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A high-order immersed boundary discontinuous-Galerkin method
for Poisson’s equation with discontinuous coefficients

and singular sources

Gerd Brandstetter and Sanjay Govindjee*,†

University of California, Berkeley, CA,USA

SUMMARY

We adopt a numerical method to solve Poisson’s equation on a fixed grid with embedded boundary condi-
tions, where we put a special focus on the accurate representation of the normal gradient on the boundary.
The lack of accuracy in the gradient evaluation on the boundary is a common issue with low-order embedded
boundary methods. Whereas a direct evaluation of the gradient is preferable, one typically uses post-
processing techniques to improve the quality of the gradient. Here, we adopt a new method based on the
discontinuous-Galerkin (DG) finite element method, inspired by the recent work of [A.J. Lew and G.C.
Buscaglia. A discontinuous-Galerkin-based immersed boundary method. International Journal for Numeri-
cal Methods in Engineering, 76:427-454, 2008]. The method has been enhanced in two aspects: firstly, we
approximate the boundary shape locally by higher-order geometric primitives. Secondly, we employ higher-
order shape functions within intersected elements. These are derived for the various geometric features of
the boundary based on analytical solutions of the underlying partial differential equation. The development
includes three basic geometric features in two dimensions for the solution of Poisson’s equation: a straight
boundary, a circular boundary, and a boundary with a discontinuity. We demonstrate the performance of the
method via analytical benchmark examples with a smooth circular boundary as well as in the presence of a
singularity due to a re-entrant corner. Results are compared to a low-order extended finite element method
as well as the DG method of [1]. We report improved accuracy of the gradient on the boundary by one
order of magnitude, as well as improved convergence rates in the presence of a singular source. In princi-
ple, the method can be extended to three dimensions, more complicated boundary shapes, and other partial
differential equations. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Immersed boundary methods are popular in various fields of computational mechanics. As promi-
nent examples one can name Peskin’s immersed boundary method [2, 3], boundary fitting methods
[4], fictitious domain methods [5, 6], and the eXtended finite element method (X-FEM) [7, 8].
These methods have been successfully applied to the simulation of fluid-structure interaction, crack
propagation, and phase transitions among others. Our primary interest is in the solution of coupled
electro-mechanical problems, where we wish to study moving mechanical bodies in electric fields;
the bodies may be conductors or dielectrics. Recently, fixed-grid methods [9, 10] have become pop-
ular for this task. In comparison to classical Lagrangian methods that adapt their mesh according to
the bodies’ motion, immersed boundary methods have the clear advantage that no elements can be
distorted, as well as no re-meshing is required for possibly large motions of the bodies. The obvious
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848 G. BRANDSTETTER AND S. GOVINDJEE

advantage, however, comes with some difficulties, for example: when Dirichlet type boundary con-
ditions are given, they have to be enforced on non-conforming meshes. Bad element intersections
may occur and require special treatment. And lastly, the evaluation of gradients on the boundary
often lacks precision. The last point becomes especially problematic in the solution of coupled prob-
lems such as in electro-mechanics, where the normal gradient on any interface boundary determines
the traction on the body surface, and thus, its accuracy is crucial to obtain physically meaningful
results.

In this work, we focus on a numerical method that is designed to provide high quality gradients at
the interface. In this context, we first review a low-order X-FEM, where inaccuracies of the gradient
at the interface is a common issue. In the literature, there exist several post-processing techniques,
which smooth the often largely oscillating gradient field (see e.g. [11]). Here we develop a method
that allows one to evaluate the gradient accurately by direct differentiation of the bulk field. Among
others, this has the clear advantage that the computational cost will be reduced, and one can avoid
difficulties of the smoothing operation that may break down when bodies come close, contact, or
singularities are involved. Our method follows, in spirit, the work of [1]. All elements intersected by
a boundary will feature a special set of shape-functions that allow a strong imposition of Dirichlet
boundary conditions along the immersed boundary. Those non-conforming elements are then put
together in the context of a discontinuous-Galerkin (DG) method, where inter-element continuity is
enforced in a weak sense in the region near the immersed boundary; regular finite elements are used
everywhere else. This method has been adapted, for example, in [12] to problems in elasticity, where
it showed very robust behavior in the enforcement of Dirichlet boundary conditions. In our method,
we enhance this approach in two aspects: first, we use a higher-order representation of the bound-
ary by approximating the boundary in each element locally via basic geometric primitives such as
straight lines, circular curves, or wedges in two dimensions. Second, we use a special higher-order
interpolation motivated by the analytical eigensolution of the underlying PDE in the neighborhood
of the corresponding special boundary shape. Specifically, we concentrate on Poisson’s equation in
two-dimensions; however, the method’s basic idea can be extended to more complicated boundary
shapes and other types of PDEs in two as well as three dimensions. In comparison to the X-FEM as
well as the original DG-based immersed boundary method, we achieve much better accuracy of the
gradient. Moreover, we demonstrate the capability to incorporate singularities as they arise in the
presence of re-entrant corners in a natural way.

The outline of the paper is as follows: in Section 2 and 3, we will state the problem and review
a state-of-the-art X-FEM technique. In Section 4, we will layout the principles of the proposed
high-order immersed boundary DG method (IB-DG) and our choice of boundary approximation
and enrichment functions. Lastly, in Section 5, we discuss the performance of the high-order
IB-DG method versus X-FEM and low-order IB-DG via numerical examples. Throughout, we
focus on electrostatics and ignore deformation so as to concentrate on the performance of the
immersed boundary.

2. GOVERNING EQUATIONS

We assume that we want to solve Poisson’s equation in all space, which is divided into domains
R;V , and W as pictured in Figure 1. R should be thought of as a body and V;W as air. Specifically,
we are interested in the solution of the electro-static BVP, with boundary conditions given along
� D R \ V . Assuming linear isotropic dielectric properties with permittivity

�.x/ D

8<
:
�R; x 2 R;
�V ; x 2 V;
�W ; x 2W;

(1)

we look at three typical cases.

