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Abstract: Obesity has become a very large concern worldwide, reaching 

pandemic proportions over the past several decades. Lifestyle factors, 

such as excess caloric intake and decreased physical activity, together 

with genetic predispositions, are well-known factors related to obesity. 

There is accumulating evidence suggesting that exposure to some 

environmental chemicals during critical windows of development may 

contribute to the rapid increase in the incidence of obesity. 

Agrochemicals are a class of chemicals extensively used in agriculture, 

which have been widely detected in human. There is now considerable 

evidence linking human exposure to agrochemicals with obesity. This 

review summarizes human epidemiological evidence and experimental animal 

studies supporting the association between agrochemical exposure and 

obesity and outlines possible mechanistic underpinnings for this link. 
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Dear Enrique and Monica, 

 

 

Attached please find the revised version of our manuscript for the special issue of MCE that you so 

kindly invited us to contribute. I apologize for the long delay in providing this revised versiosn, but the 

revisions requested by the reviewers were extensive. We hope that the manuscript will now be 

acceptable for publication in Molecular and Cellular Endocrinology.  
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Bruce Blumberg 
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Response to Reviewers’ Comments 

Dear Enrique 

Thank you very much for your email regarding our manuscript submitted to 

Molecular and Cellular Endocrinology (Ms. Ref. No.: MCE-D-19-00782). We appreciate 

the valuable and constructive comments by you and the reviewers. We have extensively 

revised the manuscript to address these points and provide detailed point-by-point 

responses below. 

 

Response to Reviewer 1 

Major: 

Question 1.  

Before diving into the human epidemiology section, it might make sense to first 

address some of the broader issues that impact endocrine research, including studies of 

obesogens. For example, in the human epidemiology section, I think you should separate 

out the discussion of non-monotonicity. Can you also expand on this sentence: "Such 

non-monotonic effects are predictable and expected when considering how the endocrine 

system works." Although many readers of MCE understand these principles, readers from 

non-endocrine backgrounds may not. This sentence is also out of place in this section: "In 

contrast, non-monotonic dose-response curves are an anathema to the industry and 

regulatory toxicology communities (Dietrich, von Aulock, Marquardt et al., 2013)." I 

don't disagree, but many endocrinologists will not understand what point you are making. 

You also might pull out, and discuss separately from the epidemiology section, the issue 

of vulnerable periods. This is relevant to human and animal studies (although there are 

particular challenges in the human studies.) 

Answer: 

Although we wonder how many readers from outside the field of Endocrinology will 

be reading Molecular and Cellular Endocrinology, we adopted the reviewer’s suggestion 

and added more introduction about EDCs, MDCs and obesogens before diving into the 

human epidemiology section in the revised manuscript.  

Lines 86-95: “Endocrine-disrupting chemicals (EDCs) are natural or man-made 

substances that may interfere with the normal function of endocrine system, including 

hormone biosynthesis, metabolism or action (Zoeller, Brown, Doan et al., 2012). There is 

growing evidence showing the link between EDCs and obesity as well as other health 

problems such as metabolic issues, diabetes, reproductive disabilities and cardiovascular 

problems (Gore, Chappell, Fenton et al., 2015). Metabolism disrupting chemicals (MDCs) 

specifically refer to those EDCs having the ability to promote metabolic changes that can 

result in obesity, T2D or fatty liver in animals (Heindel, Blumberg, Cave et al., 2017). 

These EDCs or MDCs might be important factors leading to obesity.” 

Lines 98-101: ““Obesogens” are functionally defined as chemicals that promote 

obesity after exposure, in vivo. Some natural chemicals (such as fructose), 

pharmaceutical chemicals (such as thiazolidinedione anti-diabetic drugs) or xenobiotic 

response to reviewers
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chemicals [such as tributyltin (TBT)] have found to be obesogens (Janesick and 

Blumberg, 2016).” 

 

According to the reviewer’s suggestion, we have separated out the discussion about 

non-monotonicity and the issue of vulnerable periods in the human epidemiology section. 

We have separated the original human epidemiology section into four parts: 

2. Human epidemiological studies relating agrochemicals and obesity 

2.1 Association between agrochemicals and adult obesity 

2.2 Non-monotonic dose-response relationships between agrochemicals and adult 

obesity 

2.3 Agrochemicals and the development of early-onset obesity 

2.4 Gender-specific effects of agrochemicals 

 

We have included more explanation and introduction about the non-monotonic 

dose-response relationships between agrochemicals and adult obesity in the revised 

manuscript. We have revised these two sentences to make them clearer. 

lines 151-158: “Some studies showing the potential relationship between pesticide 

exposure and serum lipids/obesity/BMI revealed that the effects were non-monotonic” 

has been changed to “Some studies showing the potential relationship between pesticide 

exposure and serum lipids/obesity/BMI revealed that the effects were non-monotonic 

dose-response relationships, an unconventional dose-response relationship characterized 

by a curve whose slope changes direction within the range of tested doses (Lee et al., 

2012). For example, Arrebola et al. found that HCB, DDE and β-HCH showed quadratic 

associations with BMI, and the quadratic models had a positive trend at low exposure 

levels, while the slope decreased or even became negative at higher exposure levels 

(Arrebola, Ocana-Riola, Arrebola-Moreno et al., 2014).” 

lines 158-164: “Such non-monotonic effects are predictable and expected when 

considering how the endocrine system works.” has been changed to “Previously, 

numerous studies investigating the effects of EDCs described with relatively high 

frequency the occurrence of non-monotonic dose-response relationships for EDCs 

(Zoeller and Vandenberg, 2015). The molecular mechanisms underlying non-monotonic 

dose-response relationships are complex and can arise from opposing effects induced by 

multiple receptors, receptor desensitization, negative feedback with increasing dose, or 

dose-dependent metabolism modulation (Lagarde, Beausoleil, Belcher et al., 2015).” 

line 164-170: “In contrast, non-monotonic dose-response curves are an anathema to 

the industry and regulatory toxicology communities.” has been changed to “Usual risk 

assessment approaches used by regulatory agencies are developed based on the 

fundamental principle that the toxicity of a chemical scales linearly in proportion to the 

exposure level. Non-monotonicity represents a challenge to fundamental concepts in 

toxicology and risk assessment (Dietrich, von Aulock, Marquardt et al., 2013). These 
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non-monotonic dose-response relationships of agrochemicals suggest that mechanisms by 

which hey induce obesity are complex.” 

 

Question 2: 

In the animal section, it would help to better explain what is meant by a "second hit". 

(The principles behind "two hit" effects could be elaborated, even with just a sentence or 

two.) 

Answer: 

According to reviewer’s suggestion, we have introduced the principle of “two-hit” 

hypothesis and explained the meaning of “second hit” in the revised manuscript (Page, 

line).  

lines 255-262: The “two-hit” hypothesis, first formulated by Knudson in 1971, 

suggested that most tumor suppressor genes require both alleles to be inactivated to result 

in a cancer (Knudson, 1971). Now, this “two-hit” hypothesis has been adopted to explain 

the multifactorial nature of obesity, which may result from the combined effects of both 

genetic and environmental factors. A subject who is genetically-prone to obesity has the 

“first hit” (genetic susceptibility or epigenetic predisposition) intrinsically. Obesogenic 

factors such as chemical exposures, high energy diet, low physical activity, alcohol and 

smoking that act as “second hit” trigger gain weight and result in obesity (Heindel et al., 

2017). 

 

Question 3: 

It would be great if the authors thought about some figures or tables to break up the 

text. I know these can be a lot of work, but they could be fairly simple organizational 

drawings. 

Answer: 

According to reviewer’s suggestion, we have added 4 tables to summarize the 

human studies, animal studies, and the possible mechanisms in the revised manuscript. 

The titles of these tables are listed below, and the tables included at the end of this file.  

 

Table 1. Literature summarizing associations between agrochemicals and adult obesity. 

Table 2. Literature summarizing association between agrochemicals and the development 

of early-onset obesity. 

Table 3. Literature summary of animal studies linking agrochemicals and obesity. 

Table 4. Possible mechanisms though which agrochemicals may lead to obesity and 

example chemicals providing evidence to support these mechanisms. 

 

Minor:  

Question 4: 

"Numerous epidemiological studies together with experimental evidence in animal 

models indicated that agrochemicals may be harmful to human health in multiple ways 
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(Mostafalou and Abdollahi, 2017,Cano-Sancho, Salmon and La Merrill, 

2017,Montgomery, Kamel, Saldana et al., 2008,Androutsopoulos, Hernandez, Liesivuori 

et al., 2013)." Can you give some brief examples, especially beyond the obesity outcomes 

you outline below?  

Answer: 

According to reviewer’s suggestion, we have added a brief introduction about the 

toxicities related to agrochemicals in the revised manuscript.  

lines 63-66: “For example, agrochemicals may have carcinogenicity, neurotoxicity, 

immunotoxicity, reproductive toxicity, developmental toxicity and endocrine disrupting 

effects (Mostafalou and Abdollahi, 2017). In view of this, the toxicity of agrochemicals is 

of great concern around the world.” 

 

Question 5: 

In addition to introducing EDCs in the intro section, can you also briefly explain the 

subset of chemicals that are MDCs (metabolism disrupting chemicals)?  

Answer: 

According to reviewer’s suggestion, we have added a brief explanation of MDCs in 

the revised manuscript.  

Lines 92-97: “Metabolism disrupting chemicals (MDCs) specifically refer to those EDCs 

having the ability to promote metabolic changes that can result in obesity, T2D or fatty 

liver in animals (Heindel, Blumberg, Cave et al., 2017).” 

  

Question 6: 

"In addition to increased weight or elevated BMI, the levels of some obesity 

biomarkers (levels of total cholesterol and total serum lipids) were also positive 

associated with the concentrations of pesticides such as HCB, <beta>-HCH and DDE" - 

please edit to "positively"  

Answer: 

    We have changed the “positive” to “positively” in this sentence (line 133).  

 

Question 7: 

"Many environmental factors have been showed to play a prominent role in the 

development of early-onset obesity" please edit to "shown"  

Answer: 

We have changed the “showed” to “shown” in this sentence (line 177).  

 

Question 8: 

Section title "Animal studies about the relationship between agrochemicals and 

obesity" could be more descriptive, or remove "about" and replace with "and". Same with 

"Induce adipocyte differentiation" can you make this more descriptive? Or 

"Agrochemicals can induce adipocyte differentiation". Same with "Affect metabolic 



 5 

homeostasis mediated by metabolic sensors, the PPARs", "Affect metabolic homeostasis 

by disturbing the thyroid hormone pathway", etc. - this phrasing is particularly awkward.  

Answer: 

According to reviewer’s suggestion, we have revised some section titles to make 

them more descriptive in the revised manuscript.  

line 238: “Animal studies about the relationship between agrochemicals and obesity” 

has been changed to “Animal studies and the relationship between agrochemicals and 

obesity” 

line 294: “Promote the commitment phase of adipogenesis” has been changed to 

“Agrochemicals might promote the commitment phase of adipogenesis” 

line 352: “Induce adipocyte differentiation” has been changed to “Agrochemicals 

might induce adipocyte differentiation” 

Line 408-409: “Effects mediated by sex steroid hormone dysregulation” has been 

changed to “Agrochemicals might exert obesogenic effects mediated by sex steroid 

hormone dysregulation” 

Line 493-494: “Affect metabolic homeostasis mediated by metabolic sensors, the 

PPARs” has been changed to “Agrochemicals might exert obesogenic effects by 

affecting metabolic homeostasis through PPARs” 

Line 563-564: “Affect metabolic homeostasis by disturbing the thyroid hormone 

pathway” has been changed to “Agrochemicals might exert obesogenic effects by 

affecting metabolic homeostasis through disturbing the thyroid hormone pathway” 

Line 616: “By affecting the gut microbiota” has been changed to “Agrochemicals 

might exert obesogenic effects by affecting the gut microbiota” 

 

Question 9: 

"One possibility is that obesogen exposure early in life the alters the fate of MSCs, 

leading to more white adipocytes in adulthood" edit to remove first "the"  

Answer: 

We have removed the first “the” in this sentence (line 313-315). 

 

Question 10: 

"Activation of PPAR<gamma>/RXR<alpha> heterodimers plays a key role in 

promoting adipocyte differentiation of 3T3-L1 adipocytes" remove the first "adipocyte"  

Answer: 

We have removed the first “adipocyte” in this sentence (Line 371-372). 

 

Question 11: 

"However, at the time of this writing no convincing evidence exists that precisely 

establishes the molecular mechanisms through which epigenetic transgenerational 

inheritance occurs." Please edit to make clear that you mean transgenerational inheritance 

of obesity. 
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Answer: 

Sorry, we disagree with this statement by the reviewer. In fact, there is no 

convincing evidence that precisely establishes the molecular mechanisms underlying 

transgenerational inheritance. We have changed this sentence slightly to read: “However, 

at the time of this writing no convincing evidence exists that precisely establishes the 

molecular mechanisms through which epigenetic transgenerational inheritance of any 

phenotype, including obesity occurs. Lines 720-723)” 

 

Response to reviewer 3 

The reviewer noted that we had published other reviews on this topic and stated that this 

one is similar to another recently published in Endocrinology. We reject this statement. 

There is deliberately very little overlap between the current manuscript and the 

Endocrinology MINIREVIEW noted by the reviewer. Moreover, we cite the current 

review in the minireview as the definitive source for agrochemicals and obesity. It should 

be noted that this is an INVITED rather than an unsolicited review. I get about 2-3 

requests to write such reviews per week and in 2019/2020 agreed to write only 3. Each of 

these was written by a different person in the lab and has a very different focus.  

 

Question 1: 

Authors should consider including tables summarizing existing epidemiologic and 

animal evidence in support of various aspects of obese phenotypes, BMI, gestational 

weight gain, fat accumulation, WAT vs BAT, adipocyte differentiation, hyperplasia vs. 

hypertrophy etc. This would make it user friendly instead of our filtering through the 

series of findings reported. 

Answer: 

We added three tables summarizing existing epidemiologic and animal evidence in 

support of various aspects of obese phenotypes. The titles of these tables are listed as 

below, and the detail are listed in the end of this word file.  

Table 1. Literature summarizing  associations between agrochemicals and adult obesity. 

Table 2. Literature summarizing association between agrochemicals and the development 

of early-onset obesity. 

Table 3. Literature summary of animal studies linking agrochemicals and obesity. 

 

 

Question 2: 

In the human and animal studies section of this review, authors make a case for 

direct as well as developmental exposure effects on obesity. However, when they get to 

the mechanisms, they drop the developmental exposure until they talk about 

transgenerational effects of agrochemicals. Similar to what was done for human and 

animal studies, under each section they should address direct and developmental effects. 

Answer: 
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According to reviewer’s suggestion, we have addressed direct and/or developmental 

effects under each section of the mechanism.  

Line 297: “Both direct and developmental exposure of chemicals might affect 

adipogenesis.” 

Line 354-355: “Usually, the process of adipocyte differentiation is influenced by direct 

chemical exposure.” 

Line 425-426: “Both direct and developmental exposure of chemicals might disrupt the 

regulation of sex hormone signaling.” 

Line 510-511: “Usually, the influence on metabolic homeostasis through PPARs is due to 

direct chemical exposure.” 

Line 585-586: “Usually, the influence on metabolic homeostasis through the thyroid 

signaling pathway is due to direct chemical exposure.” 

Line 627: “Usually, the gut microbiota is affected by the direct exposure of chemicals.” 

 

Question 3: 

Considerable time is spent on discussing the physiological process of adipocyte 

commitment and differentiation, an aspect well addressed in other reviews. This should 

be reduced, and reference made to other reviews.  

Answer:  

    According to reviewer’s suggestion, we have revised this part by reducing the 

introducing about the physiological process of adipocyte commitment and differentiation 

(Page, line). 

Lines 305-309: “Multipotent mesenchymal stromal stem cells, also known as 

mesenchymal stem cells (MSCs) give rise to adipocytes (Rosen and MacDougald, 2006). 

MSCs can differentiate into adipocytes, chondrocytes and osteoblasts (among other cell 

types) in response to tissue-specific signals and are thought to renew these cells in adults 

(da Silva Meirelles, Chagastelles and Nardi, 2006). Like most differentiation events, 

adipogenesis involves determination and terminal differentiation. Determination occurs 

when MSCs commit irreversibly to the adipocyte lineage, lose their potential to 

differentiate into other types of cells and become preadipocytes (Park, Halperin and 

Tontonoz, 2008,Rosen and Spiegelman, 2014,Tontonoz and Spiegelman, 2008). Terminal 

differentiation occurs when preadipocytes undergo growth arrest and subsequent 

differentiate into mature fat cells (Park et al., 2008,Rosen and Spiegelman, 

2014,Tontonoz and Spiegelman, 2008).” has been changed to “Multipotent 

mesenchymal stromal stem cells, also known as mesenchymal stem cells (MSCs) give 

rise to adipocytes, which involves determination (MSCs commit irreversibly to the 

adipocyte lineage) and terminal differentiation (preadipocytes differentiate into mature 

fat cells) (Rosen and MacDougald, 2006).” 
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Question 4: 

Changes associated with the agrochemical exposure are being discussed one by one 

without integrating them mechanistically. 

Answer:  

To integrate the results associated with the agrochemical exposure more 

mechanistically, we have separated the human epidemiology part and animal study part 

into several sections.  

We have separated the original one human epidemiology section into four parts:  

2. Human epidemiological studies relating agrochemicals and obesity 

2.1 Association between agrochemicals and adult obesity 

2.2 Non-monotonic dose-response relationships between agrochemicals and adult 

obesity 

2.3 Agrochemicals and the development of early-onset obesity 

2.4 Gender-specific effects of agrochemicals 

 

We have separated the original one animal study section into two parts listed as 

bellow: 

3. Animal studies and the relationship between agrochemicals and obesity 

3.1 Studies showing the obesogenic effects of agrochemicals in adult 

experimental animals 

3.2 Animal studies showing the development and transgenerational obesogenic 

effects of agrochemicals 

  

Question 5: 

While they make a case for sexual dimorphism, when discussing the mechanism, 

they fail to describe in which sex the observation comes from. They should consider 

adding a table with this information from different studies grouped by agrochemical and 

limit the text portion. 

Answer: 

To make the description about sexually dimorphic effects of agrochemicals on 

childhood obesity more clear, we revised this part and separated it into an individual 

section 2.4. We also added the information about sexually dimorphic responses in Table 

2.  

Lines 225-236: “2.4 Gender-specific effects of agrochemicals    Sexually 

dimorphic responses are a common finding when examining EDC effects, including links 

to obesity (Gore et al., 2015). Currently, some prospective cohort studies (Valvi et al., 

2012,Warner et al., 2017,Warner et al., 2014,Delvaux et al., 2014,Tang-Peronard, 

Heitmann, Andersen et al., 2014) or cross-sectional studies (Cabrera-Rodriguez, Luzardo, 

Almeida-Gonzalez et al., 2019) showed the gender-specific effects of agrochemicals on 

childhood obesity. The results about the reported gender-specific effects of 

agrochemicals are noted in Table 2. For example, Warner et al. showed a positive 
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association between DDE and childhood obesity in boys but not in girls (Warner et al., 

2017,Warner et al., 2014). However, some other studies showed the effects of DDE on 

childhood obesity existed in girls but not in boys (Delvaux et al., 2014,Tang-Peronard et 

al., 2014). The reason for this difference warrants further study. The mechanisms 

underlying gender-specific effects of agrochemicals also need to be studied in the future.” 

 

Question 6: 

A figure consolidating the various mechanistic underpinnings and which chemicals 

provide evidence for which mechanism would be beneficial.  

Answer:  

    Since there are many different kinds of agrochemicals providing evidence for a 

mechanism, we have provided a table consolidating the various mechanistic 

underpinnings and which chemicals provide evidence for the mechanism in the revised 

manuscript. The title of this table is listed as below, and the table provided at the end of 

this file.  

Table 4. Possible mechanisms though which agrochemicals may lead to obesity and 

example chemicals providing evidence to support these mechanisms. 

 

Question 7: 

Several of their own reviews are listed for many statements. Reference to the most 

recent review would suffice. 

Answer:  

According to reviewer’s suggestion, we have deleted several of our reviews keeping 

only the most recent and/or important ones. 

 

Question 8: 

Providing a list of chemicals being reviewed and their exposure levels as detected in 

human, pointing to what is continuing to be used now vs those that are no longer being 

used but persist would put things in perspective in terms of thinking through 

interventions. 

Answer: 

According to reviewer’s suggestion, we have listed the names of the agrochemicals 

mentioned in the review in the Tables 1-4, and provided available information about the 

human exposure levels of these agrochemicals in Table 1. We have also provided 

information about the status of these agrochemicals in the revised manuscript.  

Lines 139-148: “Although the use of DDT has been banned in many countries, some 

populations still bear significant levels of DDT and DDE due to the extremely long 

half-life of these chemicals in the environment and in the human body, bioaccumulation 

and via the continued use of DDT in some developing countries (United Nations 

Environment Programme, 2010,Bornman, Aneck-Hahn, de Jager et al., 2017). HCB and 

β-HCH have been banned globally several decades ago, but they are persistent in the 
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environment. Malathion is a pesticide that is still widely used in agriculture, residential 

landscaping, and public health pest control programs. All of these agrochemicals can still 

be detected in human populations Information about human exposure levels is provided 

in Table 1. The obesogenic effects of these pesticides in humans still needs to be 

considered. 
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Table 1. Literature summarizing associations between agrochemicals and adult obesity 

References Names Exposure 

levels 

(serum level) 

Population 

(number of 

subjects) 

Outcomes 

 

(Dusanov 

et al. 2018) 

HCB; 

β-HCH; 

p,p’-DDT; 

DDE 

 

HCB: 

66.8-101.2 

pg/mL;  

β-HCH:  

22.9-47.6 

pg/mL; 

p,p’-DDT:  

11.3-20 pg/mL; 

DDE:  

315-679 pg/mL; 

Norway, adult, 

(N=431) 

 

Increased odds of 

metabolic syndrome. 

