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Multi-omicbrainandbehavioral correlatesof
cell-free fetal DNA methylation in macaque
maternal obesity models

Benjamin I. Laufer1,2,3,12, Yu Hasegawa 4,13, Zhichao Zhang 4,13,
Casey E. Hogrefe5, Laura A. Del Rosso5, Lori Haapanen3, Hyeyeon Hwang 1,2,3,
Melissa D. Bauman3,5,6,7, Judy Van de Water 7,8, Ameer Y. Taha4,
Carolyn M. Slupsky 4,7,9, Mari S. Golub5, John P. Capitanio 5,10,
Catherine A. VandeVoort5,11, Cheryl K. Walker3,5,7,11 & Janine M. LaSalle 1,2,3,7

Maternal obesity during pregnancy is associated with neurodevelopmental
disorder (NDD) risk. We utilized integrative multi-omics to examine maternal
obesity effects on offspring neurodevelopment in rhesus macaques by com-
parison to lean controls and two interventions. Differentially methylated
regions (DMRs) from longitudinal maternal blood-derived cell-free fetal DNA
(cffDNA) significantly overlapped with DMRs from infant brain. The DMRs
were enriched for neurodevelopmental functions, methylation-sensitive
developmental transcription factor motifs, and human NDD DMRs identified
from brain and placenta. Brain and cffDNA methylation levels from a large
region overlapping mir-663 correlated with maternal obesity, metabolic and
immune markers, and infant behavior. A DUX4 hippocampal co-methylation
network correlatedwithmaternal obesity, infant behavior, infant hippocampal
lipidomic and metabolomic profiles, and maternal blood measurements of
DUX4 cffDNA methylation, cytokines, and metabolites. We conclude that in
this model, maternal obesity was associated with changes in the infant brain
and behavior, and these differences were detectable in pregnancy through
integrative analyses of cffDNA methylation with immune and metabolic
factors.

In North America, more than half of pregnant women are considered
to be overweight or obese1,2. Maternal obesity and related metabolic
conditions are associated with a significantly increased risk of off-
spring with neurodevelopmental disorders (NDD), including autism
spectrum disorders (ASD)3–7. NDDs are increasing in prevalance8, and
ASD is currently diagnosed in 1 in 54 children in the United States of
America, where the diagnosis is ~4× more prevalent in males than
females9. The elevated risk of an NDD/ASD resulting from maternal
obesity is hypothesized to be related to a complex cascade of meta-
bolic and inflammatory events that alter developmental gene reg-
ulatory networks. In mice, maternal obesity is associated with sex-

specific differences in embryonic brain gene expression, affecting
genes related to immunity and inflammation, metabolism, oxidative
stress, and development10. Also in mice, maternal high-fat diet results
in differences in maternal metabolism and inflammation that alter
adult offspring brain inflammation and behavior11,12. In Japanese
macaques, maternal high-fat diet resulted in metabolic and cytokine
differences with long-lasting effects on offspring behavior13. In
humans, altered metabolites have been observed in the serum of
mothers of young children with ASD, including those related to the
one-carbon metabolism, critical for the epigenetic modification DNA
cytosine methylation14. In mice, a perinatal high-fat diet was found to
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alter one-carbon metabolism and DNA methylation in the prefrontal
cortex of male offspring15. The effect of maternal obesity on one-
carbon metabolism in offspring was also seen in baboons fed a high-
fat, high-energy diet16. Together, these findings demonstrate that
maternal diet alters cytokine andmetabolic profiles during pregnancy
and suggest that these contribute to altered behavior and brain DNA
methylation profiles in offspring from obese dams. However, chal-
lenges remain in understanding the epigenetic mechanisms that
explain inter-individual differences following exposure to maternal
obesity in humans.

As the maternal-fetal interface, the placenta is the fetal organ
that is first affected by the altered metabolites and cytokines
resulting from maternal obesity. In humans, pre-pregnancy obesity
associated with elevated inflammatory cytokine levels in maternal
serum and differential expression of genes related to nutrient
transport and immunity in the placenta17. Women with obesity
have a higher risk of developing gestational hypertension and
preeclampsia18. Maternal pre-pregnancy obesity and trimester-
specific gestational weight gain is associated with differential DNA
CpGmethylation in the placenta19. Maternal obesity is also associated
with differential CpGmethylation and expression of adiponectin and
leptin genes in human placenta20. Adiponectin and leptin are adipo-
kines, which are cytokines secreted by adipose tissue that function as
cellular signaling molecules, and their overexpression results in
inflammation and altered metabolism21,22. Alterations to inflamma-
tory cytokine levels, which include adipokines, have been associated
with ASD23–25, and cytokines play a critical role at the placenta26,27.
Functionally, the placental DNA methylome retains profiles of early
embryonic development, including neurodevelopment28–30. Pre-
viously, we have shown that genome-wide DNA methylation profiles
can distinguish human placental samples from newborns later diag-
nosed with ASD compared to typically developing controls and that
DNA methylation profiles are shared between placenta and
embryonic brain in a mouse model of a human NDD/ASD relevant
environmental exposure31–33. This epigenetic convergence between
placenta and brain suggests that placental DNA methylation can
inform about individual NDD/ASD risk.

Ideally, epigenetic biomarkers of individual NDD/ASD risk would
be obtained during pregnancy in order to design behavioral and
therapeutic strategies for improved child outcomes. However, direct
fetoplacental sampling is invasive and increases the risk for pregnancy
loss. For this reason, non-invasive prenatal testing (NIPT) has become
an increasingly attractive option for fetal diagnostics34. NIPT is based
on assaying the cell-free fetal DNA (cffDNA) that circulates in the blood
of pregnant mothers35,36. Genetic evidence from cases of anembryonic
pregnancies or confined placental mosaicism have demonstrated that
cffDNA originates from the trophoblasts of the placenta37–39. Epige-
netic evidence has confirmed the placental origin of cffDNA through
the detection of hypomethylated domains called partially methylated
domains40,41, which are uniquely characteristic of placenta in indivi-
duals without cancer30,42. cffDNA is generated by developmental
apoptosis, during turnover of the syncytiotrophoblast, and is released
into maternal circulation as a membrane bound entity43,44. Further-
more, cffDNA contains a DNAmethylation profile representative of its
placental origin41,45,46. cffDNA represents between 12–41% of cell-free
DNA (cfDNA) in the plasma of pregnant women with the percent
contribution increasing throughout pregnancy and the remainder of
the profile originating from neutrophils, lymphocytes, and the liver40.