Case 1
The body R is a conductor and the boundary � is a conducting surface where we know the potential

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 101:847–869
DOI: 10.1002/nme



A HIGH-ORDER IMMERSED BOUNDARY DG METHOD 849

Figure 1. Problem definition and notation.

ˆ D N̂ . In the absence of any volume charge, the problem reads: find ˆ, such that

r2ˆ D 0 all space; (2)

ˆ D N̂ on�; (3)

where N̂ is any given Dirichlet boundary data along � .

Case 2
The body R is a conductor and the boundary � is a conducting surface where we know the
total charge

Q D

Z
�

�f da (4)

on the surface. The free surface charge density �f D �q� is related to the jump of the flux q D
��rˆ � n along the surface � with normal n. In this case, we impose ˆ D N̂ D constant as a
constraint and treat N̂ as an additional (scalar) unknown. The problem reads: find Œˆ; N̂ �, such that

r2ˆ D 0 all space; (5)

ˆ � N̂ D 0 on�; (6)

Z
�

�q� da D Q: (7)

Case 3
The body R is a dielectric and the boundary � is a dielectric-dielectric interface. In this case the
problem reads: find ˆ, such that

r2ˆ D 0 all space; (8)

�q� D 0 on�: (9)

Again, �q� denotes the jump in the normal flux, and (9) accounts for the fact that no free surface
charge is present at a dielectric-dielectric interface by assumption.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 101:847–869
DOI: 10.1002/nme



850 G. BRANDSTETTER AND S. GOVINDJEE

3. EXTENDED FINITE ELEMENT METHOD (X-FEM)

For Cases 1–3 we derive the variational form: find ˆ 2 Ps , such that

Z
R
�Rrıˆ � rˆ dvC

Z
V
�Vrıˆ � rˆ dv D �

Z
�BE

ıˆqV da (10)

for all ıˆ 2 Pv along with the requirement ˆ D N̂ on � for Cases 1 and 2. Here, the spaces Ps and
Pv are suitable subspaces of H 1.

In order to solve (10) using X-FEM, one typically discretizes each domain as pictured in
Figure 2(a). In this depiction, we assume the boundary � is discretized by linear elements, and R;V
are discretized by quadrilateral elements covering each domain of interest. The effect of W is mod-
eled as a far field boundary condition along �BE via the boundary element method (see App. A).
All elements that are intersected by � will overlap and feature the interpolation

ˆh D ˆhR Cˆ
h
V D

X
i

HRNiˆRi C
X
i

HVNiˆVi ; (11)

where Ni are the classical, finite element shape functions. The characteristic function HR;V equals
one in the corresponding domain and zero elsewhere. A standard bi-linear interpolation has four
degrees of freedom for each element; with one intersection, we obtain eight degrees of freedom
defining the eXtended or enhanced element. Note that the discontinuous shape functions will allow
us to capture kinks in the potential field as pictured in Figure 2(b). Using this interpolation requires
an additional constraint equation to enforce continuity along � .

The approximate problem then reads: find ˆhR; ˆ
h
V 2 Phs , such that

Z
R
�Rrıˆ

h
R � rˆ

h
R dvC

Z
V
�Vrıˆ

h
V � rˆ

h
V dv D �

Z
�BE

qVıˆ
h
V da (12)

for all ıˆhR; ıˆ
h
V 2 Phv along with the requirement ˆhV D ˆhR D

N̂ on �h (for Cases 1 and 2),
and ˆhV D ˆhR on �h (for Case 3). Note that the last three requirements can only be enforced in a
weak sense. For simplicity, we discuss here only the constraint ˆhV D N̂ on �h, the others follow in
a similar fashion.

Figure 2. Schematic of the eXtended finite element method: (a) domain discretization and (b) discontinuous
shape function.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 101:847–869
DOI: 10.1002/nme



A HIGH-ORDER IMMERSED BOUNDARY DG METHOD 851

In order to enforce ˆV D N̂ on � in a weak sense, a typical choice is the Lagrange multiplier
method. Let us introduce � 2 L, where L D H�1=2. One then requires stationarity of the functional

…LM .ˆV ; �/ D

Z
�

�
�
ˆV � N̂

�
da: (13)

Upon variation, we obtain: find .ˆV ; �/ 2 Ps � L, such that (10) holds, and such thatZ
�

ı�ˆV daC
Z
�

ıˆV �da D
Z
�

ı� N̂ da (14)

for all .ıˆV ; ı�/ 2 Pv � L. By choosing a discretization �h 2 Lh, we arrive at the discrete form:
find

�
ˆhV ; �

h
�
2 Phs � Lh, such that (12) holds, and such thatZ

�

ı�hˆhV daC
Z
�

ıˆhV �
h da D

Z
�

ı�h N̂ da (15)

for all
�
ıˆhV ; ı�

h
�
2 Phv � Lh. One can proceed in an analogous manner for constraints ˆhR D N̂

and ˆhV D ˆ
h
R on �h.

We remark that by a standard localization argument, from (12) to (15) one can show that the
Lagrange multiplier equals the normal flux on the boundary:

�h D ��Vrˆ
h
V � nV : (16)

As will be assessed in Section 5, this presents an interesting alternative to the direct evaluation of
the normal gradient on the boundary.