(La Merrill 

et al. 2018) 

DDE 

 

170-570 

ng/g lipid 

 

Sweden, 70 

years old (N = 

988) 

Increased BMI. 

(Jaacks et 

al. 2016) 

p,p'-DDT  Mean level:  

0.0158 ng/mL  

 

USA, pregnant 

women, 18-40 

years old 

(N=218)  

Gestational weight gain. 

(Arrebola 

et al. 2014) 

HCB; 

DDE; 

β-HCH 

Mean level: 

HCB: 32.81 

ng/g lipid; 

β-HCH: 

19.60ng/g lipid; 

DDE: 

183.99ng/g 

lipid; 

Spain, adults 

(N=298) 

 

 

Increased BMI and levels 

of total cholesterol, HDL, 

LDL, and 

total serum lipids. 

(Langer et 

al. 2014) 

DDE; 

HCB 

 

DDE:  

54-22382 ng/g 

lipid; 

HCB:  

22-17928 ng/g 

lipid 

Slovakia, adults, 

(N=2053) 

Increased BMI and 

increased levels of 

cholesterol and 

triglyceride. 

(Raafat et 

al. 2012) 

Malathion 

 

Mean level: 

0.0746 mg/L 

Egypt, 39±12 

years old (N=98) 

Increased waist 

circumference. 
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(Lee et al. 

2012) 

DDE Mean level: 

2654 ng/g lipid 

Sweden, 70 

years old 

(N=970)  

Increased odds ratios of 

abdominal obesity. 

(Lee et al. 

2012) 

DDE 

 

11-23271 

pg/mL  

Sweden, 70 

years old people  

(N=970) 

Increased existence or 

development 

of abdominal obesity. 

(Dirinck et 

al. 2011) 

 β-HCH 

 

1.9-200 ng/g 

lipid 

Belgium, ≥18 

years (N=145) 

Increased BMI, waist, fat 

mass percentage, and total 

and subcutaneous 

abdominal adipose tissue. 

(Bachelet 

et al. 2011) 

 DDE 

 

Mean level: 

85 ng/g lipid 

French, women 

(N= 1055) 

Increased BMI. 

(Ibarluzea 

et al. 2011) 

DDE;  

β-HCH; 

HCB 

Mean level:  

DDE:  

110.0 ng/g 

lipid;  

β-HCH:  

19.1 ng/g lipid;  

HCB:  

33.5 ng/g lipid  

Spain, 

pregnant women 

(N=1259) 

 

Increased BMI. 

(Lee et al. 

2011) 

HCB; 

DDE; 

 

Not supplied USA, adults, 

(N=5115) 

 

Increased BMI, 

triglycerides, HOMA-IR, 

lower HDL-cholesterol 

and triglycerides.  

 

  



 13 

Table 2. Literature summarizing associations between agrochemicals and the 

development of early-onset obesity. 

References Names The age of the 

children 

Population 

(number 

of 

subjects) 

Outcomes 

(Whether showed 

gender-specific 

effects) 

(Cabrera-Rodriguez 

et al. 2019) 

DDE 

 

Infants 

 

Spain 

(N=447) 

Increased neonatal 

birth weight, with a 

special emphasis on 

girls. 

(Showed 

gender-specific 

effects) 

(Warner et al. 

2017) 

DDT; 

DDE 

12 years old USA 

(N=240) 

Increased BMI for 

boys but not girls.  

(Showed 

gender-specific 

effects) 

(Xu et al. 2017) o,p'-DDD; 

p,p'-DDT 

Infants 

 

Chinese 

(N=120) 

Increased 

neonatal birth weight. 

(Vafeiadi et al. 

2015) 

DDE;  

HCB  

4 years old 

 

Greece  

(N = 689). 

Increased 

BMI, obesity, 

abdominal obesity.  

(Agay-Shay et al. 

2015) 

HCB; 

β-HCH; 

DDE 

7 years old 

 

Spain 

(N=657) 

Increased BMI and 

overweight risk. 

 

(Heggeseth et al. 

2015) 

 o,p’-DDT; 

p,p’-DDT;  

DDE 

2-9 years old USA 

(N=415) 

Increased BMI among 

boys but not girls.  

(Showed 

gender-specific 

effects) 

(Iszatt et al. 2015) DDE 2 years old Norway 

(N=1864) 

Increased growth. 

(Valvi et al. 2014) DDE; 

HCB 

6 and 14 months 

old 

Spain 

(N=1285) 

Increased growth and 

overweight.  

 

(Warner et al. 

2014) 

o,p′-DDT;  

p,p′-DDT; 

DDE 

9 years old USA 

(N=261) 

Increased BMI and 

waist circumference in 

boys but not in girls. 
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(Showed 

gender-specific 

effects) 

(Delvaux et al. 

2014) 

DDE 

 

7 to 9 years old 

 

Belgium 

(N=114) 

 

 Increased waist 

circumference and 

waist/height ratio in 

girls but not in boys. 

(Showed 

gender-specific 

effects) 

(Tang-Peronard et 

al. 2014) 

DDE 5 and 7 years old Denmark  

(N=656) 

 

Increased waist 

circumference in girls 

with overweight 

mothers but not in 

boys. 

(Showed 

gender-specific 

effects) 

(Valvi et al. 2012) DDE; 

DDT; 

6.5 years old 

 

Spain 

(N=344) 

Increased overweight 

in boys but not in 

girls.  

(Showed 

gender-specific 

effects) 

(Mendez et al. 

2011) 

DDE 6 and 14 months 

old 

Spain 

(N=657) 

Increased weight and 

BMI.  

(Verhulst et al. 

2009) 

DDE 1-3 years old 

 

Belgium 

(N=138) 

Increased BMI.  

(Karmaus et al. 

2009) 

DDE 20-50 years old 

 

USA 

(N=259) 

Increased weight and 

BMI.  

(Smink et al. 2008) HCB 6 years old Spain 

(N=482) 

Increase in weight and 

BMI.  
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Table 3. Literature summary of animal studies linking agrochemicals and obesity. 

Reference Names Animal used Dose and exposure 

time 

Outcomes 

(Whether showed 

gender-specific 

effects) 

(King et al. 

2019) 

 

DDT Sprague 

Dawley rats 

25 mg/kg/day; F0 

females were 

administered on 

days 8 to 14 of 

gestation. 

The F3 generation had 

significant increases in 

the incidence of 

obesity.  

(Kubsad et 

al. 2019) 

Glyphos

ate  

Sprague 

Dawley rats 

25 mg/kg/day; F0 

females were 

administered on 

days 8 to 14 of 

gestation. 

The transgenerational 

pathologies of obesity 

was observed.  

(Basaure et 

al. 2019) 

CPF Male apoE4- 

mice  

2 mg/kg/day; 15 

days. 

Increased body weight. 

(Xiao et al. 

2018) 

Permeth

rin 

Male C57BL/6J 

mice 

50, 500, and 5000 

μg/kg/day; 12 

weeks. 

Increased body weight, 

fat mass, and increased 

TG and TC.  

(Uchendu et 

al. 2018) 

CPF; 

deltamet

hrin  

Male Wistar 

rats 

CPF: 4.75 mg/ 

kg/day; 

deltamethrin: 6.25 

mg/kg/day; 120 

days. 

Increased levels of TG, 

TC, LDL, and VLDL, 

and decreased HDL 

level.  

(Fang et al. 

2018) 

CPF Male Wistar 

rats 

0.3 or 3.0 

mg/kg/day; 9 weeks. 

Increased bodyweight.  

(Nilsson et 

al. 2018) 

Vincloz

olin 

Sprague 

Dawley rats 

100 mg/kg/day; F0 

females were 

administered on 

days 8 to 14 of 

gestation. 

F3 generation rats 

showed 

transgenerational 

increased obesity rate 

in females.  

(Showed 

gender-specific 

effects) 

(Sun et al. 

2017) 

Imidaclo

prid 

Female 

C57BL/6J mice 

0.06, 0.6, or 6 

mg/kg/day; 12 

weeks. 

Increased high fat 

diet-induced body 

weight gain and 

adiposity.  

(Sun et al. 

2016) 

Imidaclo

prid 

Male C57BL/6J 

mice 

0.06, 0.6, or 6 

mg/kg/day; 12 

Increased high fat 

diet-induced body 
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weeks. weight gain and 

adiposity. 

(Peris-Samp

edro et al. 

2015a) 

 

CPF Male apoE 3 

mice 

2mg/kg/day; 13 

weeks. 

Increased body weight. 

(Peris-Samp

edro et al. 

2015b) 

CPF apoE 3 mice 2 mg/kg /day; 8 

weeks. 

Increased body weight. 

(Ishikawa et 

al. 2015) 

DDT Obese Sprague 

Dawley rats 

5.60 μg /kg/day; 4 

weeks. 

Increased postprandial 

non-esterified fatty 

acids and decreased 

body temperature.  

(La Merrill 

et al. 2014) 

DDT C57BL/6J mice  1.7 mg/kg/day; From 

gestational day 11.5 

to postnatal day 5. 

Reduced core body 

temperature, impaired 

cold tolerance, 

decreased energy 

expenditure, and 

produced a transient 

early-life increase in 

body fat in female 

offspring.  

(Showed 

gender-specific 

effects) 

(Howell et 

al. 2014) 

DDE Male 

C57BL/6H 

mice 

0.4 mg/kg/day or 2.0 

mg/kg/day; 5 days. 

Hyperglycemic effect.  

(Bhaskar 

and 

Mohanty 

2014) 

Mancoz

eb; 

Imidaclo

prid 

Swiss albino 

mice 

imidacloprid: 131 

mg/kg/day; 

mancozeb: 8000 

mg/kg/day. 

Lactating mothers 

were exposed to the 

pesticides from 

PND1 to natural 

weaning (PND 28). 

Increased body weight. 

(Skinner et 

al. 2013) 

DDT Sprague 

Dawley rats 

50 or 25 mg/kg/day; 

F0 females were 

administered on 

days 8 to 14 of 

F3 generation 

developed obesity.  
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gestation. 

(Li et al. 

2012) 

TFZ CD1 mice 0.1, 1.0, or 10.0 µM; 

During breeding and 

throughout 

pregnancy. 

Increased adipose 

depot weight.  

(Acker and 

Nogueira 

2012) 

Chlorpyr

ifos 

Male Wistar 

rats 

50 mg /kg; A single 

dose. 

Increased TC, LDL 

levels and caused 

hyperglycemia and 

hyperlipidemia. 

(Kalender et 

al. 2010) 

Malathio

n 

Male Wistar 

rats 

27 mg/kg/day; 4 

weeks. 

Increased TC. 

(Lim et al. 

2009) 

Atrazine Male Sprague 

Dawley rats 

30 or 300 

mg/kg/day; 5 

months. 

Increased body weight 

and intra-abdominal 

fat, but decreased basal 

metabolic rate.  

(Lassiter et 

al. 2008) 

Parathio

n 

Sprague 

Dawley 

neonatal rats 

0.1 or 0.2 

mg/kg/day; postnatal 

days 1-4. 

Increased body weight 

and impaired fat 

metabolism. Females 

showed greater 

sensitivity.  

(Showed 

gender-specific 

effects) 

(Lassiter and 

Brimijoin 

2008) 

CPF Long–Evans 

rats 

2.5 mg/kg/day; From 

gestational day 7 

through the end of 

lactation on 

postnatal day 21. 

Increased body weight 

in males.  

(Showed 

gender-specific 

effects) 

(Meggs and 

Brewer 

2007) 

CPF Female 

Long-Evans 

rats  

5 mg/kg/day; 4 

months. 

Increased body weight. 

 

Note: apolipoprotein E (apoE), triglyceride (TG), total cholesterol (TC), high-density 

lipoprotein (HDL), low-density lipoprotein-cholesterol (LDL), very low-density 

lipoprotein-cholesterol (VLDL), 
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Table 4. Possible mechanisms though which agrochemicals may lead to obesity and 

example chemicals providing evidence to support these mechanisms. 

Possible mechanisms Agrochemicals provide evidence for the 

mechanism 

Promote the commitment phase of 

adipogenesis 

DDT, chlorpyrifos, carbofuran, zoxamide, 

spirodiclofen, fludioxonil and quinoxyfen, 

triflumizole  

Induce adipocyte differentiation  DDT, DDE, quizalofop-p-ethyl, diazinon, 

pyraclostrobin, imidacloprid, fipronil, 

permethrin, zoxamide, spirodiclofen, 

quinoxyfen, tebupirimfos, forchlorfenuron, 

flusilazole, acetamiprid, pymoetrozine, 

triflumizole, quinoxyfen, fludioxonil, 

deltamethrin, endrin, tolylfluanid, 

triphenyltin hydroxide, lactofen, 

halosulfuron-methyl, cyfluthrin, flufenacet, 

isoxaflutole, piperonyl-butoxide, 

tebufenozide  

Mediated by sex steroid hormone 

dysregulation  

Permethrin, linuron, prochloraz, 

procymidone, tebuconazole, vinclozolin, 

DDE, endosulfan, dimethoate, deltamethrin, 

chlorpyrifos, methoxychlor, DDT, 

terbuthylazine, propiconazole, 

prothioconazole, cypermethrin, malathion 

Affecting metabolic homeostasis through 

PPARs 

Dicamba, diclofop, diclofop-methyl, 

pyrethrins, 2,4-dichlorophenoxyacetic acid, 

DDT, diclofop-methyl, pyrethrins, imazalil, 

diflubenzuron, chlorfluazuron, 

flucycloxuron, noviflumuron, flufenoxuron, 

quizalofop-p-ethyl, spirodiclofen, zoxamide, 

triflumizole, dithiocarbamate, mancozeb  

Affecting metabolic homeostasis through 

disturbing the thyroid hormone pathway 

DDT, DDE, chlorpyrifos-methyl, acetochlor, 

procymidone, imidacloprid, atrazine, 

fluroxypyr, mancozeb, butachlor, 

beta-cypermethrin, fenobucarb, cyhalothrin, 

theta-cypermethrin, bifenthrin, carbaryl, 

pymetrozine, pendimethalin, metolcarb,  

Affecting the gut microbiota  Cis-nonachlor, oxychlordane, 

trans-nonachlor, chlorpyrifos, carbendazim,  

Epigenetic programming and 

transgenerational effects  

DDT, glyphosate, vinclozolin  
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Abstract 21 
Obesity has become a very large concern worldwide, reaching pandemic 22 

proportions over the past several decades. Lifestyle factors, such as excess caloric intake 23 
and decreased physical activity, together with genetic predispositions, are well-known 24 
factors related to obesity. There is accumulating evidence suggesting that exposure to 25 
some environmental chemicals during critical windows of development may contribute 26 
to the rapid increase in the incidence of obesity. Agrochemicals are a class of chemicals 27 
extensively used in agriculture, which have been widely detected in human. There is 28 
now considerable evidence linking human exposure to agrochemicals with obesity. This 29 
review summarizes human epidemiological evidence and experimental animal studies 30 
supporting the association between agrochemical exposure and obesity and outlines 31 
possible mechanistic underpinnings for this link. 32 
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1. Introduction 45 
Agrochemicals constitute a diverse class of chemicals extensively used in agriculture for 46 

many different purposes. These include preventing harmful effects caused by pests, 47 
controlling infectious diseases induced by bacteria or fungi, and promoting crop growth. 48 
Agrochemicals are thought to play critical roles in increased agricultural productivity as well 49 
as the control of insect pests that are disease vectors.  50 

Agrochemicals of concern are typically pesticides including insecticides, herbicides, 51 
fungicides and nematicides (Sparks, 2013). These agrochemicals can be further subdivided 52 
into organochlorines, organophosphorus, carbamates, pyrethroids and neonicotinoids, 53 
according to their chemical structures and modes of action (Xiao, Clark and Park, 2017). 54 
While bringing benefits to humans, agrochemicals have also become major contaminants that 55 
are widely detected in the environment as well as in humans (Tsatsakis, Tzatzarakis, 56 
Tutudaki et al., 2008). Many efforts have been made to reduce the harmful effects of 57 
agrochemicals on humans by designing lower toxicity chemicals and by controlling the time 58 
and location of applications. However, agrochemical exposure and consequent toxicity to 59 
humans and animals is inevitable (Sparks and Lorsbach, 2017). Numerous epidemiological 60 
studies together with experimental evidence in animal models indicated that agrochemicals 61 
may be harmful to human health in multiple ways (Cano-Sancho, Salmon and La Merrill, 62 
2017,Androutsopoulos, Hernandez, Liesivuori et al., 2013). For example, agrochemicals may 63 
have carcinogenicity, neurotoxicity, immunotoxicity, reproductive toxicity, developmental 64 
toxicity and endocrine disrupting effects (Mostafalou and Abdollahi, 2017). In view of this, 65 
the toxicity of agrochemicals is of great concern around the world. 66 

Currently, obesity has become a worldwide pandemic and public health problem (Hales, 67 
Fryar, Carroll et al., 2018). According to the World Health Organization, approximately 39% 68 
of adults worldwide are overweight (body mass index, BMI ≥25 kg/m

2
) and 13% are obese 69 

(BMI ≥ 30) (World Health Organization, 2018). The obesity problem is also severe for 70 
children and adolescents (World Health Organization, 2014). Obesity is a complex and 71 
multifactorial condition that increases the risk of many other chronic diseases such as 72 
cardiovascular disease, diabetes mellitus type 2 (T2D), hypertension, stroke and even some 73 
kinds of cancers (Picon-Ruiz, Morata-Tarifa, Valle-Goffin et al., 2017). It was suggested that 74 
at least 2.8 million deaths worldwide could be attributed to the results of overweight or 75 
obesity each year (World Health Organization, 2015).  76 

Obesity is generally considered to be the result of energy imbalance, i.e., when energy 77 
intake exceeds energy expenditure. However, in reality the origins of obesity are 78 
multifactorial and result from the combined effects of both genetic and environmental factors 79 
(Heindel and Blumberg, 2019). Currently, the full spectrum of potential factors associated 80 
with obesity remains unclear. Previous studies have shown that factors such as genetic 81 
susceptibility, increased energy intake and lack of physical activity could contribute to the 82 
development of obesity (Turcot, Lu, Highland et al., 2018). However, these factors cannot 83 
fully explain the current dramatically increased rates of obesity. Over the past several decades, 84 
there is considerable evidence that environmental pollutants may contribute to the rapid 85 
increase of obesity (Heindel and Blumberg, 2019). Endocrine-disrupting chemicals (EDCs) 86 
are natural or man-made substances that may interfere with the normal function of the 87 
endocrine system, including hormone biosynthesis, metabolism or action (Zoeller, Brown, 88 
Doan et al., 2012). There is growing evidence showing links between EDCs and obesity as 89 
well as other health problems such as metabolic issues, diabetes, reproductive disabilities and 90 
cardiovascular problems (Gore, Chappell, Fenton et al., 2015). Metabolism disrupting 91 
chemicals (MDCs) specifically refer to those EDCs having the ability to promote metabolic 92 
changes that can result in obesity, T2D or fatty liver in animals (Heindel, Blumberg, Cave et 93 
al., 2017). These EDCs or MDCs might be important factors leading to obesity. Identifying 94 



all of the important factors that contribute to obesity is, therefore, an important issue and 95 
could help to control and reduce the obesity epidemic and related diseases.  96 

“Obesogens” are functionally defined as chemicals that promote obesity after exposure, 97 
in vivo. Some natural chemicals (such as fructose), pharmaceutical chemicals (such as 98 
thiazolidinedione anti-diabetic drugs) or xenobiotic chemicals [such as tributyltin (TBT)] 99 
have found to be obesogens (Janesick and Blumberg, 2016). Obesogens might act directly on 100 
fat cells by increasing their number or increasing the storage of fat into the existing cells. 101 
These chemicals might also act indirectly by affecting mechanisms regulating appetite and 102 
satiety, by altering basal metabolic rate, altering energy balance to favor the storage of 103 
calories, or by altering gut microbiota to promote energy intake (Heindel and Blumberg, 104 
2019). Some agrochemicals have been shown to act as obesogens by promoting adipogenesis 105 
and inducing obesity in experimental animals and are found at higher levels in obese humans. 106 
For example, dichlorodiphenyldichloroethylene (DDE) was classified as "presumed" to be 107 
obesogenic for humans by using a systematic review-based strategy to identify and integrate 108 
evidence from epidemiological, in vivo, and in vitro studies (Cano-Sancho et al., 2017). 109 
Others suggested that the evidence for DDE as an obesogen was “moderate” due to the 110 
consistency in prospective associations with childhood growth and obesity (Vrijheid, Casas, 111 
Gascon et al., 2016). Here we present a review of current studies linking agrochemical 112 
exposure and obesity, including studies from human and animals, and discuss possible 113 
mechanisms underlying these effects.  114 

 115 
2. Human epidemiological studies relating agrochemicals and obesity 116 
2.1 Association between agrochemicals and adult obesity 117 

There is a growing body of epidemiological studies suggesting an association between 118 
agrochemicals and adult obesity (Table 1). Agrochemicals of concern include  119 
dichlorodiphenyltrichloroethane (DDT), DDE, hexachlorobenzene (HCB), β-120 
hexachlorocyclohexane (β-HCH) and malathion. For example, multiple prospective cohort 121 
studies identified a positive association between levels of DDT/DDE and obesity or 122 
overweight (Mendez, Garcia-Esteban, Guxens et al., 2011,Valvi, Mendez, Garcia-Esteban et 123 
al., 2014,Valvi, Mendez, Martinez et al., 2012,Lee, Lind, Jacobs et al., 2012). Pre-pregnancy 124 
levels of DDT were found to be moderately associated with gestational weight gain in a 125 
prospective cohort study of pregnant women (Jaacks, Boyd Barr, Sundaram et al., 2016). A 126 
positive correlation between β-HCH and BMI, waist circumference, percentage of fat mass, 127 
as well as total and subcutaneous abdominal adipose tissue has also been demonstrated in a 128 
cross-sectional study of 98 obese men and women (Dirinck, Jorens, Covaci et al., 2011). 129 
There was a positive correlation between malathion blood concentration and waist 130 
circumference among a group of farmers (Raafat, Abass and Salem, 2012). In addition to 131 
increased weight or elevated BMI, the levels of some obesity biomarkers (levels of total 132 
cholesterol and total serum lipids) were also positively associated with the concentrations of 133 
pesticides such as HCB, β-HCH and DDE (Dusanov, Ruzzin, Kiviranta et al., 2018,La 134 
Merrill, Lind, Salihovic et al., 2018,Bachelet, Truong, Verner et al., 2011,Langer, Ukropec, 135 
Kocan et al., 2014,Ibarluzea, Alvarez-Pedrerol, Guxens et al., 2011,Lee, Steffes, Sjodin et al., 136 
2011), suggesting that these compounds can aggravate clinically relevant complications of 137 
obesity.  138 

