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Abstract

A long-standing challenge for population biology has been to understand why some species are 

characterized by populations that fluctuate in size independently, while others display 

synchronous fluctuations across space. An improved understanding of synchrony would advance 

our predictive ability for a range of phenomena, including meta-population dynamics, pest 

outbreaks, and biotic responses to climate change. We utilized 27-years of observations on 65 

butterfly species at 10 sites that are 210 km apart and span 2750m of elevation, to investigate the 

causes of interspecific variation in spatial synchrony. Specifically, we compared the relative 

influence of two hypothesized drivers of spatial synchrony – climatic variation and dispersal 

propensity. We report that sensitivity to climate explained 50% of interspecific variation in 

synchrony, whereas dispersal propensity explained 23%. We also report that these two drivers 

can interact to influence interspecific variation in synchrony. Sensitivity to large-scale climate 

patterns, in particular the El Niño Southern Oscillation, was the best predictor of synchrony. 

Additionally, we report a limited contribution of spatial synchrony to the ongoing decline of the 

Northern California butterfly fauna. In summary, our results confirm the primacy of climatic 

sensitivity for driving spatial synchrony in butterflies.

Key Words: butterfly, ENSO, elevational gradient, population decline, spatial synchrony 
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Introduction

A primary goal of population ecologists is to understand the mechanisms that promote 

fluctuations in density of natural populations of plants and animals through both time and space. 

Early studies suggested the important roles that trophic interactions and exogenous forces, such 

as climatic variability, might have in driving population fluctuations (Lotka 1925; Volterra 1926; 

Davidson & Andrewartha 1948). More recently, population biology has made progress through 

the integration of larger spatial and temporal datasets describing population dynamics. For 

example, meta-population models can predict the persistence of spatially segregated populations

(Hanski et al. 1995; Keymer et al. 2000), and landscape genetic models can infer recent dispersal

among subpopulations on complex landscapes (Manel et al. 2003). A key parameter in many of 

these areas of population biology is the extent to which subpopulations exhibit correlated 

spatiotemporal dynamics (e.g., experience “good years” and “bad years” in parallel). Here we 

take a multi-species approach using long term data to advance understanding of correlated 

spatiotemporal dynamics in insect populations. 

Three non-mutually exclusive mechanisms are often hypothesized to synchronize 

population dynamics among populations: (1) dispersal of individuals among populations, which 

links the dynamics of those populations; (2) synchronization due to density-independent factors 

(e.g. climate) that are correlated across wide areas (i.e. the “Moran effect” (Moran 1953)); and 

(3) interactions with other species (e.g. natural enemies and pathogens) that are themselves either

synchronous or highly mobile (Bjørnstad, Ims & Lambin 1999; Liebhold, Koenig & Bjørnstad 

2004; Korpimäki et al. 2005). Identifying the relative influences of each of these three 

mechanisms is challenging because all three may cause similar patterns of synchrony among 

populations (Ranta et al. 1995; Liebhold et al. 2004). Moreover, it is difficult to directly measure
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the contribution of dispersal, which is itself a complex trait, and the product of other interacting 

biological characteristics (Clobert 2012). Furthermore, data describing natural enemy population 

densities are not available for the majority of organisms, including our focal species; thus our 

investigations focus on dispersal propensity and sensitivity to climatic variation, but not 

interspecific interactions. 

We use data from 27-years of observations of 65 butterfly species across ten sites that are 

separated by 210 km and span an elevational gradient of 2750m (Fig. 1A) to compare the relative

influence of dispersal propensity and sensitivity to climatic variation on spatial synchrony. We 

first characterized butterfly species in terms of their degree of spatial synchrony and a range of 

species-specific properties that together acted as an index of dispersal propensity, including: 

wingspan, geographic range, elevational range, and host breadth (see Methods). We then 

characterized the sensitivity of each species to climatic variation (e.g. sensitivity to winter 

precipitation, or summer temperature). Next, we used structural equation modeling (SEM) to 

address the following questions: (1) Is interspecific variation in spatial synchrony better 

predicted by dispersal propensity or sensitivity to climatic variation? (2) Can interspecific 

variation in spatial synchrony be modeled through the combined or interacting effects of 

dispersal propensity and climatic sensitivity?  Finally, given that theory suggests that synchrony 

can predispose meta-populations to collapse, we ask if an improved understanding of the drivers 

of spatial synchrony can shed light on declines in focal butterfly populations, (Hanski & Woiwod