Note that here, N̂ is any given potential, and in the case of a conducting body, N̂ will be constant
on the body. For a typical electro-static problem, however, it might occur that the voltage (=poten-
tial) is not controlled, but rather the total electrical charge Q on a conductor is specified, and one
must calculate the corresponding potential as a (scalar) unknown– the so-called floating potential
problem. In this case we modify (15) to: find

�
ˆhV ; �

h; N̂
�
2 Phs �Lh �R, such that (12) holds, and

such that

N…LM

�
ˆhV ; �

h; N̂
�
D

Z
�

�h
�
ˆhV � N̂

�
daCQ N̂ (17)

is rendered stationary. The Lagrange multiplier �h can still be interpreted as the normal flux on the
boundary, which is essentially the surface charge distribution (Section 2). Upon variation of (17),
we see that

Q D

Z
�

�h da; (18)

which is consistent with the constraint Equation (7) for the given charge load.
Note that the Lagrange multiplier space Lh is not arbitrary but has to satisfy the inf-sup condition

to ensure stability [13]. Moreover, the use of Lagrange multipliers delivers a non-positive system and
additional degrees of freedom are introduced. There are many studies that deal with these issues and
propose solutions on how to choose Lh [14–16]; further alternative formulations such as Nitsche’s
method or stabilized Lagrange multipliers, respectively, have also been advocated [17–25]. For our
purpose of benchmark testing, the classic Lagrange multiplier approach works nicely as we can
control Lh a-priori.

We want to draw special attention to three short comings of the presented X-FEM method and
related technologies, when utilizing a low-order interpolation such as the bi-linear interpolation.
First, as will be demonstrated in Section 5, in the presence of a corner or any more complicated

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 101:847–869
DOI: 10.1002/nme



852 G. BRANDSTETTER AND S. GOVINDJEE

geometry, one will not be able to interpolate the field exactly along the immersed boundary. Second,
the bi-linear interpolation obviously does not account for any possible singularity in the gradient, as
arises, for example, at a re-entrant corner. And third, the evaluation of the gradient on the boundary
will in general be very inaccurate and highly oscillatory even for smooth boundaries, depending on
where the element is cut. These issues can be addressed by mesh-refinement, but this is certainly not
in the spirit of embedded boundary methods that were developed to precisely avoid this. A higher-
order X-FEM technique (see e.g. [26]) may show some improvement related to these concerns,
but we found the approach based on the DG FEM as presented by [1] more natural to extend for
our specific demands.

4. HIGH-ORDER IMMERSED BOUNDARY DISCONTINUOUS-GALERKIN METHOD

In this work, we propose a new immersed boundary method based on the DG FEM. The DG
approach has been used by [1] and [27] recently in a similar context. However, to our knowledge,
no studies have demonstrated yet the use of higher-order approximations to the boundary shape or
interpolation space.

The basic idea is pictured in Figure 3: all elements that are not intersected by the �-boundary uti-
lize standard conforming finite elements. In our examples, we will use a bi-linear interpolation. All
elements that are intersected by the �-boundary utilize a special interpolation that is element-wise
dependant on the shape and location of � . All intersected elements are by default non-conforming,
and continuity across element boundaries and to the standard FE domain is enforced in the DG

Figure 3. Schematic of the high-order immersed boundary discontinuous-Galerkin method: �-boundary,
intersected DG-finite elements, standard finite elements, and �BE .

Figure 4. Schematic of various �-approximations: (left) eXtended finite element method (X-FEM) with
Lagrange multiplier; (middle) low-order immersed boundary discontinuous-Galerkin (IB-DG); (right)

higher-order IB-DG.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 101:847–869
DOI: 10.1002/nme



A HIGH-ORDER IMMERSED BOUNDARY DG METHOD 853

Figure 5. Schematic of basic geometric primitives used for higher-order �-approximation.

context. At this point, we want to review various �-approximations as pictured in Figure 4. Note
that the approximation of the boundary is in general independent of the field interpolation. Due
to the convenience in the integration, one typically uses piecewise linear patches in standard (low-
order) X-FEM or low-order IB-DG methods. As can be readily observed, this approach will lead
to inaccuracies in the �-approximation, which guide us to a higher-order approximation, built of
nonlinear geometric primitives. We locally approach the �-boundary as sketched in Figure 5: for
each intersected element we calculate three control-points, each lying on � . Depending on the angle
Ǒ D max¹ˇC; ˇ�º, we propose an automatic heuristic switch based on a user-defined parameter ˇs .

� If Ǒ D � , approximate � by a straight line through all three control-points.

� If ˇs > Ǒ > � , approximate � by a circular curve through all three control-points.

� If Ǒ > ˇs , approximate � by a wedge with vertex at the mid-control-point.

In our later examples, we set ˇs D 1:3 � , but this can be adjusted by the user’s need. Instead of an
automatic switch, this can also be performed by a user decision– for example, by flagging certain
nodes along the boundary as singular corners, and moreover, one may utilize more complicated
shapes from a user defined library to approximate the boundary at the required accuracy.

As mentioned before, by default, we use a low-order interpolation for all elements that are not
intersected by � . For all elements intersected by � , we switch to a higher-order approximation that
follows the boundary shape locally. For the three basic shapes we developed so far, we propose the
following interpolations.

4.1. Straight boundary

In the case of a straight boundary, for each side of the element one can use a local Cartesian coor-
dinate system ¹x; yº (Figure 5), and approximate the solution by polynomial spaces. In accordance
with [1], this can be performed by a linear (low-order) space

ˆh 2 span¹1; x; y˙º; (19)

featuring four degrees of freedom per element. Note that this approximation will be used in the low-
order IB-DG implementation for comparison in the next section. In our higher-order formulation,
we will use a quadratic space

ˆh 2 span¹1; x; x2; y˙; .y2/˙; xy˙º; (20)

resulting in nine degrees of freedom per element. This enables a more accurate gradient interpolation
and, moreover, avoids locking of the solution when non-constant gradients occur in an element.