Results
Rhesus macaque maternal obesity models
Themodelwas basedonnaturally obese rhesusmacaquedams thatwe
previously demonstrated produce offspring with a relevant neurobe-
havioral profile47. In addition to comparing obese (n = 7) to lean mat-
ched controls (n = 6), we also examined the effects of dietary (caloric

restriction, n = 5) and pharmacological (pravastatin, n = 7) obesity
interventions, and examined a total of 25 male offspring. Pravastatin
was chosen as it is clinically used to lower blood pressure, and has
received recent attention as it may attenuate gestational hypertension
and the risk of developing preeclampsia48. Compared to obese control
and both obese treatment groups, the lean control group showed a
significantly (p < 0.05) reduced pre-pregnancy body composition
scores (BCS) and significantly reduced body weights at all four gesta-
tional timepoints (Supplementary Table 1).

In order to characterize themulti-factorialmolecular cascade that
results from maternal obesity at the individual level, we generated
longitudinal cffDNA methylomes from four pregnancy timepoints
across all trimesters as well as three infant brain regions (hippo-
campus, prefrontal cortex, and hypothalamus) at 6 months old
(Fig. 1a). We integrated the DNA methylome results obtained from
whole-genome bisulfite sequencing (WGBS) with immunological and
metabolomic assays of maternal blood across pregnancy (Supple-
mentary Data 1), two behavioral tests assessing infant social and
abstract stimuli recognition memory that is relevant to an NDD/ASD,
and infant brain lipidomics andmetabolomics (SupplementaryData 2).

cffDNA methylation profiles are consistent with the placental
methylome
First, to assess the quality of the cffDNA methylomes, we performed
three analyses to confirm that we could recapitulate previous findings.
To confirm that the DNAmethylation profile of the cffDNA represents
its placental origin more closely than cfDNA in a non-pregnant female,
we performed a pilot experiment to compare the DNA methylation
profiles of the three sample sources (placental biopsies, cffDNA, and
cfDNA) in lean macaques. Principal component analysis (PCA) of the
average smoothed methylation levels from regulatory regions and
genebodies revealed that the cffDNAshows a closer relationship to the
placenta than cfDNA (Supplementary Fig. 1a). Next, using the primary
samples for the study, we leveraged the fact that the pregnancies were
all screened to be male fetuses and utilized the ratio of reads from the
Y and X chromosomes to show that the fetal fraction of the cffDNA
increased throughout the different trimesters of pregnancy (Supple-
mentary Fig. 1b). Lastly, using a 20 kb window approach to assess
global methylation distributions, we compared cffDNA, cfDNA, and
brain WGBS datasets from the main experiment, and showed that
cffDNA was hypomethylated compared to both and cfDNA and brain
(Supplementary Fig. 1c). Taken together, these results demonstrate
that the cffDNAmethylation profiles are consistentwith the fetal origin
of the placental methylome42.

Both cffDNA and brain DMRs map to genes involved in neuro-
development, cellular adhesion, and cellular signaling
In order to test the hypothesis that maternal obesity and interventions
alter DNA methylation patterns in cffDNA and brain, we performed
pairwise contrasts of obese vs. control, (caloric) restriction vs. obese,
and pravastatin vs. obese, for the cffDNA samples frommaternal blood
during trimester 1 (GD45), trimester 2 (GD90), early trimester 3
(GD120), and late trimester 3 (GD150) as well as brain region samples
from the hippocampus, prefrontal cortex, and hypothalamus of the
same infants at 6 months. Each pairwise DMR comparison (empirical
p <0.05) generated background regions with similar gene length and
CpG content, and these were used in most downstream enrichment
testing to control for genomic context. We then examined the DMRs
for each pairwise comparison for potential consistency across time
and tissue. A large subset of theDMRs from the pairwise contrastsmap
to genes that overlap for obese vs. control (Fig. 1b), caloric restriction
vs. obese (Fig. 1c), and pravastatin vs. obese (Fig. 1d). The overlaps are
not only apparent across different pregnancy timepoints and brain
regions for their respective sources but a subset also converge
between cffDNA and brain. Next, the genomic coordinates of the
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DMRs, which were determined independently from each pairwise
comparison, weremerged into separate consensus regions for cffDNA
and brain and the same was done for their respective background
regions, also determined independently in each comparison. The
overlap between cffDNA and brain consensus DMRs was significant
(empirical p =0.0001) in two separate analytical approaches, which
included a permutation approach (n = 10,000) based on region over-
lap that placed the DMRs randomly across the entire genome, while
maintaining their size, and a random sampling approach (n = 10,000)
based on nucleotide overlap that utilized background regions with
similar genomic context (CpG content and length).

The convergence of DNA methylation alterations associated with
maternal obesity was consistent with the gene ontology (GO) analyses
of the cffDNA (Fig. 2a) and brain (Fig. 2b) consensus DMRs, relative to
their background regions, which were enriched (q < 0.05) for terms
related to neurodevelopment, cellular adhesion, and cellular signaling.
Additionally, the top GO terms from the cffDNA DMRs (anatomical
structure morphogenesis, nervous system development, anatomical
structure development, plasma membrane bounded cell projection
organization, cell adhesion, and movement of cell or subcellular
component) and the brain DMRs (nervous system development, cell
junction, and cytoskeletal protein binding) also passed a more strin-
gent significance (FWER <0.1) threshold, which was based on 100
randomsets fromsamplings of their respective consensus background
regions. The GO terms were also consistent with the significant
(q < 0.05) PANTHER (Protein Analysis THrough Evolutionary Rela-
tionships) pathways, which demonstrated a shared effect on integrin

signaling, glutamatergic synapses, and angiogenesis in both cffDNA
and brain (Fig. 2c, d). Next, to examine the gene regulatory relevance
of the consensusDMRs, theywere tested for enrichmentwithin human
transcription factor motifs from a methylation-sensitive SELEX (Sys-
tematic Evolution of Ligands by EXponential enrichment)
experiment49. The top significant (E value < 0.05) transcription factors
for both the cffDNA (Fig. 2e) and brain (Fig. 2f) consensus DMRs,
relative to their background regions, were from the hairy and enhancer
of split (HES) and activating protein-2 (AP-2) families, and overall the
top enrichments were related to methylation-sensitive developmental
transcription factors.

The relevance of the obesity consensus DMRs to previously
identified human NDD-associated DMRs was tested by lifting over the
consensus DMRs to the human genome (hg38). The lifted-over con-
sensus DMRs were tested for enrichment within DMRs from updated
analyses of previously published male idiopathic ASD brain, male
Dup15q syndrome brain, female Rett syndrome brain, and male Down
Syndrome brain and unpublished idiopathic male and female ASD
placenta31,50–52. In a permutation approach basedon region overlap, the
consensus cffDNA and brain DMRs significantly (q =0.0012) over-
lapped with all human NDD datasets. In a random sampling approach
of background regions based on nucleotide overlap, the DMRoverlaps
showed similar significance (q <0.05), although neither set of con-
sensus DMRs showed a significant enrichment for the female ASD
placenta DMRs (Table 1). Notably, the male Down syndrome brain
DMRs had a lower enrichment score than the other ASD-related brain
DMR datasets in both analytical approaches.
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Fig. 1 | cffDNA and brain DMR overlaps. a Experimental design and timeline
(created with BioRender.com). UpSet plots of the overlaps of gene mappings from
pairwise DMR comparisons of b obese vs. control for cffDNA from trimester
1 (nobese = 7, ncontrol = 4), trimester 2 (nobese = 7, ncontrol = 4), early trimester 3
(nobese = 7, ncontrol = 5), and late trimester 3 (nobese = 7, ncontrol = 6) as well as infant
brain (nobese = 7, ncontrol = 6 for hippocampus, hypothalamus, and prefrontal cor-
tex), c caloric restriction vs. obese for cffDNA from trimester 1 (ncaloric restriction = 4,
nobese = 7), trimester 2 (ncaloric restriction = 5, nobese = 7), early trimester 3

