. The estimated biclusters may overlap, posterior

probabilities of each element belonging to a given bicluster can be calculated, and heavy

biclusters (showing strong co-occurrence in rows and columns) are encouraged. By utilizing

a pair of DPMMs for bicluster estimation, CDP eliminates the need to specify the number of

row topics and columns topics á priori, which is particularly relevant for both gene expression

and document analysis where the number of topics and biclusters is unknown or ill-defined.

3.5.1 Model Construction

CDP can be summarized in two steps:
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1. Use DPMMs to learn row and column clusters.

2. Model the mutual dependence between the row and column clusters to extract biclus-

ters with strong co-occurrence values in both rows and columns.

Figure 3.2: CDP is able to detect overlapping biclusters: (A) Heatmap of simulated count
data and bicluster membership estimated by CDP. (B) True bicluster structure for simulated
data.

Given a nR × nC matrix where nR is the number of rows and nC is the number of columns,

each matrix entry (r, c) represents the frequency of row r in column c. For text data, this

corresponds to the frequency of word r in document c and for single cell RNA sequencing

data, this corresponds to the gene expression of gene r in cell c.

Using a DPMM, we can sequentially cluster the rows and columns of the matrix to obtain

row-cluster assignments zr and column-cluster assignments zc. Similar to DT2B [98], we

now have two sets of latent variables (e.g. topics for text data) and use these sets to extract

biclusters with strong co-occurrence values in rows and columns.

Figure 3.1 shows the graphical model for CDP, where row r and column c are the rows

and columns of the data matrix. zr and zc are the vectors of row and column cluster

indices (assignments) respectively. ϕr is the row per row latent variable distribution, ϕc

is the column per column latent variable distribution, and θ is the joint latent variable

distribution. These three variables maintain the counting over the relationships between the
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data, latent variables and their mutual dependence. For discrete data, the hyperparameters

for CDP are γ, the concentration parameter for the DP; β, the prior for the DP measure;

αr, the hyperparameter for ϕr; αc, the hyperparameter for ϕc; and λ, the hyperparameter

for θ. Figure 3.2 shows an illustrative example of CDP.

Theorem 3.1. If row assignments zr are held fixed, then the CDP update step is equivalent

to a latent Dirichlet allocation update on zc. A similar result holds if zc is held fixed for

updating zr.

Proof: In evaluating Eq. 3.4 to update zc, we can then treat ϕr as a constant, yielding

P (zci = j|ci = m, ri = n, zc−i) (3.1)

∝ ϕc
mjθjk (3.2)

∝ Cmj + αc∑
m′ Cm′i + nCαc

(Cij + λ). (3.3)

Updating zc according to this probability is equivalent to the update given by LDA [8].

3.5.2 Inference Process

Algorithm 1 shows the inference process for CDP, using the distributed MCMC inference

algorithm outlined in [27], which is based on the restricted Gibbs sampler method in [15].

Due to the split and merge aspect and the high-dimensionality of our data, the posterior

distribution of the assignment parameters may be multi-modal. For this reason, we update

the assignment parameters for a specified number of iterations and take the MAP estimate

of the maximum values of zr and zc.

The specifications for the hyperparameters of CDP (under the assumption that the base

distribution of the DP is multinomial) are listed below:
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γr, γc ∈ R1×1

βr ∈ RnR×1

βc ∈ RnC×1

αr ∈ RKr×1

αc ∈ RKc×1

λ ∈ RKr×Kc

Given a collection of composites (e.g. documents, cells) C made up of parts (e.g. words,

genes) R, we can write the probability of a composite c containing a part r as:

P (r, c) =
∑
zr

∑
zc

P (r|ϕr
zr , α

r)P (c|ϕc
zc , α

c)P (zr, zc|θ)

A major advantage of the CDP over DT2B [98] is that the CDP does not require thresholds

to control the trade-off between quantity and quality of the biclusters. The hyperparameters

in the DPMM step facilitate this trade-off automatically. Setting a large γ, the Dirichlet

process concentration parameter, and for a multinomial base distribution, a large β (the

Dirichlet distribution hyperparameter) will yield more clusters.

The probabilistic biclusters are given by the joint distribution of row and column latent

variables, θ, which has dimension Kr × Kc. Kr and Kc are the number of latent row and

column variables respectively. As previously mentioned, from the DPMMs, we obtain the

row-cluster assignments zr and column-cluster assignments zc. Calculating the mode of the

posterior distributions of zr and zc yields the maximum a posteriori (MAP) estimate of the

number of latent row and column variables, i.e. Kr and Kc.

We note that the dimensions of the row per row latent variable distribution, ϕr, and the

column per column latent variable distribution, ϕc, are also given by the MAP. ϕr has

dimensions nR ×Kr, and ϕc has dimensions nC ×Kc.
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Algorithm 1 Conjoined Dirichlet Process (CDP)

Input: Data X, size nR × nC

DP concentration parameters γR, γC
Dirichlet distribution hyperpriors βR, βC

Number of DPMM iterations iterR, iterC
Number of cluster reassignment iterations iterU

for i = 1 to iterR do
Run DPMM on X

end for
for i = 1 to iterC do

Run DPMM on XT

end for
Calculate Kr = MAP (zr) and Kc = MAP (zc)
for i = 1 to iterU do

Update zr and zc using the data as weights
end for
for i = 1 to nR do
for j = 1 to Kr do

Calculate ϕr
ij =

Cij+αr∑
i′ Ci′j+nRαr

end for
end for
for i = 1 to nC do
for j = 1 to Kc do

Calculate ϕc
ij =

Cij+αc∑
i′ Ci′j+nCαc

end for
end for
Calculate θ ∝ Cr,c + λ, 1 ≤ r ≤ nR, 1 ≤ c ≤ nC

3.5.3 Bicluster Extraction

From the DPMM, we obtain latent variables zr and zc, which indicate the row and column

cluster assignments respectively. To extract the biclusters from the data, we need to calculate

three parameters: row per row latent variable distribution ϕr, column per column latent

variable distribution ϕc, and joint distribution of row and column latent variables θ.
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These three parameters are given by [98]:

ϕc
mi =

Cmi + αc∑
m′ Cm′i + nCαc

(3.4)

ϕr
nj =

Cnj + αr∑
n′ Cn′j + nRαr

(3.5)

θ ∝ Cij + λ (3.6)

where Cab is the number of instances a-th variable is assigned to b-th variable. For example,

ϕr is the probability of the n-th row being assigned to j-th row latent variable. Thus, Cnj

is the number of times the n-th row is assigned to to j-th row latent variable. The joint

distribution θ tracks the relationship between the current row and column latent variables

to capture the mutual dependence between the two sets of latent variables [98].

First, we calculate ϕr and ϕc by using the aforementioned sets of latent variables zr and zc

as the initial cluster assignments. These assignments are updated iteratively using the data

as weights. Once the row and column assignments have been updated, we count the number

of instances a row or column is assigned to a row or column latent variable.

To obtain the joint distribution of row and column latent variables θ, we need to calculate

the frequency of each row and column latent variable pairing (i, j). The vector of frequencies

for each row and column latent variable pairing is then transformed into a contingency table

of size Kr ×Kc, i.e. the desired θ.

3.5.4 Implementation Overview

To obtain the row-cluster assignment zr and column-cluster assignment zc, we separately

infer each parameter using [27]’s implementation in Julia. We utilize a specific version of

that package that outputs the cluster assignments zr or zc at each iteration rather than

the final cluster assignments. While this requires more memory storage and run time, it
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allows CDP to have overlapping biclusters and more interpretable results depending on the

application.

For N data observations, K clusters, and M machines with P cores, the total runtime

complexity for the DPMM implementation is O(K)+O(M +P )+O(NK/(MP )). For more

details on the runtime complexity for the DPMM, see [27].

CDP reassigns each observation iteratively in batches of size equal to either the row sums or

column sums. These batches are parallelized to run on P processes (cores). Thus, updating

the row and cluster assignments for J iterations takes O(NJ/P ) time. Calculating ϕ for

the rows and columns require the aforementioned assignment step. Once reassigned, CDP

splits the N data points into vectors of length row sums (for ϕr) or column sums (for ϕc).

These vectors are then tabulated over the number of latent variables K to determine the

probability of each row or column being assigned to each row latent variable or column

latent variable respectively. The runtime complexity for calculating ϕ excluding the cluster

assignment update step is then O(NK) where K is equal to Kr when calculating ϕr and

Kc when calculating ϕc. Calculating the joint distribution of both row and column latent

variables θ requires looping over the assignments for one direction (e.g. row assignments)

and matching the row and column indexes to the assignments in the other direction (e.g.

column assignments). This operation requires O(N) time. CDP then tabulates the row and

column assignment of each row and column pairing to obtain θ. Thus, the total runtime

complexity for calculating θ is O(NKrKc) and O(NKrKc/P ) if run in parallel.

As N ≫ K,P,M and J , CDP takes O(NJ)+O(NKrKc) time. Experiments were conducted

on an i5-7600K CPU.
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3.6 Experimental Results

We compare CDP to DT2B [98] because this method also models the mutual dependency

between two sets of latent variables. We also compare our algorithm to spectral biclustering

[66] since both try to extract high co-occurences. For completeness, Cheng and Church [17]

and the plaid [68] algorithms are also used for comparisons due to their common usage, and

BiMax [90] which is known to serve as a reference method.

3.6.1 Synthetic Data

Simulated count data were generated from a multinomial distribution defined by an R × C

probability matrix θ (with entries summing to 1), and by fixing the sum of entries in the

resulting random matrix at some total count N . The total bicluster probability p of an

element belonging to a bicluster was set to control the strength of biclusters and overall

sparsity. Four different constructions of θ were chosen to evaluate performance over different

biclustering patterns. In order of increasing complexity, these four cases are (1) a single

distinct bicluster, N = 4000, R = C = 50, p = 0.8; (2) two distinct biclusters, N = 4000, R =

C = 20, p = 0.5; (3) 3 biclusters with one overlap N = 4000, R = C = 50, p = 0.7; (4) 5

distinct biclusters, N = 10000, R = C = 100, p = 0.7 (see Figure 3.3 for an example).

To compare the performance of CDP to existing methods, we use the Jaccard score, defined

as J(B1,B2) = min(A,B)
1
|A|

∑
A∈A maxB∈B

|A∩B|
|A∪B| , where B1,B2 are two sets of biclusters, with

the minimum taken over (A,B) ∈ {(B1,B2), (B2,B1)}. The Jaccard score is a symmetric

similarity metric taking values 0 ≤ J(B1,B2) ≤ 1, with the lower bound attained only

when all sets in B1 are disjoint with all sets in B2 and the upper bound attained only when

B1 = B2. In the context of the simulation study, B1 is the set of estimated biclusters from a

given method, and B2 is the set of true biclusters from the generative model.
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Figure 3.3: Example results from CDP for simulated data (case 4). CDP correctly identifies
the heavy biclusters (0.938 Jaccard score), with only a small number of spurious elements
included (e.g. in biclusters 1, 2 and 5). The data shown here is approximately 70% sparse.

3.6.2 Real-life Data

1. Condensed 20 Newsgroups: Collection of 100 words across 16,242 newsgroup doc-

uments (”netnews”). The data is organized into 17 different newsgroups and 4 main

topics. This data set is 95.97% sparse.

2. Single cell RNA sequencing (scRNA seq) Data: Collection of 23,226 genes

across 5,053 transcriptomes from 10 distinct regions of murine juvenile and adult central

nervous system [74]. All cells were profiled using the Fluidigm C1 system and sequenced

on an Illumina HiSeq 2000 instrument. This data set is 87.57% sparse.
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3.6.3 Parameter Settings

For CDP, we need to set the number of iterations, the Dirichlet process concentration param-

eter γ, and the Dirichlet distribution hyperprior β. Note that both our text and biological

data are discrete counts so we assume a multinomial base distribution. If we had continuous

data we would instead assume a Gaussian base distribution (or another continuous distribu-

tion) and set the values for a Normal–Inverse–Wishart hyperprior. The hyperparameters for

ϕr, ϕc and θ are set to zero by default. We set all concentration parameters and hyperpriors

to be small to obtain larger cluster sizes. Table 3.1 shows the parameter values for the two

real data sets. We did not include the two β hyperparameters or the λ hyperparameter in

the table since we set those values to zero. In practice, if one has strong prior knowledge

regarding a row or column element, setting a value greater than zero for those hyperparam-

eters will result in a more accurate clustering. However, we are doing strictly exploratory

work for this paper.

Table 3.1: Parameter settings for the DPMM part of CDP on two data sets.

Data set Row/Col Iterations γ β

Newsgroups Row 1000 10 1

Col 1000 100 1

scRNA Seq Row 500 10 0.1

Col 500 10 1

3.6.4 Results for Synthetic Data

Results for the four synthetic data cases are provided in Table 3.2. In each of the cases

considered, plaid, DT2B, and CDP exhibit the highest accuracy in bicluster estimation as
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Table 3.2: Comparison of mean (standard deviation) Jaccard similarity scores for various
biclustering algorithms on the simulated data sets.