In this notation, we note that all modes labeled ¹.:/˙º D ¹.:/C; .:/�º have to be counted twice as
they are independently used to interpolate the field in each domain. Note that the interpolation space
is designed to follow the boundary shape, which enables one to specify Dirichlet type boundary

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 101:847–869
DOI: 10.1002/nme



854 G. BRANDSTETTER AND S. GOVINDJEE

Figure 6. Shape functions for circular boundary.

Figure 7. Shape functions for corner element.

conditions in a strong sense. This is one major difference to the X-FEM method, where Dirichlet
boundary conditions can only be enforced in a weak sense.

4.2. Circular boundary

In the case of a circular boundary approximation, we introduce the polar coordinate system ¹r; 'º
as shown in Figure 5 and propose the shape functions

ˆh 2 span¹1; '; '2; log.r=R/˙; ' log.r=R/˙º; (21)

as pictured in Figure 6 (viz. seven degrees of freedom). These functions are motivated by the ana-
lytical eigensolution of Poisson’s equation near a circular boundary in two dimensions (see e.g.
[28, §9.4]).

4.3. Corner element

Lastly, we propose a corner interpolation using a polar coordinate system ¹r; 'º as pictured in
Figure 5. Different to the circular boundary case, the coordinate center is now at the singular corner
location. We assume

ˆh 2 span
°
1; r cos.�'=ˇ/; r2 cos2.�'=ˇ/; rm�=ˇ sin.m�'=ˇ/˙

±N
mD1

; (22)

again motivated by near field solutions to Poisson’s equation [28, §9.4]; see Figure 7. Note that
m D 1 represents the singularity in the gradient due to a re-entrant corner; modes m > 1 represent
higher-order series expansions of the exact solution. We found the choice N D 3 (nine degrees of
freedom) sufficiently accurate for our numerical experiments in Section 5. Higher choices of N will
give more accurate results but potentially lead to instabilities.

4.4. Inter-element continuity

Because all intersected elements have locally defined solution parameters, one has to enforce conti-
nuity along the element boundaries. For simplicity, we employ a DG method with internal penalties
(IP-DG) [29–31]. Alternatively one could utilize other DG methods such as Bassi-Rebay [32], the
local DG [33], or the compact DG method [34]. These approaches improve upon IP-DG but for
our purpose of developing a proper boundary representation they are unneeded and we opt for the
simplicity afforded by IP-DG.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 101:847–869
DOI: 10.1002/nme
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The overall problem then reads: find ˆh 2 Phs , such that (12) holds and

…DG.ˆh/ D
X
e

²Z
�e

hqhi�ˆh�da �
˛

he

Z
�e

�ˆh�2 da

³
! stat. (23)

Here

�ˆh� D ˆhC �ˆh�; (24)

hqhi D
1

2
.qhC C qh�/ (25)

denote the jump and average of field or flux, respectively, across each element boundary �e . The
sum goes over all boundaries of intersected elements. The stability parameter ˛ in this form is
scaled by the local area-measure he of the element boundary. After the typical variation, together
with (12) we arrive at a linear system, where with ease we can strongly enforce Dirichlet type
boundary conditions along � . Note that ˛ in this work is a user-defined parameter that must be
chosen high enough in order to satisfy coercivity of the weak form, and low enough to retain
accuracy. Recent work by [35, 36] or [37] establish methods to estimate ˛ based on the solution
of a local eigen-value problem. For our purposes of benchmark testing we manually optimize ˛ for
the given examples.

4.5. Charge loading

For the charge loading case, let us denote ˆh D
Pm
jD1 Pjˆj with Pj 2 Phs and the expansion

coefficients ˆj . Using a Galerkin discretization, one can write (12) and (23) in the algebraic form:
find Œˆj � such that X

j

Kijˆj D qi 8i D 1; : : : ;m; (26)

whereKij are the coefficients of the electrical stiffness, and qi the equivalent fluxes for each degree
of freedom. Let us now denote the set

J D ¹j jPj .x/ ¤ 0;8x 2 �º; (27)

which are the degrees of freedom in the intersected elements that are used to interpolate ˆh D N̂
along � . We now split J into J D J0 [ Jn, with J0 \ Jn D ;, where J0 is the set of all
constant modes and Jn is the set of all higher modes. For charge loading on a conducting surface we
then require

ˆj D N̂ ;8j 2 J0; ˆj D 0;8j 2 Jn;
X
j2J0

qj D Q; (28)

which are the equivalent forms to (17) and (18). From (26) we then derive: find Œˆj ; N̂ �; j 62 J ,
such that

X
j 62J

Kijˆj C
X
j2J0

Kij N̂ D qi ; 8i 62 J ; (29)

X
i2J0

X
j 62J

Kijˆj C
X
i2J0

X
j2J0

Kij N̂ D Q: (30)

for any given equivalent nodal fluxes qi and total charge Q.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 101:847–869
DOI: 10.1002/nme
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4.6. Integration

Before we proceed to the numerical examples, we point out some further details of the imple-
mentation. For elements intersected by a smooth boundary, we employ standard Gauss integration
procedures via tessellation [7]. In elements featuring a sharp corner, we have to integrate a singular
function of the form Z

�I

�.�=ˇ/2r��da; (31)

where � D 2 � 2�=ˇ is the order of the singularity. As pictured in Figure 8 (right), we divide
elements by a Delaunay-triangularization into triangles	I , such that the singularity is at one vertex.
Following [38], we then use a generalized Duffy-trick to integrate each triangle with a proper Gauss-
rule that respects the order of the singularity depending on the angle ˇ˙.

4.7. Singular corner enrichment radius

In accordance with [39] and [40], we observe that optimal convergence during mesh-refinement
for the singular enrichment can only be achieved by enhancing all elements surrounding the sin-
gular point within a certain radius rE (Figure 9). For each such element, we refer to the same
source of singularity, from which we measure the local coordinates ¹r; 'º and from which we take
the angle ˇ˙.