(ncaloric restriction = 5, nobese = 7), and late trimester 3 (ncaloric restriction = 7, nobese = 5) as
well as infant brain (ncaloric restriction = 5, nobese = 7 for hippocampus, hypothalamus,
and prefrontal cortex), and d pravastatin vs. obese for cffDNA from trimester
1 (npravastatin = 7, nobese = 7), trimester 2 (npravastatin = 7, nobese = 7), early trimester 3
(npravastatin = 7, nobese = 7), and late trimester 3 (npravastatin = 7, nobese = 7) as well as
infant brain (npravastatin = 7, nobese = 7 for hippocampus, hypothalamus, and pre-
frontal cortex). Source data are provided as a Source Data file.
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A large block of DNA hypermethylation overlapping mir-663 is
shared between cffDNA and brain
In addition to theDMRanalyses, we also performed a separate analysis
to detect larger-scale blocks of differential methylation in cffDNA and
brain significantly associated with maternal obesity and intervention.
The top overall hit in multiple pairwise contrasts were regions within a
larger block of differential methylation (chr20:29790471-29824182,
width = 33,712 bp) that was hypermethylated by maternal obesity in
both cffDNA and brain. The block was primarily represented by a CpG
dense 14.6 kb region (Fig. 3a). In cffDNA, the maternal obesity group
showed the highestmethylation level, the intervention groups showed
an intermediate level of methylation, and the control group showed
the lowest level of methylation. In brain, the maternal obesity group
showed the highest level of methylation and the caloric restriction
group showed the lowest. The blockmapped to a cluster of genes that
code for mir-663, ribosomal RNAs (28 S, 18 S, and 5.8 S), 2 novel
lncRNAs, a pseudogene, and 3 novel protein coding genes, with mir-
663 being the only well characterized gene. These results demonstrate
a maternal obesity associated DNA methylation difference that spans
an 33.7 kb chromosomal locus and is stableacross time and tissue type.

While differentially methylated regions and blocks were dis-
covered by group differences, we also performed correlation

analyses of methylation levels of the block from individual animals
with maternal group and assays of maternal blood across pregnancy
and infant brain regions. The methylation levels for all cffDNA
timepoints and brain regions showed positive correlations with
maternal group (Fig. 3b-c). The longitudinal cffDNA methylation
levels of the mir-663 block also correlated with inflammatory
maternal immune markers and distinct metabolites during their
respective pregnancy timepoint (Fig. 3b). The infant brain region
methylation levels of the block showed significant negative correla-
tions with caloric restriction and abstract stimuli recognition mem-
ory as well as a significant positive correlation with social stimuli
(face) recognition memory (Fig. 3c). The brain methylation values
also correlated with distinct metabolites measured from their
respective brain regions, and theprefrontal cortex showeda negative
correlation with C20:3n-3 (Homo-γ-linolenic acid/8,11,14-eicosa-
trienoic acid) concentrations in that brain region. The observed
group differences in methylation were consistent with pairwise
comparisons of maternal group in a linear mixed effects model, with
maternal group, timepoint or brain region, maternal age, cohort,
birthGD,C-section, and foster status asfixed effects and individual as
a random effect. Specifically, for cffDNA there was a trend (p = 0.07)
for a difference between obese and control, and for brain there was a
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significant (p = 0.01) difference in methylation at this locus between
obese and caloric restriction (Fig. 3d).

A DUX4 co-methylation network in infant hippocampus corre-
lates with maternal obesity, behavior, metabolites, lipids, and
cffDNA methylation
In order to further investigate gene networks associated withmaternal
obesity and integrate with additional data sets, weighted gene co-
methylation network analysis (WGCNA) of WGBS data from infant
hippocampus was performed. The signed network demonstrated
scale-free topology (Supplementary Fig. 2), leading to the identifica-
tion of fivemodules of co-methylated regions and their respective hub
regions (Table 2). The identified modules were tested for correlations
with a suite of traits that included behavioral tests relevant to the
hippocampus (abstract stimuli and social stimuli recognition mem-
ories) as well as lipidomic and metabolomic measurements from the
hippocampus (Fig. 4a). Notably, the blue module showed a number of
significant (p < 0.05) negative and positive correlations with all classes
of traits measured. The blue module eigengene was negatively corre-
lated with the maternal obesity group, positively correlated with the
abstract stimuli recognition memory, and negatively correlated with
the social stimuli (face) recognition memory (Fig. 4a, b). The blue
module eigengene was also positively correlated with the concentra-
tion of two polyunsaturated essential fatty acids (PUFAs) in the hip-
pocampus and linoleic acid was the most prominent (Fig. 4a, b). The
blue module eigengene was also positively correlated with the con-
centrations of the metabolites asparagine and citrate in the hippo-
campus (Fig. 4a, b).

The blue module was composed of 104 regions out of 151,892
regions examined (Fig. 4c and Supplementary Data 3). On average, the
regions in the blue module were 1841 bp and they mapped to 82
unique genes. The hub for the blue module was an intergenic region
thatmapped to ENSMMUG00000060367,which is a novel gene that is
an ortholog for humanDUX4 (double homeobox 4) and is termedDUX4
(region) 6. Notably, the blue module was composed of 21 inter-
connected regions that mapped to DUX4, which spanned 206,145 bp
(chr9:427125-633269), were between −158,396 bp to 44,716 bp from
the DUX4 transcription start site (TSS), and were hypomethylated
overall in hippocampi from theoffspringof obesedams. The regions in
theDUX4 co-methylated networkmapped to genes that were primarily
associated with functions related to gene regulation, metabolism,
immunity and inflammation, NDDs, oxidative stress, obesity and adi-
pogenesis, Wnt signaling, glutamatergic synapses, endoplasmic reti-
culum, and reproduction (Table 3).