Although the use of DDT has been banned in many countries, some populations still 139 
bear significant levels of DDT and DDE due to the extremely long half-life of these 140 
chemicals in the environment and in the human body, bioaccumulation and via the continued 141 
use of DDT in some developing countries (United Nations Environment Programme, 142 
2010,Bornman, Aneck-Hahn, de Jager et al., 2017). HCB and β-HCH were banned globally 143 
several decades ago, but persist in the environment. Malathion is a pesticide that is still 144 



widely used in agriculture, in residential landscaping, and in public health pest control 145 
programs. All these agrochemicals can be detected in humans currently. Information about 146 
the human exposure levels of these agrochemicals is listed in Table 1. The obesogenic effects 147 
of these pesticides in humans still needs to be considered. 148 

 149 
2.2 Non-monotonic dose-response relationships between agrochemicals and adult 150 
obesity 151 

Some studies showing the potential relationship between pesticide exposure and serum 152 
lipids/obesity/BMI revealed that the effects followed non-monotonic dose-response 153 
relationships. This unconventional dose-response relationship is characterized by a curve 154 
whose slope changes direction within the range of tested doses (Lee et al., 2012). For 155 
example, Arrebola et al. found that HCB, DDE and β-HCH showed quadratic associations 156 
with BMI, and the quadratic models had a positive trend at low exposure levels, while the 157 
slope decreased or even became negative at higher exposure levels (Arrebola, Ocana-Riola, 158 
Arrebola-Moreno et al., 2014). Numerous studies investigating the effects of EDCs described 159 
the occurrence of non-monotonic dose-response relationships for EDCs with relatively high 160 
frequency (Zoeller and Vandenberg, 2015). The molecular mechanisms underlying non-161 
monotonic dose-response relationships are complex and can arise from opposing effects 162 
induced by multiple receptors, receptor desensitization, negative feedback with increasing 163 
dose, or dose-dependent metabolism modulation (Zoeller and Vandenberg, 2015). Usual risk 164 
assessment approaches used by regulatory agencies are developed based on the fundamental 165 
principle that the toxicity of a chemical scales linearly in proportion to the exposure level. 166 
Therefore, non-monotonicity represents a challenge to fundamental concepts in toxicology 167 
and risk assessment (Dietrich, von Aulock, Marquardt et al., 2013). These non-monotonic 168 
dose-response relationships of agrochemicals suggest that mechanisms by which they induce 169 
obesity are complex. Lipophilic organochlorine pesticides such as DDE and HCB usually 170 
accumulate in adipose tissue to a major degree. Therefore, the circulating levels of these 171 
chemicals might be influenced by the degree of fat mass (Glynn, Granath, Aune et al., 2003), 172 
which can also make it difficult to study the relationships between chemicals and obesity in 173 
adults.  174 

 175 
2.3 Agrochemicals and the development of early-onset obesity 176 

Many environmental factors have been shown to play a prominent role in the 177 
development of early-onset obesity (La Merrill and Birnbaum, 2011). Building on Barker’s 178 
fetal origins of disease model (Barker, 1995), Gluckman and Hanson proposed the 179 
Developmental Origins of Health and Disease (DOHaD) hypothesis, which holds that 180 
environmental disruptions during critical windows of development can lead to increased 181 
susceptibility to diseases, including obesity, later in life (Gluckman and Hanson, 2004). 182 
Compared with adults, the fetus and neonate are more sensitive to perturbation by 183 
environmental chemicals during critical windows of development because protective 184 
mechanisms (such as DNA repair, immune system, xenobiotic metabolism, and the 185 
blood/brain barrier, among others) are not yet fully functional (Newbold, 2011). The higher 186 
metabolic rates of developing organisms may also result in increased toxicity compared to 187 
adults. Therefore, developmental exposures to xenobiotic toxicants are of particular concern.  188 

Measuring the levels of agrochemicals in pregnant mothers and follow-up of the weight 189 
gain of the children over their lives may provide evidence for the obesogenic effect of these 190 
chemicals during development. Several reviews have reported moderate evidence linking 191 
prenatal agrochemical exposure to childhood obesity (La Merrill and Birnbaum, 2011,Tang-192 
Peronard, Andersen, Jensen et al., 2011). Recently, the body of evidence for obesogenic 193 
effects of agrochemicals especially DDE after exposure during prenatal development has 194 



increased notably. There have been more than 10 prospective cohort studies showing that 195 
prenatal DDE exposure is significantly associated with increased birth weight, increased 196 
levels of some obesity markers, overweight risk or increased risk of childhood obesity 197 
ranging from 6 months to 9 years old (Mendez et al., 2011,Valvi et al., 2014,Valvi et al., 198 
2012,Vafeiadi, Georgiou, Chalkiadaki et al., 2015,Agay-Shay, Martinez, Valvi et al., 199 
2015,Verhulst, Nelen, Hond et al., 2009,Karmaus, Osuch, Eneli et al., 2009,Iszatt, Stigum, 200 
Verner et al., 2015,Heggeseth, Harley, Warner et al., 2015) (Table 2). Furthermore, DDE 201 
exposure might exacerbate the effects of other known contributing factors for obesity such as 202 
smoking (Verhulst et al., 2009). However, some other prospective cohort studies found no 203 
association between developmental exposure to DDE and infant or child obesity (Garced, 204 
Torres-Sanchez, Cebrian et al., 2012,Govarts, Nieuwenhuijsen, Schoeters et al., 2012,Hoyer, 205 
Ramlau-Hansen, Henriksen et al., 2014,Cupul-Uicab, Klebanoff, Brock et al., 2013,Warner, 206 
Aguilar Schall, Harley et al., 2013,Cupul-Uicab, Hernandez-Avila, Terrazas-Medina et al., 207 
2010,Gladen, Klebanoff, Hediger et al., 2004).  208 

A number of studies also showed associations between DDE or HCB and low birth 209 
weight and/or preterm birth (Govarts et al., 2012,Guo, Jin, Cheng et al., 2014,Lenters, 210 
Portengen, Rignell-Hydbom et al., 2016,de Cock, de Boer, Lamoree et al., 2014,Vafeiadi, 211 
Vrijheid, Fthenou et al., 2014). Both of these are established risk factors for subsequent rapid 212 
growth and long-term obesity (Stettler and Iotova, 2010). While more data are needed, these 213 
studies support the conclusion that developmental exposure to DDE and perhaps some other 214 
agrochemicals might lead to obesity in humans.  215 

Relatively fewer studies have examined links between prenatal DDT and DDD, β-HCH 216 
or HCB exposure and potential of childhood obesity. Some prospective cohort studies (Valvi 217 
et al., 2014,Valvi et al., 2012,Vafeiadi et al., 2015,Agay-Shay et al., 2015,Heggeseth et al., 218 
2015,Smink, Ribas-Fito, Garcia et al., 2008,Warner, Ye, Harley et al., 2017,Warner, 219 
Wesselink, Harley et al., 2014) or cross-sectional studies(Xu, Yin, Tang et al., 2017) showed 220 
positive associations with obesity (Table 2). However, a few other prospective cohort studies 221 
did not identify such significant associations (Cupul-Uicab et al., 2013,Warner et al., 222 
2013,Delvaux, Van Cauwenberghe, Den Hond et al., 2014).  223 

 224 
2.4 Gender-specific effects of agrochemicals 225 

Sexually dimorphic responses are a common finding when examining EDC effects, 226 
including links to obesity (Gore et al., 2015). Currently, some prospective cohort studies 227 
(Valvi et al., 2012,Warner et al., 2017,Warner et al., 2014,Delvaux et al., 2014,Tang-228 
Peronard, Heitmann, Andersen et al., 2014) or cross-sectional studies (Cabrera-Rodriguez, 229 
Luzardo, Almeida-Gonzalez et al., 2019) showed gender-specific effects of agrochemicals on 230 
childhood obesity (see Table 2). For example, Warner et al. showed a positive association 231 
between DDE and childhood obesity in boys but not in girls (Warner et al., 2017,Warner et 232 
al., 2014). However, some other studies showed the effects of DDE on childhood obesity 233 
existed in girls but not in boys (Delvaux et al., 2014,Tang-Peronard et al., 2014). The reason 234 
for this difference warrants further study. The mechanisms underlying gender-specific effects 235 
of agrochemicals also need to be studied in the future.  236 

 237 
3. Animal studies and the relationship between agrochemicals and obesity 238 

3.1 Studies showing the obesogenic effects of agrochemicals in adult experimental 239 
animals 240 

Most of the animal studies relating chemical exposures to obesity demonstrated that the 241 
exposures led to weight gain and changes in adiposity, increased expression of obesity and 242 
adipogenesis-related biomarkers and affected hormones and adipokines involved in the 243 
regulation of food intake and energy expenditure (La Merrill, Karey, Moshier et al., 244 



2014,Angle, Do, Ponzi et al., 2013). Exposures to the agrochemicals HCB, γ-HCH, parathion, 245 
chlorpyrifos (CPF), mancozeb and imidacloprid led to increased body weight in rodents 246 
(Howell, Meek, Kilic et al., 2014,Peris-Sampedro, Cabre, Basaure et al., 2015,Peris-247 
Sampedro, Basaure, Reverte et al., 2015,Basaure, Guardia-Escote, Biosca-Brull et al., 248 
2019,Meggs and Brewer, 2007,Lassiter, Ryde, Mackillop et al., 2008,Bhaskar and Mohanty, 249 
2014) (Table 3). In addition, some obesity-related indicators such as decreased total energy 250 
expenditure, alterations in glucose and lipid metabolism were observed after exposure to 251 
DTT and DDE (La Merrill et al., 2014,Howell et al., 2014,Ishikawa, Graham, Stanhope et al., 252 
2015,Howell, Mulligan, Meek et al., 2015), malathion (Kalender, Uzun, Durak et al., 2010) 253 
or CPF (Acker and Nogueira, 2012,Uchendu, Ambali, Ayo et al., 2018) (Table 3).  254 

The “two-hit” hypothesis, first formulated by Knudson in 1971, suggested that most 255 
tumor suppressor genes require both alleles to be inactivated to result in a cancer (Knudson, 256 
1971). Now, this “two-hit” hypothesis has been adopted to explain the multifactorial nature 257 
of obesity, which may result from the combined effects of both genetic and environmental 258 
factors. A subject who is genetically-prone to obesity has the “first hit” (genetic susceptibility 259 
or epigenetic predisposition) intrinsically. Obesogenic factors such as chemical exposures, 260 
high energy diet, low physical activity, alcohol and smoking that act as “second hit” trigger 261 
gain weight and result in obesity (Heindel et al., 2017). The obesogenic effects of some 262 
agrochemicals were only observed upon co-treatment with high-fat diet (HFD) or were 263 
exacerbated by HFD, indicating that a second hit was needed to elicit obesity. It was reported 264 
that low doses of orally administrated permethrin (Xiao, Sun, Kim et al., 2018) or 265 
imidacloprid (Sun, Xiao, Kim et al., 2016,Sun, Qi, Xiao et al., 2017) potentiated weight gain 266 
in male mice only when a HFD was provided. HFD-fed rats exposed to CPF exhibited a pro-267 
obesity phenotype compared with controls (Fang, Li, Zhang et al., 2018). Chronic 268 
administration of atrazine increased body weight without changing food intake or physical 269 
activity levels, and feeding a HFD further exacerbated obesity (Lim, Ahn, Song et al., 2009).  270 

 271 
3.2 Animal studies showing the development and transgenerational obesogenic 272 

effects of agrochemicals 273 
Obesogenic effects of agrochemical exposure during development have been reported 274 

(Table 3). Li et al. showed that prenatal triflumizole exposure increased white adipose depot 275 
weight in vivo (Li, Pham, Janesick et al., 2012). Sexually dimorphic responses have also been 276 
reported in most animal studies. For example, perinatal exposure (gestational day 11.5 277 
through postnatal day 5) to DDT caused a transient increase in body fat mass in young female, 278 
but not in male mice (La Merrill et al., 2014). In contrast, developmental exposure to CPF led 279 
to weight gain in male, but not female rats (Lassiter and Brimijoin, 2008).  280 

Transgenerational obesogenic effects of agrochemicals have been reported. Two studies 281 
established links between DDT exposure in pregnant F0 rat dams and increased obesity rates 282 
in subsequent generations. Male and female offspring from the F3 generation and male 283 
offspring from the F4 generation in the DDT lineage had an increased prevalence of obesity 284 
compared with controls (King, McBirney, Beck et al., 2019,Skinner, Manikkam, Tracey et al., 285 
2013). Two other studies showed that parental exposure to glyphosate or vinclozolin was 286 
linked to increased obesity rates in the F2 and F3 offspring (Kubsad, Nilsson, King et al., 287 
2019,Nilsson, King, McBirney et al., 2018). Overall, current data support the notion that 288 
exposure to multiple types of agrochemicals can play a role in obesity. More evidence from 289 
in vivo studies will be required to further establish the links between agrochemicals and 290 
obesity. 291 

 292 
4. Potential mechanisms through which agrochemicals induce obesity 293 



4.1 Agrochemicals might promote the commitment phase of adipogenesis  294 
Although the mechanisms through which environmental chemicals induce obesity are 295 

not fully understood, affecting adipogenesis is an important mechanism (Heindel et al., 2017). 296 
Both direct and developmental exposure of chemicals might affect adipogenesis. Chemical 297 
exposure may lead to increased numbers of white adipocytes by modulating the 298 
differentiation of progenitor cells or by altering the birth/death rate of adipocytes to affect 299 
overall numbers of white adipocytes. Increased lipid storage in existing adipocytes is thought 300 
to be another major reason. Generally speaking, early developmental changes lead to 301 
increased adipocyte numbers, yet gain weight later in life during adulthood probably derives 302 
from increased fat content of existing white adipocytes (Spalding, Arner, Westermark et al., 303 
2008).  304 

Adipogenesis occurs in cells derived from the embryonic mesoderm. Multipotent 305 
mesenchymal stromal stem cells, also known as mesenchymal stem cells (MSCs) give rise to 306 
adipocytes, which involves determination (MSCs commit irreversibly to the adipocyte 307 
lineage) and terminal differentiation (preadipocytes differentiate into mature fat cells) (Rosen 308 
and MacDougald, 2006). The current consensus is that white adipocyte numbers are set by 309 
the end of childhood and that any factors that increase adipocyte numbers in early life lead to 310 
a life-long increase in white adipocyte number (Spalding et al., 2008). While it is 311 
controversial whether having more white adipocytes leads to obesity, obese people definitely 312 
have more white adipocytes than do those of normal weight (Spalding et al., 2008). One 313 
possibility is that obesogen exposure early in life alters the fate of MSCs, leading to more 314 
white adipocytes in adulthood (Janesick and Blumberg, 2011,Chamorro-Garcia, Sahu, Abbey 315 
et al., 2013). The inference is that obese individuals may have a pool of MSCs that is 316 
intrinsically biased toward the adipocyte lineage (Kirchner, Kieu, Chow et al., 2010). 317 
Therefore, early life events, including obesogen exposure, that alter the fate of MSCs could 318 
predispose the exposed individual to increased numbers of white adipocytes and 319 
consequently obesity, particularly in combination with a Western Dietary pattern (Janesick 320 
and Blumberg, 2016).  321 

Several studies suggested that agrochemicals might influence MSC fate. Chlorpyrifos 322 
and carbofuran were found to inhibit the osteogenic differentiation capacity of human MSCs, 323 
although the potential of MSCs to differentiate into adipocytes was not tested (Hoogduijn, 324 
Rakonczay and Genever, 2006). Another study showed that DDT could enhance both 325 
adipogenic and osteogenic differentiation of human MSCs via an estrogen receptor (ER) 326 
mediated pathway (Strong, Shi, Strong et al., 2015). Janesick et al. found that zoxamide, 327 
spirodiclofen, fludioxonil and quinoxyfen all induced adipogenesis in mouse MSCs (Janesick, 328 
Dimastrogiovanni, Vanek et al., 2016). Increased adipogenic potential of MSCs could 329 
correspondingly increase the steady state number of adipocytes in the adult, which might 330 
favor the development of obesity over time (Chamorro-Garcia et al., 2013).  331 

In vitro and in vivo studies have demonstrated that TBT promotes adipocyte 332 
differentiation and obesity by activating peroxisome-proliferator activated receptor γ (PPARγ) 333 
and its heterodimeric partner, retinoid X receptor α (RXRα). TBT can bind to and activate 334 
both receptors, but it appears to mediate its effects on adipocyte differentiation via PPARγ 335 
(Kirchner et al., 2010,Li, Ycaza and Blumberg, 2011). In contrast, activation of RXR is 336 
required to commit mouse MSCs to the adipocyte lineage (Shoucri, Martinez, Abreo et al., 337 
2017). TBT and chemicals that activate RXR (rexinoids) commit MSCs to the adipocyte 338 
lineage by inhibiting the expression and function of enzymes that deposit repressive histone 3 339 
lysine 27 trimethyl (H3K27

me3
) marks. Exposure of MSCs to TBT or rexinoids led to 340 

genome-wide decreases in H3K27
me3

 at the promoters of genes required for adipogenic 341 
commitment. Currently, there is a relative paucity of data regarding how other agrochemicals 342 
might influence MSC fate. Triflumizole was found to induce adipogenic differentiation in 343 



human and mouse MSCs through a PPARγ-dependent mechanism and to promote fat 344 
accumulation, in vivo (Li et al., 2012). Taken together, the current data suggest that exposure 345 
to agrochemicals might promote adipogenesis by increasing commitment of MSCs to the 346 
adipocyte lineage. Therefore, assessing the capability of an agrochemical to induce 347 
adipogenic commitment of MSCs together with its ability to promote terminal adipocyte 348 
differentiation, and the mechanisms through which these processes occur will be valuable in 349 
identifying additional agrochemical obesogens. 350 

 351 
4.2 Agrochemicals might induce adipocyte differentiation 352 

After MSCs are committed to the adipocyte lineage, these preadipocytes can be induced 353 
to differentiate into mature adipocytes. Usually, the process of adipocyte differentiation is 354 
influenced by direct chemical exposure. In contrast to the relative paucity of data regarding 355 
the effect of agrochemicals on the commitment of MSCs to preadipocytes, there is much 356 
known about the effects of these chemicals on adipocyte differentiation. Murine pre-357 
adipocyte cell lines such as 3T3-L1 cells are commonly used as an in vitro cell model to test 358 
the capacity of chemicals to induce adipogenesis. Such experiments have provided strong 359 
support for the notion that agrochemicals could promote adipocyte differentiation. Treatment 360 
with DDT and DDE resulted in increased lipid accumulation accompanied by up-regulation 361 
of multiple key regulator of adipocyte differentiation, such as CCAAT/enhancer-binding 362 
protein α and PPARγ (Kim, Sun, Yue et al., 2016). Using the 3T3-L1 cell model, other 363 
studies have identified agrochemicals including quizalofop-p-ethyl (QpE) (Biserni, Mesnage, 364 
Ferro et al., 2019), diazinon (Smith, Yu and Yin, 2018), pyraclostrobin (Luz, Kassotis, 365 
Stapleton et al., 2018), DDE (Mangum, Howell and Chambers, 2015), imidacloprid (Park, 366 
Kim, Kim et al., 2013), fipronil (Sun, Qi, Yang et al., 2016), permethrin (Xiao, Qi, Clark et 367 
al., 2017), zoxamide, spirodiclofen quinoxyfen, tebupirimfos, forchlorfenuron, flusilazole, 368 
acetamaprid and pymoetrozine (Janesick et al., 2016) as having the ability to promote 369 
adipocyte differentiation.  370 

Activation of PPARγ/RXRα heterodimers plays a key role in promoting differentiation 371 
of 3T3-L1 adipocytes by regulating the expression of genes involved in lipid droplet 372 
formation, glucose uptake, and fatty acid synthesis (Janesick and Blumberg, 2011,Tontonoz 373 
and Spiegelman, 2008). QpE might promote adipogenesis by activating PPARγ as 374 
demonstrated by RNAseq analysis of cells and PPARγ reporter gene assay (Biserni et al., 375 
2019). Triflumizole was found to induce adipogenic differentiation in 3T3-L1 cells through a 376 
PPARγ-dependent mechanism (Li et al., 2012). Zoxamide, triflumizole, spirodiclofen, and 377 
quinoxyfen induced adipogenesis in 3T3-L1 cells through PPARγ/RXRα heterodimers by 378 
activating PPARγ, while fludioxonil activated RXRα (Janesick et al., 2016).  379 