Figure 8. Immersed boundary discontinuous-Galerkin (IB-DG): (left) element extensions; (right) Gauss
integration of singular functions via generalized Duffy-trick.

Figure 9. Singular element enhancement within enrichment radius rE .

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 101:847–869
DOI: 10.1002/nme



A HIGH-ORDER IMMERSED BOUNDARY DG METHOD 857

4.8. Element extensions

Because one typically cannot control the boundary location, for example if one has moving bodies,
bad element intersections may lead to ill-conditioning. To alleviate this problem, we follow a pro-
cedure similar to what was proposed in [41]. In two dimensions, our strategy depends on how the
elements are intersected. When two opposite sides are intersected (Figure 8, left) and

p
Area < ı1h,

we extend the element to the next neighbor. When two adjacent sides are intersected (Figure 8, mid-
dle) and

p
Area < ı2h, we merge two intersected elements that share a common edge. In rare cases,

it may occur that such merging will lead to a successive combining of elements into a very large ele-
ment. For a structured mesh as pictured here, this can be avoided by consistently merging elements
in only one coordinate direction. With unstructured meshes, one would have to consider a strategy
that avoids such combinations.

4.9. Element identification

In order to identify the various element-types, a Level-set function is calculated for each solution
iteration. In our examples, we compute the signed-distance to the boundary � at each nodal location
of the computational domain 
h D Rh [ Vh. This enables an identification of all intersected
elements, for which we identify the element control-points as pictured in Figure 5. Subsequently we
check for singular elements and bad element intersections depending on the parameters rE ; ı1; ı2.
Note again that all identified elements, that track the interface, feature a higher-order locally defined
interpolation, whereas the remaining elements utilize a standard bi-linear interpolation as pictured in
Figure 9. This is a major advantage of the IB-DG method versus X-FEM. Once the basic framework
is implemented, one can easily define new elements and combine various element-types of different
orders to obtain an optimal and efficient interpolation space for the problem at hand.

5. NUMERICAL EXAMPLES

We now look at several examples where a straight forward analytical solution is accessible. In partic-
ular, we will validate the accuracy and convergence during h�refinement. To this end we introduce
the relative L2-error norms

jjˆ �ˆhjj�=jjˆjj� D

sZ
�

�
ˆh �ˆ

�2
d


,sZ
�

ˆ2d
; (32)

for the bulk field in the computational domain 
 and

jjrnˆ � rnˆ
hjj�=jjrnˆjj� D

sZ
�

�
rnˆh � rnˆ

�2
d�

,sZ
�

rnˆ2d�; (33)

for the normal gradient along � .

5.1. Two cylinders

In this example, we assume two cylinders, which are separated by a distance c, and one is kept at a
fixed potential ˆ D ˆ0, while the other is kept at ˆ D �ˆ0 (Figure 10). The analytical solution is
given by (see e.g. [42, p.15])

ˆ.x/ D ˆ0 log
r2.x/

r1.x/

�
log

a

d
; (34)

where the cylinder radius a; r1; r2 are pictured in Figure 10 and d D c=2 �
p
0:25c2 � a2.
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For the numerical example we consider �V D �W D 1;ˆ0 D 300; a D 0:1 and c D 0:5. The
background mesh covers the domain
 D Œ0; 1�2 and has been refined from 25�25 to 200�200 ele-
ments; that is, the element size h D 1=25; : : : ; 1=200. For ease of implementation, we discretize the
cylinder surface .�h/ by N piecewise linear surface patches. Because we adopt the Lagrange mul-
tiplier space according to the surface discretization for X-FEM via Lagrange multipliers, N cannot
be chosen arbitrarily in this case because the inf-sup condition must be satisfied. We found the best
possible results by using 10–80 linear elements for each cylinder (Figure 10), which corresponds to
a ratio l=h � 1:6. In the case of the IB-DG method, there is no constraint on the surface discretiza-
tion, and we used N D 500 to obtain an accurate representation of � . Following a sensitivity study
as discussed later, for the low-order IB-DG we choose ˛ D 100. For the higher-order IB-DG we
choose ˛ D 150 and in addition use element extensions with ı1 D 0:6, ı2 D 1. No radius rE needs
to be specified in this example because no singularities are present.

Looking at typical results in Figure 11(a-c), we readily observe two advantages of the higher-order
IB-DG method: first, the potential field follows the surface discretization much more accurately than
in the case of a low-order IB-DG method or X-FEM. Second, the constraint ˆ D N̂ is enforced

Figure 10. Two-cylinders example: schematic, discretization and various cylinder center positions (ipos).

Figure 11. Two-cylinders example: (top) detailed potential contour, �-boundary and background mesh with
control-points; (bottom) normal gradient along cylinder surface.
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Figure 12. Two-cylinders example, maximum L2-error convergence: (left) bulk field; (right) normal
gradient.

exactly on the boundary, which cannot be guaranteed by X-FEM. Looking at Figure 11(d-f), the
advantage of the higher-order enhancement becomes even more obvious. Whereas X-FEM and low-
order IB-DG give very poor quality of the gradient along � , the error for higher-order IB-DG is
noticeably better. Inaccuracies in the gradient as arising in Figure 11(d) are a well known issue to the
X-FEM community [11]. Methods exist to reconstruct more accurate gradients by post-processing
steps, but this is not necessary for the proposed higher-order IB-DG method. Note that the Lagrange
multiplier in this example does give a very accurate representation of the normal flux on the bound-
ary, and only small oscillations occur. However, this is a best case scenario as we optimized Lh, and
any other choice will easily give much worse results with possibly large oscillations. Moreover, as
will be observed in the next example, the standard Lagrange multiplier approach will fail whenever
singularities in the gradient field are involved. The convergence during h-refinement of the field ˆ
and the normal gradient field is shown in Figure 12. All methods show second and first order con-
vergence of the field and the normal gradient error, respectively. The gradient approximation of the
higher-order IB-DG method and the Lagrange-multiplier are about one order of magnitude more
accurate than the low-order IB-DG method and X-FEM, but the rates are the same.