Next, the blue module eigengene was tested for correlations with
traits frommaternal blood across four time points that represented all
trimesters of pregnancy, specifically with DUX4 cffDNA methylation
levels, cytokine levels, and metabolite levels (Fig. 4d). These relation-
ships were dynamic across pregnancy, as cffDNA DUX4 methylation
levels within region 1 of the module (chr9:631319-633269, width =
1951 bp) were positively correlated with the bluemodule eigengene in

trimester 1 but negatively correlatedwith themodule in early trimester
3. There were strong negative correlations between the blue module
eigengene and levels of several immunological indicators of obesity
associated inflammation, with the strongest association being MCP-1
(CCL2) levels during trimester 1, IL-10 during trimester 2, sCD40L
during early trimester 3. Several metabolites in maternal blood
throughout pregnancy showedbothpositive andnegative correlations
with the blue module eigengene, including a positive correlation with
creatine during trimester 1 and 2, as well as negative correlations with
glutamine and arginine during trimester 1. The maternal metabolites
showing the most prominent correlations with the hippocampal blue
module eigengene were generally related to one-carbon metabolism
(choline, creatine, and glycine) and metabolism of amino acids by the
tricarboxylic acid cycle (α-ketoglutaric Acid, arginine, glutamine, and
succinate), which is also known as the citric acid cycle and the Krebs
cycle53,54.

Discussion
There are four key findings from this integrativemulti-omic analysis of
offspring DNA methylation and outcomes resulting from exposure to
maternal obesity and intervention in a non-human primate model that
are relevant to human NDD/ASD. First, the longitudinal analysis of
cffDNA throughout pregnancy demonstrated that cffDNAmethylation
was consistent with the functions and pathways disrupted in infant
brain, particularly for DNA methylation patterns over large genomic
blocks at mir-663 and DUX4. Second, the caloric restriction and pra-
vastatin intervention groups displayed intermediate methylation
levels in these regions throughout pregnancy. Third, cffDNA methy-
lation levels at DUX4 correlated with the co-methylated DUX4 gene
network in 6-month infant hippocampus, which correlated with infant
social and abstract recognition memory, infant hippocampal and
maternal blood metabolites, and infant hippocampal lipids. Fourth,
the maternal obesity DMRs overlapped with DMRs from human ASD/
NDD brain and placenta.

To expand on the above summary, the results demonstrate that
maternal obesity is associated with the differential methylation of a
subset of common genes in both cffDNA and brain. The differentially
methylated genes associated with maternal obesity in cffDNA and
brain are enriched for functions related to neurodevelopment, cellular
adhesion, and cellular signaling. Notably, they converge on pathways
known to be affected in NDD/ASD. These include glutamatergic
synapses55, angiogenesis56, integrin signaling (which is involved in
cellular adhesion)57, EGF receptor signaling, and PDGF signaling.
Additionally, the brain displayed differences in methylation that were
consistent with other neurotransmitters and hormone signaling
pathways related toNDDs/ASD,which include thyrotropin (also known
as thyroid stimulating hormone; TSH), oxytocin58,59, serotonin, and
acetylcholine.

Functionally, the DMRs are consistent with disruptions to the
regulationof gene expression, since they are enriched for themotifs of
human transcription factors that are methylation-sensitive and
involved in early development49. The top motif enrichments overall
were for the HES and AP-2 families. The HES genes are transcriptional
repressors involved in early embryonic development and neurodeve-
lopment that function to regulate the differentiation and proliferation
of neural stem cells60,61. The binding of HES transcription factors to
their motifs is inhibited by DNA methylation49. The HES genes are
effectors of the Notch signaling pathway and cross-talk with JAK-STAT
signaling, which is activated by cytokines62. Additionally, HES1 is a
thyroid response gene in the fetal brain63, which was the top pathway
for the fetal brain DMRs associated with maternal obesity and inter-
vention inour study. TheAP-2 transcription factors are also involved in
early embryonic development, where they stimulate cell-type specific
proliferation and repress terminal differentiation64. The topmotif from
this family belongs to transcription factor gene AP-2 gamma (TFAP2C),

Table 1 | Human NDD-associated DMR enrichments for the
consensus cffDNA DMRs and consensus brain DMRs

Dataset cffDNADMRs Brain DMRs

NDD Sex Tissue Fold q value Fold q value

ASD Female Placenta 1.05 0.3 1.08 0.1

ASD Male Placenta 1.25 0.04 1.26 0.03

Down Syndrome Male Brain 1.12 0.008 1.37 0.0002

ASD Male Brain 1.36 0.0002 1.51 0.0002

Rett Syndrome Female Brain 1.53 0.0002 1.69 0.0002

Dup15q Syndrome Male Brain 1.28 0.0002 1.74 0.0002
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which is specifically involved in both placental development and
redundantly for retinoic acid induced differentiation of the neural
tube65,66, and thus represents a direct connection between the two
sample sources.

In addition to discovering a profile of thousands of DMRs of
several hundred bp in width, in cffDNA and brain, we also identified
larger-scale blocks of differential methylation in cffDNA and brain that
associated with maternal obesity and intervention. The mir-663 block
was ~34 kb in size and overlapped several genes, many of which have

unknown functions and warrant future functional research. However,
mir-663 is associated with obesity and adipocyte differentiation,
immunity and inflammation, the mechanism of resveratrol action, and
cancer in humans67–71. Elevated mir-663 levels were also observed in
ASD compared to control lymphoblastoid lines in a small study72. In
our study, hypermethylation of the block in cffDNA correlated with
maternal obesity as well as increased maternal inflammatory markers
and differential metabolite levels during pregnancy. In infant brain,
hypermethylation of the block not only correlated with maternal
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obesity and infant metabolites, but also with infant social and abstract
recognition memory, but negatively with the caloric restriction inter-
vention. The effect on brain lipids was most pronounced in the pre-
frontal cortex and through decreased concentrations of C20:3n-3
(Homo-γ-linolenic acid/8,11,14-eicosatrienoic acid), which has anti-
inflammatory effects. Through a WGCNA approach, we also identified
a key co-methylated network whose hub was a large ~200 kb block of
differential methylation that mapped to DUX4. DUX4 is a homeobox
transcription factor that is expressed in cleavage stage embryos and
testes, and is epigenetically silenced in most other tissues73. Incom-
plete silencing ofDUX4, which is located in theD4Z4 repeat inhumans,
results in Facioscapulohumeral muscular dystrophy (FSHD) through
pathogenic misexpression of DUX4 in skeletal muscle due to DNA
hypomethylation of the locus74. Thismisexpression ultimately leads to
an immune deregulation cascade73, and can be repressed by targeted
epigenetic editing75. Notably, theDUX4DNA hypomethylation in FSHD
directionally corresponds with the DUX4 co-methylation network we
observed in hippocampus, where the maternal obesity with no inter-
ventiongroupwashypomethylatedwhen compared to the control and
obesity intervention groups.