1993; Heino et al. 1997; Keymer et al. 2000; Koenig & Liebhold 2016). The portion of Northern

California where our study sites are located has been characterized by dramatic declines and 

local extirpations in recent years, particularly at low elevations (Forister et al. 2011). These 

declines have been attributed to a combination of development, changing land use, and pesticides
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(Casner et al. 2014a; Forister et al. 2016), but the contribution of spatial synchrony to these 

declines has not been studied.

Methods

Study system and calculation of synchrony. Butterfly data was collected by A. M. S. at ten 

locations in Northern California from 1988-2013 (Fig. 1A). These sites include a variety of 

habitat types, spanning a 2750 m elevational gradient, and are separated by 210 km from the 

most western to the most eastern location. A fixed transect was walked every two weeks as per

Pollard (1988), and presence or absence of taxa noted (for maps of transects see 

http://butterfly.ucdavis.edu/). Surveys were conducted in spring, summer, and fall on sunny days 

with little wind, and thus suitable for butterfly flight. Previous analyses show that these 

occurrence data are effective proxies for butterfly abundance (Casner et al. 2014b). In addition, 

analyses were repeated using count data for the relatively limited subset of taxa and sites (those 

in the central valley of California only) for which counts of individuals were available. In all 

cases, results obtained were qualitatively similar, and are therefore not discussed further. The 

number of presences in a given year was divided by visits for that year to account for differential 

visitation across years and sites (henceforth referred to as fractional day positives [FDP]). 

For each combination of site and taxon, the previous year’s FDP was subtracted from the 

current year’s FDP to calculate a change in FDP between years (ΔFDP). Correlation coefficients 

were then calculated between ΔFDPs from different sites in a pairwise fashion (Pearson’s r), as 

has been done with a variety of taxa in studies of spatial synchrony (Bjørnstad et al. 1999; 

Powney et al. 2010). For each pairwise correlation, data from the site with the longest history of 

visitation was truncated to match the site with the shortest period of visitation. The resulting 

correlation coefficients were averaged across all pairwise comparisons among sites to give a 
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taxon-specific index of synchrony. If a species was absent for eight or more years at a site, then 

that site was not included in the analysis for that species. Finally, for a species to be included in 

this study it had to occur at three or more sites. In total, synchronicity indices for 65 butterfly 

taxa were generated (Table S1). 

Structural equation models (SEM). To compare specific hypotheses for the drivers of 

synchrony we used structural equation modeling (SEM). This method facilitates the testing of 

causal relationships among variables, including comparison of direct and indirect causal 

structures (Grace 2006). A total of six SEMs were constructed to compare a priori hypotheses 

about potential drivers of spatial synchrony, based on insights gained from previous work with 

these butterflies and sites (Forister et al. 2011; Nice et al. 2014; Harrison et al. 2015; Pardikes et 

al. 2015). Two SEMs were generated to independently compare the influence of dispersal 

propensity and sensitivity to climatic variation on synchrony, and a third SEM was assembled to 

investigate the combined influence of both drivers. For all models, we also investigated the 

influence of migratory behavior by removing nine butterfly species that undergo annual 

migrations (including latitudinal and elevational migrations) and observed changes in model fit 

and path coefficients (Table S1). We conducted these separate analyses because migratory taxa 

represent a subset of extreme dispersers that could provide an informative contrast to more 

sedentary butterflies. To understand how the removal of nine species from our analysis affected 

the explained variance, each SEM was performed 1000 times with a random set of 56 butterfly 

species (dropping 9 each time). The mean and standard error of variance explained were 

calculated for each separate model (e.g., dispersal, climate, combined). Details of SEM 

construction are provided below. Model fit was assessed using χ2, and model comparison 

performed using the Akaike information criterion (AIC) (Akaike 1998). All SEM and path 
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analyses were constructed using the lavaan package v0.5-17 (Rosseel 2012) in R v3.1.1 (R Core 

Team 2014).