5.2. Sensitivity (interface location)

In a general application of the method, the elements can be intersected by the boundary in any
possible way. Thus, we test over a certain range of configurations and report in our convergence plots
worst case scenarios as an upper bound on the error. To give a full picture, Figure 13(left) shows the
error as we vary the cylinder center as pictured in Figure 10. We observe very little variation of the
error, which has also been confirmed in the examples that follow.

5.3. Sensitivity .˛/

As indicated previously, one needs to select the stabilization parameter ˛. In order to pick ˛ for the
IB-DG methods, we plot the field- and gradient-error in Figure 13(center and right). The optimum
˛ depends on the mesh refinement h. In this and the upcoming examples, we choose a minimum
˛ such that optimum convergence during h-refinement was achieved over the range of h-values
examined. For any given discretization h, however, other choices of ˛ may give more accurate
results in terms of the error constant. This manual procedure ensures that we observe full rates of
convergence. However, in a general setting one should employ an automatic parameter selection
scheme. We also note that the sensitivity with respect to ˛ is essentially independent of the degree of
intersection, ipos.
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Figure 13. Two-cylinders example: sensitivity of bulk- and gradient-error (left) with respect to interface
location (ipos); (center and right) with respect to stability parameter .˛/ for various h-values as indicated in

upper right figure.

Figure 14. Rectangular-corner example: schematic, discretization and varying interface location.

5.4. Rectangular corner

For the second example, we assume a rectangular body within a box, where the potential at the
boundary � is held at ˆ0 D 300 and at the border of the box is set to zero (Figure 14). We denote
the length of the rectangular body as L and the gap between � and the outer box as g. When the
gap-to-length ratio g=L << 1, we set the origin of a Cartesian coordinate system .x; y/ at the lower
left corner of the outer box, and one can find the analytical solution near this corner as pointed out
in [43, p.21] via a conformal mapping f W Q́ ! ´, with ´; Q́ 2 C. Here ´ D x C iy represents
the coordinate location in the physical space, whereas Q́ D Qr cos. Q'/ C i Qr sin. Q'/ follows rays of
corresponding potentials ˆ D ˆ0 Q'=� for any fixed angle Q' 2 Œ0; ��. The mapping f is given by

f . Q́/ D
2g

�

2
64arctan

s
Q́ � 1

Q́ C 1
C
1

2
ln
1C

q
Q́�1
Q́C1

1 �
q
Q́�1
Q́C1

3
75 ; (35)
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and we find the solution at ´ D .x; y/ formally by taking the inverse Q́ D f �1.´/. The normal
gradient then is

rnˆ D
ˆ0

g

s
Q́ � 1

Q́ C 1
: (36)

For the numerical example we consider �V D 1;ˆ0 D 300, and vary L to change the inter-
face location. The background mesh covers the domain Œ0; 1�2, and has been refined from 25 � 25
to 200 � 200 elements; that is, the element size h D 1=25; : : : ; 1=200. Again, for X-FEM via
Lagrange multipliers, the corner surface discretization .�h/ is not arbitrary and has been optimized
to 8–64 linear elements per side .l=h � 2:5/. For the low-order DG we choose ˛ D 20, whereas
for the higher-order DG we choose ˛ D 1000; ı1 D 0:6; ı2 D 1. Due to the presence of a sin-
gularity, in the higher-order IB-DG we use a geometric enrichment around the singularity with
rE D 0:04. We chose rE to sufficiently cover the effective radius of the singularity as observed in the
numerical examples.

Looking at typical results in Figure 15, we make similar observations as in the previous example
but even more distinct. The low-order X-FEM and IB-DG clearly fail to interpolate the poten-

Figure 15. Corner example: (top-middle) resulting potential contour, �-boundary and background mesh;
(bottom) normal gradient along �-boundary.
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tial around the corner [Figure 15(a,b)] and approximate the gradient very poorly even for high
refinements [Figure 15(g,h)]. On the other hand, the higher-order IB-DG approach shows excellent
performance as seen in Figure 15(c,i).

In order to perform a convergence study for h-refinement, at each refinement we vary the ratio
d=h 2 Œ0; : : : ; 1� as pictured in Figure 14. Three cases are plotted for the higher-order IB-DG in
Figure 15(d-f). As � comes closer to the element boundary, our method will automatically extend
the DG element region (red element boundaries) and merge neighboring elements. The upper bounds
on the error for the bulk- and gradient-fields are shown in Figure 16. The higher-order IB-DG
method clearly outperforms the low-order approaches. We observe second order convergence in the
bulk field as well as the gradient field for the higher-order IB-DG, whereas the low-order methods
lock with respect to the surface gradient error. Note especially that despite the previous example
with a circular boundary, the Lagrange multiplier is unable to deliver accurate results in this case.
Moreover, any post-processing will have difficulties to reconstruct the singular gradients around the
corner from a low-order bulk field interpolation.

5.5. Charge loading

We next test the case where a total charge Q is imposed on a conductor. We take the geometry
from the rectangular boundary given in the previous example. From the analytical approximation,
we calculate

Q D �

Z
�

�V.rˆ � n/ da D �8�Vˆ0=�
Z �1
Q́0

Q́�1 da; (37)

where we find Q́0 D f �1.´0/, with ´0 D .0:5; g/ and the mapping f is given by (35). We tabulate
typical values for Q at ˆ0 D 300 and various g in Table I.