Case Plaid C & C Bimax DT2B CDP

1 0.133 (0.06) 0.16 (0.00) 0.141 (0.005) 0.806 (0.204) 0.69 (0.088)
2 0.862 (0.265) 0.016 (0.000) 0.098 (0.021) 0.889 (0.118) 0.985 (0.081)
3 0.172 (0.087) 0.048 (0.000) 0.105 (0.012) 0.236 (0.032) 0.25 (0.014)
4 0.316 (0.343) 0.008 (0.000) 0.101 (0.014) 0.522 (0.087) 0.756 (0.033)

measured by the Jaccard score. We also tested the spectral method, but the accuracy was so

low we excluded it from the table. In cases 2, 3, and 4, CDP outperforms all other methods,

and gives substantially better performance in the most complicated setting (case 4), with a

mean Jaccard similarity of 0.756, compared to DT2B with a mean score of 0.522. CDP also

exhibits lower variance over repeated simulations compared to DT2B. Only in the simplest

setting of a single bicluster (case 1) does DT2B show better mean similarity score, with 0.806

for DT2B compared to 0.69 for CDP. However, DT2B shows high variance in the accuracy

of its estimates over repeated runs in this case, whereas CDP shows lower variance over all

scenarios. Together, these results suggest that CDP is practical for bicluster extraction, and

may be significantly more accurate compared to existing methods.

3.6.5 Simulation Runtime Comparisons

The DT2B method is conceptually similar to CDP, but requires selecting a maximum number

of row and column clusters to determine the parameters of the underlying LDA models. In

general, DT2B is most efficient and accurate when the maximum number of row clusters (Kr)

and column clusters (Kc) are set to the true number of row and column clusters respectively,

but these values will be unknown in practice. DT2B runs in O(NKrKc) time [98], thus

setting Kr and Kc to the number of rows and columns respectively may be computationally

prohibitive for applications to single cell analysis and other large data settings. Table 3.3

shows the runtime of DT2B for different choices of Kr and Kc on a simulated data set,
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compared to CDP.

Table 3.3: Comparison of runtimes for CDP and DT2B with various choices of (Kr, Kc) on
a simulated data set (case 2). Runtimes for DT2B scale linearly in both Kr and Kc.

Method Mean Jaccard (s.d.) Runtime (s)
CDP 0.96 (0.02) 13.22
DT2B(5, 5) 0.41 (0.11) 4.23
DT2B(10, 10) 0.94 (0.13) 12.85
DT2B(25, 25) 0.98 (0.01) 73.45

3.6.6 Results for Text Data

Biclustering text data from a document corpus allows for identification of document-word

combinations with high co-occurrence. Extracted biclusters represent combinations of words

and documents that form a (latent) topic. This is distinguished from traditional LDA topic

modeling in that LDA does not cluster documents directly, and words which co-occur across

many documents may be clustered even if the shared vocabulary of those documents is small

overall. Instead, a biclustering such as CDP encourages heavy topics which exhibit high

co-occurrence of words across documents and documents across words.

The condensed version of the 20 Newsgroup data set is organized into 17 different newsgroups

corresponding to four main topics: comp (e.g. computing, graphics), rec (e.g. recreational,

sports), sci (e.g. medicine, electronics, space) and talk (e.g. politics, guns), and two smaller

topics: religion and miscellaneous for sale.

CDP found 5 word clusters, 3 news groups, and 3 heavy biclusters. There is generally

no ground truth for biclusters on text data, and due to the overlapping nature of this

”netnews” data set, we chose to evaluate the biclusters by visual inspection. We present

Table 3.4 showing the words with the highest co-occurrences across documents. The first

grouping is predominantly about space and political topics, while the second grouping is

comprised of recreational, religious and medical topics. The third heavy bicluster consists
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of computational topics.

Table 3.4: Selection of the top six words with the highest co-occurrence values across the
documents.

Topic 1 Topic 2 Topic 3

Mars children ftp

solar disease fans

technology bible files

satellite baseball format

shuttle cancer fact

president patients games

3.6.7 Results for Single cell RNA Sequencing Data

Biclustering scRNA seq data is commonly used to define developmental stages based solely

on the transcriptome in addition to accounting for variation in the data, and identifying

biologically important genes and their signatures for each cell stage. Each bicluster is an

association between groups of cell stages and their genetic drivers.

A key contribution of CDP is the ability to identify the cell stages and their genetic drivers

without having to find highly expressed genes á priori. Furthermore, cell stages are dynamic

in time and a probabilistic clustering assignment allows us to capture part of this dynamic

without a true time series model. This contribution is a vital reason as to why we utilize

the MAP to determine the most probable number of clusters instead of running the two

DPMMS until they converge on a single value.

We apply CDP to the scRNA seq data set in [74]. The authors performed a biclustering

analysis using BackSPIN [136] and found 13 cell clusters.
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CDP found 7 gene clusters, 12 cell clusters, and 4 strong biclusters. Like text data, there is

generally no ground truth for biclusters on scRNA seq data. We evaluate our method using

the PANTHER classification system and tools [78, 114, 79], and also compare it to [74]’s

results.

The four biclusters with the strongest co-occurrence values consist of myelin-forming oligo-

dendrocytes (MFOL2), and several stages of mature oligodendrocytes (MOL5, MOL4 and

MOL3). Biclusters with weaker co-occurrence values consist of newly formed oligodendro-

cytes (NFOL1) and oligodendrocyte precursor cells (OPC). The oligodendrocyte precursor

cells can differentiate into newly formed oligodendrocytes, which produce myelin and con-

tinue maturing. Since there are multiple stages of maturation, the composition of the strong

biclusters are expected and are corroborated by [74]. The majority of the oligodendrocyte

cells are no longer precursor cells or newly formed; they are in differing stages of maturation.

Furthermore, CDP shows that the oligodendrocyte classes also correspond to different regions

of the central nervous system. For example, oligodendrocytes classified as MFOL2 are also

found in abundance in the substantia nigra ventral tegmental (SN-VTA) and hypothalamus

regions of the central nervous system. Likewise, oligodendrocytes classified as MOL5 are

found in abundance in the dorsal horn.

With respect to the genes, CDP did not find distinct gene groupings. However, CDP did find

two overlapping groupings and multiple groupings with weak co-occurrence values. Using

PANTHER, we find that the two overlapping groupings are strongly affiliated with binding,

particularly enzymatic binding, and catalytic activity. One group is more involved with cy-

toskeletal protein binding, and at a higher cellular level, is associated with cellular response

to stimulus and cellular metabolic processes. The second group is more involved with sig-

naling receptor binding, and with cell component organization and signal transduction at a

higher level. Genes associated with other biological processes such as the lipid metabolic pro-

cess or the multicellular organismal process are in the biclusters with weaker co-occurrence
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values.

3.7 Discussion

In this paper, we presented a novel, non-parametric probabilistic biclustering method de-

signed to address the challenges of model and parameter selection required by competing

methods. By utilizing two infinite mixture models and calculating their mutual dependence,

we are able to estimate the number of biclusters strictly from the data and prior, and identify

the biclusters without strong modeling assumptions.

CDP currently requires hyperparameter specifications, but putting a prior on these hyper-

parameters may improve accuracy without the need for running the model over a range of

parameters. Furthermore, CDP is focused on partitioning discrete data since text and scRNA

seq data naturally have count data. However, other applications such as audio retrieval do

not. CDP has the ability to model continuous data as well by changing the multinomial

base distribution to a Normal–Inverse–Wishart base distribution and modifying the mutual

dependence calculation steps.

Simulation results suggest CDP significantly improves upon DT2B and current standard

methods, with more accurate estimation of biclusters, and lower variance estimates. Exper-

imental results on real data with high sparsity (> 85%) demonstrate that CDP is able to

extract meaningful heavy biclusters. In single cell analyses, this advantage is particularly

useful as the data is extremely sparse and noisy. However, CDP is computationally expensive

compared to other clustering methods and is limited to smaller single cell data sets. This is

not ideal as the size of single cell data sets are increasing as sequencing technology develops.

As a probabilistic model leveraging DPMMs for bicluster estimation, CDP can easily be

extended to include additional structure and assumptions. For instance, in the context of
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single cell analysis, known results on gene networks may be incorporated through the DPMM

priors. Furthermore, by choosing continuous DPMM base measures Gr, Gc, CDP can be

applied for biclustering a matrix of continuous values, providing an important advantage

over DT2B, which can only accommodate discrete values.

3.8 Data and Software

All data sets are publicly available. The condensed 20 Newsgroup data set is available on

Sam Roweis’s website [97]. The scRNA seq data set is part of the Hemberg lab’s collection

of publicly available scRNA seq data sets [64] as a SingleCellExperiment Bioconductor S4

class [72]. We removed rows and columns where the entire vector consisted of zeros. For the

scRNA seq data set, we also combined the counts of genes that had been split into multiple

entries based on loci position.

Source code for CDP can be found at https://github.com/micnngo/CDP. DPMMs were

run using the ‘exposed parr’ branch of DPMMSubClusters [27]. The main CDP script is

written in R with a wrapper for Julia and C++. Plaid, Cheng and Church, Spectral and

BiMax algorithms were run using the package ‘biclust’ in R [58]. The source code for DT2B

is available on Github [98].
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Chapter 4

Leveraging information from groups

of genes to identify cell groups

4.1 Introduction

In Chapter 2, we introduced an experiment to investigate how TNF-α affects a normal patient

versus a MPN patient. We identified differentially expressed genes between the unstimulated

samples (not treated with TNF-α) and the samples treated with TNF-α in each of the two

patients. Then in Chapter 3, we introduced a method titled “Conjoined Dirichlet Process”

to simultaneously cluster the genes and cells. While CDP worked well on synthetic data and

smaller data sets, we were not able to use CDP to analyze the experimental data of interest

and obtain meaningful results. We are still interested in investigating the differentially

expressed genes between the unstimulated and treated samples among the different cell

populations in each of the two patients.

Recently, in contrast to relying solely on the highly variable genes to cluster the cells, sev-

eral methods have proposed alternative approaches. For example, Vandenbon and Diez’s
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singleCellHaystack [118] uses the Kullback-Leibler divergence to find cell type marker genes

independent of any prior clustering; Qiu leverages the dropouts to perform co-clustering to

identify cell types [93]; Zhang et al.’s Single-cEll Variable gEnes (SIEVE) [139] utilizes ran-

dom sampling for all single cells in a data set to produce a more robust set of highly variable

genes; and Kim et al.’s MarcoPolo [63] identifies informative marker genes independent of

any prior clustering using a three-step approach based on a bimodal mixture model, voting

system and whether the cells expressing a candidate gene are proximal to each other in a

low-dimensional space. To this end, since we have already obtained ranked groups of differen-

tially expressed genes in our data sets of interest in Chapter 2, we approach the identification

of homogeneous cell subpopulations in primary human bone marrow and hematopoietic stem

and progenitor cells without explicitly selecting for highly variable genes.

As we have noted in the previous chapters, while scRNA seq data can use tools developed

for bulk RNA seq data and microarray data, its noise and dimensionality largely prohibits

using any of the more classic biclustering algorithms to co-cluster the data. Furthermore,

feature selection is a key pre-processing step in scRNA seq data. The noise from including

all the genes and cells that passed quality control would muddle the biological significance

and obfuscate the results. Thus, we propose a sequential biclustering pipeline that leverages

the expression from the ranked groups of genes identified in Chapter 2.

4.2 Method

4.2.1 Pre-processing

For input into our sequential biclustering pipeline, we use the output from the differentially

expressed pipeline described in Chapter 2.4 and build on the pre-processed data sets from

Chapter 2.4.1. As a recap, we filtered out low quality cells and any genes where there are no
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expression in both the untreated and stimulated samples. We then normalized the count data

matrices and log-transformed them to yield two log-normalized data sets for each patient.

The output from Chapter 2 is a data frame containing the gene names, the W statistics,

p-values, scaled z-scores and cluster IDs, which are ranked from insignificant to significant

(1 to K the number of clusters). From the output, we select all the gene groups containing

scaled z-score values with a magnitude greater than 2 and subset each of the log-normalized

data sets to include only these “significant” gene groups. The rest are discarded from further

analysis. These significant gene groups will be used downstream to create a gene latent space

to cluster the cells.

For the rest of the pipeline, we require one data matrix so we simply merge the unstimulated

data set with the stimulated data set. Note that we have ensured that there is no batch

effect from the stimulation status, so the resulting clustering from this merged data set should

not be trivial where one cluster is the unstimulated group and the other is the stimulated

group. If there is a batch effect from the merging, we suggest integrating the unstimulated

and stimulated data sets using methods such as Seurat’s [46, 108] IntegrateData function

instead of merging the two data sets.

4.2.2 Creating the gene latent space

Since each gene grouping should contain only genes with similar latent expression profiles,

we can reduce the dimension of the pre-processed gene expression matrix by reducing the

dimension of each gene grouping to 1. For example, if the results from Chapter 2 yielded ngg

significant gene groups and there are ncells, the reduced gene expression matrix XG will have

dimensions ncells × ngg. Although more latent dimensions can be kept for each gene group,

we will concatenate all latent dimensions to create a gene latent space matrix. Keeping more

than one latent dimension per gene group introduces potential dependency which may affect
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downstream analyses.