Modeling the influence of dispersal propensity on synchrony. A maximum likelihood factor 

analysis was used to reduce the dimensionality among correlated data that together characterize 

variation in dispersal propensity among taxa (R package: psych v1.4.8.11; Revelle 2014). We 

calculated two factors from an analysis of wingspan, geographic range, diet breadth (e.g., 

number of plant genera consumed), and elevational range. We choose these variables because 

interspecific variation in butterfly dispersal ability has been linked to wingspan (e.g. Hughes, 

Dytham & Hill 2007; Öckinger et al. 2010; Sekar 2012), geographical range and diet breadth

(Brändle, Öhlschläger & Brandl 2002; Komonen et al. 2004; Beck & Kitching 2007; Garcia-

Barros & Romo Benito 2010). Geographical range (km2) for each taxon was taken from Jahner et

al. (2011) and diet breadth was taken from Shapiro & Manolis (2007). Diet breadth included only

those larval hosts used in Northern California. 

Two factors were calculated that respectively explained 30% (“Dispersal 1”) and 15% 

(“Dispersal 2”) of the variance in underlying variables. “Dispersal 1” included all four variables, 

but was most heavily weighted by geographical range, diet breadth, and elevational range. 

“Dispersal 2” included all variables except diet breadth, and was primarily associated with 

wingspan and geographic range (see Table S2 for loadings). These two factors were input into 

SEMs and served as latent variables. Latent variables are used to model unobservable, or highly 

multidimensional phenomena (e.g. dispersal propensity) using information from more easily 

measurable phenomena (e.g. wingspan, geographical range). For each species, the average 

number of sites occupied, the average FDP across sites (“Abundance”), and the average inter-

annual change in FDP (henceforth “Trend”, see Forister et al. 2010) were calculated, z-
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standardized, and included as covariates in the SEM to account for their influence on spatial 

synchrony. 

Modeling response to weather. The response to climatic variation by each taxon was modeled 

using a hierarchical Bayesian linear modeling framework. These responses were subsequently 

used during calculation of factors characterizing variation in sensitivity to climate among taxa 

(see below). Climate information was extracted from the PRISM dataset (Nice et al. 2014), 

which interpolates data from weather stations with respect to site-specific topography. Data were 

converted to seasonal values following a “water year” format, so that spring consisted of March, 

April, and May; summer of June, July, and August; and, winter of December of the previous 

year, and January and February of the current year. This “water year” corresponds to the post-

summer increase in precipitation typically observed beginning in September through much of 

Northern California. Prior to model construction, all seasonal weather variables were converted 

to z-scores. To identify responses to the El Niño Southern Oscillation (ENSO; the primary driver 

of long-term weather patterns in Northern California (Schonher & Nicholson 1989) we used the 

sea-surface temperature anomaly (SSTA) dataset from 1981-2010 in the “Niño 3.4” region of the

Pacific Ocean (Climate Prediction Center of the National Oceanographic and Atmospheric 

Administration). The SSTA is defined as a departure from the long-term SST mean, and is a 

commonly used index of the strength of ENSO. The mean values of SSTA of December, January,

and February from a given “water-year” were used in analyses because they correspond to the 

peak of ENSO (Vandenbosch 2003). All weather variables were chosen because previous work 

has shown the response to these weather conditions to be important drivers of butterfly 

population dynamics in Northern California (Nice et al. 2014; Harrison et al. 2015; Pardikes et 
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al. 2015). In addition, year was included as a covariate in each model to account for the impact 

of variation in rate of decline among taxa (Forister et al. 2011). 