For the numerical test, we use the same parameters as from the previous example, except we now
employ Q as a given load and solve consequently for ˆh; N̂ via (17) in the X-FEM context or (29)
and (30) for the IB-DG methods. We plot the convergence in Figure 17 and observe similar results
as reported in the previous example, where our high-order IB-DG outperforms the other methods
especially with respect to the normal gradient error.

Figure 16. Corner example, voltage loading, maximum L2-error convergence: (left) bulk field; (right)
normal gradient.

Table I. Charge loading example: Typical Q́0 and Q for various gaps g at N̂ D 300.

g 0.0900 0.0925 0.095 0.0975 0.1000

Q́0 �3:9505 � 106 �2:4648 � 106 �1:5766 � 106 �1:0318 � 106 �6:8970 � 105

Q �1:1604 � 104 �1:1243 � 104 �1:0902 � 104 �1:0578 � 104 �1:0270 � 104
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Figure 17. Corner example, charge loading, maximum L2-error convergence: (left) bulk field; (right) normal
gradient.

Figure 18. Dielectric-interface example: resulting potential contour immersed boundary discontinuous-
Galerkin (IB-DG) (higher-order, h=1/100) for (left) �R D 106 and (right) �R D 3.

5.6. Dielectric interface

For our last example, we test the capability to calculate penetrating fields as well as a discontinuous
material permittivity across dielectric-dielectric interfaces. To this end we assume a cylinder with
radius R and permittivity �R placed in a uniform e-field of strength E0 in the surrounding infinite
space with permittivity �V . Using a polar coordinate system ¹r; 'º with origin at the cylinder center,
the analytical solution is given by

ˆ D

´
� 2�V
�RC�V

E0r sin'; if r < R;

�E0r sin' C �R��V
�RC�V

E0
R2

r
sin'; if r > R;

(38)

which features a constant electrical field in the interior of the cylinder. For the numerical example
we consider the radius R D 0:2, permittivity �V D 1, and e-field strength E0 D 1. We test two
different scenarios �R D 106 and �R D 3. The background mesh has been refined from 25 � 25 to
200 � 200 elements. For the Lagrange multiplier space we use N D 15; : : : ; 120 linear elements,
which corresponds to a ratio l=h � 2:1 to maintain stability. For the low-order IB-DG we choose
˛ D 200, and ˛ D 450 for the higher-order IB-DG. In addition we use element extensions with
ı1 D 0:6, ı2 D 1. No radius rE needs to be specified because no singularities are present. In this
example we impose fixed Dirichlet boundary conditions along the boundary of the computational
domain, as we calculate from the analytical solution.

A typical contour plot for the two different �R is shown in Figure 18, which nicely shows the
constant e-field inside the cylinder. As can be expected, �R D 106 enforces a quasi-vanishing
electrical field inside the cylinder, whereas �R D 3 allows a penetrating field. Because for both
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�R we made similar numerical observations, we will focus on �R D 3 in the following. We draw
attention to the detailed point-wise error maps in Figure 19(a-c) around the boundary: for X-FEM we
have the large errors occurring near the boundary location, whereas for the IB-DG methods the error
concentrates near the element edges. This is expected, because for X-FEM one enforces continuity
in a weak sense along � , whereas for the IB-DG based methods continuity is enforced in a weak
sense along element boundaries of the intersected elements. When looking at the normal gradients
in Figure 19(d-e), we observe a smooth approximation via the Lagrange multiplier and higher-order
IB-DG, whereas the direct evaluation via X-FEM and low-order IB-DG show some error spikes
and more jittery behavior. This is reflected in the convergence plots in Figure 20, where the error

Figure 19. Dielectric-interface example: (top) detailed potential error jˆh�ˆj; �-boundary and background
mesh with control-points; (bottom) normal gradient along �-boundary.

Figure 20. Dielectric-interface example, maximum L2-error convergence: (left) bulk field; (right) normal
gradient.
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constants for X-FEM with Lagrange multipliers and high-order IB-DG are smaller. Nevertheless all
methods show the same order of convergence for this example.

6. CONCLUSION

We have presented a new implementation of a high-order DG based immersed boundary method.
The method is based on a high-order boundary representation, as well as a high-order field approx-
imation in a small band of elements cut by the boundary. The boundary shape is approximated
locally by possibly nonlinear geometric primitives. In this paper we develop elements for straight-,
circular-, and corner-boundaries in two dimensions. The field approximation is spanned by shape
functions that are motivated by the analytical solution of the underlying PDE in the proximity of
the corresponding boundary features. Employing this higher-order solution space has several advan-
tages compared to low-order approximations. As a main argument to use, it appears that (i) Dirichlet
boundary conditions along � can be strongly enforced, (ii) the gradient interpolation is more accu-
rate than low-order embedded boundary methods, (iii) no oscillations occur in the gradient and no
post-processing is required to obtain smooth results, and (iv) singularities in the PDE can be incor-
porated in a natural way. All enhanced elements are coupled together and to the rest of the standard
FE domain via DG. The DG-based immersed boundary method is very robust, and we performed
several benchmark tests to demonstrate the performance and convergence. The method is also effi-
cient, in the sense that a higher-order interpolation is employed only around the boundary where a
high accuracy for the gradient field is needed, whereas the rest of the domain may utilize low-order
approximations. We do require heuristic parameters to deal with intersection adaption and singular-
ities. However, the method has been found to be relatively insensitive to these. Moreover, our DG
method does feature a stabilization term ˛, as in most immersed boundary methods there is a sta-
bilization needed at some point. In this work we choose ˛ following a convergence study to obtain
optimal results. Whereas this gave us very accurate results in the discussed examples, the selection
of ˛ is carried out by the user’s choice, and future works may consider alternative DG methodolo-
gies that provide for accuracy and stability with an automated stability parameter. The focus of this
work is on the enhancement of the gradient accuracy along higher-order immersed boundary shapes,
which has been successfully adopted. We note that the basic idea is very simple in two dimensions
and can be extended to more complicated boundary shapes or other types of PDEs. In order to deal
with three space dimensions, the basic strategy will remain the same, but an extended library of
geometric primitives and boundary intersection scenarios will become necessary. While the devel-
opment of such libraries requires clearly more effort in the three-dimensional setup as compared
to the present two-dimensional work, there is a finite set of cases in the end. Once these libraries
have been created, we believe that the proposed methodology has good potential to improve upon
robustness and accuracy in comparison to current immersed boundary technologies, especially if
higher-order boundary features are present or singularities in the field have to be resolved.