To reduce the dimensionality of each gene grouping, we can use most standard approaches

to capture the information. As a full proof of concept, we try PCA, t-SNE and UMAP to

reduce the dimensionality of each gene grouping and keep only the first latent dimension

for each group. Since we will be using each gene group’s latent representation as covariates

for the cells, keeping only the first latent dimension to reduce high correlation between the

covariates. Figures 4.1 and 4.2 shows the latent spaces for each gene grouping if we had kept

two latent spaces per group.

4.2.3 Creating the cell latent space

Once we reduce each gene group to one latent dimension, we can concatenate these latent

dimensions to obtain our cell latent space. Given the gene latent space matrix XG with

dimensions ncells×ngg, we calculate the Pearson correlation matrix to determine which cells

have a stronger relationship with each other given its gene latent space expression profiles. A

value of zero indicates no linear relationship between the cells and values of 1 or −1 indicate

a strong positive linear relationship (correlation) or negative linear relationship respectively.

However, with dimensions ncells × ncells, its size creates computational challenges.

To mitigate this issue, we try to remove “redundant” information by reducing the correlation

matrix to two dimensions. This yields what we call the cell latent space expression matrix

XC with dimensions ncells× 2. Due to the size of the correlation matrix, the two methods of

dimensionality reduction that work the best in terms of efficiency and biological significance

appear to be UMAP and an autoencoder. For this chapter, we reduced the dimensions of the

correlation matrix for the unaffected patient using UMAP and for the MPN patient using

an autoencoder with 3 hidden layers (256-, 64-, and 2-units).
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4.2.4 Cluster the cells

In the previous sections, we created a reduced expression matrix XC with dimensions ncells×2

that encapsulates the gene expressions of each cell. With this relatively “small” matrix size,

arguably, most conventional clustering algorithms will be sufficient. To cluster XC , we use a

fairly simple approach: k-means clustering. Using this and the within-sum-of-squares (WSS)

to figure out the “best” number of clusters, we can obtain k clusters. For a non-parametric

approach, we can use a Dirichlet process mixture model (briefly described in Section 2.4.3)

with α = 0.1 and obtain a data-driven optimal number of clusters. We note that we can

modify the cluster resolution accordingly and further subdivide or combine clusters after

performing further downstream analyses to determine each cluster’s biological relevance.

4.2.5 Post-processing

To examine biological relevance, we must perform differential gene expression analysis to

label each cell cluster as clustering only groups the cells. Here, we again perform the Wilcoxon

test described in Section 2.4.2 but instead of comparing the stimulated sample against the

unstimulated sample, we will be comparing one cell cluster against all the other cell clusters.

Since we have k cell clusters, we will repeat this process k times to obtain a set of differential

genes (“marker”) genes for each cluster.
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4.3 Results

4.3.1 Clustering results: Unaffected Patient

From the pipeline outlined in Chapter 4, we obtain roughly seven cell clusters. Figure 4.1

shows the gene and cell latent representations. The top row of the figure visualizes the first

two latent dimensions of each gene cluster. We note that there are no batch effects here with

respect to their stimulation status, and that the differences between the three dimensionality

reduction methods are more striking between the UMAP aprroach versus the other two. All

three approaches suggest there may be at least two main gene clusters.

In Section 4.3.3, we will also examine the marker genes for each of these identified cluster to

determine what each group is.
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Figure 4.1: We visualize the latent representation of each gene cluster using PCA (A), t-SNE
(B) and UMAP (C) for the unaffected patient. After we obtain the gene latent representation,
we can calculate the cell latent representation (D) and then cluster the cells (E).

4.3.2 Clustering results: MPN Patient

In the MPN patient, we obtain roughly 3 main cell clusters but further subdivide to yield

7 cell clusters. Figure 4.2 shows the gene latent representations. The top row of the figure

visualizes the first two latent dimensions of each gene cluster. For the MPN patient, we

can clearly see the batch effects with respect to their stimulation status, especially when

we examine the gene clusters with higher rankings. This is expected, as these gene clusters

are supposed to be the “most” differentially expressed. In the less significant clusters (the

clusters with the smaller labels), none of the reduced dimensionality methods suggest there
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may be more than one cluster and no batch effects with respect to the stimulation status

is observed. We also note that the differences between the three dimensionality reduction

methods are more striking between the PCA aprroach versus the other two.

In Section 4.3.3, we will also examine the marker genes for each of these identified cluster to

determine what each group is. These groups may be trivial though, since we can clearly see

that the two main clusters are due to the sample’s TNF-α stimulation status.

Figure 4.2: We visualize the latent representation of each gene cluster using PCA (A), t-SNE
(B) and UMAP (C) for the MPN patient. After we obtain the gene latent representation,
we can calculate the cell latent representation (D) and then cluster the cells (E).
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4.3.3 Examining their marker genes

Figure 4.3 and Tables 4.1 and 4.2 show the top marker genes for each cluster in both patients.

Only the genes with a positive average log2 fold change are shown (average log-normalized

expression is higher in the cluster of interest relative to all other clusters). When we examine

the heatmaps, it is clear that many of the clusters can be combined due to shared gene marker

expression. However, the expression of Cluster 1 in the MPN patient (Figure 4.3B, suggests

that cluster may be subdivided into two.

In the MPN patient, the marker genes in cluster 1 are enriched for GO terms hydrogen per-

oxide catabolic process (GO:0042744); negative regulation of signal transduction in absence

of ligand (GO:1901099); and negative regulation of extrinsic apoptotic signaling pathway in

absence of ligand (GO:2001240). These genes are also associated with signaling pathways

apoptosis (KEGG 2021 Human) and the p53 signaling pathway (BioPlanet 2019). Clus-

ter 1 is predominantly TNF-α stimulated cells. The other TNF-α stimulated cell clusters

(Clusters 3, 4, and 7) are also enriched for GO terms cytokine-mediated signaling pathway

(GO:0019221); regulation of apoptotic process (GO:0042981) and cellular response to tumor

necrotic factor (GO:0071356). These clusters are significantly associated with the NF-κB

signaling and apoptosis pathways (KEGG 2021 Human) and TNF-α effects on cytokine ac-

tivity, cell motility and apoptosis (BioPlanet 2019). Cluster 7 is also enriched for chemokine-

mediated signaling pathway (GO:0070098) and cellular response to chemokine (GO:1990869),

and the chemokine signaling pathway (KEGG 2021 Human).

For the unstimulated cells, the marker genes for cluster 2 are enriched for regulation of stem

cell differentiation (GO:2000736) and associated with the transcriptional misregulation in

cancer (KEGG 2021 Human) and EGFR1 pathways (BioPlanet 2019). The marker genes

for Cluster 5 are enriched for cellular response to tumor necrosis factor (GO:0071356) and

upregulated in the GABAergic synapse (KEGG 2021 Human) and EGFR1 (BioPlanet 2019)
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pathways. Finally, the markers for Cluster 6 are enriched for the ERK1 and ERK2 cascade

(GO:0070371) and upregulated in the transcriptional misregulation in cancer (KEGG 2021

Human) and vasopressin-like receptors and eIF4E release (BioPlanet 2019) pathways.

In the unaffected patient, there are no distinct unstimulated and stimulated clusters. The

top enriched GO term for each cluster are: (1) nucleotide-binding domain, leucine rich re-

peat containing receptor signaling pathway (GO:0035872); (2) cytokine-mediated signaling

pathway (GO:0019221); (3) definitive hemopoiesis (GO:0060216); (4) regulation of apop-

totic process (GO:0042981) and regulation of cell population proliferation (GO:0042127); (5)

cytokine-mediated signaling pathway (GO:0019221); (6) cellular response to cytokine stimulus

(GO:0071345); and (7) cellular response to hormone stimulus (GO:0032870).

Regarding cell types/stage, the majority of these markers are not canonical human stem cell

markers. We verified that HSC markers CD34, THY1 and ITGA6 as well as progenitor

marker PTPRC were detected in both the unaffected and MPN samples, but these are

not differentially expressed (as expected). There are some cell clusters that express known

markers. For example, MPN cluster 1 appears to be erythocyte-like cells (HBB, HBD); MPN

cluster 2 appears to be B-like cells (LMO2 ), cluster 5 appears to be endothelial-like cells

(CRHBP), and cluster 6 progenitor cells (EIF4EBP1, NME1 ). In the unaffected patient,

cluster 1 appears to be lymphoid-primed cells (ZFP36L2 ), cluster 4 appears to be T-like

cells (CCL4L2, JUNB, IFIT3 ), and cluster 6 esinophil-like cells (CXCL8 ).
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Figure 4.3: Heatmap of the top 10 marker genes for each cluster in the unaffected patient
(A) and MPN patient (B).
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Cluster Gene Adj p-value Avg log2FC

1 SOCS2 6.32e-85 0.334

1 ZFP36L2 8.69e-73 0.274

2 CXCL10 0 0.953

2 CXCL8 0 0.939

2 TNFSF10 0 0.877

2 TRAF1 0 0.857

2 BIRC3 0 0.844

3 ZFP36L2 0 0.643

3 FAM30A 0 0.461

3 LYL1 5.52e-300 0.361

3 HOXA9 1.24e-294 0.373

3 LMO2 9.159e-288 0.391

4 CXCL10 2.39e-161 0.776

4 GADD45B 2.42e-111 0.617

4 CXCL11 7.8e-111 0.61

4 JUN 1.32e-107 0.572

4 IFIT2 1.13e-77 0.566

5 CXCL8 0 1.31

5 CXCL3 0 1.08

5 BIRC3 0 0.952

5 IER3 0 0.952

5 BCL2A1 0 0.849

6 CXCL8 1.05e-24 0.486

6 SOCS1 7.94e-09 0.251

6 LXN 7.2e-05 0.265

7 LRMP 0 0.705

7 ZFP36L2 0 0.584

7 FAM30A 4.94e-220 0.414

7 ANGPT1 2.29e-198 0.382

7 CRHBP 2.02e-152 0.366

Table 4.1: Top 5 marker genes for each cell cluster in the unaffected patient’s samples. Only
marker genes with a positive log2 fold change are shown. Note that some clusters may have
less than five (positive) marker genes.
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Cluster Gene Adj p-value Avg log2FC

1 JUN 0 0.576

1 SOCS3 7.16e-296 0.568

1 HBD 5.68e-221 0.621

1 GADD45B 3.09e-122 0.422

1 HBB 1.07e-102 0.845

2 MLLT3 6.23e-285 0.337

2 ZFP36L2 6.46e-226 0.375

2 LMO2 3.89e-176 0.262

2 LXN 7.89e-160 0.318

2 CH25H 2.33e-68 0.282

3 CXCL8 0 0.913

3 TNFSF10 0 0.827

3 BIRC3 0 0.76

3 NFKBIA 0 0.749

3 BCL2A1 0 0.732

4 CXCL8 0 1.11

4 BIRC3 0 0.904

4 NFKBIA 0 0.858

4 CXCL3 0 0.837

4 BCL2A1 0 0.831

5 CRHBP 0 0.638

5 ZFP36L2 0 0.635

5 IGHM 0 0.586

5 ARID5B 0 0.543

5 HEMGN 0 0.522

6 ZFP36L2 0 0.493

6 EIF4EBP1 0 0.388

6 NME1 0 0.388

6 AVP 0 0.379

6 MLLT3 0 0.373

7 CXCL6 0 1.14

7 CXCL1 0 0.854

7 CCL4L2 0 0.795

7 MIR155HG 0 0.794

7 KYNU 0 0.794

Table 4.2: Top 5 marker genes for each cell cluster in the MPN patient’s samples. Only
marker genes with a positive log2 fold change are shown.
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4.4 Discussion

In Chapter 2, we investigated the differential gene expression between an untreated sample

and a sample treated with TNF-α in an unaffected patient and a MPN patient. We confirm

that the MPN patient shows more response to inflammation than the unaffected patient.

Here, we examine the response taking the heterogeneity of the cells into account.

Given the gene groupings from Chapter 2, we reduce the dimensionality of each gene group

to one and concatenate their latent dimensions to form a cell latent representation. To

identify which cells have a stronger relationship with each other given its gene latent space

expression profile, we calculate the Pearson correlation matrix and cluster the cells.

Our framework is able to incorporate differentially expressed genes between two samples

and more information from the genes overall to inform our cell clustering. Furthermore,

as the amount of cells increase due to advances in sequencing technology, our framework

can be updated to address computational limitations. For example, after obtaining the cell-

cell correlation matrix, we can fit an autoencoder to the correlation matrix and extract the

middle encoded layer. With an autoencoder, we can minimize the reconstruction loss between

the original object (the cell-cell correlation matrix) and the decoded object (the correlation

matrix projected from the middle encoded layer). This gives us higher confidence that our

encoded latent space is a good representation of the original correlation matrix. However,

with smaller correlation matrices such as the one for the unaffected patient, the clustering

results are comparable when using UMAP compared to an autoencoder. So we decided to use

UMAP to reduce the dimensionality of the correlation matrix for computational efficiency.

We are also currently using a fairly basic approach to cluster the reduced correlation ma-

trix. Other methods, such as the Dirichlet process mixture model, may be more suited to

determine the “correct” number of clusters given the data. The Dirichlet process mixture

model is computationally expensive and has invariance issues when the input data is large,
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but the reduced correlation matrix has a dimension of ncells × 2, making it a good potential

candidate for non-parametric clustering techniques.