For each taxon, a binomial response consisting of day positives and visits was modeled.  

This response was linked to the output of a hierarchical linear model using an inverse logit link 

function: pij=1/(1+e−α ij)  where pij is the number of presences in year i and at site j, and αij is 

the output of the linear model for year i at site j. The linear model was of the form:

α ij=μ j+β1 j Winter tempij+ β2 j Springtemp ij+β3 j Winter precipij+ β4 j Spring precipij+β5 j Summer precipij+ β6 j SSTAij+β7 jYear ij

The mean estimate of FDPs for a given taxon at a given site is given by the intercept term μ, and 

regression coefficients for each model term by β1-6. Normal distributions with means and 

precisions equal to transect-wide parameters were used as sampling pools for site-specific 

intercepts and beta coefficients:

μ j N (μμ ,τ μ)

βKj N (μβ K
τ βK

)

Where k is the number associated with each model term. We used uninformative hyperpriors for 

these parameters defined by: 

μμ N (0, 1.0 e−5
)

μβK
N (0, 1.0e−5

)

τ μ Gamma(0.1, 1.0e−3
)

τ βK
Gamma(0.1, 1.0e−3

)

Posterior probability distributions (PPDs) for the transect-wide impact of each model term were 

approximated via Markov chain Monte Carlo sampling using rjags (v3.4.0, (Plummer 2013)). 

Two sampling chains were run for 30,000 iterations following a burn-in of 1,000 iterations. 
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Effective sample sizes and trace plots were examined to ensure adequate mixing and 

convergence on a suitable approximation of PPDs. The mean of the PPD for the transect-wide 

estimate of each regression coefficient was used as an estimate of the response to that term. The 

outputs of this approach were estimates of species-specific responses to weather variables that 

were informed by responses across all study sites (Table S1).

Modeling the influence of climate on synchrony. A maximum likelihood factor analysis was 

used to reduce the dimensionality of data describing how taxa respond to climatic variation as 

output from hierarchical linear modeling described above (Revelle 2014). We calculated two 

factors from the analysis of responses to temperature and precipitation in spring, summer, and 

winter, which explained 28% and 21% respectively of the variance in analyzed variables. We 

included ENSO (as measured by response to SSTA; see above) into our SEM as a standalone 

variable to compare the influence of regional climate versus local weather on synchrony, and 

therefore sensitivity to ENSO was not included in the factor analysis. Factor one (“Climate 1”) 

was composed of responses to all five climatic variables, but was most heavily weighted by 

spring temperature and to a lesser degree, spring precipitation. Factor two (“Climate 2”) included

all climate variables except response to summer temperature, and was primarily weighted by 

responses to winter temperature (Table S3). Similar to the “dispersal” SEM, average number of 

sites occupied, average site abundance, and population trend were included as z-standardized 

covariates.

Modeling the combined influence of natural history and sensitivity to weather on 

synchrony. We also examined the combined influence of variation in dispersal propensity and 

sensitivity to weather on spatial synchrony via SEM. Both sets of latent variables used in the 

previous analyses were included in our “combined” model. This allowed us to compare the 
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relative influence of sensitivity to weather and dispersal propensity on synchrony in the same 

model. We hypothesized a priori that dispersal propensity and sensitivity to climate might 

interact to influence spatial synchrony, therefore we generated models linking the latent variables

characterizing both of these drivers. We compared performance among models (using AIC and 

χ2) to determine which interactions between latent variables improved model fit. 

Results

Our index of spatial synchrony, which measures the correlation of changes in yearly 

abundances across populations (Bjørnstad et al. 1999), identified 44 out of the 65 butterfly 

species as being characterized by synchronous fluctuations (e.g., synchronicity index greater than

0.1); only 7 taxa had negative synchronicity indices, which indicated asynchronous fluctuations 

(minimum index value was -0.11) (Fig. 1B). By visual inspection, index values greater than 0.2 

represented fairly synchronized population dynamics, and values greater than 0.4 highly 

synchronized dynamics (for examples see Fig. 1B-F). Only five species had indices over 0.4 

(Table S1). 