The regions in the DUX4 co-methylation network mapped to
genes with functions highly related to its significantly correlated
phenotypes. The ERBB2 (Erb-B2 Receptor Tyrosine Kinase 2) mapping is
consistent with the differences in recognition memory as the gene is
known to regulate hippocampal glutamatergic long-term depression
and object recognition memory76. Additionally, the glutamatergic
synapse is represented in the network byOLFM3 and PRKX, aswell as in
the top pathways for the consensus cffDNA and brain DMRs. The top
pathway from the brain DMRs is also represented in the co-
methylation network by SLC16A2, which is a thyroid hormone trans-
porter. Of relevance to the lipidomic profile is a region mapping to
FFAR4 (Free Fatty Acid Receptor 4), which is a GPCR (GPR120) for PUFAs
that is involved in adipogenesis, metabolism, and inflammation77,78.
Levels of linoleic acid (LA, 18:2n-6), an omega-6 PUFA that is a ligand

for FFAR4, correlatedwith the co-methylation network. LA is known to
increase neurite outgrowth in the developing brain79–81, and lower
levels of LA have also been observed in the serum of children with
autism82. The impact of the DUX4 co-methylation network on neuro-
development is also apparent through the correlationof asparagine, as
the network contains the gene ASNS (Asparagine Synthetase). ASNS
deficiency is a neurometabolic disorder characterized by severe con-
genital microcephaly and developmental delay83. Other notable genes
in the co-methylation network include: PCDH11X, which is associated
with ASD84, ZFHX3 and ZFHX4, which are homeobox genes that act as
transcription factors that regulate myogenic and neuronal differ-
entiation, and ASIP (Agouti Signaling Protein), which is involved in
obesity85.

TheDUX4 co-methylation network also showed several significant
negative correlations with maternal blood markers during pregnancy
that are known to be associated with obesity. Methylation of theDUX4
module was negatively correlated with inflammatory cytokines/adi-
pokines in maternal blood throughout different trimesters of preg-
nancy, including MCP-1 (CCL2), which is both a monokine and
adipokine86, as well as the chemokine IL-8 and the regulatory cytokine
IL-10, which are associated with excess bodyweight87. Increased levels
of MCP-1 and IL-8, have been observed in the blood of humanmothers
with obesity during pregnancy17,88. Finally, the differences in maternal
metabolites are consistent with previously known impacts on one-
carbon metabolism14–16.

Taken together, the correlations of the DUX4 co-methylation
network in infant hippocampus demonstrate that the offspring from
lean control and intervention groups had higher levels of methylation
than those from obese dams in the DUX4 co-methylation network,
which significantly correlated with differences in behavior related to
abstract stimuli and social stimuli recognition memory, higher PUFA
concentrations in the brain, and differing levels of metabolites related
to neurodevelopment. Furthermore, the higher methylation levels of
this module significantly correlated with lower levels of maternal

Table 2 | WGCNA module hub genes

Module Coordinates Width Annotation Gene mapping

Green chr18:45038579-45038736 158 Intron CELF4
CUGBP Elav-like Family Member 4
ENSMMUG00000006866

Yellow chr4:139959607-139965208 5602 3’ UTR MAMU-A3
Major Histocompatibility Complex, Class I, A
ENSMMUG00000056914

Blue chr9:443230-472517 29288 Intergenic DUX4
Double Homeobox 4
ENSMMUG00000060367

Brown chr10:26959768-26960135 368 Intergenic ENSMMUG00000051997

Turquoise chrY:8116120-8122200 6081 Intergenic LOC106995433
Heat Shock Transcription Factor, Y-linked-like
ENSMMUG00000049379

Fig. 3 | A large block of obesity-associated DMR hypermethylation in cffDNA
and brain. The plots and statistical testing are based on the region of highest CpG
density (chr20:29807471-29822071, width = 14,601 bp), which represents the pri-
mary signal of the entire block (chr20:29790471-29824182, width = 33,712 bp).
a Plot ofmethylation levels in themain block region. The dots in the scatter plot are
individual DNAmethylation level estimates for a CpG site and their size reflects the
level of coverage from the sequencing. Percent DNA methylation is presented on
the y axis and the x axis is the genomic coordinate of each CpG, where the ticks
show the location of the methylation loci. The bottom right track contains CpG
annotations and gene mappings for the block. b Correlation heatmap of the rela-
tionship between longitudinal cffDNAmethylation levels in the block andmaternal
blood immune markers and metabolites measured during the same trimester that
showed a significant correlation (p <0.05) within at least one time point. Pearson’s

correlation coefficients (r) are reported above their p-values, which are in par-
entheses. The obesity group refers to maternal obesity with no intervention. The
heatmap colors are representative of the correlation between the methylation
values and the trait of interest. c Correlation heatmap of the relationship between
infant brain region DNA methylation levels in the block and infant hippocampal
lipids and metabolites measured from the same brain region that showed a sig-
nificant correlation (p <0.05) within at least one brain region. d Average smoothed
methylation levels for cffDNA and brain. The center line of the boxplot represents
the median and the bounds represent the interquartile range (IQR), which is
between the 25th percentile (Q1) and 75th percentile (Q3). The whiskers of the
boxplot extend to the maxima (Q3+ 1.5 × IQR) and minima (Q1−1.5 × IQR). Source
data are provided as a Source Data file.
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inflammatory cytokines/adipokines and differences in maternal one-
carbon metabolism and metabolism of amino acids by the tri-
carboxylic acid cycle during pregnancy.

A potential limitation of this study is the small sample size char-
acteristic of all NHP studies, especially perinatal studies89. However,we
controlled for sex (male offspring only) and used a larger sample size
than most similar NHP studies. The unique insights that our study has
provided to thefieldwouldnot have been ethicallypossible in a human
study and the identification of two genomic loci (mir-663 and DUX4)
that have primate-specific genomic organization and regulation, along

with the NDD/ASD relevant recognition memory assays, would not
have been possible in a rodent study. While the main conclusions of
our study are based on large consistent changes in methylome sig-
natures over multiple or broad genomic regions, another potential
limitation is the lower confidence associated with any individual DMR
reported, which would require replication. Finally, the DNA methyla-
tion correlation analyses were able to identify significant relationships
in behavioral, metabolomic, immunological, and lipidomic data that
did not show significant group differences in isolation. Thismulti-omic
correlation based approach appears well suited for this biological

Fig. 4 | Weighted gene co-methylation network (WGCNA) of infant hippo-
campus. aModule-trait correlations within the hippocampus. The heatmap colors
are representative of the correlation between the module eigengenes and the trait
of interest. The obesity group refers to maternal obesity with no intervention.
Pearson’s correlation coefficients (r) are reported above their p values, which are in
parentheses, and these values also apply to the plots in part B of the figure. b Bar
plot of themean eigengene values for the bluemodule in eachmaternal group, and
scatter plots of all animals across all four groups with a line of best fit for the
eigengene values and abstract stimuli recognition memory score ratios, social sti-
muli recognition memory score ratios, linoleic acid concentrations, asparagine

concentrations, and citrate concentrations. cThe bluemodulematernal obesity co-
methylation network. Regions weremapped to their nearest gene and novel genes
were labeledwithmammalian ortholog symbols, if available. Genes represented by
more than one region were appended with a unique number identifier. Edges were
included in the network if they passed an adjacency threshold and thus not all
genes in the module are represented in the visualization. d Hippocampal blue
module-trait correlations with maternal blood measurements of DUX4 cffDNA
methylation levels, immunological markers, and metabolites across all trimesters
of pregnancy. Source data are provided as a Source Data file.
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question since not every human child born to a mother with obesity
develops a NDD.

