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Abstract 

 
 Aging in complex multicellular organisms such as mammals entails distinctive changes 

in cells and molecules that ultimately compromise the fitness of adult organisms.  These cellular 

and molecular changes lead to the phenotypes we recognize as aging.  This review discusses 

some of the cellular and molecular changes that occur with age, specifically changes that occur 

as a result of cellular responses that evolved to ameliorate the inevitable damage that is caused 

by endogenous and environmental insults.  Because the force of natural selection declines with 

age, it is likely that these processes were never optimized during their evolution to benefit old 

organisms.  That is, some age-related changes may be the result of gene activities that were 

selected for their beneficial effects in young organisms, but the same gene activities may have 

unselected, deleterious effects in old organisms, a phenomenon termed antagonistic pleiotropy.  

Two cellular processes, apoptosis and cellular senescence, may be examples of antagonistic 

pleiotropy.  Both processes are essential for the viability and fitness of young organisms, but 

may contribute to aging phenotypes, including certain age-related diseases.   

              

 

1. Introduction 

 
  Aging, ultimately, is a phenomenon of intact organisms.  Nonetheless, it results 

from biochemical reactions, cellular responses and the action of genes, which, in multicellular 

organisms, may have different effects in different tissues.  According to current evolutionary 

theories of aging, the primary causes are thought to derive from the unselected action of specific 

genes, which evolved under ancestral environments that differ substantially from modern 

environment.  Thus, aging phenotypes very likely arise because the force of natural selection 

declines with age.  This decline can have two effects.  First, it can allow the accumulation of 

late-acting deleterious mutations, which would compromise the fitness of old, but not young, 

organisms (mutation accumulation).  In addition or alternatively, the declining force of natural 
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selection with age can permit processes that were selected for their beneficial effects early in life 

to have unselected deleterious effects in old organisms, a phenomenon termed antagonistic 

pleiotropy (Kirkwood and Austad, 2000).   

 

 For complex multicellular organisms such as mammals, on which this review focuses, it 

would take several volumes to review all of the cellular and molecular changes that have been 

reported to occur as a function of age.  Therefore, this review makes no attempt to be 

comprehensive.  Rather, it focuses on two cellular responses that occur in mammals and other 

organisms, which may be important for embryonic development and/or maintaining the health of 

adult tissues, yet may also cause or contribute to aging phenotypes.  It also discusses the role of 

genomic maintenance systems for preserving the health of cells, tissues and ultimately the 

organism, and speculates on how cellular and genomic changes might lead to aging phenotypes 

and certain age-related diseases.   

 

2. Cellular processes that may contribute to aging 

 
  Individual cells undergo a wide range of structural and functional changes during 

organismal aging.  Here, however, two cellular processes are discussed, each of which results in 

striking structural and function changes in cells.  These processes are apoptosis, or programmed 

cell death, and cellular senescence, or the senescence response.   

 
Apoptosis and cellular senescence are the cellular responses to a variety of intrinsic and 

extrinsic signals.  It is well established that both processes are critically important for the health 

and function of many tissues in the adults of complex organisms (such as mammals).  

Nonetheless, apoptosis and cellular senescence have also been proposed to contribute to aging 

phenotypes and/or the development of certain age-related diseases (Campisi, 2000; Zhang and 

Herman, 2002).  How might these processes be both beneficial and detrimental to complex 

organisms, and how might they contribute to aging?  There are, at present, no definitive answers 
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to these questions.  However, in the last decade, considerable progress has been made in 

understanding the regulation and biological consequences of apoptosis and cellular senescence.  

In addition, substantial progress has been made in understanding some of the root causes of 

aging and certain age-related diseases.  The convergence of these two bodies of knowledge 

makes it now possible to speculate – and much of the following discussion is speculation -- on 

how apoptosis and cellular senescence might impact the aging of complex organisms.   