However, the adipogenic effects of other agrochemicals on 3T3-L1 cells appear to be 380 
independent of PPARγ activation. For example, flusilazole, forchlorfenuron, acetamiprid and 381 
pymetrozine induced adipogenesis in 3T3-L1 cells, but did not activate PPARγ or RXRα 382 
(Janesick et al., 2016). Pyraclostrobin was found to induce mitochondrial dysfunction which 383 
in-turn inhibited lipid homeostasis, resulting in triglyceride accumulation (Luz et al., 2018). 384 
Permethrin might potentiate adipogenesis in 3T3-L1 adipocytes via altering intracellular 385 
calcium levels and through endoplasmic reticulum stress-mediated mechanisms (Xiao et al., 386 
2017), although, it also activates PPARα (Fujino, Watanabe, Sanoh et al., 2019). The related 387 
chemical, deltamethrin may also activate an endoplasmic reticulum stress-mediated pathway 388 
in 3T3-L1 adipocytes (Yuan, Lin, Xu et al., 2019). An AMP-activated protein kinase 389 
AMPKα-mediated pathway was found to play a role in the induction of adipogenesis in 3T3-390 
L1 preadipocytes by agrochemicals such as DDT and DDE (Kim et al., 2016), imidacloprid 391 
(Sun et al., 2017), deltamethrin (Yuan et al., 2019,Shen, Hsieh, Yue et al., 2017), and fipronil 392 
(Sun et al., 2016). Endrin and tolylfluanid promoted adipogenesis in 3T3-L1 cells via 393 



glucocorticoid receptor activation (Sargis, Johnson, Choudhury et al., 2010). In contrast, 394 
another study showed that endrin inhibited adipogenesis in 3T3-L1 cells (Moreno-Aliaga and 395 
Matsumura, 1999).  396 

By using a human adipose-derived stromal cell-based adipogenesis assay, Foley et al. 397 
found that some agrochemicals including triphenyltin hydroxide, lactofen, triflumizole, 398 
halosulfuron-methyl, cyfluthrin, flufenacet, isoxaflutole, piperonyl-butoxide, pyraclostrobin, 399 
and tebufenozide could induce lipid accumulation in these cells. By combining the results of 400 
gene transcription, protein expression, loss-of-function PPARγ siRNA assay and adipokine 401 
secretion, it was suggested that these chemicals might have moderate-to-strong activity for 402 
human adipogenesis (Foley, Doheny, Black et al., 2017). Considering the wide exposure of 403 
the humans and wildlife to agrochemicals, it will be of great interest to determine which 404 
pathways are causally associated with the adipogenic effects elicited by these chemicals and 405 
whether they also occur, in vivo. 406 

 407 
4.3 Agrochemicals might exert obesogenic effects mediated by sex steroid hormone 408 
dysregulation  409 

Sex steroid hormones such as estrogens and androgens appear to play important roles in 410 
adipose tissue development during early development or in adulthood (Cooke and Naaz, 411 
2004). Estrogens play a pivotal role in regulating energy homeostasis, especially in female 412 
mammals, either by acting directly on the brain or through activation of ERs in adipocytes 413 
(Mauvais-Jarvis, Clegg and Hevener, 2013). Imbalances in the sex steroid levels can lead to 414 
dyslipidemias and obesity. For example, weight gain was observed following androgen 415 
deprivation therapy for prostate cancer (Braunstein, Chen, Loffredo et al., 2014) or polycystic 416 
ovary syndrome (Stanley and Misra, 2008). Obesogenic effects have been observed for 417 
xenoestrogenic compounds such as diethylstilbestrol (DES) (Newbold, Padilla-Banks, Snyder 418 
et al., 2007) and bisphenol A (BPA) (Rubin, Murray, Damassa et al., 2001), suggesting that 419 
dysregulated signaling through sex steroid receptors can produce pro-adipogenic effects. This 420 
might also influence the sexually dimorphic effects of some chemicals on the incidence and 421 
health consequences of obesity observed in humans (Palmer and Clegg, 2015). Therefore, 422 
chemicals that can disrupt the regulation of estrogen and androgen signaling by changing 423 
hormone levels or by directly interacting with the cognate nuclear receptors may contribute to 424 
disturbances in the regulation of adipose tissue formation and maintenance. Both direct and 425 
developmental exposure of chemicals might disrupt the regulation of sex hormone signaling. 426 

Many in vivo experimental animal studies examined estrogenic or anti-androgenic 427 
effects of agrochemicals. By using the rat uterotrophic (estrogen) and Hershberger (anti-428 
androgen) assays, it was found that the insecticide permethrin might have estrogenic effects 429 
on female rats, but anti-androgenic effects on male rats (Kim, Lee, Lim et al., 2005). In vivo 430 
anti-androgenic effects have also been reported in response to agrochemicals including 431 
linuron (Wolf, Lambright, Mann et al., 1999,Lambright, Ostby, Bobseine et al., 2000), 432 
prochloraz (Vinggaard, Christiansen, Laier et al., 2005), procymidone (Ostby, Kelce, 433 
Lambright et al., 1999), tebuconazole (Taxvig, Hass, Axelstad et al., 2007), vinclozolin 434 
(Anway, Memon, Uzumcu et al., 2006,Uzumcu, Suzuki and Skinner, 2004)), DDE (Wolf et 435 
al., 1999), endosulfan (Sinha, Adhikari and D, 2001), dimethoate (Verma and Mohanty, 2009) 436 
and deltamethrin (Andrade, Araujo, Santana et al., 2002). After reviewing the animal and 437 
epidemiologic data from previous studies, Li et al. suggested that chlorpyrifos induces 438 
metabolic disruption by altering levels of reproductive hormones (Li, Ren, Li et al., 2019). 439 

Mechanistic studies suggested that agrochemicals might exert estrogenic or anti-440 
androgenic effect by affecting sex hormone status or by acting directly on estrogen receptors 441 
(ERs) and/or androgen receptor (AR). Several agrochemicals were documented to affect sex 442 
hormone levels through interference with hormone synthesis or breakdown. For example, 443 



testicular apoptosis was found in adult rats following exposure to a single dose of 444 
methoxychlor (Vaithinathan, Saradha and Mathur, 2010). DDE inhibited the action of 5α-445 
reductase, the major enzyme that converts testosterone to dihydro-testosterone (Lo, King, 446 
Allera et al., 2007). DDE stimulated aromatase activity in ovarian granulosa cells (Younglai, 447 
Holloway, Lim et al., 2004). An analysis of the hepatic transcriptome of mice treated with 448 
DDE revealed altered mRNA levels of genes encoding enzymes involved in testosterone 449 
catabolism and excretion, resulting in impaired testosterone metabolism (Morales-Prieto, 450 
Ruiz-Laguna, Sheehan et al., 2018). Numerous agrochemicals, including DDT, can affect the 451 
expression levels and/or activity of multiple cytochrome P450 enzymes (P450) (Abass and 452 
Pelkonen, 2013,Blizard, Sueyoshi, Negishi et al., 2001), which are involved in the 453 
metabolism of steroid hormones and many xenobiotic chemicals.  454 

Many studies have investigated the activity of agrochemicals on ER and AR using 455 
reporter gene assays. DDE was demonstrated to be a potent AR antagonist (Kelce, Stone, 456 
Laws et al., 1995). Kjeldsen et al. (Kjeldsen, Ghisari and Bonefeld-Jorgensen, 2013) 457 
investigated the effects of five agrochemicals (terbuthylazine, propiconazole, prothioconazole, 458 
cypermethrin and malathion) on ER and AR transactivation using luciferase reporter gene 459 
assays. The results showed that these five pesticides weakly activated ER and that three 460 
pesticides (bitertanol, propiconazole and mancozeb) antagonized AR activity in a 461 
concentration-dependent manner. Kojima et al, (Kojima, Katsura, Takeuchi et al., 2004) 462 
screened 200 agrochemicals and reported that 66 were anti-androgenic, whereas only 29 were 463 
estrogenic. Numerous in vitro studies based on reporter gene assays demonstrated estrogenic 464 
and anti-androgenic effect of agrochemicals (Kitamura, Suzuki, Ohta et al., 2003,Andersen, 465 
Vinggaard, Rasmussen et al., 2002,Bauer, Bitsch, Brunn et al., 2002,Okubo, Yokoyama, 466 
Kano et al., 2004,Orton, Lutz, Kloas et al., 2009,Vinggaard, Niemela, Wedebye et al., 467 
2008,Sun, Xu, Xu et al., 2007,Zhang, Zhu, Zheng et al., 2008,Robitaille, Rivest and 468 
Sanderson, 2015,Xu, Liu, Ren et al., 2008,Li, Li, Ma et al., 2008,Martin, Dix, Judson et al., 469 
2010,Knudsen, Houck, Sipes et al., 2011). In addition to the canonical ERs, binding of DDT 470 
and DDE to the seven-transmembrane estrogen receptor, GPR30, which activates alternative 471 
estrogen signaling was demonstrated (Thomas and Dong, 2006). Molecular dynamic 472 
simulations showed that estrogen-related receptor γ, which might affect estrogen signaling 473 
indirectly, could also be a potential target of DDT and DDE (Zhuang, Zhang, Wen et al., 474 
2012). Estrogenic or anti-androgenic effects of agrochemicals might involve more than one 475 
mechanism; thus, their effects might be mediated through multiple cellular pathways.  476 

Typically, humans are only rarely exposed to a single agrochemical. Rather they are 477 
simultaneously exposed to multiple xenobiotic chemicals, including agrochemicals and 478 
supposedly inert carriers. It is probable that these different agrochemicals may act in 479 
combination through additive, synergistic, or antagonistic mechanisms, which may influence 480 
the doses of such ligands required to induce adipogenesis. Notably, additive and synergistic 481 
anti-androgenic activities of agrochemical mixtures have been observed (Kjeldsen et al., 482 
2013,Ma, Chen, Yang et al., 2019,Orton, Rosivatz, Scholze et al., 2012,Kolle, Melching-483 
Kollmuss, Krennrich et al., 2011,Birkhoj, Nellemann, Jarfelt et al., 2004). Christen et al., 484 
studied additive and synergistic anti-androgenic activities of binary mixtures of five anti-485 
androgenic fungicides and found that about half of the tested mixtures produced additive 486 
effects and half synergistic effects (Christen, Crettaz and Fent, 2014). These observed 487 
additive and synergistic effects emphasize the importance of considering the combined 488 
actions of these chemicals. Although the underlying molecular mechanisms remain to be 489 
fully understood, these studies suggested the agrochemicals might induce obesity by 490 
disturbing normal sex hormone signaling. 491 

 492 



4.4 Agrochemicals might exert obesogenic effects by affecting metabolic homeostasis 493 
through PPARs 494 

Obesogens might induce obesity by perturbing metabolic homeostasis resulting in 495 
unbalanced energy expenditure. Many nuclear receptors respond to specific hormones such as 496 
thyroid hormone, mineralocorticoids, glucocorticoids, retinoic acid, sex steroids and 497 
lipophilic endogenous substances. These are involved in various physiological and 498 
pathological processes in the regulation of metabolic homeostasis (Mangelsdorf, Thummel, 499 
Beato et al., 1995). Among these, the PPAR subfamily, comprising PPARα, PPARβ/δ) and 500 
PPARγ are key players in adipogenesis and lipid metabolism (Feige, Gelman, Michalik et al., 501 
2006). After forming heterodimers with RXR, PPARs regulate the transcription of genes 502 
involved in the regulation of adipogenesis (adipocyte proliferation and differentiation), 503 
intracellular lipid metabolism and storage, glucose homeostasis and insulin responsiveness 504 
(Wang, 2010). The three PPAR subtypes act as ligand sensors for a variety of lipophilic 505 
hormones, dietary fatty acids and their metabolites to regulate lipid homeostasis (Bensinger 506 
and Tontonoz, 2008). They work together to control almost every aspect of fatty acid 507 
metabolism. Many pharmaceutical drugs and environmental chemicals target PPARs, 508 
enabling them to affect PPAR signaling pathways involved in regulating metabolic balance 509 
(Lau, Abbott, Corton et al., 2010). Usually, chemical influences on metabolic homeostasis 510 
acting through PPARs are due to direct chemical exposure. 511 

Several in vivo studies revealed changes in the expression levels of genes encoding 512 
PPARs and PPAR-regulated genes after agrochemical exposure. The herbicide dicamba (2-513 
methoxy-3,6-dichlorobenzoic acid) caused a significant increase in peroxisomal beta-514 
oxidation activity and changed the expression of a variety of PPAR regulated enzymes in rat 515 
livers, suggesting that dicamba acts as a peroxisome proliferator in rats (Espandiari, Thomas, 516 
Glauert et al., 1995). The herbicide diclofop was also shown to be a rodent peroxisome 517 
proliferator (Palut, Ludwicki, Kostka et al., 2001). Atrazine induced a near-significant 518 
increase in PPARβ mRNA in Xenopus laevis tadpoles (Zaya, Amini, Whitaker et al., 2011), 519 
and diclofop-methyl and pyrethrins changed the expression of PPARα-inducible  cytochrome 520 
P450 genes in mice (Takeuchi, Matsuda, Kobayashi et al., 2006). 2,4-dichlorophenoxyacetic 521 
acid increased expression of PPARδ in HepG2 cells (Sun, Shao, Liu et al., 2018). DDT 522 
enhanced expression of PPARγ mRNA in human MSCs (Strong et al., 2015). Therefore, 523 
expression of PPAR genes themselves may be potential agrochemical targets. 524 

Results of in vitro reporter gene assays and in silico ligand binding simulations 525 
suggested that agrochemicals could function as agonistic ligands for one or more of the 526 
PPARs. Using an in vitro reporter gene assay based on CV-1 cells, Takeuchi et al. screened 527 
the ability of 200 agrochemicals to activate mouse PPARα and they found three chemicals 528 
(diclofop-methyl, pyrethrins and imazalil) had PPARα agonistic activity, yet none of the 529 
tested agrochemicals showed PPARγ agonistic activity (Takeuchi et al., 2006). Using a 530 
reporter gene assay based on COS-1 cells it was found that none of eight tested pyrethroids 531 
activated PPARα but that a metabolite of cis-/trans-permethrin as well as a metabolite of 532 
phenothrin (3-phenoxybenzoic acid) activated rat PPARα (Fujino et al., 2019). Five chitin 533 
synthesis inhibitors activated PPARγ-mediated reporter gene activity with the rank order of  534 
diflubenzuron > chlorfluazuron > flucycloxuron > noviflumuron > flufenoxuron (Ning, Ku, 535 
Gao et al., 2018). Other agrochemicals such as quizalofop-p-ethyl (Biserni et al., 2019) 536 
spirodiclofen, zoxamide (Janesick et al., 2016) and triflumizole (Li et al., 2012) were found 537 
to have PPARγ agonistic activity. An in silico study modeling the binding of pesticides in the 538 
PPARγ ligand-binding pocket suggested that the pesticide dithiocarbamate and the fungicide 539 
mancozeb might bind to this receptor (Bhaskar and Mohanty, 2014). The PPARγ ligand-540 
binding pocket is rather large and can bind multiple compounds as the same time (Balaguer, 541 



Delfosse, Grimaldi et al., 2017). Therefore, it is not surprising that many agrochemicals with 542 
dissimilar structures could be PPARs ligands. 543 

The PPARs have different tissue distributions and biological functions. PPARα is 544 
expressed predominantly in liver, kidney, heart, and muscle, and plays a major role in fatty 545 
acid oxidation. Activation of PPARα leads to peroxisome proliferation in rodents and 546 
stimulates β-oxidation of fatty acids (Ferre, 2004). PPARδ is ubiquitously expressed and can 547 
also promote fatty acid oxidation (Barish, Narkar and Evans, 2006). Consequently, 548 
xenobiotics that target PPARα and δ typically act as hypolipodemic agents. In contrast, 549 
PPARγ is primarily expressed in adipose tissue and is considered to be the master regulator 550 
of adipogenesis (Tontonoz and Spiegelman, 2008). A large body of work has clearly 551 
established that PPARγ plays key roles in diverse aspects of adipocyte biology including lipid 552 
biosynthesis and lipid storage (Evans, Barish and Wang, 2004). Activation of PPARγ is 553 
essential for the differentiation of resident preadipocytes and the conversion of mesenchymal 554 
progenitors to preadipocytes in white adipose tissues (Takada, Kouzmenko and Kato, 2009). 555 
Pharmaceutical drugs such as anti-diabetic thiazolidinediones as well as environmental 556 
chemicals such as the organotin compounds TBT and triphenyltin (TPT) (Grun, Watanabe, 557 
Zamanian et al., 2006,Kanayama, Kobayashi, Mamiya et al., 2005) act as obesogens by 558 
stimulating adipogenesis in a PPARγ-dependent manner. Since many agrochemicals have 559 
already been found to bind and activate PPARγ, it will be worthwhile to test all widely used 560 
agrochemicals for their ability to target PPARγ and act as bona fide obesogens, in vivo.  561 

 562 
4.5 Agrochemicals might exert obesogenic effects by affecting metabolic homeostasis 563 
through disturbing the thyroid hormone pathway 564 

Another mechanism through which obesogens could interfere with metabolic 565 
homeostasis is by altering the expression of hormones that regulate overall energy 566 
expenditure. Obesogens might change the balance between energy storage and consumption 567 
thereby leading to obesity. Thyroid hormone (triiodothyronine, T3) exerts widespread effects 568 
on carbohydrate, lipid and protein metabolism and is tightly associated with the basal 569 
metabolic rate (Mendoza and Hollenberg, 2017). It is essential to maintain thyroid function 570 
and thyroid hormone action within normal physiological limits to correctly regulate basal 571 
metabolic rate and thermogenesis. Increased activity of the thyroid pathway could accelerate 572 
metabolism leading to weight loss, whereas decreased thyroid activity could produce weight 573 
gain (Rotondi, Leporati, La Manna et al., 2009,Reinehr, 2010). Environmental chemicals 574 
might disrupt thyroid hormone signaling at many different levels, including the central 575 
regulatory system in the hypothalamus and pituitary, thyroid hormone biosynthesis and 576 
release from the thyroid gland, activity of deiodinases, transport in the blood, metabolism, 577 
and thyroid hormone action on nuclear receptors in target cells (Preau, Fini, Morvan-Dubois 578 
et al., 2015). There is considerable evidence from animal and human studies establishing 579 
relationships between EDC exposures and thyroid disruption. Most of these considered 580 
polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), perfluoroalkyl 581 
substances (PFASs), phthalates, BPA, and perchlorate (Zoeller, 2010). Many of these 582 
chemicals have also been shown to promote a propensity for obesity and metabolic syndrome. 583 
Thus, disrupting the thyroid signaling pathway is a plausible mechanism through which 584 
obesogens might contribute to obesity. Usually, influences on metabolic homeostasis through 585 
the thyroid signaling pathway are due to direct chemical exposure.  586 

A broad range of human and animal studies documented that agrochemicals could 587 
interfere with the normal function of the thyroid endocrine system (Requena, Lopez-Villen, 588 
Hernandez et al., 2019). An association between the use of organochlorine pesticides and risk 589 
of hypothyroidism and hyperthyroidism has been established among women in Iowa and 590 
North Carolina enrolled in the Agricultural Health Study in 1993-1997 (Goldner, Sandler, Yu 591 



et al., 2010). Animal studies indicated that in utero exposure to pesticides such as DDT, DDE 592 
and chlorpyrifos-methyl may affect thyroid hormone status in offspring (Luo, Pu, Tian et al., 593 
2017,Jeong, Kim, Kang et al., 2006). Mechanistic studies also supported the disruptive 594 
effects of agrochemicals on thyroid function. The hypothalamus–pituitary–thyroid (HPT) axis 595 
determines systemic thyroid hormone levels (Ortiga-Carvalho, Chiamolera, Pazos-Moura et 596 
al., 2016). Acetochlor was found to alter the mRNA expression of HPT axis-related genes 597 
and changed circulating thyroid hormone levels in zebrafish larvae (Yang, Hu, Li et al., 598 
2016,Xu, Sun, Niu et al., 2019). Most activity of T3 is mediated by its nuclear receptors, 599 
thyroid hormone receptor alpha (TRα) and beta (TRβ) which require heterodimerization with 600 
RXRs to bind DNA and regulate the expression of target genes (Yen, 2001). A GH3-601 
luciferase reporter gene assay was used to investigate the activities of 21 pesticides towards 602 
TRs. Among the tested pesticides, 5 had agonistic effects (procymidone, imidacloprid, atrazine, 603 
fluroxypyr, mancozeb), whereas 11 pesticides (butachlor, beta-cypermethrin, fenobucarb, 604 
cyhalothrin, theta-cypermethrin, bifenthrin, carbaryl, pymetrozine, pendimethalin, metolcarb, and 605 
acetochlor) inhibited luciferase activity induced by T3 to varying degrees, demonstrating their 606 
antagonistic activities (Xiang, Han, Yao et al., 2017). Xiang et al. also found that 13 607 
pesticides bound directly to TR as measured by surface plasmon resonance (SPR) biosensors 608 
(Xiang et al., 2017). Co-exposure of mice to the dithiocarbamate fungicide, mancozeb and 609 
the neonicotinoid insecticide, imidacloprid during lactation decreased plasma T3 levels and 610 
molecular dynamics simulations predicted that both of these chemicals might compete with 611 
T3 for binding to TRs (Bhaskar and Mohanty, 2014). Taken together, these studies 612 
established strong links between agrochemicals and disruption of thyroid signaling; however, 613 
possible obesogenic effects through this mechanism require further investigation.  614 

 615 
4.6 Agrochemicals might exert obesogenic effects by affecting the gut microbiota 616 

The human gut is the natural host for a large diverse and dynamic microbial community 617 
comprising bacteria and fungi, which together constitute the gut microbiota. The potential 618 
role of the gut microbiota in the development of obesity and obesity-related metabolic 619 
disorders has attracted considerable attention in the last several decades (Turnbaugh, Backhed, 620 
Fulton et al., 2008,Turnbaugh, Hamady, Yatsunenko et al., 2009,Zhao, 2013,Snedeker and 621 
Hay, 2012). Mechanistic studies indicated that the gut microbiota play a vital role in the 622 
development of obesity as they can influence energy utilization from the diet and produce 623 
microbiota-derived metabolites that regulate host metabolism and appetite (Turnbaugh and 624 
Gordon, 2009,Chen and Devaraj, 2018). The composition of the gut microbiota is highly 625 
dynamic and can be altered rapidly and substantially by diet and other environmental factors. 626 
Usually, the gut microbiota is affected by direct chemical exposure. Consumption of 627 
contaminated foods represents the major sources of human exposure to agrochemicals and 628 
this can lead to direct interactions between agrochemicals and the gut microbiota. Numerous 629 
studies showed that agrochemicals could affect the composition and function of gut 630 
microbiota and played an important role in agrochemical-induced toxicity (Joly Condette, 631 
Khorsi-Cauet, Morliere et al., 2014,Yuan, Pan, Jin et al., 2019,Mao, Manservisi, Panzacchi et 632 
al., 2018).  633 