Ultimately, themethylation profiles of both themir-663 block and
the DUX4 co-methylation network from the infants of obese dams
without an intervention correlated with decreased recognition mem-
ory for abstract stimuli and increased recognition memory for novel
social stimuli (faces). The findings demonstrate that, in infant brain,
maternal obesity is associated with a DNA methylation profile at gene
loci relevant to recognition memory, lipids, and metabolites. These
differences in brain multi-omics and behavior can be detected during
pregnancy through integrative analyses of cffDNA with immune and
metabolic factors. Furthermore, maternal obesity interventions asso-
ciatedwith an attenuation of themulti-omicprofile in both infant brain
and maternal blood.

Methods
Non-human primate obesity models
All animals were housed at the California National Primate Research
Center (CNPRC) in accordance with the ethics guidelines established
and approved by the Institutional Animal Use and Care Administrative
Advisory Committee at the University of California-Davis.

Adult pregnant female rhesus macaques (Macaca mulatta) with
male fetuses were selected for this study. Sex of the fetus was deter-
mined with a cffDNA Y chromosome gene analysis of maternal blood
and was performed early in the first trimester by the CNPRC Primate
AssayCore. All dams ranged in age from7 to 12 years andwere selected
for lean and obese groups based on their Body Condition Score
(BCS)90. Obese females had a BCS of at least 3.5 (range 1–5) which
correlates with 32% body fat, and lean animals had a BCS of 2–2.5.
Animals hadmaintained a consistent BCS for at least one year prior to
selection for the study and pre-study physicals confirmed that none of
the selected females were diabetic. All animals were maintained with
standard indoor housing conditions at CNPRC and fed nine “biscuits”
of commercial chow (High Protein Primate Diet Jumbo; LabDiet; 5047)
twice daily while pregnant, received biweekly fresh produce, daily
foragemixture, and ad libitumwater. The caloric restriction group had
the amount of chow restricted to prevent weight gain during preg-
nancy and the Pravastatin group was given 1mg/kg of body weight.
However, all dams, regardless of group, were provided twelve biscuits
twice daily during nursing of 4 months or older infants. Dams were
relocated to a single housing room around gestational day 70.
Approximately 2 weeks later they were paired with a compatible cage
mate during daytime hours and were separated prior to feeding times.
Damswere allowed to deliver naturally (~165 day gestation length) and
mother-infant pairs were raised indoors until offspring were 6 months
old. However, five pregnant dams required Cesarian deliveries for
post-date pregnancies (~175 gestation days) or as recommended by
veterinarians for health reasons, two in the obese group, one in the

pravastatin group and two in the lean control group. In those scenar-
ios, infants were successfully reared to 6months of age by foster dams
using established CNPRC protocols91. Mother-infant dyads were
housed indoors with another compatible mother-infant dyad during
daytime hours if possible; however, this was not possible for 1 lean
control dyad, 3 obese dyads, and 1 pravastatin dyad. Infant brain
samples (hippocampus, hypothalamus, and prefrontal cortex) were
collected on postnatal day 180 after infants were anesthetized with
ketamine and euthanized with 120mg/kg pentobarbital. Upon collec-
tion, samples were immediately frozen and stored at −80 °C.

Abstract stimuli recognition memory
Infants were tested at 200 days gestational age (days from conception;
~1-month old) to avoid differential maturity due to variation in gesta-
tion length (range: 152–176 days). Themean postnatal age was 36 days
(range: 22–49 days). Infants were separated frommothers, wrapped in
a towel, and carried to the testing station. The testing apparatus con-
sisted of a small booth with side panels to shield from outside dis-
tractions in a darkened room in which the stimuli, 9 cm2, were
mounted on the left and right of a center viewing hole. One tester held
the infant 36 cm away from the stimuli, changed the stimuli, and
covered the infant’s headbetween trials. A second tester satbehind the
apparatus and viewed the infant’s head through a video camera to
record fixation times to the left and right. Two identical stimuli were
placed on the right and left until the infant accumulated a familiar-
ization time of 20 sec. One stimulus, randomly determined, was then
removed and replaced with the novel stimulus. The frequency and
duration of looking were recorded for 10 sec, then the stimuli were
exchangedbetween sides for another 10 sec testperiod. The infantwas
presented with a series of four black and white visual stimuli pairs
(abstract illustrations of varying complexity) used in the Fagan Test of
Infant Intelligence for human infants (Infantest Corp). Videos were
scored for right/left looking using The Observer coding software
(version 12.5, Noldus) by a coder blind to stimulus location and animal
treatment group. The evaluation relies on the propensity ofmonkey as
well as human infants to look longer at novel than familiar visual sti-
muli. The outcome measure used in this study was the average across
the four problemsof the number of looks at the novel stimulus divided
by the number of looks at the novel and familiar stimuli during test
trials92. All infants in the lean control group had a ratio >0.50 indicating
novelty preference.

Social stimuli recognition memory
Animals were tested at a mean age of 105.3 days (range: 96-124). They
were separated from their dams and relocated to individual housing
indoors in a standard size housing cage (0.58m×0.66m×0.81m, Lab
Products). Approximately 2.5 h after the separation/relocation, they
were given a visual paired comparisons task. Each animal was hand-

Table 3 | Manually curated blue module co-methylated network gene mapping categories

Category Genes

Gene regulation AGO1, ARID5B, BRD7, DUX4, ETV1, EXOSC9, JDP2, HLCS, KLF4, KLF12, NFE2L3, PAXBP1, PRMT9, SFSWAP,WDR82, ZC3H12C, ZFHX3,
ZFHX4, ZNF362, ZNF721

Metabolism ASNS, DGKH, DPY19L2, EDEM3, EXOSC9, FFAR4, GMDS, HLCS, ITIH6, KLF4, KLK13, LYVE1, NUDT7, PHEX, PRMT9, SENP1, UPP2

Immunity and inflammation ARID5B, ACVR2A, CD99, CST7, DOCK11, EXOSC9, FFAR4, IFTAP, IRAG2, LRRC32, LYVE1, NCF2, PRKX, TNFRSF11A, ZC3H12C

Neurodevelopmental disorders ASNS, CHL1, EFR3A, ERBB2, EXOC6B, GPC5, LRRC32, PCDH11X, POMK, PTPRG, SLC16A12, TNIK, VWA3B, WDR82