APPENDIX A: FAR FIELD BOUNDARY CONDITION VIA BOUNDARY ELEMENT
METHOD

We briefly outline our approach to the far field boundary condition we employ at the boundary of
the computational domain of interest. To this end we use the boundary element method, which relies
upon the boundary integral equation, for each xi 2W ,

c ˆW.xi / �

Z
@W

ˆWq
�
W da D �

Z
@W

qWˆ
�
W da; (A.1)

where

ˆ�W D

´
1

2��W
ln 1
r
; in 2D;

1
4��Wr

; in 3D;
(A.2)
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Figure A.1. Coupling finite element and boundary element method.

with r D kx � xik; q�W D ��Wrˆ
�
W � nW and c is a constant depending on the location of the

collocation point xi . If xi is inside W , then c D 1. If xi is on @W , then c depends on the smoothness
of the boundary (see e.g. [44, p.107])– for a smooth boundary one has c D 0:5.

We consider the discretization of the boundary integral Equation (A.1). In this context we will
use a point collocation method where we assume that (A.1) holds strongly for xi at all nodal points
of the mesh @Wh. This results in

Œ	Q� Q̂ W D Œ	ˆ� QqW ; (A.3)

where the i-th row corresponds to collocation point xi :

Œ	Q�i;W Q̂ W D c Q̂Wi �
X
e

�Z
@We

q�W.xi ; �/ QNe.�/da.�/

�
Q̂ We (A.4)

Œ	ˆ�i;W QqW D �
X
e

�Z
@We

ˆ�W.xi ; �/ QNe.�/da.�/

�
QqWe; (A.5)

and QNe.�/ are standard shape function matrices. Note the notation (e.g. 2D)

ˆ�W.xi ; �/ D
1

2��W
ln

1

kx.�/ � xik
; (A.6)

where � is the integration parameter such that x.�/ maps to the element integration domain. The
matrices Œ	Q� ; Œ	ˆ� are fully populated. We highlight three facts: first, the integrals involve singu-
lar functions and special care must be taken in order to evaluate them correctly via numerical Gauss
or modified Gauss quadrature rules ([44, p.139]). Second, note that the diagonal terms of Œ	Q�
can be easily obtained by summing up all other coefficients in the corresponding row and chang-
ing the sign ([44, p.135], rigid body motion argument); this saves us a strongly singular integration
plus the computation of the factor c. And lastly, note that for an infinite domain one must consider
the so called azimuthal integral, that is the integration over the (semi-)sphere with infinite radius
([44, p.136]). This will only give a contribution to the strongly singular integral; that is, the diag-
onal terms of Œ	Q�. In the case of an infinite domain this requires one to add C1 to the diagonal,
whereas in the semi-infinite case one adds C0:5.

In our experience the use of a piecewise constant boundary element discretization performs sat-
isfactorily and is particularly easy to implement. We assume that the BE-nodes are in the middle of
each surface patch, and that the constant potential equals the average of the attached domain mesh
interpolation. Using constant elements allows us an analytical integration of the singular integrals.
In particular note that Œ	Q�i;i D 1:5 as arising from the azimuthal integral, whereas the strongly
singular integral vanishes in this case. Moreover

Œ	ˆ�i;i D �

Z
�BEi

ˆ�W.xi ; �/da.�/ D �2
Z l=2

0

1

2��W
ln
1

�
d� D �

l

2��W

�
ln
2

l
C 1

�
; (A.7)

where l is the length of the boundary element. For the off-diagonal terms, a standard 4-point Gauss
quadrature is used.
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We couple the boundary elements to the standard finite elements as in [44, Ch.16]. One can write
(A.3) as

QqW D QKBE
Q̂ W ; (A.8)

featuring the ‘pseudo’-stiffness matrix

QKBE D
	
Qq1; Qq2; : : : ; QqNb



; (A.9)

where Qqi is the solution to

Œ	ˆ� Qqi D Œ	Q�W;i ; (A.10)

with Œ	Q�W;i the i-th column of the matrix Œ	Q�. In order to obtain an expression for the finite
element flux vector fBE , we note that qV D �qW along �BE . Thus one can write the equivalent
nodal flux at Node i as

fBEi D �
X
¹ei º

nbeX
nD1

"Z
@Vei\�BE

N
ei
j
QN be.ei /
n da

#
Qq
be.ei /
Wn ; (A.11)

where ¹eiº ranges over the adjacent elements of node i; be.ei / is the boundary element number
corresponding to the adjacent finite element ei , and one takes the local finite element shape function
N
ei
j associated with the j -th node in the element numbering, which corresponds to the i-th global

node (Figure A.1). We write (A.11) as

fBE D �N QqW : (A.12)

Finally ˆW D ˆV , and we use the projection P , such that

Q̂ W D PˆW ; (A.13)

relates the BE interpolation to the FE nodal values. We summarize

fBE D �N QKBEPˆV D �KBEˆV ; (A.14)

where

KBE D N QKBEP (A.15)

is the boundary element stiffness (non-symmetric).
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