As this “biclustering” framework has a nested approach, one major limitation is the gene

clusters. In the previous chapter, we described a computational framework to obtain gene

clusters given that we wanted to compare two samples. The resulting gene clusters are

ranked groups of differentially expressed genes, with varying biological processes. If we had

only one sample to “bicluster”, a natural set of gene groupings might be leveraging known

pathway information to group the genes.
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Chapter 5

Pipeline to predict the circadian time

from genomics data

Junyan Duan1, Michelle N. Ngo1, Satya Swaroop Karri, Babak Shahbaba, John Lowengrub,

Bogi Andersen

1 Equal contribution

5.1 Introduction

Organisms have evolved intrinsic circadian clocks that help them anticipate and adjust to

environmental changes caused by the 24-hour rotation of the Earth [7, 20]. The mammalian

circadian clock is a biochemical oscillator powered by transcription-translation loops con-

sisting of a positive arm and a negative arm [7, 20, 112]. In the positive arm, BMAL1 and

CLOCK promote the expression of clock-controlled genes including the negative arm factors

PER and CRY. PER and CRY inhibit the activating effect of BMAL1-CLOCK, leading to
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24-hour oscillations.

In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus acts as the central

pacemaker that coordinates and synchronizes circadian rhythms in peripheral tissues through

neuronal and hormonal signals [14]. Besides signals from the SCN, environmental signals

such as temperature [14], feeding [86, 124], and direct light [13] can selectively set peripheral

clocks, sometimes causing asynchrony between the central and peripheral clocks. Epidemi-

ological studies of shift workers and chronically jet-lagged individuals have revealed correla-

tions between circadian disruption and cardiovascular diseases [82], mental health disorders

[123], metabolic diseases [61, 89, 120], as well as cancer in various organs [75, 104] including

skin [44, 134], breast [101, 45], and prostate [26, 128].

The goal of the nascent field of circadian medicine is to take into account circadian rhythm

and its disruption in patient care. As the rhythm of a patient or diseased tissue is not

necessarily synchronized with the external light-dark cycle, an important challenge in cir-

cadian medicine is to determine the internal circadian time of the patient or the tissue of

focus. Such information can determine optimal time of treatment and identify conditions

that might benefit from restoring circadian function [110, 28]. Current methods of circadian

rhythm determination for a patient include the dim-light melatonin-onset assay [60], as well

as circadian rhythm inference from body temperature [96] or cortisol levels in sweat [117].

Several groups have developed methods to infer circadian time of a sample (organism, organ,

or tissue) based on transcriptomic data. ZeitZeiger [55] identifies useful features (genes) for

prediction, scales the features over time, applies sparse principal component analysis, and

predicts according to maximum likelihood estimation. BIO CLOCK [1] uses supervised

deep neural networks with coupled sine and cosine output units. TimeSignatR [10] is mainly

designed for blood samples and applies within-subject renormalization and an elastic net

predictor, making it generalizable between transcriptomic data from different assay plat-

forms.
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All existing methods have limitations. ZeitZeiger frequently runs into linear dependency

issues, needs to be retrained before each prediction, and is not generalizable between tran-

scriptomic platforms. BIO CLOCK does not require re-training for each prediction but is

not time-efficient. TimeSignatR performs well if there are two test samples, but performance

depends on the time interval between the two samples. When given only one test sample,

TimeSignatR can infer a second sample, but it has very low accuracy.

To address these issues, we present tauFisher, a pipeline that can accurately predict circadian

time from a single transcriptomic data irrespective of the transcriptomic platform. tauFisher

improves on previous methods in several ways: (1) it does not require the training data to

be a complete time series; (2) the within-sample normalization step allows tauFisher to give

an accurate prediction from just one sample; (3) since tauFisher only needs a few features to

make accurate predictions, training and testing are computationally efficient; (4) tauFisher

is platform agnostic and users only need to train the predictor once and can use the same

predictor to make predictions for external data sets of the same tissue, regardless of the

assay methods; and (5) unprecedentedly, tauFisher trained on bulk sequencing data is able

to accurately predict the circadian time of single cell RNA sequencing (scRNA-seq) data.

To benchmark tauFisher, we begin by using tauFisher to predict the circadian time of eight

previously studied data sets from multiple tissue types and experimental settings. We create

several simulated time series data sets to demonstrate that tauFisher is not only able to ac-

curately predict the circadian time of a sample but can also be used to investigate circadian

phase heterogeneity in different cell types. We then collected a time series of scRNA-seq

data from mouse dermis in this study. We found that most of the rhythmic processes are

metabolism-related in dermal fibroblasts, while almost all rhythmic processes are related

to immune response in dermal immune cells. Additionally, we found that the amplitude of

the collective rhythm is dampened in dermal immune cells compared to dermal fibroblasts.

Incorporating tauFisher with bootstrapping revealed that circadian phase heterogeneity con-
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tributes to the dampened collective rhythm as well as fewer rhythmic genes found in dermal

immune cells.

5.2 Results

5.2.1 Overview of tauFisher

tauFisher is an assay platform-agnostic method that predicts circadian time from a single

transcriptomic sample. The training part of the pipeline requires a time series of transcrip-

tomic data and consists of five main steps: (1) identifying diurnal genes with a period length

of 24 hours, (2) curve fitting using functional data analysis to fill in the missing time points

and to make the training data less noisy, (3) within-sample normalization by calculating and

scaling the difference in expression for each pair of predictor genes, (4) linearly transform-

ing the scaled differences using principal component analysis, and (5) fitting a multinomial

regression on the first two principal components (Figure 5.1, Method Section 5.3.1).

For testing, a transcriptomic sample without a time label is narrowed to include only the

predictor genes identified in the training data. After the within-sample normalization step,

the test sample is projected to the principal component space and multinomial regression is

performed to predict time of the test sample (Figure 5.1, Method Section 5.3.1).
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Figure 5.1: Key steps of the tauFisher pipeline given an expression matrix (“exp.”) includes
identification of periodic genes, functional data analysis, within-sample feature normaliza-
tion, and multinomial regression.
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5.2.2 tauFisher outperforms current methods when trained and

tested on bulk-sequencing data.

To assess the robustness and accuracy of tauFisher in predicting circadian time from a single

sample of transcriptomic data, we applied tauFisher to a diverse set of data collected from

different species, tissues and sequencing platforms (Table 5.1).

Table 5.1: data sets from different species, tissues and sequencing platforms were used to
benchmark tauFisher’s ability to predict circadian time.

Data Year GEO Species Tissue Platform
Sampling

Frequency

Time Course

Duration

Arnardottir ES et al. [6] 2014 GSE56931 Homo sapiens Blood Custom Affymetrix Microarray 4h 72h

Braun R et al. [10] 2018 GSE113883 Homo sapiens Blood Illumina NextSeq 500 2h 28h

Geyfman M et al. [39] 2012 GSE38622 Mus musculus Skin Affymetrix Mouse Gene 1.0 ST Array 4h 48h

Tognini P et al. [115] 2020 GSE157077 Mus musculus SCN Illumina HiSeq 4000 4h 24h

Zhang R et al. [137] 2014 GSE54650 Mus musculus Kidney Affymetrix Mouse Gene 1.0 ST Array 2h 48h

Zhang R et al. [137] 2014 GSE54650 Mus musculus Liver Affymetrix Mouse Gene 1.0 ST Array 2h 48h

Zhang R et al. [137] 2014 GSE54651 Mus musculus Kidney Illumina HiSeq 2000 6h 48h

Zhang R et al. [137] 2014 GSE54651 Mus musculus Liver Illumina HiSeq 2000 6h 48h

For each benchmark data set, we generated 100 random train and test partitions (without

replacement) of the samples. In each partition, we used 80% of the samples for training and

20% for testing.

We compared tauFisher to the current state-of-the-art methods: ZeitZeiger [55] and TimeS-

ignatR [10]. As TimeSignatR is able to predict circadian time for samples from one time

point alone, or one time point with an inferred second time point, we included both types

of predictions in the benchmark.

We define a prediction within two hours of the true time to be correct. Using other time

ranges to define correctness minimally change the benchmark outcome (Table 5.3).

tauFisher achieved the highest accuracy for all eight benchmark data sets; seven using pre-
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dictor genes found by JTK Cycle [54] and one using Lomb-Scargle [41] (Figure 5.2; Table

5.2). While ZeitZeiger did not attain the highest accuracy in any of the data sets, it achieved

the lowest root mean squared error (RMSE) in three of the data sets and comparable RMSE

to tauFisher in half of the data sets. However, ZeitZeiger could not predict the time for

several iterations due to linearly dependent basis vectors. Particularly, in the kidney and

liver bulk sequencing data sets, ZeitZeiger failed to predict the time for all 100 iterations.

TimeSignatR performed the worst among the three methods, giving the lowest accuracy and

the highest RMSE.

69



Figure 5.2: tauFisher outperforms published circadian time prediction methods in both ac-
curacy and RMSE for transcriptomic data collected from various organs and assay platforms.
ns: p-value > 0.05, ∗: p-value ≤ 0.05, p-value ≤ 0.01, ∗ ∗ ∗: p-value ≤ 0.001, ∗ ∗ ∗∗: p-value
≤ 0.0001.
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Table 5.2: Benchmark results (mean ± standard deviation) when we train on 80% of the
data set and predict the circadian time of 20%.

Data Metric ZeitZeiger
TimeSignatR tauFisher

w/ 1-point w/ 2-point w/ Lomb-Scargle w/ JTK Cycle

[6]
Accuracy 0.325 ± 0.103 0.168 ± 0.110 0.126 ± 0.084 0.347 ± 0.139 0.417 ± 0.148

RMSE 4.829 ± 0.779 7.213 ± 1.440 7.209 ± 1.403 5.666 ± 0.848 5.167 ± 0.890

# NA 0 6 6 0 0

[10]
Accuracy 0.487 ± 0.094 0.235 ± 0.087 0.181 ± 0.077 0.367 ± 0.088 0.499 ± 0.084

RMSE 3.957 ± 0.571 6.198 ± 0.574 6.572 ± 0.517 5.606 ± 0.646 4.655 ± 0.610

# NA 0 0 0 0 0

[40]
Accuracy 0.460 ± 0.344 0.210 ± 0.240 0.047 ± 0.116 0.740 ± 0.258 0.670 ± 0.330

RMSE 4.558 ± 3.640 5.781 ± 1.785 7.982 ± 1.949 2.488 ± 1.662 2.707 ± 1.976

# NA 15 0 0 0 0

[115]
Accuracy 0.075 ± 0.218 0.285 ± 0.228 0.075 ± 0.120 0.545 ± 0.239 0.635 ± 0.237

RMSE 10.784 ± 3.317 5.540 ± 1.512 7.883 ± 1.392 3.722 ± 1.880 2.969 ± 1.477

# NA 88 0 0 0 0

[137]2,4
Accuracy 0.986 ± 0.051 0.176 ± 0.159 0.100 ± 0.119 0.966 ± 0.086 1.000 ± 0.000

RMSE 0.849 ± 0.244 6.639 ± 1.366 6.511 ± 1.172 1.021 ± 0.406 0.911 ± 0.256

# NA 0 0 0 0 0

[137]1,2,5
Accuracy NA 0.330 ± 0.286 0.100 ± 0.201 0.695 ± 0.414 0.945 ± 0.200

RMSE NA 4.578 ± 1.733 8.136 ± 2.638 2.965 ± 3.117 1.076 ± 0.981

# NA 100 0 0 0 0

[137]3,4
Accuracy 0.868 ± 0.156 0.164 ± 0.137 0.076 ± 0.106 0.880 ± 0.161 0.932 ± 0.103

RMSE 1.391 ± 1.124 6.467 ± 1.382 6.844 ± 1.137 1.797 ± 1.479 1.182 ± 0.451

# NA 0 0 0 0 0

[137]1,3,5
Accuracy NA 0.360 ± 0.341 0.065 ± 0.169 0.765 ± 0.344 0.910 ± 0.269

RMSE NA 3.787 ± 2.067 8.343 ± 2.434 2.269 ± 2.356 1.203 ± 0.825

# NA 100 0 0 0 0

1If ZeitZeiger [55] was unable to do a 3-fold cross validation, we ran ZeitZeiger without any

cross validation and set sumabsv = 1 and nSpc = 3. 2kidney 3liver 4microarray 5bulk RNA
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Table 5.3: Benchmark results (mean ± standard deviation) when we train on 80% of the
data set and predict the circadian time of 20%.