Our models successfully explained much of the variance associated with spatial 

synchrony among Northern California butterflies (Fig. 2). We confirmed the contribution of 

dispersal propensity to variation in spatial synchrony among butterfly species using structural 

equation modeling (SEM) (Fig. 3A. χ2 = 1.41, p = 0.84, df = 4, n = 65; higher p-values signify 

better fit; Table S4). This SEM explained 23% of the variance in spatial synchrony among taxa, 

and 59% of the variation in the average number of sites occupied across the elevational gradient. 

The latter result suggests that our latent variables captured meaningful biological variation 

pertaining to dispersal ability. The influence of dispersal propensity on patterns of spatial 

synchrony was restricted to the positive influence of a single latent variable (“Dispersal 1”), 
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which was primarily weighted by diet breadth and geographic range. Removing migratory 

species from the SEM reduced the explanatory power of the model (Fig. 3B, χ2 = 4.42, p = 0.35, 

df = 4, n = 56; Table S5), which subsequently only explained 3% of the variance in spatial 

synchrony. 

Our “climate” SEM was well supported, and revealed that sensitivity to climate, 

especially to large-scale climate patterns (e.g., ENSO), was strongly, positively associated with 

variation in spatial synchrony among butterfly taxa (Fig. 3C, χ2 = 5.41, p = 0.80, df = 9, n = 65; 

Table S6). This SEM explained 50% of the variation in spatial synchrony among butterflies. 

ENSO drives regional climate patterns and was the strongest predictor of spatial synchrony for 

the entire fauna, with butterflies more sensitive to ENSO exhibiting greater synchrony. We also 

observed that those butterfly species most responsive to ENSO were negatively associated to 

local climatic conditions, suggesting complex relationships between sensitivity to local and 

regional climatic variation.

When excluding migratory butterflies, which are especially sensitive to ENSO 

fluctuations (Vandenbosch 2003; Pardikes et al. 2015), SEM performance decreased (Fig. 3D. χ2 

= 16.36, p = 0.06, df = 9, n = 56; Table S7) and the role of ENSO as a driver of spatial synchrony

was diminished, which is consistent with the previously-observed importance of regional 

weather for the most dispersive and widespread species (Pardikes et al. 2015). However, model 

performance was still high and explained 28% of the variance in spatial synchrony among 

species. Sensitivity to local weather was the best predictor of variation in synchrony for non-

migratory butterflies. Species with the most asynchronous dynamics were also the most sensitive

to local weather, in particular spring and summer precipitation. 
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The “combined” SEM, which included both dispersal propensity and climatic sensitivity, 

was also strongly supported and explained 53% of the variance associated with spatial synchrony

among species (Fig. 4A; χ2 = 15.19, p = 0.65, df = 18, n = 65; Table S8). In line with results from

our climate SEM, sensitivity to climatic variation was the best predictor of spatial synchrony, and

both sensitivity to local weather and ENSO resulted in more synchronous dynamics among 

butterflies; with sensitivity to ENSO being the strongest predictor of synchrony. A significant, 

direct influence of dispersal ability on spatial synchrony was not observed, but we did uncover 

several indirect effects of dispersal mediated by sensitivity to climate (Fig. 4A). Both indirect 

effects of dispersal propensity positively influenced spatial synchrony, and provide evidence that 

the role of dispersal propensity on synchrony is likely mediated by climate. Repeating the 

“combined” SEM without migratory butterflies resulted in an unsupported causal structure (Fig. 

4B; χ2 = 36.05, p = 0.01, df = 18, n = 56; Table S9). However, path coefficients were still 

informative because they represent the output of pairwise regression, and the model explained 

35% of the variation in synchrony associated with non-migratory butterflies. Without migratory 

species, the direct influence of ENSO on synchrony was lessened and an indirect influence of 

ENSO on synchrony, via local weather, became evident. In all models, the variance explained 

when nine random species was removed was equal to models that included migratory species, 

supporting the idea that the nine migratory species are biologically unique among this butterfly 

assemblage (Fig. 2). 