 

2.1 Apoptosis 

 
  Apoptosis is the rapid, highly conserved process of controlled, programmed cell 

death.  Cell death by apoptosis (as opposed to necrosis) ensures that the contents of dying cells 

are encapsulated and removed by scavenging cells.  In this way, apoptosis prevents the release of 

degradative enzymes and their destruction of neighboring cells, and, in complex organisms, it 

prevents subsequent inflammation reactions (Arends and Wyllie, 1991; Ellis et al., 1991).   

 
Apoptosis is essential for normal embryonic development in both simple eukaryotes, such 

as Caenorhabditis elegans (nematodes) and Drosophila melanogaster (flies), and complex 

eukaryotes.  Many of its features are evolutionarily conserved (Vaux and Korsmeyer, 1999; 

Meier et al., 2000).  Of perhaps greater relevance to aging, apoptosis is also essential for normal 

tissue homeostasis in the adults of complex organisms.  In adult tissues, apoptosis can occur as a 

consequence of normal differentiation, in which cases it is generally induced by intrinsic signals.  

In addition, apoptosis serves to remove unwanted or damaged cells from tissues, in which cases 

it is generally induced by extrinsic signals [Ellis, 1991 #347; Cohen, 1992 #348;(Li and Yuan, 

1999; Medh and Thompson, 2000).   

 
 Given the importance of apoptosis for normal tissue function, it not surprising that 

defects in its regulation have been shown to cause or contribute to a panoply of degenerative and 

hyperproliferative diseases (Arends and Wyllie, 1991; Thompson, 1995; Fadeel et al., 1999; 
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Reed, 1999; Martin, 2001).  The most striking example is the development of cancer.  Cancer 

cells almost invariably acquire mutations that allow them to evade the normal signals and 

mechanisms that cause apoptotic cell death.  Indeed, it has been argued that resistance to 

apoptosis is a necessary, although insufficient, step for malignant progression (Hanahan and 

Weinberg, 2000).  Thus, for example, genetically modified mice that are compromised in their 

ability to engage one or more apoptotic pathway (and survive to adulthood) generally die 

prematurely of cancer (Ghebranious and Donehower, 1998; Hakem and Mak, 2001; Wu and 

Pandolfi, 2001).  Consistent with a vital role for apoptosis in preventing cancer, p53, a critically 

important mammalian tumor suppressor protein, is also a key positive regulator of apoptosis 

(Amundson et al., 1998; Kaelin, 1999; Pluquet and Hainaut, 2001).  On the other hand, 

inappropriate or overactive apoptosis can lead to tissue atrophy or degeneration.  The most 

severe effects of inappropriate apoptosis are seen in tissues composed largely of post-mitotic 

cells, such as the brain and peripheral nervous system (Arends and Wyllie, 1991; Thompson, 

1995; Fadeel et al., 1999; Martin, 2001).  In these tissues, the replacement of post-mitotic 

neurons is very likely rare, and may not occur at all in some regions (Almeida-Porada et al., 

2001; Weissman et al., 2001).   

 

A generalized defect in the control of apoptosis has been proposed to cause or contribute 

to aging (Joaquin and Gollapudi, 2001; Zhang and Herman, 2002).  Although this idea is not as 

well developed or supported by data as the proposed role for apoptosis in specific diseases, 

evidence for this idea is mounting (Muskhelishvili et al., 1995; Kajstura et al., 1996; Higami et 

al., 1997; Adams and Horton, 1998; Mather and Rottenberg, 2000; Suh et al., 2002).  One might 

imagine two scenarios by which the cellular process of apoptosis might be interconnected with 

the intrinsic process of aging and/or the development of specific aging phenotypes.   