Emerging evidence supports the involvement of the gut microbiota in agrochemical-634 
induced obesity. In a human cross-sectional study, levels of Methanobacteriales in the gut 635 
were associated with higher body weight and waist circumference and it was already known 636 
that these bacteria are linked to obesity (Lee, Lee, Lee et al., 2011). Serum organochlorine 637 
pesticides (cis-nonachlor, oxychlordane and trans-nonachlor) levels were also positively 638 
correlated with levels of Methanobacteriales. This supports a possible link among 639 
organochlorine pesticide levels, gut Methanobacteriales levels, and obesity in the general 640 
population. Some animal studies also established potentially causal links among 641 



agrochemical levels, composition of the gut microbiota and obesity. Chlorpyrifos disrupted 642 
gut microbial homeostasis and increased lipopolysaccharide entry into the body leading to 643 
low-grade systemic inflammation (Liang, Zhan, Liu et al., 2019). Mice given this 644 
chlorpyrifos-altered microbiota gained more white adipose tissue and had lower insulin 645 
sensitivity, supporting a link between the microbiota and obesity-related diseases (Liang et al., 646 
2019). Chlorpyrifos exposure also significantly altered the composition of bacteria previously 647 
associated with obese and diabetic phenotypes in gut microbiome of rats (Fang et al., 2018). 648 
Chlorpyrifos exposure caused hepatic lipid metabolism disorders that were associated with 649 
gut oxidative stress and microbiota dysbiosis in zebrafish (Wang, Shen, Zhou et al., 2019). 650 
Carbendazim induced gut microbiota dysbiosis and disturbed lipid metabolism, which 651 
promoted the intestinal absorption of excess triglycerides and caused multiple tissue 652 
inflammatory responses in mice (Jin, Zeng, Wang et al., 2018). Taken together, these studies 653 
showed that altering the composition of the gut microbiota is a possible mechanism through 654 
which agrochemicals can promote obesity. It will be important to establish a mechanistic 655 
understanding of how perturbation of gut microbiota by agrochemicals ultimately leads to 656 
obesity in humans as well as to evaluate agrochemicals in widespread use for these effects. 657 

 658 
4.7 Epigenetic programming and transgenerational effects of agrochemicals 659 

Previous studies have demonstrated that genetic differences such as single 660 
polynucleotide polymorphisms in a variety of genes may explain why some people are more 661 
likely to become obese (Locke, Kahali, Berndt et al., 2015). However, it is inconceivable that 662 
the rapid increase in the rate of obesity over the past decades in the U.S. and other countries 663 
is due to changes in human genetics. Moreover, it was estimated that the possible spectrum of 664 
genetic changes might explain only 20% of the incidence of obesity (Locke et al., 2015). This 665 
means that environmental and lifestyle factors must play key roles in the obesity pandemic. 666 
Epigenetic modification refers to heritable changes that modulate how the genome is 667 
expressed, but that do not involve altering the underlying DNA sequence. Epigenetic changes 668 
are natural occurrences but these can also be influenced by dietary and environmental factors 669 
(Skinner, 2015). Epigenetic modifications include methylation of cytosine residues on DNA, 670 
post-translational modification of histones, histone retention, chromatin remodeling and 671 
altered non-coding RNA expression (Whitelaw and Whitelaw, 2008). Epigenetic processes 672 
can affect patterns of gene expression by directly influencing DNA accessibility and/or by 673 
regulating chromatin compaction (Nilsson, Sadler-Riggleman and Skinner, 2018).  674 

Epigenetic modifications acting on somatic tissues typically only influence the 675 
physiology of the exposed individual, changing the risk of disease development later in life. 676 
This might partly explain the developmental origins of disease (Burdge, Hanson, Slater-677 
Jefferies et al., 2007). However, in some cases environmental factors alter the epigenetic 678 
programming of germ cells (sperm or egg) and phenotypes can appear in future generations 679 
without further direct exposure. This can lead to epigenetic transgenerational inheritance 680 
(Skinner, 2011). Therefore, epigenetic changes might be a plausible explanation for the 681 
pandemic of obesity and related diseases that cannot be fully accounted for by genetic 682 
variations and lifestyle factors.  683 

Environmental factor-induced transgenerational inheritance of pathologies and 684 
phenotypic variations have been found in different species (Nilsson et al., 2018). Many 685 
studies showed that EDC exposure can result in increased disease susceptibility later in life 686 
and in subsequent generations (Anway and Skinner, 2006,Uzumcu, Zama and Oruc, 687 
2012,Skinner, Manikkam and Guerrero-Bosagna, 2011,Rissman and Adli, 2014,Ho, Johnson, 688 
Tarapore et al., 2012,Skinner and Anway, 2005,Guerrero-Bosagna, Weeks and Skinner, 689 
2014). A number of studies revealed that pesticides such as vinclozolin (Nilsson et al., 690 
2018,Beck, Sadler-Riggleman and Skinner, 2017,Anway, Cupp, Uzumcu et al., 2005), 691 



permethrin, methoxychlor (Manikkam, Haque, Guerrero-Bosagna et al., 2014), DDT 692 
(Skinner, Ben Maamar, Sadler-Riggleman et al., 2018,Ben Maamar, Nilsson, Sadler-693 
Riggleman et al., 2019), atrazine (McBirney, King, Pappalardo et al., 2017,Hao, Gely-Pernot, 694 
Kervarrec et al., 2016) and the insect repellant diethyltoluamide (Manikkam, Tracey, 695 
Guerrero-Bosagna et al., 2012) promoted transgenerational inheritance of disease 696 
susceptibility and sperm epimutations. Transgenerational disease pathologies related to 697 
pesticide exposure included effects on the testis (King et al., 2019,Skinner et al., 2013,Anway, 698 
Leathers and Skinner, 2006), prostate (King et al., 2019,Anway et al., 2006), ovaries (King et 699 
al., 2019,Skinner et al., 2013,Manikkam et al., 2014,Manikkam et al., 2012), kidneys (King et 700 
al., 2019,Skinner et al., 2013,Manikkam et al., 2014,Anway et al., 2006), immune system 701 
(Anway et al., 2006), behavior (McBirney et al., 2017) and tumor development (Anway et al., 702 
2006). 703 

Exposure to obesogenic chemicals during critical periods of development might alter 704 
epigenetic programming processes that predispose a stem cell or progenitor cell toward a 705 
particular lineage such as the adipocyte. Epigenetic changes caused by exposures to EDCs 706 
such as TBT and DES may lead to obesity in subsequent generations (Chamorro-Garcia, 707 
Diaz-Castillo, Shoucri et al., 2017,Chamorro-Garcia and Blumberg, 2014,Stel and Legler, 708 
2015,van Dijk, Tellam, Morrison et al., 2015). Skinner and colleagues showed that ancestral 709 
exposures of F0 rat dams to DDT led to a striking increase in the incidence of obesity in both 710 
F3 males and females (King et al., 2019,Skinner et al., 2013). In a similarly designed 711 
transgenerational experiment, they found that F0 exposure to glyphosate led to increased 712 
obesity rates in subsequent generations (Kubsad et al., 2019). Exposure to vinclozolin 713 
induced epigenetic transgenerational inheritance of increased obesity rates in F3 generation 714 
female rats (Nilsson et al., 2018). However, the molecular mechanisms underlying how these 715 
chemicals induce epigenetic changes and how these changes are transmitted to future 716 
generations to produce obesity and other adverse outcomes remains unclear. Many different 717 
mechanisms have been proposed for how epigenetic changes can affect subsequent disease 718 
outcomes including modulating methyl donor availability and altering the expression of 719 
enzymes that act as epigenetic readers, writers and erasers (Walker, 2016). However, at the 720 
time of this writing no convincing evidence exists that precisely establishes the molecular 721 
mechanisms through which epigenetic transgenerational inheritance of any phenotype, 722 
including obesity occurs. 723 

 724 
5. Conclusions and future directions 725 

There is compelling evidence to suggest that widespread exposure to agrochemicals is 726 
an important factor contributing to the human obesity pandemic. For example, DDE has been 727 
found to be a probable human obesogen based on multiple studies in vitro and in vivo using 728 
animal models and on longitudinal studies in humans, with a significant annual cost to the 729 
European Union (Legler, Fletcher, Govarts et al., 2015). DDE is thought to work as an anti-730 
androgen and there are many other agrochemicals that exhibit anti-androgenic effects in vitro 731 
and in vivo (Orton et al., 2012,Orton, Rosivatz, Scholze et al., 2011). Therefore, it will be 732 
very important to establish the molecular mechanisms through which DDT/DDE act to 733 
influence obesity and to conduct the same sorts of cell-based, animal-based and longitudinal 734 
cohort studies in humans with other agrochemicals. We need to understand both the effects of 735 
perinatal exposure to obesogenic agrochemicals as well as the effects of exposures during 736 
other times across the life course.  737 

There are many possible modes of action for how agrochemicals can promote obesity as 738 
discussed above. What is missing is a systematic effort to understand which of the many 739 
agrochemicals in current use can lead to adverse health outcomes, including obesity and 740 
through which molecular pathways they act to exert these effects. Current practice in 741 



toxicological research is becoming focused on “adverse outcome pathways” and “molecular 742 
initiating events”. These are useful paradigms for simple systems, but it is abundantly clear 743 
that agrochemicals can act through multiple pathways. These cellular signaling pathways 744 
interact with each other in complex ways. It is likely that individual chemicals act at multiple 745 
levels on metabolic homeostasis. Moreover, humans are typically exposed to poorly defined 746 
mixtures of chemicals that may interact in combinatorial ways that can be additive or 747 
inhibitory. Typical agrochemicals are also applied as mixtures that include so-called “inert 748 
ingredients” that may not be inert and whose composition and levels are not required to be 749 
reported. Much remains undiscovered about the possible molecular mechanisms for 750 
agrochemicals and their relationship with the obesity epidemic.  751 

Epigenetic changes may underlie the transgenerational effects of early life obesogen 752 
exposure; however, we know very little about the operational molecular mechanisms and 753 
even less about how the effects are transmitted across generations. The contributions of the 754 
gut microbiome to human health and disease are becoming widely appreciated, yet the effects 755 
of agrochemicals on the microbiome are only very poorly understood. Many more 756 
epidemiological and molecular studies will be required to clarify these issues.   757 
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Table 1. Literature summarizing  associations between agrochemicals and adult obesity. 1578 
References Names Exposure levels 

(serum level) 

Population 

(number of 

subjects) 

Outcomes 

 

(Dusanov et 

al. 2018) 

HCB; 

β-HCH; 

p,p’-DDT; 

DDE 

 

HCB: 

66.8-101.2 pg/mL;  

β-HCH:  

22.9-47.6 pg/mL; 

p,p’-DDT:  

11.3-20 pg/mL; 

DDE:  

315-679 pg/mL; 

Norway, adult, 

(N=431) 

 

Increased odds of metabolic 

syndrome. 

(La Merrill et 

al. 2018) 

DDE 

 

170-570 

ng/g lipid 

 

Sweden, 70 years 

old (N = 988) 

Increased BMI. 

(Jaacks et al. 

2016) 

p,p'-DDT  Mean level:  

0.0158 ng/mL  

 

USA, pregnant 

women, 18-40 

years old 

(N=218)  

Gestational weight gain. 

(Arrebola et 

al. 2014) 

HCB; 

DDE; 

β-HCH 

Mean level: 

HCB: 32.81 ng/g 

lipid; 

β-HCH: 19.60ng/g 

lipid; 

DDE: 183.99ng/g 

lipid; 

Spain, adults 

(N=298) 

 

 

Increased BMI and levels of 

total cholesterol, HDL, LDL, 

and total serum lipids. 

(Langer et al. 

2014) 

DDE; 

HCB 

 

DDE:  

54-22382 ng/g 

lipid; 

HCB:  

22-17928 ng/g 

lipid 

Slovakia, adults, 

(N=2053) 

Increased BMI and increased 

levels of cholesterol and 

triglyceride. 

(Raafat et al. 

2012) 

Malathion 

 

Mean level: 

0.0746 mg/L 

Egypt, 39±12 

years old (N=98) 

Increased waist circumference. 

(Lee et al. 

2012) 

DDE Mean level: 

2654 ng/g lipid 

Sweden, 70 years 

old (N=970)  

Increased odds ratios of 

abdominal obesity. 

(Lee et al. 

2012) 

DDE 

 

11-23271 pg/mL  Sweden, 70 years 

old people  

(N=970) 

Increased existence or 

development of abdominal 

obesity. 

(Dirinck et al. 

2011) 

 β-HCH 

 

1.9-200 ng/g lipid Belgium, ≥18 

years (N=145) 

Increased BMI, waist, fat mass 

percentage, and total and 

subcutaneous abdominal 

adipose tissue. 

(Bachelet et 

al. 2011) 

 DDE 

 

Mean level: 

85 ng/g lipid 
French, women Increased BMI. 



(N= 1055) 

(Ibarluzea et 

al. 2011) 

DDE;  

β-HCH; 

HCB 

Mean level:  

DDE:  

110.0 ng/g lipid;  

β-HCH:  

19.1 ng/g lipid;  

HCB:  

33.5 ng/g lipid  

Spain, 

pregnant 

women 

(N=1259) 

 

Increased BMI. 

(Lee et al. 

2011) 

HCB; 

DDE; 

 

Not supplied USA, adults, 

(N=5115) 

 

Increased BMI, triglycerides, 

HOMA-IR, lower HDL-

cholesterol and triglycerides.  
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Table 2. Literature summarizing associations between agrochemicals and the development of 1580 
early-onset obesity. 1581 
References Names The age of the 

children 

Population 

(number of 

subjects) 

Outcomes 

(Whether showed gender-specific 

effects) 

(Cabrera-

Rodriguez et 

al. 2019) 

DDE 

 

Infants 

 

Spain 

(N=447) 

Increased neonatal birth weight, 

with a special emphasis on girls. 

(Showed gender-specific effects) 

(Warner et al. 

2017) 

DDT; 

DDE 

12 years old USA 

(N=240) 

Increased BMI for boys but not 

girls.  

(Showed gender-specific effects) 

(Xu et al. 

2017) 

o,p'-DDD; 

p,p'-DDT 

Infants 

 

Chinese 

(N=120) 

Increased neonatal birth weight. 

(Vafeiadi et 

al. 2015) 

DDE;  

HCB  

4 years old 

 

Greece  

(N = 689). 

Increased BMI, obesity, abdominal 

obesity.  

(Agay-Shay 

et al. 2015) 

HCB; 

β-HCH; 

DDE 

7 years old 

 

Spain 

(N=657) 

Increased BMI and overweight risk. 

 

(Heggeseth et 

al. 2015) 

 o,p’-DDT; 

p,p’-DDT;  

DDE 

2-9 years old USA 

(N=415) 

Increased BMI among boys but not 

girls.  

(Showed gender-specific effects) 

(Iszatt et al. 

2015) 

DDE 2 years old Norway 

(N=1864) 

Increased growth. 

(Valvi et al. 

2014) 

DDE; 

HCB 

6 and 14 

months old 

Spain 

(N=1285) 

Increased growth and overweight.  

 

(Warner et al. 

2014) 

o,p′-DDT;  

p,p′-DDT; 

DDE 

9 years old USA 

(N=261) 

Increased BMI and waist 

circumference in boys but not in 

girls. 

(Showed gender-specific effects) 

(Delvaux et 

al. 2014) 
DDE 
 

7 to 9 years old 

 

Belgium 

(N=114) 

 

 Increased waist circumference and 

waist/height ratio in girls but not in 

boys. 

(Showed gender-specific effects) 

(Tang-

Peronard et 

al. 2014) 

DDE 5 and 7 years 

old 

Denmark  

(N=656) 

 

Increased waist circumference in 

girls with overweight mothers but 

not in boys. 

(Showed gender-specific effects) 

(Valvi et al. 

2012) 

DDE; 

DDT; 

6.5 years old 

 

Spain 

(N=344) 

Increased overweight in boys but 

not in girls.  

(Showed gender-specific effects) 



(Mendez et 

al. 2011) 

DDE 6 and 14 

months old 

Spain 

(N=657) 

Increased weight and BMI.  

(Verhulst et 

al. 2009) 

DDE 1-3 years old 

 

Belgium 

(N=138) 

Increased BMI.  

(Karmaus et 

al. 2009) 

DDE 20-50 years old 

 

USA 

(N=259) 

Increased weight and BMI.  

(Smink et al. 

2008) 

HCB 6 years old Spain 

(N=482) 

Increase in weight and BMI.  
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Table 3. Literature summary of animal studies linking agrochemicals and obesity. 1584 
Reference Names Animal used Dose and exposure 

time 

Outcomes 

(Whether showed 

gender-specific effects) 

(King et al. 

2019) 

 

DDT Sprague Dawley 

rats 

25 mg/kg/day; F0 

females were 

administered on days 8 

to 14 of gestation. 

The F3 generation had 

significant increases in the 

incidence of obesity.  

(Kubsad et al. 

2019) 

Glyphosat

e  

Sprague Dawley 

rats 

25 mg/kg/day; F0 

females were 

administered on days 8 

to 14 of gestation. 

The transgenerational 

pathologies of obesity was 

observed.  

(Basaure et al. 

2019) 

CPF Male apoE4- mice  2 mg/kg/day; 15 days. Increased body weight. 

(Xiao et al. 

2018) 

Permethri

n 

Male C57BL/6J 

mice 

50, 500, and 5000 

μg/kg/day; 12 weeks. 

Increased body weight, fat 

mass, and increased TG 

and TC.  

(Uchendu et 

al. 2018) 

CPF; 

deltameth

rin  

Male Wistar rats CPF: 4.75 mg/ kg/day; 

deltamethrin: 6.25 

mg/kg/day; 120 days. 

Increased levels of TG, 

TC, LDL, and VLDL, and 

decreased HDL level.  

(Fang et al. 

2018) 

CPF Male Wistar rats 0.3 or 3.0 mg/kg/day; 9 

weeks. 

Increased bodyweight.  

(Nilsson et al. 

2018) 

Vinclozol

in 

Sprague Dawley 

rats 

100 mg/kg/day; F0 

females were 

administered on days 8 

to 14 of gestation. 

F3 generation rats showed 

transgenerational 

increased obesity rate in 

females.  

(Showed gender-specific 

effects) 

(Sun et al. 

2017) 

Imidaclop

rid 

Female C57BL/6J 

mice 

0.06, 0.6, or 6 

mg/kg/day; 12 weeks. 

Increased high fat diet-

induced body weight gain 

and adiposity.  

(Sun et al. 

2016) 

Imidaclop

rid 

Male C57BL/6J 

mice 

0.06, 0.6, or 6 

mg/kg/day; 12 weeks. 

Increased high fat diet-

induced body weight gain 

and adiposity. 

(Peris-

Sampedro et 

al. 2015a) 

 

CPF Male apoE 3 mice 2mg/kg/day; 13 weeks. Increased body weight. 

(Peris-

Sampedro et 

al. 2015b) 

CPF apoE 3 mice 2 mg/kg /day; 8 weeks. Increased body weight. 

(Ishikawa et 

al. 2015) 

DDT Obese Sprague 

Dawley rats 

5.60 μg /kg/day; 4 

weeks. 

Increased postprandial 

non-esterified fatty acids 

and decreased body 

temperature.  

(La Merrill et 

al. 2014) 

DDT C57BL/6J mice  1.7 mg/kg/day; From 

gestational day 11.5 to 

postnatal day 5. 

Reduced core body 

temperature, impaired 

cold tolerance, decreased 

energy expenditure, and 

produced a transient 

early-life increase in body 

fat in female offspring.  

(Showed gender-specific 

effects) 

(Howell et al. 

2014) 

DDE Male C57BL/6H 

mice 

0.4 mg/kg/day or 2.0 

mg/kg/day; 5 days. 

Hyperglycemic effect.  



(Bhaskar and 

Mohanty 

2014) 

Mancoze

b; 

Imidaclop

rid 

Swiss albino mice imidacloprid: 131 

mg/kg/day; mancozeb: 

8000 mg/kg/day. 

Lactating mothers were 

exposed to the 

pesticides from PND1 

to natural weaning 

(PND 28). 

Increased body weight. 

(Skinner et al. 

2013) 

DDT Sprague Dawley 

rats 

50 or 25 mg/kg/day; F0 

females were 

administered on days 8 

to 14 of gestation. 

F3 generation developed 

obesity.  

(Li et al. 2012) TFZ CD1 mice 0.1, 1.0, or 10.0 µM; 

During breeding and 

throughout pregnancy. 

Increased adipose depot 

weight.  

(Acker and 

Nogueira 

2012) 

Chlorpyri

fos 

Male Wistar rats 50 mg /kg; A single 

dose. 

Increased TC, LDL levels 

and caused hyperglycemia 

and hyperlipidemia. 

(Kalender et 

al. 2010) 

Malathion Male Wistar rats 27 mg/kg/day; 4 weeks. Increased TC. 

(Lim et al. 

2009) 

Atrazine Male Sprague 

Dawley rats 

30 or 300 mg/kg/day; 5 

months. 

Increased body weight 

and intra-abdominal fat, 

but decreased basal 

metabolic rate.  

(Lassiter et al. 

2008) 

Parathion Sprague Dawley 

neonatal rats 

0.1 or 0.2 mg/kg/day; 

postnatal days 1-4. 

Increased body weight 

and impaired fat 

metabolism. Females 

showed greater sensitivity.  