Oxidative stress FAM120A, NCF2, NFE2L3, NUDT7, PXDNL, TXNL1

Obesity and adipogenesis ACVR2A, ARID5B, ASIP, FFAR4, KLF4, KSR2

Wnt signaling BRD7, JDP2, PCDH11X, SHISA7, TNIK

Glutamatergic synapses ERBB2, OLFM3, PRKX

Endoplasmic reticulum EDEM3, IRAG2, NFE2L3, UFL1

Reproduction DPY19L2, MAGEB1, MROH5
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carried to a test cage measuring 0.387m×0.413m×0.464m that was
positioned 0.686m from a 0.813m monitor (Panasonic, KV 32540),
was given 30-sec to habituate, and was then presented with seven
problems from a pre-recorded video. Each problem included three
trials: a familiarization trial and two recognition trials. After a 5-sec
blank screen, a 20-sec familiarization trial began, inwhich two identical
pictures were presented, each measuring 19.7 × 22.9 cm, separated by
25.4 cm of white space onscreen. After another 5-sec delay, an 8-sec
recognition trial occurred, in which the now-familiar stimulus was
presented simultaneously with a novel stimulus (side determined
randomly). Following another 5-sec delay, the same two stimuli were
presented again for 8-sec, with positions reversed. Seven such pro-
blems were presented. All stimuli were pictures of unfamiliar juvenile
and adult monkeys of both sexes93. A tone of 1000Hz was presented
250milliseconds prior to trials in order to orient the animal. A low-light
camera (KT&C, KTLCMB5010EX), attached to the display monitor and
situated midway between the two projected images, was used to
record the subjects’ looking responses. Looking behavior during the
familiarization and recognition trials was scored by a trained observer
whowas blind to the animals’ treatment groups. For each problem, the
proportion of looking time directed at the novel stimulus was com-
puted: duration of viewing the novel stimulus on the two recognition
trials divided by the duration of viewing both the novel and familiar
stimuli in the recognition trials. The principal outcomemeasure was a
mean of this proportion across the seven problems. Chance
responding was indicated by a mean of 0.50, with lower values sug-
gesting a preference for the familiar stimuli and higher values indi-
cating preference for the novel stimulus. Upon completion of testing,
the subject was returned to its holding cage, and the test area was
cleaned and prepared for the next subject.

Lipidomics
The lipid extraction protocolwas performed aspreviously described94.
Briefly, 30mg of homogenized hippocampus, hypothalamus, and
prefrontal cortex samples were collection from matched regions. An
optimized extraction protocol was used to get lipid and polar meta-
bolites from small amounts of tissue, previously described using pig
brain94. Upon obtaining Folch bottom layers, lipids were evaporated
under nitrogen, reconstituted into 1.5mL chloroform (Fisher Scientific;
Cat #C607‐4): isopropyl alcohol (Fischer Scientific, Cat #464-1) (v/v; 2/
1). Approximately 0.5mL of extract, with 0.0125mg 5α-Cholestane
(Sigma‐Aldrich, Cat #C8003-100mg), and 0.1mg C17:0 PC (1,2-dihep-
tadecanoyl-sn-glycero-3-phosphocholine (Avanti Polar Lipids;
850355C) was dried under nitrogen for fatty acid and cholesterol
analysis. Upon drying, 400 µL of toluene (Fisher Scientific; T2914) was
added, followed by 3mL of methanol (Fisher Scientific; Cat #A454-4),
and 600 µL of 3% HCl (Sigma‐Aldrich; 320331) in methanol. The
transesterification reaction to generate fatty acid methyl esters
(FAMEs) was adapted from previous research95. Samples were vor-
texed and heated at 90 °C for 60min. After cooling the samples at
room temperature for 4–5min, 1mLof hexane (Fisher Scientific;H303‐
4) followed by 1mL of deionized water was added to each sample.
Samples were vortexed and the phases were allowed to separate for
15min. Then, 900 µL from the hexane top layer containing FAMEs was
transferred to microfuge tubes containing 450 µL of deionized water.
The tubes were vortexed and centrifuged at 15,871 × g for 2min. The
top hexane layer was evaporated under nitrogen and then recon-
stituted in 100 µLhexane forGC-FID (GasChromatographywith Flame-
Ionization Detection) analysis.

A simultaneous FAME and cholesterol GC-FID method was
developed by optimizing two previous methods96,97. Specifically, the
LOQ is at least 10 times the signal to noise ratio for each identified
FAME and the equation mass of FA/mass of internal standard C17:0
PC = area of FA/area of C17:0 was used to calculate each FA

concentration. A comparative study of GC-FID vs GC-MS has shown
they yield similar results98. Samples were analyzed on a Perkin Elmer
Clarus 500 GC-FID system (Perkin Elmer) equipped with a DB-FFAP
polyethylene glycol fused capillary column (30m×0.25mm inner
diameter, 0.25μm film thickness; Agilent Technologies; 1223232). The
injector and detector temperatures were 285 °C and 300 °C, respec-
tively. The initial oven temperature was 80 °C. It was held at 80 °C for
2min, increased by 10 °C/min to 185 °C, raised to 249 °C at 6 °C/min
and lastly held at 249 °C for 44min. The total run time was 65min.
Helium was used as the carrier gas with a maintained flow rate of
1.3mL/min. The injection volume was 1 µL per sample. The split ratio
was 10:1. Each fatty acid was identified based on retention time using a
custom-made mix of 29 FAME standards (C8:0, C10:0, C11:0, C12:0,
C13:0, C14:0, C14:1, C15:0, C16:0, C16:1, C17:0, C18:0, C18:1, linoleic acid
(C18:2 n-6), C18:3 n-6, alpha-linolenic acid (C18:3 n-3), C20:0, C20:1 n-9,
C20:2 n-6, dihomo-γ-linolenic acid (C20:3 −6), arachidonic acid (C20:4
n-6), C20:3 n-3, eicosapentaenoic acid (C20:5 n-3), C22:0, C22:1, C22:2,
n-6 docosapentaenoic acid (C22:5 n-6), n-3 docosapentaenoic
acid (C22:5 n-3), docosahexaenoic acid (C22:6 n-3)/C24:1; Supple-
mentary Fig. 3). Fatty acids were quantified using 1,2-diheptadecanoyl-
sn-glycero-3-phosphocholine as an internal standard. Cholesterol
concentration was calculated in a calibration curve using 5α-
Cholestane as a surrogate. The linear dynamic range of the calibra-
tion curve for cholesterol was 0.25mg/mL to 2mg/mL. All chromato-
gramswere analyzedonTotalchromNavigator Software (version 6.3.2,
PerkinElmer).

Metabolomics
Fasting blood was collected in lavender top (EDTA) tubes (Cardinal
Health; 8881311446) from mothers once during the 1st and 2nd tri-
mesters and twice during the 3rd trimester after anesthetization with
5–30mg/kg ketamine or 5–8mg/kg telazol. Plasma samples were fil-
tered using Amicon Ultra Centrifugal Filters (Millipore; UFC5003) to
remove proteins and lipids. Metabolites were extracted from each of
the brain tissues as previously described94. NMR metabolomics
methods have been previously validated and published99–101. NMR-
based metabolomics has shown high repeatability and reproducibility
with low CV’s of technical replicates, as well as low %error in reported
concentrations101. The concentrations of individual metabolites are
determined based on the addition of an internal standard as described
in the methods. LOD/LOQ vary depending on the metabolite and
sample matrix, but is generally between 1mM and 50mM, with most
metabolites being able to reliably measured between 1 and 10mM99.