Data Metric ZeitZeiger
TimeSignatR tauFisher

w/ 1-point w/ 2-point w/ Lomb-Scargle w/ JTK Cycle

[6]
Accuracy (within 3 hr) 0.480 ± 0.122 0.250 ± 0.131 0.181 ± 0.098 0.456 ± 0.151 0.517 ± 0.135

Accuracy (within 2 hr) 0.325 ± 0.103 0.168 ± 0.110 0.126 ± 0.084 0.347 ± 0.139 0.417 ± 0.148

Accuracy (within 1 hr) 0.174 ± 0.094 0.085 ± 0.095 0.077 ± 0.076 0.209 ± 0.107 0.264 ± 0.129

Accuracy (exact) 0.002 ± 0.011 0.000 ± 0.000 0.000 ± 0.000 0.076 ± 0.075 0.104 ± 0.078

[10]
Accuracy (within 3 hr) 0.635 ± 0.087 0.342 ± 0.097 0.266 ± 0.085 0.477 ± 0.096 0.625 ± 0.078

Accuracy (within 2 hr) 0.487 ± 0.094 0.235 ± 0.087 0.181 ± 0.077 0.367 ± 0.088 0.499 ± 0.084

Accuracy (within 1 hr) 0.250 ± 0.067 0.120 ± 0.061 0.084 ± 0.053 0.235 ± 0.073 0.304 ± 0.071

Accuracy (exact) 0.001 ± 0.006 0.000 ± 0.000 0.000 ± 0.000 0.072 ± 0.053 0.092 ± 0.052

[39]
Accuracy (within 3 hr) 0.563 ± 0.350 0.320 ± 0.259 0.070 ± 0.136 0.783 ± 0.248 0.750 ± 0.286

Accuracy (within 2 hr) 0.460 ± 0.344 0.210 ± 0.240 0.047 ± 0.116 0.740 ± 0.258 0.670 ± 0.330

Accuracy (within 1 hr) 0.307 ± 0.275 0.107 ± 0.163 0.027 ± 0.091 0.590 ± 0.280 0.543 ± 0.295

Accuracy (exact) 0.010 ± 0.057 0.000 ± 0.000 0.000 ± 0.000 0.257 ± 0.263 0.227 ± 0.241

[115]
Accuracy (within 3 hr) 0.108 ± 0.298 0.402 ± 0.230 0.100 ± 0.133 0.610 ± 0.237 0.705 ± 0.237

Accuracy (within 2 hr) 0.075 ± 0.218 0.285 ± 0.228 0.075 ± 0.120 0.545 ± 0.239 0.635 ± 0.237

Accuracy (within 1 hr) 0.040 ± 0.150 0.128 ± 0.172 0.032 ± 0.084 0.412 ± 0.257 0.468 ± 0.253

Accuracy (exact) 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.190 ± 0.195 0.182 ± 0.181

[137]2,4
Accuracy (within 3 hr) 0.996 ± 0.028 0.256 ± 0.178 0.192 ± 0.133 0.996 ± 0.028 1.000 ± 0.000

Accuracy (within 2 hr) 0.986 ± 0.051 0.176 ± 0.159 0.100 ± 0.119 0.966 ± 0.086 1.000 ± 0.000

Accuracy (within 1 hr) 0.728 ± 0.179 0.096 ± 0.125 0.012 ± 0.048 0.880 ± 0.158 0.916 ± 0.128

Accuracy (exact) 0.004 ± 0.028 0.000 ± 0.000 0.000 ± 0.000 0.370 ± 0.219 0.358 ± 0.209

[137]1,2,5
Accuracy (within 3 hr) NA 0.475 ± 0.279 0.115 ± 0.211 0.720 ± 0.416 0.945 ± 0.200

Accuracy (within 2 hr) NA 0.330 ± 0.286 0.100 ± 0.201 0.695 ± 0.414 0.945 ± 0.200

Accuracy (within 1 hr) NA 0.240 ± 0.251 0.070 ± 0.174 0.565 ± 0.453 0.815 ± 0.346

Accuracy (exact) NA 0.000 ± 0.000 0.000 ± 0.000 0.250 ± 0.314 0.375 ± 0.344

[137]3,4
Accuracy (within 3 hr) 0.964 ± 0.100 0.264 ± 0.186 0.168 ± 0.105 0.936 ± 0.133 0.986 ± 0.059

Accuracy (within 2 hr) 0.868 ± 0.156 0.164 ± 0.137 0.076 ± 0.106 0.880 ± 0.161 0.932 ± 0.103

Accuracy (within 1 hr) 0.626 ± 0.225 0.086 ± 0.118 0.000 ± 0.000 0.764 ± 0.196 0.850 ± 0.162

Accuracy (exact) 0.002 ± 0.020 0.000 ± 0.000 0.000 ± 0.000 0.312 ± 0.189 0.308 ± 0.219

[137]1,3,5
Accuracy (within 3 hr) NA 0.465 ± 0.357 0.075 ± 0.179 0.840 ± 0.332 0.970 ± 0.171

Accuracy (within 2 hr) NA 0.360 ± 0.341 0.065 ± 0.169 0.765 ± 0.344 0.910 ± 0.269

Accuracy (within 1 hr) NA 0.240 ± 0.289 0.060 ± 0.163 0.585 ± 0.427 0.735 ± 0.313

Accuracy (exact) NA 0.000 ± 0.000 0.000 ± 0.000 0.155 ± 0.263 0.335 ± 0.326

1If ZeitZeiger [55] was unable to do a 3-fold cross validation, we ran ZeitZeiger without any

cross validation and set sumabsv = 1 and nSpc = 3. 2kidney 3liver 4microarray 5bulk RNA
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5.2.3 tauFisher accurately predicts circadian time for cross-platform

bulk transcriptomic data.

Since tauFisher gives accurate circadian time prediction for bulk transcriptomic data col-

lected from various platforms, we examined its performance when trained and tested on data

sets generated from different platforms. We used rhythmic genes identified by JTK Cycle in

the tauFisher pipeline, since this combination resulted in the most accurate predictions in

the within-platform benchmark.

We trained tauFisher on GSE38622 [39], a microarray data set collected from mouse dorsal

skin every four hours for 48 hours under regular 12:12 light-dark cycle (zeitgeber time [ZT]

2, 6, 10, ...). The test data set is from GSE83855 [124], a bulk RNA-seq data set collected

every four hours for 28 hours under 12:12 light-dark cycle (ZT0, 4, 8, ...) from mouse dorsal

skin in a time-restricted feeding study. Since time of feeding influences tissue’s circadian

clock [124, 28], we only selected the ad libidum control condition for testing so that the time

labels best represent the internal time.

Eighteen genes were selected to be predictor features. Though the train and test data sets

are not on the same scale and were collected at different time points, their overall rhythmic

patterns agree with each other (Figure 5.3A). For seven out of the eight tests, tauFisher

predicted a circadian time that is within the 2-hour range from the actual time label, giving

a high accuracy of 0.875 and a low RMSE of 2.669 (Figure 5.3A). This example demonstrates

tauFisher’s ability to accurately predict circadian time across bulk transcriptomics platforms.
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5.2.4 tauFisher trained on bulk RNA-seq data and microarray

data accurately predicts circadian time of scRNA-seq sam-

ples.

tauFisher’s ability to predict circadian time is not limited to cross-platform bulk-level tran-

scriptomic data sets. It can predict circadian time for scRNA-seq data as well. In particular,

tauFisher only needs to be trained on a time series of bulk-level transcriptomic data, which

is more abundant and cheaper to collect than a scRNA-seq data time series.

Since most published scRNA-seq data sets do not have time labels, the selection of test data

sets was limited. Here we tested tauFisher on scRNA-seq data collected from the mouse

SCN [127] and mouse dermal skin (collected in this study).

GSE117295 [127] includes twelve SCN samples collected from circadian time (CT) 14 to 58

every four hours (CT14, 18, 22, ...) under constant darkness, and one light-stimulated SCN

sample. Since light immediately leads to differential expression of rhythmic genes [127], only

the samples from the control experiment were used for benchmarking. For each of the twelve

samples, a pseudobulk data set was generated for testing. For training, we chose GSE157077

[115], a time series of bulk RNA-seq data collected from the mouse SCN every four hours

under regular 12:12 light-dark cycle starting at ZT0. Since each time point in the training

data set contains three replicates, instead of averaging them, we concatenated the replicates

so that the input training data spans 72 hours.

Twenty genes from the training data passed the feature selection criteria. These genes display

robust rhythms in both the training data and the testing pseudobulk data (Figure 5.3B).

The test data appears to be noisier since it is not normalized. tauFisher does not require the

test data to be normalized as the within-sample normalization step is part of the pipeline.

In ten out of the twelve tests, tauFisher predicted a time that is within 2-hour of the labeled
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time, resulting a high accuracy of 0.833 and a low RMSE of 1.936 (Figure 5.3B). Although

none of the published circadian time prediction methods claims to be able to predict time for

scRNA-seq data, we still tested their performance. tauFisher greatly outperforms ZeitZeiger

and TimeSignatR in both accuracy and RMSE (Table 5.4).

Table 5.4: tauFisher trained on SCN bulk RNA-seq data [115] accurately predicts circadian
time for pseudobulk data (generated from scRNA-seq data [127]).

ZeitZeiger TimeSignatR tauFisher

w/ 1pt w/ 2pt w/ JTK Cycle

Sample Truth Prediction Error Prediction Error Prediction Error Prediction Error

CT14 14 16 -2 14 0 14 0 13 1

CT18 18 2 -8 12 6 15 3 17 1

CT22 22 2 -4 12 10 14 8 0 -2

CT26 2 2 0 11 -9 13 -11 0 2

CT30 6 15 -9 11 -5 12 -6 10 -4

CT34 10 15 -5 11 -1 12 -2 10 0

CT38 14 16 -2 14 0 14 0 13 1

CT42 18 2 -8 13 5 15 3 18 0

CT46 22 2 -4 13 9 16 6 0 -2

CT50 2 2 0 11 -9 16 10 0 2

CT54 6 15 -9 10 -4 11 -5 9 -3

CT58 10 15 -5 12 -2 12 -2 11 -1

Accuracy 0.33 0.33 0.33 0.83

RMSE 5.63 6.12 5.83 1.94

To ensure that tauFisher’s performance on scRNA-seq data is consistent and applicable to

peripheral clocks, we performed scRNA-seq on adult wild type C57BL/6J mouse dermis

every four hours for 72 hours under 12:12 light-dark cycle for testing. The pseudobulk

matrix for the 18 samples were computed directly from the unprocessed data. We trained

tauFisher on GSE38622 [39], a time series of microarray data. Because two of the rhythmic
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genes, A630005I04Rik and Ivl, are not present in the pseudobulk data, only 16 features were

selected in the tauFisher pipeline in this test (Figure 5.3C).

While the input test data, the unnormalized pseudobulk data, appears to be noisy, tauFisher

successfully predict circadian times for the 18 samples thanks to the within-sample normal-

ization step in the tauFisher pipeline (Figure 5.3C). In 14 out of the 18 tests, tauFisher

predicted circadian time within 2 hours of the labeled time, giving a high accuracy of 0.778

and a low RMSE of 2.198 (Figure 5.3C).

In summary, we have demonstrated that tauFisher trained on bulk-level transcriptomic data,

either bulk RNA-seq or microarray data, can accurately predict circadian time for scRNA-

seq data sets, making it particularly useful for expanding the current scRNA-seq database

for circadian studies by adding time labels to existing scRNA-seq data.
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Figure 5.3: tauFisher accurately predicts circadian time even when the training and test
data are from different assay methods. a tauFisher trained on skin microarray data can
predict circadian time for skin bulk RNA-seq data. b tauFisher trained on SCN bulk RNA-
seq data can predict circadian time of pseudobulk data generated from SCN scRNA-seq
data. c tauFisher trained on skin microarray data can be used to predict circadian time of
pseudobulk data generated from dermis scRNA-seq data. a, b, c Left: Predictor features
and their expression in the training and test data. Right: Prediction outcomes for the tests.
Labels on the circumference are the time labels for the test data. Predicted times are plotted
along the radius, with colors representing absolute error. Black bars along the radius marks
the truth (same as the labels on the circumference).
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5.2.5 Collective circadian rhythms are dampened in dermal im-

mune cells compared to dermal fibroblasts.

Due to the frequency of sequencing dropouts for clock genes in scRNA-seq data, investigating

the circadian clock within each cell is not yet achievable. To overcome this limitation,

previous studies have used pseudobulk approaches to investigate the clock in scRNA-seq

data [127].

To validate the pseudobulk approach for studying the circadian clock in mouse dermis, we

normalized the pseudobulk scRNA-seq data, and compared it with the published microarray

data GSE38622 from mouse whole skin [39]. Overlay of the expression of nine core clock

genes, Arntl, Dbp, Per1, Per2, Per3, Nr1d1, Nr1d2, Cry1 and Cry2, reveals perfect consis-

tency between the microarray data and the scRNA-seq data (Figure 5.4A), indicating that

circadian clock gene expression in the dermis is captured in the pseudobulk data generated

from scRNA-seq data.

To study the circadian clock at a cell-type level in the skin, we integrated all samples and

performed scRNA-seq analysis to identify cell types. In total, 16,866 cells passed the quality

control, with around 950 cells per sample and around 2,800 cells per ZT. Four major cell

types, fibroblasts (N = 12,649), immune cells (N = 3,353), muscle cells (N = 722) and

endothelial cells (N = 142) were identified using canonical marker genes (Figure 5.4B). Due

to low cell counts for muscle and endothelial cells (N<20) in some samples, we could not

generate a reliable time series of pseudobulk data for these two cell types. Thus, we focus

on studying the circadian clock in dermal fibroblasts and immune cells in this study.

To compare the core clock in fibroblasts and immune cells, we computed and normalized

the pseudobulk for each of the two cell types in each sample. Both fibroblasts and immune

cells possess robust circadian clock at the pseudobulk-level. While the overall rhythms in

the two cells types are consistent with each other, with core clock gene expressions peaking
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and troughing around the same time, the amplitudes of the oscillations are reduced in the

immune cells compared to fibroblasts, indicating a dampened collective clock in immune cells

(Figure 5.4C). Whether this observation indicates less synchronous clocks in immune cells

than in fibroblasts, or weaker clock function in each individual immune cell, is not known.