Finally, we considered the effect of spatial synchrony on trends in inter-annual population

change (Fig. 3 & Fig. 4; Tables S4-S9). For each SEM, synchrony explained only ~5% of the 

variation in inter-annual trend across taxa. However, in all three SEMs the direct path coefficient 

from spatial synchrony to population trend was significant (p < 0.05). The strength and 
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significance of this path depended on the presence of migratory species in the model. Removing 

migratory species eliminated the path’s significance and narrowly reduced the strength of the 

coefficient in all three cases. In all three models, a negative coefficient was observed, suggesting 

that higher levels of spatial synchrony are associated with population declines among the 

butterfly assemblage, particularly for migratory species. 

Discussion

In this study we identified relationships between spatial synchrony and both dispersal 

propensity and sensitivity to climatic variation among 65 butterfly species in a region 

characterized by extreme habitat heterogeneity (Fig. 1). Our approach differs significantly from 

previous investigations, in that we assessed climatic sensitivity directly for each species and 

linked both climatic sensitivity and dispersal propensity to the degree of synchrony exhibited by 

each species (Sutcliffe, Thomas & Moss 1996; Powney et al. 2010, Raimondo et al. 2004; 

Koenig 2006). We have shown that the majority of interspecific variation in spatial synchrony 

can be explained through sensitivity to climatic variation, especially large-scale climate patterns 

such as ENSO, though the effect of ENSO is at least partially mediated by species traits related 

to dispersal (Fig. 2). 

The influence of a large-scale climate pattern, ENSO, on synchrony was particularly 

prominent. In the portion of California where our transect is located, the ENSO may lead to 

either increased, or reduced precipitation, but effects on precipitation are dramatic and region-

wide (Schonher & Nicholson 1989). Our results support previous efforts, which show that large-

scale climate patterns (e.g. ENSO) can act to synchronize population dynamics across large areas

(Post & Forchhammer 2002, 2004). Our ability to quantify a connection between ENSO 

sensitivity and spatial synchrony was affected by the presence of migratory species in our model.
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A possible explanation for this is that the population dynamics of migratory species are shaped 

by climate across a broader spatial scale than sedentary species. Accordingly, variation in spatial 

synchrony among non-migratory species was best predicted by sensitivity to localized weather 

conditions. Given the elevational range encompassed in this study and the corresponding breadth

of habitat types, local weather conditions often vary dramatically between sites, which can act to 

desynchronize sub populations of conspecifics occurring across the transect. Indeed, previous 

investigations have shown that butterfly species can respond to the same climatic variable (e.g. 

winter precipitation) differently at different sites (Pardikes et al. 2015). 

Interestingly, sensitivity to spring and summer precipitation was indicative of taxa with 

asynchronous dynamics, and sensitivity to spring temperature and winter precipitation was 

representative of taxa with synchronous dynamics. These results complement previous work 

showing that volatile species are positively influenced by increased spring and summer 

precipitation, and negatively influenced by increasing spring temperatures and winter 

precipitation (Harrison et al. 2015). Moreover, winter precipitation has previously been linked to 

earlier emergence time in California butterflies (Forister and Shapiro 2003) and increased winter 

precipitation positively influences abundances of butterflies in the region (Nice et al. 2014). 

When taken together these results suggest that degree of spatial synchrony for non-migratory 

taxa is facilitated by the ability for rapid changes in abundance under suitable climate conditions.

Dispersal is thought to be an important contributor to spatial synchrony (Ylikarjula et al. 