To 207 µL of either plasma filtrate or brain tissue extract, 23 µL of
internal standard containing DSS-d6 was added and samples were
placed in 3mm Bruker nuclear magnetic resonance (NMR) tubes
(Millipore; WIMWG30004SJ). Proton NMR spectra were acquired on
each sample at 25 °C using the noesypr1d pulse sequence on a Bruker
Avance 600MHz NMR spectrometer (Bruker) and analyzed using
Chenomx NMRSuite (version 8.1, Chenomx Inc) to annotated the
metabolites based on Reference Library 10 as previously described94.

Immunology
A longitudinal analysis on the maternal cytokine/chemokine profile
that included 22 analytes (GM-CSF, IFN-γ, IL-1b, IL-ra, IL-2, IL-4, IL-5, IL-
6, IL-8, IL-10, IL-12/23(p40), IL-13, IL-15, IL-17a, IL-18,MCP-1,MIP-1b,MIP-
1a, sCD40L, TGFα, TNFα, and VEGF) was measured in plasma using a
non-human primate multiplexing bead immunoassay (Millipore-
Sigma,; PCYTMG-40K-PX23) according to themanufacturer’s protocol.
The plates were read on a Bio-Plex 200 system (Bio-Rad Laboratories;
171000205) and analyzed using Bio-Plex Manager software (version
6.1, Bio-Rad Laboratories). A five-parameter curve was used to calcu-
late final concentrations (pg/ml). Reference samples were run on each
plate for assay consistency.
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DNA extraction and WGBS library preparation
The cffDNA was extracted from serum using a Maxwell RSC cffDNA
PlasmaKit (Promega; AS1480) by the Primate Assay LaboratoryCore at
the California National Primate Research Center. The brain DNA was
isolated from tissue stored inDNA/RNA shield (ZymoResearch; R1100-
250) using the Quick-DNA Miniprep Plus kit workflow on a Tecan
instrument by Zymo Research. Brain DNA was fragmented using a
E220 focused-ultrasonicator (Covaris; 500239). DNA was bisulfite
converted using the EZ DNA Methylation-Lightning Kit (Zymo
Research; D5031). WGBS library preparation was performed via the
Accel-NGSMethyl-Seq DNA Library Kit (Swift Biosciences; 30096) with
the Methyl-Seq Combinatorial Dual Indexing Kit (Swift Biosciences;
38096) according to the manufacturer’s instructions. The primary
cffDNA libraries were prepared by Swift Biosciences and the brain
libraries were prepared by the UC Davis Genome Center. The primary
cffDNA and brain library pools were sequenced by theUCSF Center for
Advanced Technology (CAT) core facility on the Illumina NovaSeq
6000 S4 for 150 bp paired end reads. The pilot cffDNA library pool
utilized the Methyl-Seq Set A Indexing Kit (Swift Biosciences; 36024)
and was sequenced by the DNA Technologies and Expression Analysis
Cores at the UC Davis Genome Center on an Illumina HiSeq 4000 for
90bp single reads.

Bioinformatic analyses
The CpG_Me alignment pipeline (https://github.com/ben-laufer/CpG_
Me & https://doi.org/10.5281/zenodo.5030083), which is based on
Trim Galore, FastQ Screen, Bismark, Picard, and MultiQC, was used to
trim adapters and methylation bias, screen for contaminating gen-
omes, align to the reference genome (rheMac10), remove duplicates,
calculate coverage and insert size metrics, extract CpG methylation
values, generate genome-wide cytosine reports (CpG count matrices),
and examine quality control metrics102–108. cffDNA samples were
examined for their ratio of chrY/chrX reads (https://github.com/
hyeyeon-hwang/SexChecker).

DMR and block calling and most downstream analyses and
visualizations were performed via DMRichR (https://github.com/ben-
laufer/DMRichR & https://doi.org/10.5281/zenodo.5030057), which
utilizes the dmrseq and bsseq algorithms108–110. In the dmrseq algo-
rithm, differences in CpG methylation for the groups are pooled and
smoothed to assemble background regions. To account for inter-CpG
and inter-individual variability, a statistic for each region is estimated
through generalized least squares regression and permutation testing
is used to identify DMRs. Amethylation difference of 10% was used for
the cffDNADMR analyses and 5%was used for the brain DMR analyses,
as previously described for placenta and brain31,51,52. Background
regions with similar genomic context to the DMRs (gene length
and CpG content) were obtained from the first step of dmrseq and
utilized in downstream enrichment testing. Consensus DMRs and
background regions were assembled through merging the respective
regions from each sample source-specific pairwise contrast by geno-
mic coordinate overlap. Large-scale blocks of differential methylation
were called in separate analyses using the blocks argument and
recommendedmodifications to the smoothing parameters in dmrseq.
ChIPseeker (was used to obtain gene region annotations and gene
symbolmappings through ensembldb111,112. ComplexUpset was used to
create UpSet plots of gene overlaps113–115. GOfuncR was used for
genomic coordinate based GO analyses, where DMRs were mapped to
genes if they were between 5 kb upstream to 1 kb downstream of the
gene body, and 100 random samplings from the background regions
with gene length correction was utilized for the enrichment
testing116,117. The DMRs were mapped to genes if they were within 5 kb
upstream or 1 kb downstream of the gene body. Redundant GO terms
were then removed based on semantic similarity using rrvgo118.
enrichR was used for gene symbol-based PANTHER pathway enrich-
ment testing119–122. regioneR was utilized to perform permutation-

based genomic coordinate enrichment testing through a randomized
region strategywith 10,000 permutations123. GATwas used to perform
random sampling-based genomic coordinate enrichment testing
through 10,000 samplings of background regions124. Analysis of Motif
Enrichment in the MEME Suite was utilized to perform transcription
factor motif testing relative to background regions using the Human
Methylcytosine database with rheMac10 sequences through the
memes package49,125–127. The WGCNA package was used to construct a
signed co-methylation network through the biweight mid-correlation
(bicor) method128,129.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequencing data generated in this study have been deposited in
the GEO database under accession code GSE171064. The metabo-
lomics data generated in this study have been deposited in Dryad
(https://doi.org/10.5061/dryad.c2fqz61bw). The lipidomics data gen-
erated in this study have been deposited in Dryad (https://doi.org/10.
25338/B8C35T). Source data are provided with this paper.

Code availability
All original code has been deposited on GitHub (https://github.com/
ben-laufer/cffDNA-and-Brain-Manuscript) and Zenodo (https://doi.
org/10.5281/zenodo.5348009).
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