Figure 5.4: a Expression of the core clock genes in the normalized pseudobulk generated from
scRNA-seq data (pink) is consistent with their expression in the published microarray data
(blue). b Four major cell types, fibroblasts (red), immune cells (blue), muscle cells (green)
and endothelial cells (yellow) are identified using canonical marker genes. Feature plots of
the representative marker genes are shown (orange: high expression; grey: low expression);
Col1a1 for fibroblasts, Acta1 for muscle cells, Fabp4 for endothelial cells, Cd52 and Cd74
for immune cells. c At the pseudobulk-level, expression pattern of the core clock genes are
similar in fibroblasts (red) and immune cells (blue), while the amplitudes of the oscillations
are dampened in immune cells fore most of the core clock genes.
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5.2.6 Dermal fibroblasts and immune cells harbor different rhyth-

mic pathways and processes.

To study diurnal genes and pathways in dermal fibroblasts and immune cells, we used

JTK Cycle to identify rhythmic genes from the normalized pseudobulk data. We identified

1,867 and 353 rhythmic genes in fibroblasts and immune cells, respectively (Figure 5.5A).

The fewer rhythmic genes in immune cells is not caused by the lower cell count of immune

cells, as randomly down-sampling the fibroblasts to the number of immune cells produced

similar results. Only 79 genes were rhythmic in both cell types, with most of them related

to the core clock network and metabolism.

Gene Ontology analysis revealed that rhythmic processes in fibroblasts and immune cells

are different. Shared terms reflect basic cell integrity maintenance and function including

nucleocytoplasmic transport, regulations of cellular amide metabolic process, regulation of

protein stability, and rhythmic process (Figure 5.5B). For fibroblasts, additional metabolism

processes and migration are significantly enriched by the rhythmic genes (Figure 5.5B, red).

For immune cells, the rhythmic genes enrich for more immune responses including defense

response to virus, regulation of T-helper 2 cell differentiation, and response to interferon-beta

(Figure 5.5B, blue).

We selected some of the rhythmic genes in fibroblasts (Figure 5.5C) and immune cells (Fig-

ure 5.5D)and compared their expression patterns in the two cell types. For fibroblasts,

we highlight genes related to glucose metabolism (Pkm), glycosylation (Gal3st4, Plpp3 ),

OXPHOS (Ndufs8 ), collagen (Loxl2, Tgfb1 ), amino acid metabolism (Ivd), sterol synthesis

(Scp2, Por), and cell adhesion and migration (Elmo2, Antxr1 ), suggesting circadian regu-

lation of the above processes at a molecular level (Figure 5.5C). Interestingly, while some

genes are only significantly rhythmic in fibroblasts because they are not expressed in immune

cells (e.g. Loxl2 ), some are expressed at similar or higher levels in immune cells, but are not
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significantly rhythmic in the latter (e.g. Ndufs8, Scp2 ), indicating cell-type specific circadian

regulations.

For the immune cells, genes related to inflammatory and immune response (Cdk19, Cd84 ),

post-translational modification (Sumo1 ), extracellular matrix regulation (Mmp9 ), transcrip-

tion regulation (Med16 ), electrochemical gradient maintenance (Atp1b1 ), and intercellular

communication (Stxbp6 ) are rhythmic (Figure 5.5D). We note that Sumo1 is rhythmic in

both fibroblasts and immune cells, but the expression peaks 4-hour later in immune cells

than in fibroblasts.

Interestingly, the expression of Il18r1 is significantly rhythmic with a large amplitude in

fibroblasts (p-value = 2.21 × 10−7), but not in immune cells (p-value = 0.7104) (Figure

5.5C). The level of IL18, the ligand that binds to IL18R1, was found to be rhythmic in

mouse peripheral blood [67]. Here, Il18, the gene encodes IL18, is significantly rhythmic in

neither fibroblasts (p-value = 0.3097) nor immune cells (p-value = 0.0925) (Figure 5.5D).

But, it is possible that the insignificance of the p-value for immune cells is caused by noise

introduced by summing the expression of all types of immune cells.

To further explore the rhythmic pathways in dermal fibroblasts and immune cells, we divided

the list of rhythmic genes into four groups based on their peaking time (Method Section

5.3.8): day (ZT3 - ZT9), evening (ZT9 - ZT15), night (ZT15 - ZT21), and morning (ZT21 -

ZT3 of the next day). The rhythmic genes are roughly evenly split: in fibroblasts, 426 peak

during the day, 554 peak in the evening, 545 peak at night, and 421 peak in the morning;

in immune cells, 129 peak during the day, 111 peak in the evening, 87 peak at night, and

105 peak in the morning. We then performed Gene Ontology analysis on the quarter-day

rhythmic gene lists to identify the biological processes that are upregulated at different times

of the day. We highlight some of the terms related to metabolism, signaling, cell proliferation

and apoptosis, gene regulation, and immune regulation (Figure 5.5E).
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During evening and night, when mice wake up, start feeding, and become active, processes

such as generation of precursor metabolites and energy, cellular respiration, mitochondrial

respiratory chain complex I assembly are upregulated in fibroblasts. Meanwhile , glycolytic

processes are upregulated in fibroblasts, which is consistent with the finding that glycolysis

is preferred at night in epidermal stem cells [107]. Additionally, similar to epidermal stem

cells, more dermal fibroblasts may be in the S-phase of the cell cycle during the evening and

night, as DNA biosynthetic process is enriched during this time. Various signaling pathways

are also enriched during this time, including prostaglandin metabolic process and regulation

of apoptotic signaling pathway. Gene-regulatory mechanisms such as histone modification

and mRNA splicing are upregulated during the evening and night in fibroblasts. Fibroblast

migration peaks at night, which is consistent with previous findings; mouse wounds heal

fastest during the active phase [51]. Immune regulation is also circadian regulated in fi-

broblasts, as terms including regulation of inflammatory response are enriched during this

time. Compared to dermal fibroblasts during the evening and night, fewer terms related

to metabolism, signaling, and gene regulation are enriched in dermal immune cells. But,

almost all immune regulation terms such as defense response to virus and interferon-beta

production are upregulated in dermal immune cells during the evening and night, potentially

contributing to shorter healing duration for wounds occurring during mice’s active phase

as well [51]. Additionally, such findings in mice imply that circadian regulation of immune

response may be related to more severe symptoms of inflammatory skin diseases, such as

psoriasis, in the evening and at night [33, 28].

In the morning and during the day, mice sleep and thus experience starvation. Consistently,

rhythmic genes peaking during this time in fibroblasts enrich for lipid catabolic process,

glucose metabolic process, lipid storage, and response to starvation. Interestingly, extracellular

matrix organization and cell-matrix adhesion peak during the day, possibly preparing for

fibroblast migration which peaks in the evening. For immune cells, rhythmic genes peaking

during the morning and day generate fewer terms than the ones peaking during the evening
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and night, especially in the immune regulation category.

In summary, we found that more genes are collectively rhythmic in fibroblasts than in immune

cells, while only a few rhythmic genes are shared. Additionally, more metabolism processes

are diurnally regulated in fibroblasts, with respiration peaking during the evening and night,

and starvation and lipid storage peaking during the morning and day. On other hand,

immune regulation is almost exclusively upregulated by rhythmic genes that peak during

the evening and night in immune cells.
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Figure 5.5: a JTK Cycle identified 1946 rhythmic genes in dermal fibroblasts (red) and 432
rhythmic genes in dermal immune cells (blue). Only 79 rhythmic genes are shared by the
two cell types. b Gene Ontology analysis performed on rhythmic genes in fibroblasts (red)
and immune cells (blue) reveals divergent biological processes being diurnally regulated in
the two cell types. Dot size represents enrichment score. The vertical dashed line marks
adjusted p-value = 0.05. c, d Expression of some of the rhythmic genes found in fibroblasts
(c), and immune cells (d). e A heatmap showing p-values for some of the biological processes
enriched by rhythmic genes peaking during each quarter-day time range. Color represents
p-value. Blue: insignificant; yellow to red: significant with red representing lower p-value.
x-axis represents time, with white being day and black being night.
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5.2.7 tauFisher determines that circadian phases are more het-

erogeneous in dermal immune cells than in fibroblasts.

Analysis of the pseudobulk data generated from dermal fibroblasts and immune cells reveals

dampened amplitude of core clock genes (Figure 5.4D), and finds fewer rhythmic genes in

immune cells than in fibroblasts (Figure 5.5A). This could mean that each individual immune

cell harbors weaker circadian clock, and/or the immune cells have more heterogeneous phases,

so collectively they display a dampened clock.

To look into the cause behind the dampened clock in dermal immune cells, we executed a

bootstrapping approach that incorporates tauFisher for its ability to predict circadian time

for transcriptomic data at different scales (Figure 5.7A). Since the heterogeneity of a set

of heterogeneous clocks should be captured at any given time point, the pipeline compares

circadian heterogeneity in different cell types within each time point. At each time point, we

select the cell types to be examined in the scRNA-seq data and limit the expression matrix so

that it only contains the predictor genes identified in the training data. To remove influence

from the difference in the number of cells, we randomly sample the same number of cells for

each cell type, summing the transcript counts for each gene to create a pseudobulk data set.

We repeat the random sampling process to create pseudobulk replicates for each cell type.

tauFisher then predicts circadian time for the pseudobulk replicates. Since the prediction

outcomes are circular data, we then perform Rao’s Tests for Homogeneity to compare the

mean, and Wallraff Test of Angular Distances to compare the dispersion around the mean.
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Figure 5.6: We tested tauFisher’s ability to determine circadian phase heterogeneity on
simulated data. a Simulated expression of nine predictor genes in 100 single cells that
have synchronous circadian clocks but dampened amplitudes. Each line represents gene
expression a cell over time. b Simulated expression of nine predictor genes in 100 single cells
that have asynchronous circadian clocks but regular amplitudes. Each line represents gene
expression a cell over time. c At the bulk level, scenarios in a and b generate similar patterns,
which are oscillations with dampened amplitudes but similar peaking time when compared
to a group of cells with normal clocks. d We combined tauFisher with bootstrapping and
randomly selected six time points to do the comparison. We generated 500 time predictions
and plotted the distributions for the cells in a (red) and b(blue). e Bar plots showing the
differences between the prediction mean (left) and standard deviation (right) at each time
point (cells in b - cells in a). ns: p-value > 0.05, ∗: p-value ≤ 0.05, p-value ≤ 0.01, ∗ ∗ ∗:
p-value ≤ 0.001, ∗ ∗ ∗∗: p-value ≤ 0.0001.
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To ensure that the pipeline works as expected, we generated simulated single-cell circadian

gene expression data sets to represent a group of synchronized but dampened clocks, and a

group of out-of-phase but robust clocks (Figure 5.6). As expected, the prediction outcome

for the out-of-phase clocks has a significantly greater dispersion around the mean, indicating

a more heterogeneous prediction outcome for the group of cells that are out-of-phase from

each other (Figure 5.6).

87



Figure 5.7: a A general overview of the bootstrapping approach we took to gain insight
into circadian heterogeneity in phase in different cell types. b Radar plots showing the
distribution of the prediction outcome for 500 pseudobulk replicates from dermal fibroblasts
(red) and immune cells (blue). c Bar plots showing the differences between the prediction
mean (left) and standard deviation (right) at each ZT (immune cells - fibroblasts). ∗ ∗ ∗∗:
p-value ≤ 0.0001

We then perform the pipeline on the scRNA-seq data we collected, focusing on the fibroblasts

and immune cells. At each time point, we generated 500 pseudobulk replicates for each cell
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type and used tauFisher to predict the circadian time for each replicate. We then compared

the distribution of the prediction outcomes from the two cell types at each time point. In

general, the prediction means are centered at different times for fibroblasts and immune cells

(Figure 5.7B), but around the predicted time for the whole-sample pseudobulk data (Figure

5.3C). Whether one cell type’s circadian clock is ahead of the other is inconclusive (Figure

5.7C). Additionally, the distributions of the prediction outcome for immune cells are usually

multimodal and not as centered as the prediction distribution for fibroblasts (Figure 5.7B).

Indeed, the standard deviation in the prediction distribution is significantly greater for five

out of the six ZTs, indicating that immune cells have a more heterogeneous clock phase than

fibroblasts.