2000; Vogwill, Fenton & Brockhurst 2009), yet species-specific dispersal propensity was not a 

strong predictor of interspecific variation in spatial synchrony (Fig. 2). Work with other 

Lepidoptera species has also suggested that dispersal plays a minor role in synchronizing 

populations (Haynes et al. 2009, 2013; Liebhold, Haynes & Bjørnstad 2012). A possible 
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explanation for why increased dispersal propensity did not increase spatial synchrony is that 

most butterflies rarely move between sites. Our focal sites span 2750 m of elevation and many 

habitat types, thus habitat heterogeneity may limit the ability of butterflies to disperse between 

sites. This hypothesis is supported by decline in variance explained when migratory species, 

which are known to move between sites, were omitted from our model (from 23% to 3% 

variance explained). We acknowledge that interactions with natural enemies (de Roos, McCauley

& Wilson 1998; Ims & Andreassen 2000; Vogwill et al. 2009) likely account for a portion of the 

unexplained variance in our models of spatial synchrony. However, we were unable to assay the 

influence of natural enemies because relevant information was unavailable for even a subset of 

our focal taxa.  

Although populations of most butterfly species at lower elevations in our study area are 

in decline (Forister et al. 2011), interspecific variation in spatial synchrony appears to play a only

minor role in explaining the current population declines. Theory predicts that synchrony within a 

meta-population can increase extinction propensity, because in this scenario recolonization of 

extirpated subpopulations is more difficult, thus predisposing the meta-population to eventual 

collapse (Harrison & Quinn 1989). Consistent with theory, we detected a significant negative 

influence of increased spatial synchrony on population trends, such that more synchronized 

species were characterized by more severe declines. However, that negative influence only 

explained ~5% of the variation in declines, and the low amount of variation explained may be 

due to the buffering influence of habitat and microclimatic diversity across all ten sites. Habitat 

heterogeneity likely reduces synchronous dynamics among spatially segregated populations 

because different axes of an organism’s niche may vary asynchronously among subpopulations, 

thus buffering the negative consequences of synchrony. Consequently, homogenization of 
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landscapes due to extensive invasion and human-induced environmental change could increase 

patterns of spatial synchrony and strengthen the link between synchrony and decline (Olden et 

al. 2004). 

Conclusion

We report that interspecific variation in spatial synchrony among the butterflies of 

Northern California is best explained by sensitivity to climatic variation. The large-scale climate 

pattern, the El Nino Southern Oscillation (ENSO), was highly predictive of spatial synchrony, 

particularly so for the most mobile species (e.g., migratory). Dispersal propensity was less 

predictive of spatial synchrony than climate, especially when migratory species were removed 

from the analysis. However, our analyses revealed that interactions between both drivers 

influenced the degree of synchrony exhibited by a species. Finally, spatial synchrony appears to 

only weakly contribute to the ongoing declines in butterfly abundance in this assemblage. In a 

world ever more characterized by habitat fragmentation, climate change, and consequent sub-

division of populations, understanding the forces that drive variation in spatial synchrony among 

species is critical if we wish to understand shifting population dynamics and preserve fragile 

meta-populations. 
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Figure Legends

Figure 1: (A) Map of Northern California (inset) showing our ten study sites, along with a 

portrayal of the elevational relief present. (B) Histogram displaying the frequency distribution of 

synchrony indices for the 65-butterfly taxa included in this study. (C-F) Time series (1999-2014) 

of four butterfly taxa representative of the variation in synchrony among species (C, Vanessa 

cardui (synchrony index: 0.82); D, Papilio zelicaon (index: 0.07); E, Junonia coenia (index: 

0.56); F; Glaucopsyche lygdamus (index: 0.09))
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Figure 2: Explained variance in spatial synchrony among Northern California butterfly species 

by SEM: limited to dispersal propensity (“Dispersal”), sensitivity to climate (“Climate”), or the 

combined influences of both drivers of spatial synchrony (e.g., dispersal and climate) 

(“Combined”). Dark gray bars represent SEM models from which migrants were excluded 

(leaving 56 species), while light gray bars represent variance explained when all species were 

considered (65 species). The “Random” bar represents variance explained for each model when 

nine species were randomly removed from the original 65 species. Models were permuted 1000 

times and the mean and 95% confidence interval of variance explained is plotted (see Methods). 