 
First, an upstream, fundamental mechanism of aging (for example, a change in 

neuroendocrine hormones, or change in the hormonal/cytokine milieu) might alter the control of 
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apoptosis, which, in turn, would lead to aging phenotypes and age-related disease.  That is, one 

or more basic aging process might alter the regulation of the apoptotic response, at least in 

certain cell types.  There is some evidence for this scenario.  For example, when the livers of 

young rats were challenged with a direct acting DNA damaging agent, there was an expected 

striking increase in the number of hepatocytes that underwent apoptosis.  This apoptotic response 

presumably removed hepatocytes that were badly damaged and, hence, had become 

dysfunctional or at risk for neoplastic transformation.  In identically treated old animals, 

however, many fewer hepatocytes underwent apoptosis, suggesting a generalized blunting of the 

apoptotic response (Suh et al., 2002).  Moreover, caloric restriction, which extends the life span 

and retards most if not all age-related pathology in these animals, increased both the basal and 

damage-induced levels of apoptosis, and the elimination of preneoplastic cells. in aged liver 

(Grasi-Kraupp et al., 1994).  Thus, aging appears to suppress the apoptotic response, at least in 

the liver and in response to DNA damage, and suppression is retarded by regimens (caloric 

restriction) that retard aging.  On the other hand, aging has been reported to sensitize hepatocytes 

to apoptosis induced by the endogenous ligand Fas, and this sensitization was reversed by caloric 

restriction (Higami et al., 1997).  In addition, the basal rate at which chrondrocytes undergo 

apoptosis in articular cartilage was reported to increase with age, and this increase was proposed 

to contribute the age-related development of osteoarthritis (Adams and Horton, 1998).   

 
Taken together, these findings suggest that one or more fundamental process that is 

responsible for aging may alter the regulation of apoptosis.  However, whether the apoptotic 

response is increased or decreased by aging may depend on the both the inducing signal and the 

tissue or cell type.   

 
Second, it is also possible that the normal (homeostatic) apoptotic responses and their 

regulation might, over time, lead directly to aging phenotypes and/or age-related pathology.  For 

example, apoptosis normally acts to remove cells that are damaged or dysfunctional.  As 

mentioned earlier, this function of apoptosis is critical for protecting mammalian organisms from 
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cancer (Reed, 1999; Hanahan and Weinberg, 2000).  However, apoptosis can also act on 

damaged or dysfunctional post-mitotic cells, such as neurons.  Post-mitotic cells can be damaged 

by endogenous processes, such the reactive oxygen species that are generated by mitochondrial 

metabolism, or by external agents, such as certain neurotransmitters or environmental toxins.  

Damaged neurons can be eliminated by apoptosis, which may have little or no phenotypic 

consequences for young organisms, in which synaptic plasticity allows the neuronal network to 

compensate for occasional cell loss.  In old organisms, however, neuronal loss owing to 

apoptosis may eventually outpace the ability of the remaining neurons to establish compensatory 

synapses.  This would, of course, result in the deleterious neuronal insufficiency and 

neurodegeneration.   

 

2.2 Cellular senescence 

 
  Cellular senescence refers to the response of mitotically competent cells (that is, 

cells that are not terminally differentiated, and hence have the ability to divide) to a stimulus that 

has the potential to cause neoplastic transformation.  In recent years, many senescence-inducing 

stimuli have been identified, including short, dysfunctional telomeres, DNA damage, and the 

expression of certain oncogenes (discussed further below).   

 
Like apoptosis, cellular senescence may be an evolutionarily ancient response.  It occurs 

in simple unicellular organisms, such as the yeast Saccharomyces melanogaster (Jazwinski, 

1996), and in the stem cells of simple multicellular eukaryotes, such as the Drosophila 

melanogaster ovary (Margolis and Spradling, 1995).  In addition, like apoptosis, the senescence 

response is critical for suppressing tumorigenesis in complex eukaryotes (Sager, 1991; Campisi, 

2001).  Thus, genetically engineered mice comprised of cells that cannot undergo a normal 

senescence response typically die prematurely of cancer (Donehower et al., 1992; Harvey et al., 

1993; Ghebranious and Donehower, 1998; Hakem and Mak, 2001).  Consistent with its 

important role in preventing cancer, cellular senescence is controlled by several well-recognized 
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tumor suppressor genes, including that encoding p53 (Bringold and Serrano, 2000; Campisi, 

2001; Itahana et al., 2001).  In sharp contrast to apoptosis, however, cellular senescence does not 

eliminate cells that are dysfunctional, damaged or potentially neoplastic.  Rather, the senescence 

response irreversibly arrests the proliferation of such cells.  Thus, cellular senescence renders 

cells incapable of forming a tumor (by permanently arresting cell growth), but senescent cells 

may persist in tissues.   