In summary, we were able to use tauFisher to obtain insight into the circadian heterogeneity

for different cell types by predicting the circadian time for random samples from each of

the cell types. We hypothesize that the circadian clock is more heterogeneous in dermal

immune cells than in dermal fibroblasts, and such heterogeneity may be the reason behind the

dampened core clock and fewer rhythmic genes we found in immune cells based on collective,

cell-type level, gene expression data. Such a result is not unexpected, as the fibroblasts may

be more homogeneous in their biological function than the immune cells, which contain

dendritic cells as well as different types of macrophages and lymphocytes (Figure 5.8) that

serve different immune functions. Unfortunately, we did not capture enough cells for each

specific immune cell types in the scRNA-seq experiment to generate reliable pseudobulk data

that is required for further circadian analysis (Figure 5.8).
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Figure 5.8: Subclustering results for the mouse dermal fibroblasts and immune cells. a Four
subclusters were identified for the dermal fibroblasts. b Violin plots show expression of
marker genes for each cluster. c Core clock gene expression for the four fibroblast subclus-
ters show similar rhythmic pattern. d Eight subclusters including both myeloid cells and
lymphoid cells. e Violin plots show expression of marker genes for each cluster. f Due to
the low cell count for some time points, we combined the eight subclusters of immune cells
form three major clusters. The core clock gene expression over time is plotted for the three
major clusters. With the great variability present in the data, probably contributed by low
cell counts, the core clock genes do not show robust rhythms.
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5.3 Methods

5.3.1 tauFisher

tauFisher is a platform-agnostic method that predicts the circadian time from a single tran-

scriptomic sample. The method consists of three main steps: (1) identifying a subset of

diurnal genes with a period length of 24 hours, (2) calculating the difference in expression

for each pair of genes, and (3) linearly transforming the differences using PCA and fitting a

multinomial logistic regression on the first two principal components.

Averaging the expression matrix

The first step in tauFisher is to average each transcriptome by its genes such that the averaged

gene expression matrix consists only of unique genes. The subsequent training data should

consist of a gene expression matrix X ∈ RN×P with N unique genes and P samples with

known time and a vector τ ∈ RP of the corresponding time for each sample. For scRNA-seq

data, this averaged transcriptome over all the cells will be referred to as pseudobulk data.

Identifying the periodic genes

tauFisher specifies either the Lomb-Scargle [41] or JTK Cycle [54] method in the meta2d

function from R package MetaCycle [130] to determine the periodic genes and then selects

the top ten statistically significant genes with a 24-hour period. These periodic genes are

then combined with the core clock genes that also have a period of 24 hours to create the

set of predictor genes M . The core clock genes for consideration in tauFisher are: Bmal1,

Dbp, Nr1d1, Nr1d2, Per1, Per2, Per3, Cry1, and Cry2.
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Subset and transform the data

Subsetting the averaged expression matrix X on the set of predictor genes M yields averaged

gene expression matrix X ′ ∈ RM×P with M periodic genes and P samples with known time;

the vector τ should stay the same. The matrix X ′ is then log-transformed element-wise:

X ′ = log2(X
′ + 1).

Run Functional Data Analysis

Since experiments have different sampling intervals throughout a circadian cycle, tauFisher

uses functional data analysis (FDA) to represent the discrete time points as continuous

functions. This allows tauFisher to evaluate and predict the circadian time of the new

samples at any time point and reduces the noise from the training samples.

Briefly, each gene m has a log-transformed measurement at discrete time points t1, ..., tP ∈ τ

that are generally equally spaced but may not be. These discrete values are converted to a

function Zm with values Zm(t) for any time t using a Fourier basis expansion:

Zm(t) ≈
K∑
k=1

cmkϕk(t)

where ϕk(t) is the k-th basis function for k = 1, ..., K and ∀t ∈ τ , and cmk is the corresponding

coefficient. The Fourier basis is defined by ϕ0(t) = 1, ϕ2r−1(t) = sin(rωt), and ϕ2r(t) =

cos(rωt) with the parameter ω determining the period 2π/ω. Since the log-transformed data

matrix X ′ is non-negative, a positive constraint is imposed such that the positive smoothing

function is defined as the exponential of an unconstrained function: Ym(t) = eZm(t). The

smoothing function also contains a roughness penalty to prevent overfitting. In practice,

tauFisher sets the number of basis functions to K = 5 because that produces curves that are

the most sinusoidal however users can specify a different number of basis functions if they
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wish.

Although FDA represents the discrete time points as continuous functions for each gene,

tauFisher predicts circadian time at user-defined time units instead of continuous time be-

tween 0 to 24. By default, the time units are set to discrete hours. The fitted functions

Ym(t) are evaluated at the user-defined time units to create the smoothed expression matrix

Y ∈ RM×T , where T is the number of evaluated time points, and the new set of time points

τF ∈ RT . If the time course duration of the samples spans less than 24 hours, then the

fitted curves are evaluated hourly from [0, 23] such that T = 24 to ensure all 24 hours are

evaluated. If the time course duration of the samples spans greater than 24 hours, then

fitted curves are evaluated from [min(τ),max(τ)] such that T = max(τ) −min(τ) + 1.

Calculate differences between each gene pair

tauFisher then calculates the differences in the smoothed expression matrix Y for each pair

of genes across time. Pairs of the same gene (i.e., the differences between Gene a and Gene

a) are removed from the data matrix. Furthermore, tauFisher assumes that the effect of the

difference between Gene a and Gene b and the effect of the difference between Gene b and

Gene a on the predictor are not equal; thus, both pairs are included as covariates. For each

time point t1, ..., tT ∈ τF , these differences are then scaled to be [0, 1].

Regress on the principal components

The differences matrix is projected onto a lower dimensional space via principal components

analysis (PCA), and the first two principal components become covariates xi1 and xi2 for

observation i in the multinomial regressor:

log

[
P (τFi = t|xi1, xi2)

P (τFi = 0|xi1, xi2)

]
= βt0 + βt1xi1 + βt2xi2
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All time points t1, ..., tT ∈ τF are converted to be [0, 23], since time 0 is equal to time 24.

Time zero, τF = 0, is set as the reference level in the model. The fitted multinomial regression

model is then used to predict the circadian time of the new samples.

5.3.2 Calculating the difference in predicted time and true time

To evaluate the performance of tauFisher, we need to calculate how close the predicted time

is to the true time. Since the outcome is cyclic and ranges from [0, 23], we apply the following

conversion to calculate the true difference D from the difference d between the predicted time

and true time:

D =


d− 24, if d > 12

d + 24, if d < −12

5.3.3 Benchmark Training

Since tauFisher relies on the meta2d function in the MetaCycle R package [130] to identify

the periodic genes, if a training set does not include consecutive samples, we modify the input

training data to have NAs for those samples. This may occur when the training set includes

time points such as {4, 12, 16, · · · } and the “missing” value, 8, is assigned to the testing

set. We then insert a column for the “missing” value, 8, in the input data set for tauFisher

and assign NAs to all genes in that column. For the kidney and liver bulk sequencing data

sets [137], the meta2d function identifies a large number (> 20) of significant genes with a

period of 24 hours. To reduce the number of genes, we apply the following filters in order:

(1) filter out any genes that end with “Rik” or “-ps” or begin with “MT-” or “Gm”, (2) has

an amplitude greater than the mean amplitude, and (3) has an amplitude greater than the
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median amplitude.

5.3.4 Simulating scRNA-seq circadian gene expression data sets

In Section 5.2.7, we verify that our pipeline can be used to investigate heterogeneous circadian

phases using simulated scRNA-seq circadian gene expression data. We simulate two groups of

data to represent two possible reasons for dampened expression: (1) a group of synchronized

but dampened clock genes and (2) a group of normal (robust) but asynchronous clock genes.

For both groups, the expressions of 9 representative “core clock” genes over a time course of

24-h are simulated using the following sine function:

y = A sin (B(x + C)) + D

where A is the amplitude, C is the phase shift, D is the vertical shift, the period is 2π/B,

and x is a sequence of integers from 0 to 23. We set B to be 24, such that the period is

2π/24, and D to be 25 to ensure that there are no negative gene expression values.

Previously, in Section 5.2.2, we used JTK Cycle [54] to identify the periodic genes of several

data sets to benchmark tauFisher; part of JTK Cycle’s output is a data frame containing

inferred amplitudes and phase shifts for each gene. So, as inputs for our simulated data sets,

we select the inferred amplitude and phase shift values for core clock genes Bmal1, Dbp,

Nr1d1, Nr1d2, Per1, Per2, Per3, Cry1, and Cry2 from [115]. Then, for each data set in

Group (1), we simulate the expression of gene i as follows:

yi = (Ai ×Ri) sin (B(x + Ci)) + D

where Ri is one draw from a Beta(1, 2) distribution and all other parameters are as previously

stated. Similarly, for each data set in Group (2), we simulate simulate the expression of gene
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i as follows:

yi = Ai sin (B(x + Ci + Ri)) + D

where Ri is one draw from a Normal(0, 12) distribution and all other parameters are also as

previously stated. We generated 100 data sets for each group, which can be thought of as

the simulated expression of 9 genes for 100 single cells over 24-h.

Since tauFisher is currently used for pseudobulk expression, we then convert our simulated

single cell data sets to two groups of 500 pseudobulk data sets (one for each case). We

randomly select 6 time points without replacement over the course of the 24-h and use the

same 6 time points for the simulated pseudobulk data sets. For each “gene”, we randomly

select 20% of the “single cells” without replacement and sum their expression to obtain a

vector of pseudobulk replicates for that gene over the 6 selected time points. We repeat this

procedure 500 times for each group, generating 500 pseudobulk data sets per group.

5.3.5 scRNA-seq experiments

Mouse strains, husbandry

Wild type male C57BL/6 were housed under 12:12 light-dark cycle for two weeks prior to

and during the time of experiment. To collect telogen skin, mice were about 54 days old by

the time of sample collection.

Sample collection and sequencing

Immediately after sacrificing a mouse with CO2, hair on dorsal skin was removed with an

electric razor and Nair Hair Removal cream. After the dorsal skin is isolated from the body,
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fat and remaining blood vessels were scrapped away. A circular piece of skin was obtained

with a 12mm biopsy punch, and minced into tiny pieces. 1x collagenase was then added to

the minced skin and the suspension was incubated at 37 ◦C for 1.5 hours. The suspension

is then filtered with a 70µm and a 40µm cell strainers to obtain single cells. SYTOX blue

viability dye was then added to the cell suspension and live cells were sorted out using FACS

at the UCI Institute for Immunology Flow Cytometry Facility.

Samples were collected every four hours for three days to generate in total 18 sample. The

Chromium Single Cell 3’ v3 (10x Genomics) libraries were prepared and sequenced by Uni-

versity of California Irvine Genomic High Throughput Facility with Illumina NovaSeq6000.

5.3.6 Preprocessing for benchmarking

For GSE56931, we subset the data set provided in the TimeSignatR [10] package to only

include the 24-hour normal baseline time points and filtered out the 38 hours of continuous

wakefulness and subsequent recovery sleep.

For GSE38622, expression matrix was normalized as explained in [39].

For GSE157077, we used the transcriptomes of the mice who were fed normal chow through

an entire circadian cycle (24 hours). Since the mice were maintained on a 12-hour light/12-

hour dark cycle, we chose to concatenate the three replicates of 24 hours each to create one

set of samples over 72 hours.

For GSE54650, the raw CEL files for the kidney and liver were imported using the function

read.celfiles in R package oligo. Each raw data matrix was then normalized with Robust

Multiarray Average (RMA) using the function rma. To map the GPL6246 platform ID REF

to Ensembl transcript IDs, we used the transcript cluster ID and gene assignments listed in

the table provided at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL6246
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For each transcript cluster ID, we removed all gene assignments unless they were Ensembl

transcript IDs or started with Gm. If a transcript cluster ID was mapped to more than

one gene, then we replicated that row by the number of genes (e.g., transcript reference ID

10344614 is assigned to three Ensembl transcript IDs so that row in the normalized data set

was replicated three times). The expression for each transcript cluster ID was then divided

by the number of genes assigned (e.g., since transcript reference ID 10344614 has three gene

assignments, the values for all three rows in the normalized data set were divided by three).

Transcript cluster IDs that were not assigned to any genes were removed from the normalized

data set. To convert the Ensembl transcript IDs to gene names, we use R package biomaRt

[29, 30]. If biomaRt did not find a gene name, then we kept the original Ensembl transcript

ID.

For GSE54651, we converted the Ensembl gene IDs to gene names using R package biomaRt

[29, 30]. If biomaRt did not find a gene name, then we kept the original Ensembl gene ID.

For each time point in GSE117295 and the scRNA-seq data we collected in this study, we

summed the counts of each gene in all the cells without any pre-processing to create a

pseudobulk data set. In the case where the same gene occurs multiple times in the data,

we took the mean of those entries. The resulting pseudobulk data at each time point is a

single row vector in which each entry represents the expression value of a unique gene. The

light-stimulated group is not considered in this paper.

5.3.7 scRNA-seq data analysis for dermal skin

We used Cell Ranger version 3.1.0 with MM10 reference to process the raw sequencing

output. The downstream analysis was done in Seurat V3 according to the vignette.

Cell with 850-7800 features and less than 13% of mitochondrial genes were kept. The SC-
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Transform function was performed on each sample and 3250 integration features were se-

lected using SelectIntegrationFeatures for each sample. Principal component analysis was

then done on the integrated data set and the Louvian algorithm was used to generate the

clusters. Cluster identities were then determined in combination of marker genes found in

the current clustering outcome and feature plots of canonical marker genes.

5.3.8 Pseudobulk data analysis for dermal skin

meta2d from the MetaCycle package was used on the pseudobulk data generated from

the scRNA-seq data collected from dermal skin to identify rhythmic genes. Genes with

JTK pvalue<0.05 were determined to be significantly rhythmic. We used the meta2d phase

column to split the rhythmic genes into four groups based on their peaking time.