Figure 3: Structural equation models (SEM) of synchrony as driven by taxon-specific responses 

to climatic variation and natural history traits associated with dispersal. Circles represent “latent”

variables generated by factor analysis that together describe a taxon’s sensitivity to local weather 

conditions and natural history traits associated with dispersal (see Methods). The variable 

denoted “Abundance” is the average fraction of days a species was observed (out of the total 

number of visits per year) across the study area over the 27 year long study period—a proxy for 

abundance (Casner et al. 2014). The variable denoted “Avg. Sites Occupied” is the average 

number of sites occupied by a taxon across the study area over the study period. “Population 

Trend” refers to inter-annual trend in population density for a particular taxon. In all three 

models, path coefficients were standardized and path widths scale with coefficient sizes (see 

legend at top of figure). Arrows represent positive coefficients, while lines ending with a circle 

represent negative coefficients. Paths in grey represent insignificant coefficients, while those in 

black with an asterisk (*) denote significance (p ≤ 0.05; see supplementary tables for exact p-

values). A) “Natural History” SEM modeling synchrony as driven by natural history traits with 

all butterfly species included (χ2 = 1.41, p = 0.84, df = 4, n = 65). B) “Natural History” SEM 
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modeling synchrony as driven by natural history with migratory butterfly species excluded (χ 2 = 

4.42, p = 0.35, df = 4, n = 56). C) “Climate” SEM to model synchrony as driven by sensitivity to

climate with all butterflies included (χ2 = 5.41, p = 0.80, df = 9, n = 65). ENSO refers to 

sensitivity of a taxon to the sea surface temperature anomaly, a proxy for the severity of the El 

Niño Southern Oscillation (ENSO). D) “Climate” SEM to model synchrony as driven by 

sensitivity to climate with migratory butterflies excluded (χ2 = 16.36, p = 0.06, df = 9, n = 56; 

see Table S1 for migratory species excluded). 

Figure 4: Structural equation models (SEM) that describe the combined effects of natural 

history traits and sensitivity to weather on spatial synchrony. Paths are represented similarly to 

Figure 2. “Disp. 1” and “Disp. 2” refer to two factors extracted from a factor analysis of species-

specific dispersal propensity (see Methods). “Clim. 1” and “Clim. 2” refer to two factors 

extracted from a factor analysis of sensitivity to local weather. A) An SEM constructed using 

data from all focal species, which was well supported (χ2 = 15.2, p = 0.65, df = 18, n = 65). B) 

An SEM calculated while omitting migratory taxa (Table S1). The overall model structure was 

not supported (χ 2 = 36.1, p = 0.007, df = 18, n = 56); however path coefficients represent 

pairwise regressions and are consequently still informative. 
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Figure 2:
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Figure 3:
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Figure 4:
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	A long-standing challenge for population biology has been to understand why some species are characterized by populations that fluctuate in size independently, while others display synchronous fluctuations across space. An improved understanding of synchrony would advance our predictive ability for a range of phenomena, including meta-population dynamics, pest outbreaks, and biotic responses to climate change. We utilized 27-years of observations on 65 butterfly species at 10 sites that are 210 km apart and span 2750m of elevation, to investigate the causes of interspecific variation in spatial synchrony. Specifically, we compared the relative influence of two hypothesized drivers of spatial synchrony – climatic variation and dispersal propensity. We report that sensitivity to climate explained 50% of interspecific variation in synchrony, whereas dispersal propensity explained 23%. We also report that these two drivers can interact to influence interspecific variation in synchrony. Sensitivity to large-scale climate patterns, in particular the El Niño Southern Oscillation, was the best predictor of synchrony. Additionally, we report a limited contribution of spatial synchrony to the ongoing decline of the Northern California butterfly fauna. In summary, our results confirm the primacy of climatic sensitivity for driving spatial synchrony in butterflies.
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