(Showed gender-specific 

effects) 

(Lassiter and 

Brimijoin 

2008) 

CPF Long–Evans rats 2.5 mg/kg/day; From 

gestational day 7 

through the end of 

lactation on postnatal 

day 21. 

Increased body weight in 

males.  

(Showed gender-specific 

effects) 

(Meggs and 

Brewer 2007) 

CPF Female Long-

Evans rats  

5 mg/kg/day; 4 months. Increased body weight. 
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Note: apolipoprotein E (apoE), triglyceride (TG), total cholesterol (TC), high-density 1586 
lipoprotein (HDL), low-density lipoprotein-cholesterol (LDL), very low-density lipoprotein-1587 
cholesterol (VLDL), 1588 
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Table 4. Possible mechanisms though which agrochemicals may lead to obesity and example 1590 
chemicals providing evidence to support these mechanisms. 1591 
Possible mechanisms Agrochemicals provide evidence for the 

mechanism 

Promote the commitment phase of adipogenesis DDT, chlorpyrifos, carbofuran, zoxamide, 

spirodiclofen, fludioxonil and quinoxyfen, 

triflumizole  

Induce adipocyte differentiation  DDT, DDE, quizalofop-p-ethyl, diazinon, 

pyraclostrobin, imidacloprid, fipronil, permethrin, 

zoxamide, spirodiclofen, quinoxyfen, tebupirimfos, 

forchlorfenuron, flusilazole, acetamiprid, 

pymoetrozine, triflumizole, quinoxyfen, 

fludioxonil, deltamethrin, endrin, tolylfluanid, 

triphenyltin hydroxide, lactofen, halosulfuron-

methyl, cyfluthrin, flufenacet, isoxaflutole, 

piperonyl-butoxide, tebufenozide  

Mediated by sex steroid hormone dysregulation  Permethrin, linuron, prochloraz, procymidone, 

tebuconazole, vinclozolin, DDE, endosulfan, 

dimethoate, deltamethrin, chlorpyrifos, 

methoxychlor, DDT, terbuthylazine, propiconazole, 

prothioconazole, cypermethrin, malathion 

Affecting metabolic homeostasis through PPARs Dicamba, diclofop, diclofop-methyl, pyrethrins, 

2,4-dichlorophenoxyacetic acid, DDT, diclofop-

methyl, pyrethrins, imazalil, diflubenzuron, 

chlorfluazuron, flucycloxuron, noviflumuron, 

flufenoxuron, quizalofop-p-ethyl, spirodiclofen, 

zoxamide, triflumizole, dithiocarbamate, mancozeb  

Affecting metabolic homeostasis through 

disturbing the thyroid hormone pathway 

DDT, DDE, chlorpyrifos-methyl, acetochlor, 

procymidone, imidacloprid, atrazine, fluroxypyr, 

mancozeb, butachlor, beta-cypermethrin, 

fenobucarb, cyhalothrin, theta-cypermethrin, 

bifenthrin, carbaryl, pymetrozine, pendimethalin, 

metolcarb,  

Affecting the gut microbiota  Cis-nonachlor, oxychlordane, trans-nonachlor, 

chlorpyrifos, carbendazim,  

Epigenetic programming and transgenerational 

effects  

DDT, glyphosate, vinclozolin  
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Abstract 22 
Obesity has become a very large concern worldwide, reaching pandemic 23 

proportions over the past several decades. Lifestyle factors, such as excess caloric intake 24 
and decreased physical activity, together with genetic predispositions, are well-known 25 
factors related to obesity. There is accumulating evidence suggesting that exposure to 26 
some environmental chemicals during critical windows of development may contribute 27 
to the rapid increase in the incidence of obesity. Agrochemicals are a class of chemicals 28 
extensively used in agriculture, which have been widely detected in human. There is 29 
now considerable evidence linking human exposure to agrochemicals with obesity. This 30 
review summarizes human epidemiological evidence and experimental animal studies 31 
supporting the association between agrochemical exposure and obesity and outlines 32 
possible mechanistic underpinnings for this link. 33 
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1. Introduction 48 
Agrochemicals constitute a diverse class of chemicals extensively used in agriculture 49 

with for many different purposes. These include preventing harmful effects caused by pests, 50 
controlling infectious diseases induced by bacteria or fungi, and promoting crop growth. 51 
Agrochemicals are thought to play critical roles in increased agricultural productivity as well 52 
as the control of insect pests that are disease vectors.  53 

Agrochemicals of concern are typically of particular interest for obesity areusually refer 54 
to the pesticides including insecticides, herbicides, fungicides and nematicides (Sparks, 2013). 55 
These agrochemicals can be further subdivided into organochlorines, organophosphorus, 56 
carbamates, pyrethroids and neonicotinoids, according to their chemical structures and modes 57 
of action (Xiao, Clark and Park, 2017). While bringing benefits to humans, agrochemicals 58 
have also become major contaminants that are widely detected in the environment as well as 59 
in humans (Tsatsakis, Tzatzarakis, Tutudaki et al., 2008). Many efforts have been made to 60 
reduce the harmful effects of agrochemicals on humans by designing lower toxicityity 61 
chemicals and by controlling the time and location of applications. H; however, agrochemical 62 
exposure and consequent toxicity to humans and animals is inevitable (Sparks and Lorsbach, 63 
2017). Numerous epidemiological studies together with experimental evidence in animal 64 
models indicated that agrochemicals may be harmful to human health in multiple ways 65 
(Cano-Sancho, Salmon and La Merrill, 2017,Androutsopoulos, Hernandez, Liesivuori et al., 66 
2013). For example, agrochemicals may have carcinogenicity, neurotoxicity, 67 
immunotoxicity, reproductive toxicity, developmental toxicity and endocrine disrupting 68 
effects (Mostafalou and Abdollahi, 2017) (Mostafalou and Abdollahi, 2017). In view of this, 69 
the toxicity of agrochemicals is of great concern around the world. 70 

Currently, obesity has become a very concerning worldwide pandemic and public health 71 
problem (Hales, Fryar, Carroll et al., 2018). According to the World Health Organization, 72 

approximately 39% of adults worldwide are overweight (body mass index, BMI ≥25 kg/m
2
) 73 

and 13% are obese (BMI ≥ 30) (World Health Organization, 2018). The obesity problem is 74 
also severe for children and adolescents (World Health Organization, 2014). Obesity is a 75 
complex and multifactorial condition that increases the risk of many other chronic diseases 76 
such as cardiovascular disease, diabetes mellitus type 2 (T2D), hypertension, stroke and even 77 
some kinds of cancers (Picon-Ruiz, Morata-Tarifa, Valle-Goffin et al., 2017). It was 78 
suggested that at least 2.8 million deaths worldwide could be attributed to the results of 79 
overweight or obesity each year (World Health Organization, 2015).  80 

Obesity is generally considered to be the result of energy imbalance, i.e., when energy 81 
intake exceeds energy expenditure. However, in reality the origins of obesity are 82 
multifactorial and result from the combined effects of both genetic and environmental factors 83 
(Heindel and Blumberg, 2019). Currently, the full spectrum of potential factors associated 84 
with obesity remains unclear. Previous studies have shown that factors such as genetic 85 
susceptibility, epigenetic predisposition,, increased energy intake and lack of physical activity 86 
could contribute to the development of obesity (Turcot, Lu, Highland et al., 2018). However, 87 
these factors cannot fully explain the current dramatically increased rates of obesity. Over the 88 
past several decades, there is considerable evidence that environmental pollutants especially 89 
endocrine disrupting chemicals (EDCs) may contribute to the rapid increase of obesity 90 
(Heindel and Blumberg, 2019). Endocrine-disrupting chemicals (EDCs) are a kind of natural 91 
or man-made substances that may interfere with the normal function of the endocrine system, 92 
including hormone biosynthesis, metabolism or action (Zoeller, Brown, Doan et al., 2012). 93 
There is growing evidence showing the links between EDCs and obesity as well as other 94 
health problems such as metabolic issues, diabetes, reproductive disabilities and 95 
cardiovascular problems (Gore, Chappell, Fenton et al., 2015).  Metabolism disrupting 96 
chemicals (MDCs) specifically refer to those EDCs having the ability to promote metabolic 97 



changes that can result in obesity, T2D or fatty liver in animals (Heindel, Blumberg, Cave et 98 
al., 2017). These EDCs or MDCs might be important factors leading to obesity. Identifying 99 
all of the important factors that contribute to obesity is, therefore, an important issue and 100 
could help to control and reduce the obesity epidemic and related diseases.  101 

“Obesogens” are functionally defined as chemicals (natural, pharmaceutical, or 102 
xenobiotic) that promote obesity after exposure, in vivo. Some natural chemicals (such as 103 
fructose), pharmaceutical chemicals (such as thiazolidinedione anti-diabetic drugs) or 104 
xenobiotic chemicals [such as tributyltin (TBT)] have found to be obesogens (Janesick and 105 
Blumberg, 2016). Obesogens might act directly on fat cells by increasing their number or 106 
increasing the storage of fat into the existing cells. These chemicals might also act indirectly 107 
by affecting mechanisms regulating the appetite and satiety, by altering basal metabolic rate, 108 
by altering energy balance to favor the storage of calories, or by altering gut microbiota to 109 
promote energy intake (Heindel and Blumberg, 2019). Some agrochemicals have been shown 110 
to act as obesogens by promoting adipogenesis and inducing obesity in experimental animals 111 
and are found at higher levels in obese humans. For example, 112 
dichlorodiphenyldichloroethylene (DDE) was classified as "presumed" to be obesogenic for 113 
humans by using a systematic review-based strategy to identify and integrate evidence from 114 
epidemiological, in vivo, and in vitro studies (Cano-Sancho et al., 2017). Others suggested 115 
that the evidence for DDE as an obesogen was “moderate” due to the consistency in 116 
prospective associations with childhood growth and obesity (Vrijheid, Casas, Gascon et al., 117 
2016). The annual cost of exposure to DDE in the EU from type 2 diabetes and obesity was 118 
estimated to be more than €860 million despite its parent chemical, DDT being banned many 119 
years ago (Legler, Fletcher, Govarts et al., 2015). Here we present a review of current studies 120 
linking agrochemical exposure and obesity, including studies from human and animals, and 121 
discuss possible mechanisms underlying these effects.  122 

 123 
 124 

2. Human epidemiological studies relating agrochemicals and obesity 125 
2.1 Association between agrochemicals and adult obesity 126 

There is a growing body of epidemiological studies suggesting an association between 127 
agrochemicals and adult obesity (Table 1). Agrochemicals of concern include 128 
dichlorodiphenyltrichloroethane ( dichlorodiphenyltrichloroethane (DDT)DDT) and its major, 129 
in vivo metabolite , dichlorodiphenyldichloroethylene (DDE), hexachlorobenzene (HCB), as 130 
well as β-hexachlorocyclohexane (β-HCH) and malathion. These are the most frequently 131 
found to be related to obesity in humans (Tang-Peronard, Andersen, Jensen et al., 2011,Liu 132 
and Peterson, 2015,La Merrill and Birnbaum, 2011). For example, In addition, agrochemicals 133 
such as malathion (Raafat, Abass and Salem, 2012), allethrin and prallethrin (Narendra, 134 
Kavitha, Helah Kiranmai et al., 2008) have also been associated with obesity.Obesity is 135 
typically assessed based on weight gain and BMI as the endpoints in epidemiological studies. 136 
mMultiple prospective cohort studies identified a positive association between levels of some 137 
agrochemicals such as DDT, /DDE and obesity or overweight (Mendez, Garcia-Esteban, 138 
Guxens et al., 2011,Valvi, Mendez, Garcia-Esteban et al., 2014,Valvi, Mendez, Martinez et 139 
al., 2012,Lee, Lind, Jacobs et al., 2012). Pre-pregnancy levels of DDT were found to be 140 
moderately associated with gestational weight gain in a prospective cohort study of pregnant 141 
women (Jaacks, Boyd Barr, Sundaram et al., 2016). and levels of DDE were linked with rapid 142 
weight gain and overweight in infancy based on prospective cohort studies (Valvi et al., 143 
2014,Mendez et al., 2011,Valvi et al., 2012). In a cross-sectional study of workers 144 
occupationally exposed to β-HCH, a positive relationship was reported between the 145 
percentage of body fat and levels of β-HCH (Jung, Becher, Edler et al., 1997). A positive 146 
correlation between β-HCH and BMI, waist circumference, percentage of fat mass, as well as 147 

Field Code Changed



total and subcutaneous abdominal adipose tissue has also been demonstrated in a cross-148 
sectional study of 98 obese men and women (Dirinck, Jorens, Covaci et al., 2011). There was 149 
a positive correlation between malathion blood concentration and waist circumference among 150 
a group of farmers (Raafat, Abass and Salem, 2012). In addition to increased weight or 151 
elevated BMI, the levels of some obesity biomarkers (levels of total cholesterol and total 152 
serum lipids) were also positively associated with the concentrations of pesticides such as 153 
HCB, β-HCH and and DDE (Dusanov, Ruzzin, Kiviranta et al., 2018,La Merrill, Lind, 154 
Salihovic et al., 2018,Bachelet, Truong, Verner et al., 2011,Langer, Ukropec, Kocan et al., 155 
2014,Ibarluzea, Alvarez-Pedrerol, Guxens et al., 2011,Lee, Steffes, Sjodin et al., 2011), 156 
suggesting that these compounds can aggravate clinically relevant complications of obesity.  157 

Although the use of DDT has been banned in many countries, some populations still 158 
bear significant levels of DDT and DDE due to the extremely long half-life of these 159 
chemicals in the environment and in the human body, bioaccumulation and via the continued 160 
use of DDT in some developing countries (United Nations Environment Programme, 161 
2010,Bornman, Aneck-Hahn, de Jager et al., 2017). HCB and β-HCH have beenwere banned 162 
globally several decades ago, but they are persistent  in the environment. Malathion is a 163 
pesticide that is still widely used in agriculture, in residential landscaping, and in public 164 
health pest control programs. All these agrochemicals can be detected in humans 165 
currentlynow. The iInformation about and the human exposure levels of these agrochemicals 166 
areis listed in Table 1. Therefore, tThe obesogenic effects of these pesticides in humans still 167 
needs to be considered. 168 

 169 
 170 

2.2 Non-monotonic dose-response relationships between agrochemicals and adult 171 
obesity 172 

Some studies showing the potential relationship between pesticide exposure and serum 173 
lipids/obesity/BMI revealed that the effects were followed non-monotonic dose-response 174 
relationships. This , an unconventional dose-response relationship is characterized by a curve 175 
whose slope changes direction within the range of tested doses (Lee et al., 2012). For 176 
example, Arrebola et al. found that HCB, DDE and β-HCH showed quadratic associations 177 
with BMI, and the quadratic models had a positive trend at low exposure levels, while the 178 
slope decreased or even became negative at higher exposure levels (Arrebola, Ocana-Riola, 179 
Arrebola-Moreno et al., 2014). Previously, nNumerous studies investigating the effects of 180 
EDCs described with relative high frequency the occurrence of non-monotonic dose-response 181 
relationships for this kind of chemicalsEDCs with relatively high frequency (Zoeller and 182 
Vandenberg, 2015)This is consistent with previous studies which found that some chemicals 183 
(such as BPA) exhibited a non-linear relationship between dose and effect based on both in 184 
vitro and in vivo studies (Vandenberg et al., 2012,Zoeller and Vandenberg, 2015,Angle, Do, 185 
Ponzi et al., 2013)..  Such non-monotonic effects are predictable and expected when 186 
considering how the endocrine system works (Vandenberg et al., 2012,Zoeller and 187 
Vandenberg, 2015,Vandenberg, Colborn, Hayes et al., 2013). The molecular mechanisms 188 
underlying non-monotonic dose-response relationships are complex and can arise from 189 
opposing effects induced by multiple receptors, receptor desensitization, negative feedback 190 
with increasing dose, or dose-dependent metabolism modulationThe molecular mechanisms 191 
for non-monotonic dose-response relationships might be complex, which can arise from 192 
opposing effects induced by multiple receptors, receptor desensitization, negative feedback 193 
with increasing dose, or dose-dependent metabolism modulation (Zoeller and Vandenberg, 194 
2015).  In contrast, non-monotonic dose-response curves are an anathema to the industry and 195 
regulatory toxicology communities Usually, the environmental risk assessment approaches 196 
used by regulatory agencies are developed based on the fundamental principle that the 197 



toxicity of a chemical scales linearly in is proportional to the exposure level. Therefore, 198 
nNon-monotonicity represents a challenge to fundamental concepts in toxicology and risk 199 
assessment (Dietrich, von Aulock, Marquardt et al., 2013). These current non-monotonic 200 
dose-response relationships results of agrochemicals suggested suggest that the complex of 201 
mechanisms by which they induce of these chemicals in inducing  obesity are complex. 202 
Besides, Usually, the lLipophilic organochlorine pesticides such as DDE and HCB usually 203 
accumulate in adipose tissue to a major degree. Therefore, the circulating levels of these 204 
chemicals might be influenced by the degree of fat mass (Glynn, Granath, Aune et al., 2003), 205 
which can also makeing it difficult to study the relationships between chemicals and them 206 
and obesity in adults.  207 

 208 
2.3 Agrochemicals and the development of early-onset obesity 209 
and levels of DDE were linked with rapid weight gain and overweight in 210 

infancy based on prospective cohort studies (Mendez et al., 2011,Valvi et 211 

al., 2014,Valvi et al., 2012).  212 
Many environmental factors have been showed shown to play a prominent role in the 213 

development of early-onset obesity (La Merrill and Birnbaum, 2011). Building on Barker’s 214 
fetal origins of disease model (Barker, 1995), Gluckman and Hanson proposed the 215 
Developmental Origins of Health and Disease (DOHaD) hypothesis, which holds that 216 
environmental disruptions during critical windows of development can lead to increased 217 
susceptibility to diseases, including obesity, later in life (Gluckman and Hanson, 2004). 218 
Compared with adults, the fetus and neonate are more sensitive to perturbation by 219 
environmental chemicals during critical windows of development because protective 220 
mechanisms (such as DNA repair, immune system, xenobiotic metabolism, and the 221 
blood/brain barrier, among others) are not yet maximally fully functional (Janesick and 222 
Blumberg, 2011). (Newbold, 2011). The higher metabolic rates of developing organisms may 223 
also result in increased toxicity compared to adults. Therefore, developmental exposures to 224 
xenobiotic toxicants are of particular concern.  225 

Measuring the levels of agrochemicals in pregnant mothers and follow-up of the weight 226 
gain of the children over their lives may provide evidence for the obesogenic effect of these 227 
chemicals during development. Several reviews have reported moderate evidence linking 228 
prenatal agrochemicals exposure to childhood obesity (La Merrill and Birnbaum, 2011,Tang-229 
Peronard, Andersen, Jensen et al., 2011). Recently, the body of evidence for obesogenic 230 
effects of agrochemicals especially DDE after exposure during prenatal development has 231 
increased notably. There have been more than 10 prospective cohort studies showed showing 232 
that prenatal DDE exposure is significantly associated with increased birth weight, increased 233 
levels of some obesity markers, overweight risk or increased risk of childhood obesity 234 
ranging from 6 months to 9 years old (Mendez et al., 2011,Valvi et al., 2014,Valvi et al., 235 
2012,Vafeiadi, Georgiou, Chalkiadaki et al., 2015,Agay-Shay, Martinez, Valvi et al., 236 
2015,Verhulst, Nelen, Hond et al., 2009,Karmaus, Osuch, Eneli et al., 2009,Iszatt, Stigum, 237 
Verner et al., 2015,Heggeseth, Harley, Warner et al., 2015) .(Valvi et al., 2012,Iszatt et al., 238 
2015,Heggeseth et al., 2015)(Table 2). Furthermore, DDE exposure might exacerbate the 239 
effects of when combined with other known contributing factors for obesity such as smoking, 240 
DDE exposure might exacerbate (Verhulst et al., 2009). However, some other prospective 241 
cohort studies found no association between developmental exposure to DDE and infant or 242 
child obesity (Garced, Torres-Sanchez, Cebrian et al., 2012,Govarts, Nieuwenhuijsen, 243 
Schoeters et al., 2012,Hoyer, Ramlau-Hansen, Henriksen et al., 2014,Cupul-Uicab, Klebanoff, 244 
Brock et al., 2013,Warner, Aguilar Schall, Harley et al., 2013,Cupul-Uicab, Hernandez-Avila, 245 
Terrazas-Medina et al., 2010,Gladen, Klebanoff, Hediger et al., 2004).  246 
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Some prospective cohort studies  (Valvi et al., 2012,Delvaux, Van Cauwenberghe, Den 247 
Hond et al., 2014,Tang-Peronard, Heitmann, Andersen et al., 2014,Warner, Wesselink, 248 
Harley et al., 2014,Warner, Ye, Harley et al., 2017) or cross-sectional studies (Cabrera-249 
Rodriguez, Luzardo, Almeida-Gonzalez et al., 2019) revealed gender-specific effects of DDE 250 
on childhood obesity.  251 

Sexually dimorphic responses are a common finding when examining EDC effects, 252 
including links to obesity (Gore, Chappell, Fenton et al., 2015). A number of studies also 253 
showed associations between DDE or HCB and low birth weight and/or preterm birth 254 
(Govarts et al., 2012,Guo, Jin, Cheng et al., 2014,Lenters, Portengen, Rignell-Hydbom et al., 255 
2016,de Cock, de Boer, Lamoree et al., 2014,Vafeiadi, Vrijheid, Fthenou et al., 2014). Both 256 
of these are established risk factors for subsequent rapid growth and long-term obesity 257 
(Stettler and Iotova, 2010). While more data are needed, these studies support the conclusion 258 
that developmental exposure to DDE and perhaps some other agrochemicals might lead to 259 
obesity in humans.  260 