 
 Cellular senescence, like apoptosis, has also been implicated in aging.  Early ideas 

proposed that, because senescent cells are incapable of self-renewal, cellular senescence might 

cause or contribute to aging phenotypes such as immune failure, poor would healing, skin 

atrophy, the decline gastrointestinal function, and so forth – phenotypes that are presumed to 

arise owing to a loss of cell proliferative (and hence tissue regenerative) capacity.  These ideas 

arose primarily because the first stimulus that was recognized to cause cellular senescence was 

repeated cell division (replicative senescence) (Cristofalo and Pignolo, 1993; Campisi et al., 

1996; Smith and Pereira-Smith, 1996).  Subsequent studies showed that replicative senescence is 

caused, in large measure, by the progressive shortening of telomeres that occurs with each cell 

cycle in cells that do not express the enzyme telomerase (Levy et al., 1992; Bodnar et al., 1998; 

Shay and Wright, 2001).  Most mammals do not express telomerase in their somatic cells, 

although there are some exceptions, and there are species-specific differences in the stringency 

with which telomerase is repressed in the soma /reviewed in (Campisi, 2001).  In species that 

have relatively short telomeres and stringently regulate telomerase expression (humans, for 

example), dividing cells eventually acquire one or more critically short and presumably 

dysfunctional telomere (Chiu and Harley, 1997; Sedivy, 1998; Blackburn, 2000; Weng and 

Hodes, 2000; Shay and Wright, 2001).  Dysfunctional telomeres, which may resemble damaged 

(broken) DNA in cells, then trigger the irreversible senescence growth arrest.  The role of 

telomeres in triggering the senescence response gave rise to the so-called “telomere hypothesis 
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of aging”, which should really be called the “cellular senescence hypothesis of aging” (Campisi 

et al., 2001).   

 
In recent years, it has become apparent that telomere dysfunction is but one of many 

stimuli that can induce a senescence response (Sherr and DePinho, 2000; Campisi, 2001; 

Serrano and Blasco, 2001) (other inducers were discussed above).  These stimuli include direct 

DNA damage (oxidative lesions, as well as double strand breaks), the expression of certain 

oncogenes (such as activated RAS or RAF), supraphysiological mitogenic signals, and the 

disruption of chromatin organization /reviewed in (Howard, 1996; Blackburn, 2000; Campisi, 

2000; Serrano and Blasco, 2001; Shay and Wright, 2001).  The findings that the senescence 

response can be induced by many stimuli, not solely repeated cell division and dysfunctional 

telomeres, suggest that the occurrence of senescent cells in vivo need not be confined to highly 

proliferative tissues or compartments.  In addition, these findings suggest that cellular senescence 

can occur in species that have relatively long telomeres and promiscuous control of telomerase 

(laboratory mice, for example).   

 
Of perhaps even greater relevance to aging than the inducers of senescence, it is now 

recognized that the senescence response also results in selected changes in cellular behavior and 

function.  Upon senescence, at least some cell types become resistant to certain apoptotic signals 

(Wang et al., 1994; Linskens et al., 1995; Seluanov et al., 2001).  This resistance to apoptosis 

may explain why senescent cells can accumulate in tissues with age (Dimri et al., 1995; 