Gene Ontology analysis was performed using ClusterProfiler in R with p-value < 0.05 as the

significance cutoff.

5.3.9 Statistics for circular data

The “circular” package was used to perform statistical calculations and tests, including

calculation of the mean and standard deviation, as well as the Rao’s Tests for Homogeneity

and the Wallraff Test of Angular Distances, for the circadian time prediction output in

Section 5.2.7.
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5.4 Discussion

Circadian time determination is a key step in the implementation of circadian medicine. To

maximize effectiveness while minimizing side effects of treatments, it is necessary to take into

consideration the patient’s and relevant tissue’s actual circadian time. For example, on-pump

cardiac surgeries in the afternoon are less likely to cause perioperative myocardial injury than

when conducted in the morning [81] and cancer radiation therapy in the morning causes less

skin damage than in the afternoon [105]. There have been several predictors of circadian

time for patients and organs based on transcriptomic data [10, 55, 1], but to ensure wide

applicability of this approach, a sequencing platform-agnostic method requiring low number

of testing samples is desired. In this study, we developed tauFisher, a computational pipeline

that accurately predicts circadian time from a single transcriptomic data set applicable to

within-platform and cross-platform training-testing scenarios. Most importantly, tauFisher

trained on bulk RNA-seq data sets accurately predicts time labels for scRNA-seq data,

enabling the study and comparison of the circadian clocks at the cell-type level.

Once trained, tauFisher requires a single sample from the test subject to predict the circa-

dian time. We examined tauFisher’s ability to predict circadian time when the training and

test data are from the same study, and we benchmarked it against state-of-the-art methods

ZeitZeiger [55] and TimeSignatR [10]. tauFisher performed the best in accuracy and RMSE

for almost all data sets. ZeitZeiger failed to run for several of the data sets due to linear

dependency issues. When it did run, ZeitZeiger achieves similar accuracy and RMSE as tau-

Fisher, possibly because both predictors build on principal component analysis, suggesting

that the molecular clock is well captured and represented by orthogonal linear combinations

of feature genes. TimeSignatR performed the worst in the benchmark, even when a second

sample was inferred. For time inference from a single sample, we reported worse general

performance for TimeSignatR than reported in [10]. This could be due to the difference in

the training data. In [10], TimeSignatR was trained on an independent data set (GSE39445)
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from a different study [80] before testing on GSE56931 and GSE113883. Here we trained

and tested TimeSingatR within GSE56931 and GSE113883. [10] also reported more accurate

predictions by TimeSignatR with 2-point calibration than with just 1-point. In this study’s

benchmarking, TimeSignatR with 2-point calibration performed worse. Such discrepancy in

performance reported between this study and [10] could be due to our implementation of

the two-point calibration step in the TimeSignatR. In their vignette, the authors use the

entire data set (train and test data) during this two-point calibration step instead of just the

training set. As tauFisher and ZeitZeiger do not utilize the test data in the processing of

the train data, to make a fair comparison of their performance in predicting circadian time

from one single test sample, we do not make the test sample available to the predictor until

the actual testing step when implementing all three methods.

One of the most powerful features of tauFisher is its ability to accurately predict circadian

time when trained and tested on data sets collected from different assay platforms under

different experimental settings. tauFisher achieves high accuracy and low RMSE in not

only bulk-to-bulk cross-platform predictions, but also bulk-to-scRNA-seq predictions. The

consistency in performance despite drastically different assay methods and experimental

setups suggests that tauFisher captures and extracts the underlying biological correlations

in gene expressions while minimizing the effects of the noise and variability introduced by

subjects and technology.

Two key steps in tauFisher help achieve this: functional data analysis for training data

and within-sample normalization for both training and test data. Functional data analysis

for the training data enables tauFisher to remove minor noise, smooth the time expression

curves, and generate the expression data between the sampled time points. The within-

sample normalization step for both training and test data calculates the difference between

each pair of predictor genes at a given time point so that the feature matrix is expanded

while some baseline noise is removed. The differences between the genes are then re-scaled
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to be between 0 and 1 so that the data become unit-less. Doing so in parallel on the training

and test data sets brings them individually to the same scale, instead of batch-correcting

the train to the scale of the test or the opposite. This allows testing of independent data

sets without re-training. We note that this within-sample normalization is different from

the within-subject normalization in [10], which is based on mean expression calculated from

multiple samples collected from more than one time point over the circadian cycle.

In addition to testing tauFisher on published data sets, we also collected a time series of

scRNA-seq from mouse dermis. Consistent with previous findings [88, 28], the circadian

rhythm is robustly present in the dermis and the oscillatory patterns of the core clock genes

agree with published data [39]. Comparing the rhythmic genes in fibroblasts and immune

cells, we found that many pathways and processes are rhythmically regulated in a cell type-

specific manner. While we only collected dermal cells, the circadian clock is present in

all skin layers, and the circadian clock regulates hair cycles for both mouse and human

[28, 88, 69, 2]. A time series of scRNA-seq data containing all skin cells will be particularly

useful for investigating and comparing the circadian clocks in different skin layers and hair

follicles, as well as exploring whether cell-cell communication is clock-controlled in the skin.

Combining tauFisher with other methods can guide the application of circadian medicine by

providing additional insights and explanation of clinically observed circadian dysfunction.

Dampened clock gene expressions have been observed in psoriasis-affected skin [42, 135], as

well as in various types of cancer [132, 109, 22, 62, 52, 56], including melanoma, head

and neck squamous cell carcinoma, breast cancer, and colorectal cancer. There is also

evidence that restoring dampened circadian oscillations in diseased tissues can be effective.

Dexamethasone, a glucocorticoid that activates and synchronizes the clock between cells,

restores the rhythmicity of cell cycle and reduces proliferation and growth of melanoma

and colon carcinoma cells [62]. Seliciclib, a cyclin-dependent kinase inhibitor that indirectly

interact with the circadian clock, restores clock gene expression and cell cycle rhythms in
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Glasgow osteosarcoma tumors and reduces tumor growth [56].

There are two possible behind-the-scene causes of dampened circadian rhythms at a bulk

level: First, the circadian rhythm is dampened in every cell, but the cells are synchronous to

each other. Second, the clock is normally functioning in every cell, but the cells are out of

phase relative to each other. Understanding which of the two scenarios is responsible for a

dampened bulk-level clock gene expression is particularly important because in one case, it

would be optimal to stimulate the clock to restore the circadian clock in the diseased tissue,

while in the other case, synchronizing the clock is more suitable.

Here, we observed that the collective circadian rhythm in dermal immune cells is dampened

compared to fibroblasts. We incorporate tauFisher with bootstrapping to investigate the

cause behind the dampened collective circadian rhythm in dermal immune cells. tauFisher’s

prediction outcome suggests that the circadian phases in dermal immune cells are more

heterogeneous than those in dermal fibroblasts, and this heterogeneity may contribute to

the dampened rhythm in immune cells at a collective level. While we will need to perform

live cell imaging with reporters for core clock genes to validate this hypothesis, tauFisher’s

success in simulated data is reassuring.

Besides being useful in circadian medicine, tauFisher opens up new possibilities in circadian

research. For example, it expands the scRNA-seq databases for circadian research by adding

(circadian) time labels to existing scRNA-seq data sets. Beyond scRNA-seq data, adding

time labels for all existing transcriptomic data sets is important since the clock modulates

many protein coding genes and it is necessary to know whether a significant gene is truly

differentially regulated by a condition or the expression appears to be different because the

samples were collected at different times. Additionally, combining tauFisher with a batch-

effect correction method may facilitate a cleaner integration and help minimize the effect of

the circadian clock in transcriptomic data analysis. This approach harbors great potential

as many efforts are going into integrating data sets from different studies to create meta
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databases such as in the Human Cell Atlas.

In summary, tauFisher’s consistent and robust performance in accurately predicting circadian

time from a single transcriptomic data makes it a useful addition to the toolbox of circadian

medicine and research.

5.5 Data availability

All published data sets used in this paper can be accessed through their respective GEO

accession codes. Although the data sets in [6] and [10] are both accessible through their

GEO accession codes, this paper used the versions provided in the TimeSignatR package

[10]: https://github.com/braunr/TimeSignatR.

The time series of scRNA-seq data from mouse dermal skin will be made available to the

GEO database.

5.6 Code availability

tauFisher is available as an R package, which is available at https://github.com/micnngo/

tauFisher (note that this will be a private repository until publication).

The two methods we compared tauFisher against are also available as R packages: TimeS-

ignatR at https://github.com/braunr/TimeSignatR and ZeitZeiger at https://github.

com/hugheylab/zeitzeiger. For TimeSignatR, we modified the vignette the authors pro-

vided so that the two point calibration only calibrates the training data set; the original

vignette calibrates the concatenated training and test data sets.
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Chapter 6

Conclusion

As sequencing technologies advances, leveraging latent representations will become more cru-

cial to analyze the data from these platforms and investigate biological processes of interest.

Currently, many platforms are already able to sequence millions of cells and trying to do

a traditional biclustering or regression on that data matrix would require a large amount

of time and computational resources. Furthermore, at the single cell resolution, the data

is extremely noisy; teasing out the true signal and reducing the amount of noise are two

other crucial aspects in analyzing single cell data. Despite these computational challenges,

the popularity of single cell sequencing has contributed to many advances in biology, such

as the ability of interrogating cell lineages, examining cell heterogeneity and heterogeneous

responses to a stimulus.

To this end, we have presented two computational frameworks leveraging the latent represen-

tations of single cell data to investigate clonal hematopoiesis and circadian rhythms. In the

former, we utilize a Bayesian approach to identify significant differentially expressed genes

between two samples and rank these groups of genes. We then use these gene groupings to

inform our cell clusterings to identify heterogeneous subpopulations within the hematopoietic
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stem and progenitor cells. With this approach, we are able to confirm that a MPN patient

is more likely to have a higher inflammatory response to stimulation than an unaffected

patient.

In the latter, we present a pipeline that also uses the differences between two groups (in this

case, between each pair of rhythmic genes) to predict the circadian time of the sample of

interest. This pipeline is beneficial to circadian medicine, particularly precision medicine,

and circadian research. The ability to estimate a tissue sample’s circadian time can help

doctors cater their patients’ treatments to minimize discomfort or maximize efficacy, and

this also expands current databases for circadian research by incorporating time labels.

Both methods are limited by technology among others however. For the clustering, com-

putational efficiency is still a concern as well as the robustness. We have not performed a

thorough comparison between each step and hyperparameter. For the circadian pipeline, we

are heavily reliant on the selection of rhythmic genes. Further benchmarking and refactoring

will be necessary.
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[80] C. S. Möller-Levet, S. N. Archer, G. Bucca, E. E. Laing, A. Slak, R. Kabiljo, J. C. Y.
Lo, N. Santhi, M. v. Schantz, C. P. Smith, and D.-J. Dijk. Effects of insufficient sleep
on circadian rhythmicity and expression amplitude of the human blood transcriptome.
Proceedings of the National Academy of Sciences, 110(12):E1132–E1141, 3 2013.

[81] D. Montaigne, X. Marechal, T. Modine, A. Coisne, S. Mouton, G. Fayad, S. Ninni,
C. Klein, S. Ortmans, C. Seunes, C. Potelle, A. Berthier, C. Gheeraert, C. Piveteau,
R. Deprez, J. Eeckhoute, H. Duez, D. Lacroix, B. Deprez, B. Jegou, M. Koussa, J.-L.
Edme, P. Lefebvre, and B. Staels. Daytime variation of perioperative myocardial injury
in cardiac surgery and its prevention by rev-erb antagonism: a single-centre propensity-
matched cohort study and a randomised study. The Lancet, 391(10115):59–69, jan
2018.

114



[82] C. J. Morris, T. E. Purvis, K. Hu, and F. A. J. L. Scheer. Circadian misalignment
increases cardiovascular disease risk factors in humans. Proceedings of the National
Academy of Sciences, 113(10), feb 2016.

[83] T. Mou, W. Deng, F. Gu, Y. Pawitan, and T. N. Vu. Reproducibility of Methods to
Detect Differentially Expressed Genes from Single-Cell RNA Sequencing. Frontiers in
Genetics, 10, 1 2020.

[84] R. M. Neal. Markov Chain Sampling Methods for Dirichlet Process Mixture Models.
Journal of Computational and Graphical Statistics, 2000.

[85] V. A. Padilha and R. J. G. B. Campello. A systematic comparative evaluation of
biclustering techniques. BMC Bioinformatics, 18(1):55, 12 2017.

[86] S. Panda. Circadian physiology of metabolism. Science, 354(6315):1008–1015, nov
2016.

[87] S. Picelli, K. Björklund, O. R. Faridani, S. Sagasser, G. Winberg, and R. Sand-
berg. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature
Methods, 10:1096–1098, 2013.

[88] M. V. Plikus, C. Vollmers, D. de la Cruz, A. Chaix, R. Ramos, S. Panda, and C.-M.
Chuong. Local circadian clock gates cell cycle progression of transient amplifying cells
during regenerative hair cycling. Proceedings of the National Academy of Sciences,
110(23), may 2013.

[89] E. Poggiogalle, H. Jamshed, and C. M. Peterson. Circadian regulation of glucose, lipid,
and energy metabolism in humans. Metabolism, 84:11–27, jul 2018.
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