Relatively fewer studies have examined links between prenatal DDT and DDD, β-HCH 261 
or HCB exposure and potential of childhood obesity. Some prospective cohort studies (Valvi 262 
et al., 2014,Valvi et al., 2012,Vafeiadi et al., 2015,Agay-Shay et al., 2015,Heggeseth et al., 263 
2015,Smink, Ribas-Fito, Garcia et al., 2008,Warner, Ye, Harley et al., 2017,Warner, 264 
Wesselink, Harley et al., 2014) or cross-sectional studies(Xu, Yin, Tang et al., 2017) showed 265 
positive associations with obesity (Table 2). However, a few other prospective cohort studies 266 
did not identify such significant associations (Cupul-Uicab et al., 2013,Warner et al., 267 
2013,Delvaux, Van Cauwenberghe, Den Hond et al., 2014).  268 

 269 
2.4 Gender-specific effects of agrochemicals 270 

Sexually dimorphic responses are a common finding when examining EDC effects, 271 
including links to obesity (Gore et al., 2015). Currently, some prospective cohort studies 272 
(Valvi et al., 2012,Warner et al., 2017,Warner et al., 2014,Delvaux et al., 2014,Tang-273 
Peronard, Heitmann, Andersen et al., 2014) or cross-sectional studies (Cabrera-Rodriguez, 274 
Luzardo, Almeida-Gonzalez et al., 2019) showed the gender-specific effects of 275 
agrochemicals on childhood obesity (see . The results about the reported gender-specific 276 
effects of agrochemicals are noted in Table 2). For example, Warner et al. showed a positive 277 
association between DDE and childhood obesity in boys but not in girls (Warner et al., 278 
2017,Warner et al., 2014). However, some other studies showed the effects of DDE on 279 
childhood obesity existed in girls but not in boys (Delvaux et al., 2014,Tang-Peronard et al., 280 
2014). The reason for this difference wannawarrants further study. The mechanisms 281 
underlying gender-specific effects of agrochemicals also need to be studied in the future.  282 

Although the use of DDT has been banned in many countries, some populations still 283 
bear significant levels of DDT and DDE due to the extremely long half-life of these 284 
chemicals in the environment and in the human body, bioaccumulation and via the continued 285 
use of DDT in some developing countries (Valvi et al., 2014,United Nations Environment 286 
Programme, 2010,Rogan and Chen, 2005,Bornman, Aneck-Hahn, de Jager et al., 2017). 287 
Therefore, despite the ban on DDT in much (but not all) of the world, and the slow decrease 288 
in its levels in human tissues and in the environment, the obesogenic effects of such legacy 289 
pesticides in humans needs to be considered.  290 

 291 
3. Animal studies about and the relationship between agrochemicals and obesity 292 

3.1 Studies showing the obesogenic effects of agrochemicals in adult experimental 293 
animals 294 

Most of the animal studies relating chemical exposures to obesity demonstrated that the 295 
exposures induced led to weight gain and changes in adiposity, increased the expression of 296 
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obesity and adipogenesis-related biomarkers and affected hormones and adipokines involved 297 
in the regulation of food intake and energy expenditure (La Merrill, Karey, Moshier et al., 298 
2014,Angle, Do, Ponzi et al., 2013). Exposures to the agrochemicals HCB, γɣ-HCH, 299 
parathion, chlorpyrifos (CPF), mancozeb and imidacloprid led to increased body weight in 300 
rodents (Howell, Meek, Kilic et al., 2014,Peris-Sampedro, Cabre, Basaure et al., 2015,Peris-301 
Sampedro, Basaure, Reverte et al., 2015,Basaure, Guardia-Escote, Biosca-Brull et al., 302 
2019,Meggs and Brewer, 2007,Lassiter, Ryde, Mackillop et al., 2008,Bhaskar and Mohanty, 303 
2014) (Table 3). Li et al. showed that prenatal triflumizole exposure elicited adipogenic 304 
differentiation in mouse 3T3-L1 preadipocytes, in multipotent mesenchymal stromal stem 305 
cells (also known as mesenchymal stem cells, MSCs) and increased white adipose depot 306 
weight, in vivo (Li, Pham, Janesick et al., 2012). Sexually dimorphic responses have also 307 
been reported in most animal studies. For example, perinatal exposure (gestational day 11.5 308 
through postnatal day 5) to DDT caused a transient increase in body fat mass in young female, 309 
but not in male mice (La Merrill et al., 2014). In contrast, developmental exposure to CPF led 310 
to weight gain in male, but not female rats (Lassiter and Brimijoin, 2008). In addition to, 311 
some obesity-related indicators such as decreased total energy expenditure, alterations in 312 
glucose and lipid metabolism have beenwere observed after exposure to DTT and DDE (La 313 
Merrill et al., 2014,Howell et al., 2014,Ishikawa, Graham, Stanhope et al., 2015,Howell, 314 
Mulligan, Meek et al., 2015), malathion, (Kalender, Uzun, Durak et al., 2010) dichlorvos 315 
(Ogutcu, Suludere and Kalender, 2008) or CPF (Acker and Nogueira, 2012,Uchendu, Ambali, 316 
Ayo et al., 2018) (Table 3).  317 

The “two-hit” hypothesis, first formulated by Knudson in 1971, suggesteds that most 318 
tumor suppressor genes require both alleles to be inactivated to result in a phenotypic 319 
changecancer (Knudson, 1971). Now, this “two-hit” hypothesis has been is likely to be 320 
appliedadopted to explain the multifactorial nature of obesity, which may results from the 321 
combined effects of both genetic and environmental factors. A subject who is who has 322 
genetically-prone to obesity haves the “first hit” (genetic susceptibility or epigenetic 323 
predisposition) intrinsically. As the external factors, some oObesogenic factors such as 324 
chemical exposures, high energy diet, low physical activity, alcohol and smoking that act as 325 
“second hit” trigger gain weight and result in obesity (Heindel et al., 2017). The obesogenic 326 
effects of some agrochemicals were only observed upon co-treatment with high-fat diet (HFD) 327 
or were exacerbated by HFD, indicating that a second hit was needed to elicity obesity. It was 328 
reported that low doses of orally administrated permethrin (Xiao, Sun, Kim et al., 2018) or 329 
imidacloprid (Sun, Xiao, Kim et al., 2016,Sun, Qi, Xiao et al., 2017) potentiated weight gain 330 
in male mice only when a HFD was provided. HFD-fed rats exposed to CPF exhibited a pro-331 
obesity phenotype compared with controls (Fang, Li, Zhang et al., 2018). Chronic 332 
administration of atrazine increased body weight without changing food intake or physical 333 
activity levels, and feeding a HFD further exacerbated obesity (Lim, Ahn, Song et al., 2009).  334 

 335 
3.2 Animal studies showing the development and transgenerational obesogenic 336 

effects of agrochemicals 337 
The oObesogenic effects of agrochemical exposure during development s in the 338 

development period have been reported (Table 3). Li et al. showed that prenatal triflumizole 339 
exposure increased white adipose depot weight in vivo (Li, Pham, Janesick et al., 2012). 340 
Sexually dimorphic responses have also been reported in most animal studies. For example, 341 
perinatal exposure (gestational day 11.5 through postnatal day 5) to DDT caused a transient 342 
increase in body fat mass in young female, but not in male mice (La Merrill et al., 2014). In 343 
contrast, developmental exposure to CPF led to weight gain in male, but not female rats 344 
(Lassiter and Brimijoin, 2008).  345 



Transgenerational obesogenic effects of agrochemicals have been reported. Two studies 346 
established links between DDT exposure in pregnant F0 rat dams and increased obesity rates 347 
in subsequent generations. Male and female offspring from the F3 generation and male 348 
offspring from the F4 generation in the DDT lineage had an increased prevalence of obesity 349 
compared with controls (King, McBirney, Beck et al., 2019,Skinner, Manikkam, Tracey et al., 350 
2013). Two other studies showed that parental exposure to glyphosate or vinclozolin was 351 
linked to increased obesity rates in the F2 and F3 offspring (Kubsad, Nilsson, King et al., 352 
2019,Nilsson, King, McBirney et al., 2018). Overall, current data support the notion that 353 
exposure to multiple types of agrochemicals can play a role in obesity. More evidence from 354 
in vivo studies will be required to further establish the links between agrochemicals and 355 
obesity. 356 

 357 
 358 

4. Potential mechanisms through which 359 

agrochemicals induce obesity 360 

 361 

 362 

4.1 Agrochemicals might pPromote the commitment phase of adipogenesis  363 
Although the mechanisms through which environmental chemicals induce obesity are 364 

not fully understood, affecting adipogenesis is an important mechanism (Heindel et al., 2017). 365 
Both direct and developmental exposure of chemicals might affect the adipogenesis. 366 
Chemical exposure may lead to increased numbers of white adipocytes by modulating the 367 
differentiation of progenitor cells or by altering the birth/death rate of adipocytes to affect 368 
overall numbers of white adipocytes. Increased lipid storage in existing adipocytes is thought 369 
to be another major reason (Spalding, Arner, Westermark et al., 2008). Generally speaking, 370 
early developmental changes lead to increased adipocyte numbers, yet gain weight later in 371 
life during adulthood probably derives from increased fat content of existing white adipocytes 372 
(Spalding, Arner, Westermark et al., 2008).  373 

Adipogenesis occurs in cells derived from the embryonic mesoderm. Multipotent 374 
mesenchymal stromal stem cells, also known as mesenchymal stem cells (MSCs) give rise to 375 
adipocytes, which  involves determination (MSCs commit irreversibly to the adipocyte 376 
lineage) and terminal differentiation (preadipocytes differentiate into mature fat cells) (Rosen 377 
and MacDougald, 2006). MSCs can differentiate into adipocytes, chondrocytes and 378 
osteoblasts (among other cell types) in response to tissue-specific signals and are thought to 379 
renew these cells in adults (da Silva Meirelles, Chagastelles and Nardi, 2006). Like most 380 
differentiation events, adipogenesis involves determination and terminal differentiation. 381 
Determination occurs when MSCs commit irreversibly to the adipocyte lineage, lose their 382 
potential to differentiate into other types of cells and become preadipocytes (Park, Halperin 383 
and Tontonoz, 2008,Rosen and Spiegelman, 2014,Tontonoz and Spiegelman, 2008). 384 
Terminal differentiation occurs when preadipocytes undergo growth arrest and subsequent 385 
differentiate into mature fat cells (Park et al., 2008,Rosen and Spiegelman, 2014,Tontonoz 386 
and Spiegelman, 2008). The current consensus is that white adipocyte numbers are set by the 387 
end of childhood and that any factors that increase adipocyte numbers in early life lead to a 388 
life-long increase in white adipocyte number (Spalding et al., 2008). While it is controversial 389 
whether having more white adipocytes leads to obesity, obese people definitely have more 390 
white adipocytes than do those of normal weight (Spalding et al., 2008). One possibility is 391 
that obesogen exposure early in life the alters the fate of MSCs, leading to more white 392 
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adipocytes in adulthood (Janesick and Blumberg, 2011,Chamorro-Garcia, Sahu, Abbey et al., 393 
2013). The inference is that obese individuals may have a pool of MSCs that is intrinsically 394 
biased toward the adipocyte lineage (Kirchner, Kieu, Chow et al., 2010). Therefore, early life 395 
events, including obesogen exposure, that alter the fate of MSCs could predispose the 396 
exposed individual to increased numbers of white adipocytes and consequently obesity, 397 
particularly in combination with a Western Dietary pattern (Janesick and Blumberg, 2016).  398 

Several studies suggested that agrochemicals might influence MSC fate. Chlorpyrifos 399 
and carbofuran were found to inhibit the osteogenic differentiation capacity of human MSCs, 400 
although the potential of MSCs to differentiate into adipocytes was not tested (Hoogduijn, 401 
Rakonczay and Genever, 2006). Another study showed that DDT could enhance both 402 
adipogenic and osteogenic differentiation of human MSCs via an estrogen receptor (ER) 403 
mediated pathway (Strong, Shi, Strong et al., 2015). Janesick et al. found that zoxamide, 404 
spirodiclofen, fludioxonil and quinoxyfen all induced adipogenesis in mouse MSCs (Janesick, 405 
Dimastrogiovanni, Vanek et al., 2016). Increased adipogenic potential of MSCs could 406 
correspondingly increase the steady state number of adipocytes in the adult, which might 407 
favor the development of obesity over time (Chamorro-Garcia et al., 2013).  408 

In vitro and in vivo studies have demonstrated that tributyltin (TBT) promotes adipocyte 409 
differentiation and obesity by activating peroxisome-proliferator activated receptor γ (PPARγ) 410 
and its heterodimeric partner, retinoid X receptor α (RXRα). TBT can bind to and activate 411 
both receptors, but it appears to mediate its effects on adipocyte differentiation via PPARγ 412 
(Kirchner et al., 2010,Li, Ycaza and Blumberg, 2011). In contrast, activation of RXR is 413 
required to commit mouse MSCs to the adipocyte lineage (Shoucri, Martinez, Abreo et al., 414 
2017). TBT and chemicals that activate RXR (rexinoids) commit MSCs to the adipocyte 415 
lineage by inhibiting the expression and function of enzymes that deposit repressive histone 3 416 
lysine 27 trimethyl (H3K27

me3
) marks. Exposure of MSCs to TBT or rexinoids led to 417 

genome-wide decreases in H3K27
me3

 at the promoters of genes required for adipogenic 418 
commitment. Currently, there is a relative paucity of data regarding how other agrochemicals 419 
might influence MSC fate. Triflumizole was found to induce adipogenic differentiation in 420 
human and mouse MSCs through a PPARγ-dependent mechanism and to promote fat 421 
accumulation, in vivo (Li et al., 2012). Taken together, the current data suggest that exposure 422 
to agrochemicals might promote adipogenisisadipogenesis by increasing commitment of 423 
MSCs to the adipocyte lineage. Therefore, assessing the capability of an agrochemical to 424 
induce adipogenic commitment of MSCs together with its ability to promote terminal 425 
adipocyte differentiation, and the mechanisms through which these processes occur will be 426 
valuable in identifying additional agrochemical obesogens. 427 

 428 
 429 

4.2 Agrochemicals might iInduce adipocyte differentiation 430 

 431 
After MSCs are committed to the adipocyte lineage, these preadipocytes can be induced 432 

to differentiate into mature adipocytes. Usually, the process of adipocyte differentiation is 433 
influenced by the direct chemical exposure of chemicals. In contrast to the relative paucity of 434 
data regarding the effect of agrochemicals on the commitment of MSCs to preadipocytes, 435 
there is much known about the effects of these chemicals on the process of adipocyte 436 
differentiation. Murine pre-adipocyte cell lines such as 3T3-L1 cells are commonly used as 437 
an in vitro cell model to test the capacity of chemicals to induce adipogenesis. Such 438 
experiments have provided strong support for the notion that agrochemicals could promote 439 
the process of adipocyte differentiation. Treatment of with DDT and DDE resulted in 440 
increased lipid accumulation accompanied by up-regulation of multiple key regulator of 441 
adipocyte differentiation, such as CCAAT/enhancer-binding protein α and PPARγ (Kim, Sun, 442 
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Yue et al., 2016). Using the 3T3-L1 cell model, other studies have identified agrochemicals 443 
incudingincluding quizalofop-p-ethyl (QpE) (Biserni, Mesnage, Ferro et al., 2019), diazinon 444 
(Smith, Yu and Yin, 2018), pyraclostrobin (Luz, Kassotis, Stapleton et al., 2018), DDE 445 
(Mangum, Howell and Chambers, 2015), imidacloprid (Park, Kim, Kim et al., 2013), fipronil 446 
(Sun, Qi, Yang et al., 2016), permethrin (Xiao, Qi, Clark et al., 2017), zoxamide, 447 
spirodiclofen quinoxyfen, tebupirimfos, forchlorfenuron, flusilazole, acetamaprid and 448 
pymoetrozine (Janesick et al., 2016) as having the ability to promote adipocyte differentiation.  449 

Activation of PPARγ/RXRα heterodimers plays a key role in promoting adipocyte 450 
differentiation of 3T3-L1 adipocytes by regulating the expression of genes involved in lipid 451 
droplet formation, glucose uptake, and fatty acid synthesis (Janesick and Blumberg, 452 
2011,Tontonoz and Spiegelman, 2008). QpE might promote adipogenesis by activating 453 
PPARγ as demonstrated by RNAseq analysis of cells and PPARγ reporter gene assay (Biserni 454 
et al., 2019). Triflumizole was found to induce adipogenic differentiation in 3T3-L1 cells 455 
through a PPARγ-dependent mechanism (Li et al., 2012). Zoxamide, triflumizole, 456 
spirodiclofen, and quinoxyfen induced adipogenesis in 3T3-L1 cells through PPARγ/RXRα 457 
heterodimers by activating PPARγ, while fludioxonil activated RXRα (Janesick et al., 2016).  458 

However, the adipogenic effects of other agrochemicals on 3T3-L1 cells appears to be 459 
independent of PPARγ activation. For example, flusilazole, forchlorfenuron, acetamiprid and 460 
pymetrozine induced adipogenesis in 3T3-L1 cells, but did not activate PPARγ or RXRα 461 
(Janesick et al., 2016). Pyraclostrobin was found to induce mitochondrial dysfunction which 462 
in-turn inhibited lipid homeostasis, resulting in triglyceride accumulation (Luz et al., 2018). 463 
Permethrin might potentiate adipogenesis in 3T3-L1 adipocytes via altering intracellular 464 
calcium levels and through endoplasmic reticulum stress-mediated mechanisms (Xiao et al., 465 
2017), although, it also activates PPARα (Fujino, Watanabe, Sanoh et al., 2019). The related 466 
chemical, deltamethrin may also activate an endoplasmic reticulum stress-mediated pathway 467 
in 3T3-L1 adipocytes (Yuan, Lin, Xu et al., 2019). An AMP-activated protein kinase 468 
AMPKα-mediated pathway was found to play a role in the induction of adipogenesis in 3T3-469 
L1 preadipocytes by agrochemicals such as DDT and DDE, (Kim et al., 2016), imidacloprid 470 
(Sun et al., 2017), deltamethrin (Yuan et al., 2019,Shen, Hsieh, Yue et al., 2017), and fipronil 471 
(Sun et al., 2016). Endrin and tolylfluanid promoted adipogenesis in 3T3-L1 cells via 472 
glucocorticoid receptor activation (Sargis, Johnson, Choudhury et al., 2010). In contrast, 473 
another study showed that endrin inhibited adipogenesis in 3T3-L1 cells (Moreno-Aliaga and 474 
Matsumura, 1999).  475 

By using a human adipose-derived stromal cell-based adipogenesis assay, Foley et al. 476 
found that some agrochemicals including triphenyltin hydroxide, lactofen, triflumizole, 477 
halosulfuron-methyl, cyfluthrin, flufenacet, isoxaflutole, piperonyl-butoxide, pyraclostrobin, 478 
and tebufenozide could induce lipid accumulation in these cells. By combining the results of 479 

gene transcription, protein expression, loss-of-function PPARγ siRNA assay and adipokine 480 
secretion, it was suggested that these chemicals might have moderate-to-strong activity for 481 
human adipogenesis (Foley, Doheny, Black et al., 2017). Considering the wide exposure of 482 
the humans and wildlife to agrochemicals, it will be of great interest to determine which 483 
pathways are causally associated with the adipogenic effects elicited by these chemicals and 484 
whether they also occur, in vivo. 485 

 486 
 487 

4.3 Agrochemicals might exert obesogenic effectsEffects mediated by sex steroid 488 
hormone dysregulation  489 

Sex steroid hormones such as estrogens and androgens appear to play important roles in 490 
adipose tissue development during early development or at in adulthood (Cooke and Naaz, 491 
2004). Estrogens play a pivotal role in regulating energy homeostasis, especially in female 492 



mammals, either by acting directly on the brain or through activation of ERs in adipocytes 493 
(Mauvais-Jarvis, Clegg and Hevener, 2013). Imbalances in the sex steroid levels can lead to 494 
dyslipidemias and obesity. For example, weight gain was observed following androgen 495 
deprivation therapy for prostate cancer (Braunstein, Chen, Loffredo et al., 2014) or polycystic 496 
ovary syndrome (Stanley and Misra, 2008). Obesogenic effects have been observed for 497 
xenoestrogenic compounds such as diethylstilbestrol (DES) (Newbold, Padilla-Banks, Snyder 498 
et al., 2007) and bisphenol A (BPA) (Rubin, Murray, Damassa et al., 2001), suggesting that 499 
dysregulated signaling through sex steroid receptors can produce pro-adipogenic effects. This 500 
might also influence the sexually dimorphic effects of some chemicals on the incidence and 501 
health consequences of obesity observed in humans (Palmer and Clegg, 2015). Therefore, 502 
chemicals that can disrupt the regulation of estrogen and androgen signaling, either by 503 
changing hormone levels or by directly interacting with the cognate nuclear receptors may 504 
contribute to disturbances in the regulation of adipose tissue formation and maintenance. 505 
Both direct and developmental exposure of chemicals might disrupt the regulation of sex 506 
hormones signaling. 507 

Many in vivo experimental animal studies examined estrogenic or anti-androgenic 508 
effects of agrochemicals. By using the rat uterotrophic (estrogen) and Hershberger (anti-509 
androgen) assays, it was found that the insecticide permethrin might have estrogenic effects 510 
on female rats, but anti-androgenic effects on male rats (Kim, Lee, Lim et al., 2005). In vivo 511 
anti-androgenic effects have also been reported in response to agrochemicals including 512 
linuron (Wolf, Lambright, Mann et al., 1999,Lambright, Ostby, Bobseine et al., 2000), 513 
prochloraz (Vinggaard, Christiansen, Laier et al., 2005), procymidone (Ostby, Kelce, 514 
Lambright et al., 1999), tebuconazole (Taxvig, Hass, Axelstad et al., 2007), vinclozolin 515 
(Anway, Memon, Uzumcu et al., 2006,Uzumcu, Suzuki and Skinner, 2004)), DDE (Wolf et 516 
al., 1999), endosulfan (Sinha, Adhikari and D, 2001), dimethoate (Verma and Mohanty, 2009) 517 
and deltamethrin (Andrade, Araujo, Santana et al., 2002). After reviewing the animal and 518 
epidemiologic data from previous studies, Li et al. suggested that chlorpyrifos induces 519 
metabolic disruption by altering levels of reproductive hormones (Li, Ren, Li et al., 2019). 520 