Pendergrass et al., 1999; Choi et al., 2000; Ding et al., 2001; Paradis et al., 2001).  Equally 

important, senescent cells tend to overexpress secreted molecules, which can act at a distance 

within tissues and disrupt the local microenvironment.  Among the molecules that are secreted 

by senescent cells are several matrix metalloproteinases and other degradative enzymes, 

inflammatory cytokines, and certain growth factors (Campisi, 1996; Campisi, 2000; Jennings 

et al., 2000; Leung and Pereira-Smith, 2001).   
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The functional changes associated with cellular senescence suggest an additional 

mechanism by which this process might contribute to aging.  As dysfunctional senescent cells 

accumulate in vivo (Dimri et al., 1995; Pendergrass et al., 1999; Choi et al., 2000; Ding et al., 

2001; Paradis et al., 2001), their secretory phenotype might lead to disruption of the local tissue 

microenvironment.  This disruption might explain the loss of tissue integrity and function that is 

a hallmark of aging (Campisi, 1997; Campisi, 2000).  Moreover, it might also initiate or 

promote to certain age-related diseases.  For example, atherosclerosis has been proposed to be 

initiated by the secretions produced by senescent endothelial cells (Chang and Harley, 1995; 

Vasile et al., 2001).  In addition, senescent cells have been proposed to stimulate the progression 

of cancer (Krtolica et al., 2001), which requires both oncogenic mutations and a disrupted 

cellular microenvironment in which mutant cells can express their neoplastic phenotype.   

 

3. Tumor suppression and aging 

 
  Apoptosis and cellular senescence have at least two features in common: they 

both are important mechanisms for suppressing tumorigenesis, and they both have the potential, 

at least in theory, to contribute to aging phenotypes and age-related disease.  These dual features 

suggest the intriguing possibility that both of these cellular processes are examples of 

antagonistic pleiotropy.  That is, while apoptosis and cellular senescence are clearly beneficial in 

young organisms, they may have unselected deleterious effects late in life, thereby 

compromising the fitness and contributing to the aging of old organisms.   

 
This idea is illustrated in its simplest form in Figure 1.  We presume that the processes of 

apoptosis and cellular senescence act throughout life (indeed, most likely from embryogenesis), 

although their regulation and robustness may vary with the age and physiology of the organism, 

and will certainly vary depending on the tissue.  During young adulthood (shaded box), both 

processes have net positive effects on health and fitness as they eliminate damaged or 

dysfunctional cells.  As damage and time (age) increase, however, cell loss due to apoptosis, or 
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tissue disruption owing to the presence of senescent cells, may reach threshold levels at which 

the health of the tissue is compromised.  Tissues may differ in how much cell loss or disruption 

can be tolerated before tissue function declines.  The deleterious effects of apoptosis and cellular 

senescence are proposed to occur relatively late in the life span, during which time the force of 

natural selection is weak.   

 
Because evolution acts on organisms through genes, it should be possible to identify gene 

variants that alter the propensity of cells to undergo apoptosis and/or cellular senescence, alter 

susceptibility to cancer, and also alter aging in at least some tissues.  There are, of course, a 

number of genetic manipulations that alter apoptosis, cellular senescence and cancer 

susceptibility.  However, most manipulations that blunt apoptosis or senescence cause early 

death due to cancer – that is, the subjects tend to die of cancer before any possible effects on 

aging can be observed.  Very recently, however, a novel mutation was described in the gene 

encoding murine p53.  When present as a single genomic copy, this mutation (mutant p53) 

appeared to increase the animals’ resistance to tumorigenesis.  Strikingly, it also accelerated 

aging in some tissues, and modestly decreased the life span (Tyner et al., 2002).  Thus, compared 

to wild-type animals, heterozygous mutant p53 mice had a 6- to 7-fold lower incidence of 

spontaneous cancer.  However, they also had a 20-30% shorter life span.   

 
The mutant p53 mice often died with no obvious pathology.  However, they exhibited 

premature immune senescence, osteoporosis, skin atrophy, and other selected signs of aging.  

How might the mutant p53 protein provide super-protection from cancer while accelerating 

certain aging phenotypes?  Wild-type p53 is known to be a tetrameric transcription factor that 

interacts with many other cellular proteins, and controls the expression of many genes.  Among 

the p53-inducible genes, are several that promote or participate in the apoptotic response.  

Biochemically, the mutant p53 protein is thought to form hetero-tetramers with wild-type 53, and 

increase the transactivation activity of the p53 complex.  At the cellular level, the mutant p53 

protein appeared to sensitize cells to apoptotic stimuli.  The greater propensity of cells to 
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undergo apoptosis might explain both the increased protection from cancer and decreased 

longevity of the mutant mice.  There may, of course, be additional explanations.  For example, 

the mutant p53 protein might also increase the propensity of cells to undergo a senescence arrest, 

a possibility that has yet to be tested.   

 
 If hyper-p53 activity increases tumor suppression and accelerates aging, one might 

predict that hypo-p53 activity would decrease both tumor suppression and aging (at least in 

tissues that use p53-mediated apoptosis and senescence to avoid cancer).  Indeed, in both mice 

and humans, p53 deficiency markedly increases the risk of cancer (Donehower et al., 1992; 

Harvey et al., 1993; Jacks et al., 1994).  Unfortunately, cancer is a major cause of death in these 

organisms, as in many other mammals, and p53-deficient mice (and humans) typically die of 

cancer prematurely, before signs of retarded aging would be apparent.  Therefore, the only way 

to test the idea that reduced p53 activity can lead to reduced aging (in at least some tissues) is to 

examine a cohort of p53-deficient mice that do not die of cancer.  Lamentably, these mice are 

very rare.  It is intriguing, however, that in humans a polymorphism that predisposes p53 to 

degradation, and is associated with an increased cancer risk, is as prevalent in centenarians as it 

is in young subjects (Bonafe et al., 1999).  Might subtly reduced p53 levels contribute to the 

longevity of these centenarians (who presumably resist cancer via other tumor suppressor 

pathways)?   

 

4. Concluding remarks 

 
   The processes of apoptosis and cellular senescence arose early in evolution, most 

likely to eliminate defective or damaged cells from the germ line and embryos.  Both processes 

(but especially apoptosis) have been shown to occur in largely post-mitotic organisms (such as 

Caenorhabditis elegans and Drosophila melanogaster), which do not develop cancer as adults 

(Ellis et al., 1991; Margolis and Spradling, 1995; Vaux and Korsmeyer, 1999; Meier et al., 

2000).  As complex organisms with renewable tissues evolved, however, so did the problem of 
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cancer – the unregulated proliferation of cells that retain the ability to divide and their mutational 

evolution towards increasingly malignant phenotypes.  Apoptosis and cellular senescence appear 

to have taken on at lease one additional function during the evolution of complex organisms: that 

of suppressing the development of cancer (Sager, 1991; Reed, 1999; Campisi, 2001; Hakem and 

Mak, 2001).  There is strong evidence to support the idea that apoptosis and cellular senescence 

are important mechanisms for suppressing tumorigenesis in mammals.  However, both processes 

may also contribute to mammalian aging and certain late-life pathologies.  There is incomplete 

but mounting evidence to support this idea.  If correct, it would further suggest that apoptosis and 

cellular senescence can have antagonistically pleiotropic actions.  Clearly, much more work is 

needed to understand whether and how the tumor suppressive activities of apoptosis and cellular 

senescence are balanced against aging phenotypes.  However, a deeper understanding of these 

relationships will be essential if we are to develop rational strategies for intervening in aging 

processes.   
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Figure 1. Model for antagonistic pleiotropy of apoptosis and cellular senescence.  

Apoptosis and cellular senescence occur throughout life (although their regulation and 

robustness may vary with the age and physiology).  During young adulthood (shaded 

box), as they eliminate damaged or dysfunctional cells, both processes have net positive 

effects, and thus overall health and fitness are high.  As damage and time (age) increase, 

however, cell loss due to apoptosis, or tissue disruption owing to the presence of 

senescent cells, may reach threshold levels at which point the health of the tissue may be 

compromised.  Tissues may differ in how much cell loss or disruption can be tolerated 

before function declines, and thus there may be multiple threshold levels. 
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