Mechanistic studies suggested that agrochemicals might exert estrogenic or anti-521 
androgenic effect by affecting sex hormone status or by acting directly on estrogen receptors 522 
(ERs) and/or androgen receptor (AR). Several agrochemicals were documented to affect sex 523 
hormone levels through interference with hormone synthesis or breakdown. For example, 524 
testicular apoptosis was found in adult rats following exposure to a single dose of 525 
methoxychlor (Vaithinathan, Saradha and Mathur, 2010). DDE inhibited the action of 5α-526 
reductase, the major enzyme that converts testosterone to dihydro-testosterone (Lo, King, 527 
Allera et al., 2007). DDE stimulated aromatase activity in ovarian granulosa cells (Younglai, 528 
Holloway, Lim et al., 2004). An analysis of the hepatic transcriptome of mice treated with 529 
p,p’-DDE revealed altered mRNA levels of genes encoding enzymes involved in testosterone 530 
catabolism and excretion, resulting in impaired testosterone metabolism (Morales-Prieto, 531 
Ruiz-Laguna, Sheehan et al., 2018). Numerous agrochemicals, including DDT, can affect the 532 
expression levels and/or activity of multiple cytochrome P450 enzymes (P450) (Abass and 533 
Pelkonen, 2013,Blizard, Sueyoshi, Negishi et al., 2001), which are involved in the 534 
metabolism of steroid hormones and many xenobiotic chemicals.  535 

Many studies have investigated the activity of agrochemicals on ER and AR using 536 
reporter gene assays. DDE was demonstrated to be a potent AR antagonist (Kelce, Stone, 537 
Laws et al., 1995). Kjeldsen et al. (Kjeldsen, Ghisari and Bonefeld-Jorgensen, 2013) 538 
investigated the effects of five agrochemicals (terbuthylazine, propiconazole, prothioconazole, 539 
cypermethrin and malathion) on ER and AR transactivation using luciferase reporter gene 540 
assays. The results showed that these five pesticides weakly activated ER and that three 541 
pesticides (bitertanol, propiconazole and mancozeb) antagonized AR activity in a 542 



concentration-dependent manner. Kojima et al, (Kojima, Katsura, Takeuchi et al., 2004) 543 
screened 200 agrochemicals and reported that 66 were anti-androgenic, whereas only 29 were 544 
estrogenic. Numerous in vitro studies based on reporter gene assays demonstrated estrogenic 545 
and anti-androgenic effect of agrochemicals (Kitamura, Suzuki, Ohta et al., 2003,Andersen, 546 
Vinggaard, Rasmussen et al., 2002,Bauer, Bitsch, Brunn et al., 2002,Okubo, Yokoyama, 547 
Kano et al., 2004,Orton, Lutz, Kloas et al., 2009,Vinggaard, Niemela, Wedebye et al., 548 
2008,Sun, Xu, Xu et al., 2007,Zhang, Zhu, Zheng et al., 2008,Robitaille, Rivest and 549 
Sanderson, 2015,Xu, Liu, Ren et al., 2008,Li, Li, Ma et al., 2008,Martin, Dix, Judson et al., 550 
2010,Knudsen, Houck, Sipes et al., 2011).) (Sun et al., 2007,Zhang et al., 2008,Robitaille et 551 
al., 2015,Xu et al., 2008,Li et al., 2008,Martin et al., 2010,Knudsen et al., 2011). In addition 552 
to the canonical ERs, binding of DDT and DDE to the seven-transmembrane estrogen 553 
receptor, GPR30, which activates alternative estrogen signaling was demonstrated (Thomas 554 

and Dong, 2006). Molecular dynamic simulations showed that estrogen‐-related receptor γ, 555 
which might affect estrogen signaling indirectly, could also be a potential target of DDT and 556 
DDE (Zhuang, Zhang, Wen et al., 2012). Estrogenic or anti-androgenic effects of 557 
agrochemicals might involve more than one mechanism; thus, their effects might be mediated 558 
through multiple cellular pathways.  559 

Typically, humans are only rarely exposed to a single agrochemical. Rather they are 560 
simultaneously exposed to multiple xenobiotic chemicals, including agrochemicals and 561 
supposedly inert carriers. It is probable that these different agrochemicals may act in 562 
combination through additive, synergistic, or antagonistic mechanisms, which may influence 563 
the doses of such ligands required to induce adipogenesis. Notably, additive and synergistic 564 
anti-androgenic activities of agrochemical mixtures have been observed (Kjeldsen et al., 565 
2013,Ma, Chen, Yang et al., 2019,Orton, Rosivatz, Scholze et al., 2012,Kolle, Melching-566 
Kollmuss, Krennrich et al., 2011,Birkhoj, Nellemann, Jarfelt et al., 2004). Christen et al., 567 
studied additive and synergistic anti-androgenic activities of binary mixtures of five anti-568 
androgenic fungicides and found that about half of the tested mixtures produced additive 569 
effects and half synergistic effects (Christen, Crettaz and Fent, 2014). These observed 570 
additive and synergistic effects emphasize the importance of considering the combined 571 
actions of these chemicals. Although the underlying molecular mechanisms remain to be 572 
fully understood, these studies suggested the agrochemicals might induce obesity by 573 
disturbing normal sex hormone signaling. 574 

 575 
 576 

4.4 Agrochemicals might exert obesogenic effects by Affect affecting metabolic 577 
homeostasis mediated bythrough metabolic sensors, the PPARs 578 

Obesogens might induce obesity by perturbing metabolic homeostasis resulting in 579 
unbalanced energy expenditure. Many nuclear receptors respond to specific hormones such as 580 
thyroid hormone, mineralocorticoids, glucocorticoids, retinoic acid, sex steroids and 581 
lipophilic endogenous substances. These are involved in various physiological and 582 
pathological processes in the regulation of metabolic homeostasis. (Mangelsdorf, Thummel, 583 
Beato et al., 1995). Among these, the peroxisome proliferator-activated receptor (PPAR) 584 
subfamily, comprising PPARα, PPARβ/δ) and PPARγ are key players in adipogenesis and 585 
lipid metabolism (Feige, Gelman, Michalik et al., 2006). After forming heterodimers with 586 
retinoid X receptors (RXR), PPARs regulate the transcription of genes involved in the 587 
regulation of adipogenesis (adipocyte proliferation and differentiation), intracellular lipid 588 
metabolism and storage, glucose homeostasis and insulin responsiveness (Wang, 2010). The 589 
three PPAR subtypes act as ligand sensors for a variety of lipophilic hormones, dietary fatty 590 
acids and their metabolites to regulate lipid homeostasis (Bensinger and Tontonoz, 2008). 591 
They work together to control almost every aspect of fatty acid metabolism. Many 592 



pharmaceutical drugs and environmental chemicals target PPARs, enabling them to affect 593 
PPAR signaling pathways involved in regulating metabolic balance (Lau, Abbott, Corton et 594 
al., 2010). Usually, thechemical influences on metabolic homeostasis acting through PPARs 595 
areis due to the direct chemical exposure of chemicals. 596 

Several in vivo studies revealed changes in the expression levels of genes encoding 597 
PPARs and PPAR-regulated genes after agrochemical exposure. The herbicide dicamba (2-598 
methoxy-3,6-dichlorobenzoic acid) caused a significant increase in peroxisomal beta-599 
oxidation activity and changed the expression of a variety of PPAR regulated enzymes in rat 600 
livers, suggesting that dicamba acts as a peroxisome proliferator in rats (Espandiari, Thomas, 601 
Glauert et al., 1995). The herbicide diclofop was also shown to be a rodent peroxisome 602 
proliferator (Palut, Ludwicki, Kostka et al., 2001). Atrazine induced a near-significant 603 
increase in PPARβ mRNA in Xenopus laevis tadpoles (Zaya, Amini, Whitaker et al., 2011), 604 
and diclofop-methyl and pyrethrins changed the expression of PPARα-inducible  cytochrome 605 
P450 genes in mice (Takeuchi, Matsuda, Kobayashi et al., 2006). 2,4-dichlorophenoxyacetic 606 
acid increased expression of PPARδ in HepG2 cells (Sun, Shao, Liu et al., 2018). DDT 607 
enhanced expression of PPARγ mRNA in human MSCs (Strong et al., 2015). Therefore, 608 
expression of PPAR genes themselves may be potential agrochemical targets. 609 

Results of in vitro reporter gene assays and in silico ligand binding simulations 610 
suggested that agrochemicals could function as agonistic ligands for one or more of the 611 
PPARs. Using an in vitro reporter gene assay based on CV-1 cells, Takeuchi et al. screened 612 
the ability of 200 agrochemicals to activate mouse PPARα and they found three chemicals 613 
(diclofop-methyl, pyrethrins and imazalil) had PPARα agonistic activity, yet none of the 614 
tested agrochemicals showed PPARγ agonistic activity (Takeuchi et al., 2006). Using a 615 
reporter gene assay based on COS-1 cells it was found that none of eight tested pyrethroids 616 
activated PPARα but that a metabolite of cis-/trans-permethrin as well as a metabolite of 617 
phenothrin (3-phenoxybenzoic acid) activated rat PPARα (Fujino et al., 2019). Five chitin 618 
synthesis inhibitors activated PPARγ-mediated reporter gene activity with the rank order of  619 
diflubenzuron > chlorfluazuron > flucycloxuron > noviflumuron > flufenoxuron (Ning, Ku, 620 
Gao et al., 2018). Other agrochemicals such as quizalofop-p-ethyl (Biserni et al., 2019) 621 
spirodiclofen, zoxamide (Janesick et al., 2016) and triflumizole (Li et al., 2012) were found 622 
to have PPARγ agonistic activity. An in silico study modeling the binding of pesticides in the 623 
PPARγ ligand-binding pocket suggested that the pesticide dithiocarbamate and the fungicide 624 
mancozeb might bind to this receptor (Bhaskar and Mohanty, 2014). The PPARγ ligand-625 
binding pocket is rather large and can bind multiple compounds as the same time (Balaguer, 626 
Delfosse, Grimaldi et al., 2017). Therefore, it is not surprising that many agrochemicals with 627 
dissimilar structures could be PPARs ligands. 628 

The PPARs have different tissue distributions and biological functions. PPARα is 629 
expressed predominantly in liver, kidney, heart, and muscle, and plays a major role in fatty 630 
acid oxidation. Activation of PPARα leads to peroxisome proliferation in rodents and 631 
stimulates β-oxidation of fatty acids (Ferre, 2004). PPARδ is ubiquitously expressed and can 632 
also promote fatty acid oxidation (Barish, Narkar and Evans, 2006). Consequently, 633 
xenobiotics that target PPARα and δ typically act as hypolipodemic agents. In contrast, 634 
PPARγ is primarily expressed in adipose tissue and is considered to be the master regulator 635 
of adipogenesis (Tontonoz and Spiegelman, 2008). A large body of work has clearly 636 
established that PPARγ plays key roles in diverse aspects of adipocyte biology including lipid 637 
biosynthesis and lipid storage (Evans, Barish and Wang, 2004). Activation of PPARγ is 638 
essential for the differentiation of resident preadipocytes and the conversion of mesenchymal 639 
progenitors to preadipocytes in white adipose tissues (Takada, Kouzmenko and Kato, 2009). 640 
Pharmaceutical drugs such as anti-diabetic thiazolidinediones as well as environmental 641 
chemicals such as the organotin compounds tributyltin (TBT) and triphenyltin (TPT) (Grun, 642 



Watanabe, Zamanian et al., 2006,Kanayama, Kobayashi, Mamiya et al., 2005) act as 643 
obesogens by stimulating adipogenesis in a PPARγ-dependent manner . Since many 644 
agrochemicals have already been found to bind and activate PPARγ, it will be worthwhile to 645 
test all widely used agrochemicals for their ability to target PPARγ and act as bona fide 646 
obesogens, in vivo.  647 

 648 
 649 

4.5 Agrochemicals might exert obesogenic effects by affecting metabolic homeostasis 650 
through disturbing the thyroid hormone pathwayAffect metabolic homeostasis by 651 
disturbing the thyroid hormone pathway 652 

Another mechanism through which obesogens could interfere with metabolic 653 
homeostasis is by altering the expression of hormones that regulate overall energy 654 
expenditure. Obesogens might change the balance between energy storage and consumption 655 
thereby leading to obesity. Thyroid hormone (triiodothyronine, T3) exerts widespread effects 656 
on carbohydrate, lipid and protein metabolism and is tightly associated with the basal 657 
metabolic rate (Mendoza and Hollenberg, 2017). It is essential to maintain thyroid function 658 
and thyroid hormone action within normal physiological limits to correctly regulate basal 659 
metabolic rate and thermogenesis. Increased activity of the thyroid pathway could accelerate 660 
metabolism leading to weight loss, whereas decreased thyroid activity could produce weight 661 
gain (Rotondi, Leporati, La Manna et al., 2009,Reinehr, 2010). Environmental chemicals 662 
might disrupt thyroid hormone signaling at many different levels, including the central 663 
regulatory system in the hypothalamus and pituitary, thyroid hormone biosynthesis and 664 
release from the thyroid gland, activity of deiodinases, transport in the blood, metabolism, 665 
and thyroid hormone action on nuclear receptors in target cells (Preau, Fini, Morvan-Dubois 666 
et al., 2015). There is considerable evidence from animal and human studies establishing 667 
relationships between EDC exposures and thyroid disruption. Most of these considered 668 
polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), perfluoroalkyl 669 
substances (PFASs), phthalates, BPA, and perchlorate (Zoeller, 2010). Many of these 670 
chemicals have also been shown to promote a propensity for obesity and metabolic syndrome. 671 
Thus, disrupting the thyroid signaling pathway is a plausible mechanism through which 672 
obesogens might contribute to obesity. Usually, influences on metabolic homeostasis through 673 
the thyroid signaling pathway are due to direct chemical exposure.Usually, the influence on 674 
metabolic homeostasis through thyroid signaling pathway is due to the direct exposure of 675 
chemicals.  676 

A broad range of human and animal studies documented that agrochemicals could 677 
interfere with the normal function of the thyroid endocrine system (Requena, Lopez-Villen, 678 
Hernandez et al., 2019). An association between the use of organochlorine pesticides and risk 679 
of hypothyroidism and hyperthyroidism has been established among women in Iowa and 680 
North Carolina enrolled in the Agricultural Health Study in 1993-1997 (Goldner, Sandler, Yu 681 
et al., 2010). Animal studies indicated that in utero exposure to pesticides such as DDT, DDE 682 
and chlorpyrifos-methyl may affect thyroid hormone status in offspring (Luo, Pu, Tian et al., 683 
2017,Jeong, Kim, Kang et al., 2006). Mechanistic studies also supported the disruptive 684 
effects of agrochemicals on thyroid function. The hypothalamus–pituitary–thyroid (HPT) axis 685 
determines systemic thyroid hormone levels (Ortiga-Carvalho, Chiamolera, Pazos-Moura et 686 
al., 2016). Acetochlor was found to alter the mRNA expression of HPT axis-related genes 687 
and changed circulating thyroid hormone levels in zebrafish larvae, (Yang, Hu, Li et al., 688 
2016,Xu, Sun, Niu et al., 2019). Most activity of T3 is mediated by its nuclear receptors, 689 
thyroid hormone receptor alpha (TRα) and beta (TRβ) which require heterodimerization with 690 
RXRs to bind DNA and regulate the expression of target genes (Yen, 2001). A GH3-691 
luciferase reporter gene assay was used to investigate the activities of 21 pesticides towards 692 



TRs. Among the tested 5 of 21 pesticides, 5 of them (procymidone, imidacloprid, atrazine, 693 
fluroxypyr, mancozeb) had agonistic effects, (procymidone, imidacloprid, atrazine, fluroxypyr, 694 
mancozeb), whereas 11 pesticides (butachlor, beta-cypermethrin, fenobucarb, cyhalothrin, theta-695 
cypermethrin, bifenthrin, carbaryl, pymetrozine, pendimethalin, metolcarb, and acetochlor) 696 
inhibited luciferase activity induced by T3 to varying degrees, demonstrating their 697 
antagonistic activity activities (Xiang, Han, Yao et al., 2017). Xiang et al. also found that 13 698 
pesticides bound were shown to bind directly to TR as measured by surface plasmon 699 
resonance (SPR) biosensors (Xiang et al., 2017). Co-exposure of mice to the dithiocarbamate 700 
fungicide, mancozeb and the neonicotinoid insecticide, imidacloprid during lactation 701 
decreased plasma T3 levels and molecular dynamics simulations predicted that both of these 702 
chemicals might compete with T3 for binding to TRs (Bhaskar and Mohanty, 2014). Taken 703 
together, these studies established strong links between agrochemicals and disruption of 704 
thyroid signaling; however, possible obesogenic effects through this mechanism require 705 
further investigation.  706 

 707 
4.6 Agrochemicals might exert obesogenic effects by By affecting the gut microbiota 708 

The human gut is the natural host for a large diverse and dynamic microbial community 709 
comprising bacteria and fungi, which together constitute the gut microbiota. The potential 710 
role of the gut microbiota in the development of obesity and obesity-related metabolic 711 
disorders has attracted considerable attention in the last several decades (Turnbaugh, Backhed, 712 
Fulton et al., 2008,Turnbaugh, Hamady, Yatsunenko et al., 2009,Zhao, 2013,Snedeker and 713 
Hay, 2012). Mechanistic studies indicated that the gut microbiota play a vital role in the 714 
development of obesity as they can influence energy utilization from the diet and produce 715 
microbiota-derived metabolites that regulate host metabolism and appetite (Turnbaugh and 716 
Gordon, 2009,Chen and Devaraj, 2018). The composition of the gut microbiota is highly 717 
dynamic and can be altered rapidly and substantially by diet and other environmental factors. 718 
Usually, the gut microbiota might beis affected by the direct chemical exposure of chemicals. 719 
Consumption of contaminated foods represents the major sources of human exposure to 720 
agrochemicals and this can lead to direct interactions between agrochemicals and the gut 721 
microbiota. Numerous studies showed that agrochemicals could affect the composition and 722 
function of gut microbiota and played an important role in agrochemical-induced toxicity 723 
(Joly Condette, Khorsi-Cauet, Morliere et al., 2014,Yuan, Pan, Jin et al., 2019,Mao, 724 
Manservisi, Panzacchi et al., 2018).  725 

Emerging evidence supports the involvement of the gut microbiota in agrochemical-726 
induced obesity. In a human cross-sectional study, levels of Methanobacteriales in the gut 727 
were associated with higher body weight and waist circumference and it was already known 728 
that these bacteria are linked to obesity (Lee, Lee, Lee et al., 2011). (Lee, Lee, Lee et al., 729 
2011). Serum organochlorine pesticides (cis-nonachlor, oxychlordane and trans-nonachlor) 730 
levels were also positively correlated with levels of Methanobacteriales. This supports a 731 
possible link among organochlorine pesticide levels, gut Methanobacteriales levels, and 732 
obesity in the general population. Some animal studies also established potentially causal 733 
links among agrochemical levels, composition of the gut microbiota and obesity. 734 
Chlorpyrifos disrupted gut microbial homeostasis and increased lipopolysaccharide entry into 735 
the body leading to low-grade systemic inflammation (Liang, Zhan, Liu et al., 2019). Mice 736 
given this chlorpyrifos-altered microbiota gained more white adipose tissue and had lower 737 
insulin sensitivity, supporting a link between the microbiota and obesity-related diseases 738 
(Liang et al., 2019). Chlorpyrifos exposure also significantly altered the composition of 739 
bacteria previously associated with obese and diabetic phenotypes in gut microbiome of rats 740 
(Fang et al., 2018). Chlorpyrifos exposure caused hepatic lipid metabolism disorders that 741 
were associated with gut oxidative stress and microbiota dysbiosis in zebrafish (Wang, Shen, 742 
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Zhou et al., 2019). Carbendazim induced gut microbiota dysbiosis and disturbed lipid 743 
metabolism, which promoted the intestinal absorption of excess triglycerides and caused 744 
multiple tissue inflammatory responses in mice (Jin, Zeng, Wang et al., 2018). Taken 745 
together, these studies showed that altering the composition of the gut microbiota is a 746 
possible mechanism through which agrochemicals can promote obesity. It will be important 747 
to establish a mechanistic understanding of how perturbation of gut microbiota by 748 
agrochemicals ultimately leads to obesity in humans as well as to evaluate agrochemicals in 749 
widespread use for these effects. 750 

 751 
 752 

4.7 Epigenetic programming and transgenerational effects of agrochemicals 753 
Previous studies have demonstrated that genetic differences such as single 754 

polynucleotide polymorphisms in a variety of genes may explain why some people are more 755 
likely to become obese (Locke, Kahali, Berndt et al., 2015). However, it is inconceivable that 756 
the rapid increase in the rate of obesity over the past decades in the U.S. and other countries 757 
is due to the changes in human genetics. Moreover, it was estimated that the possible 758 
spectrum of genetic changes might explain only 20% of the incidence of obesity (Locke et al., 759 
2015). This means that environmental and lifestyle factors may must play key roles in the 760 
obesity pandemic. Epigenetic modification refers to heritable changes that modulate how the 761 
genome is expressed, but that do not involve altering the underlying DNA sequence. 762 
Epigenetic changes are natural occurrences but these can also be influenced by dietary and 763 
environmental factors (Skinner, 2015). Epigenetic modifications include methylation of 764 
cytosine residues on DNA, post-translational modification of histones, histone retention, 765 
chromatin remodeling and altered non-coding RNA expression (Whitelaw and Whitelaw, 766 
2008). Epigenetic processes can affect patterns of gene expression by directly influencing 767 
DNA accessibility and/or by regulating chromatin compaction (Nilsson, Sadler-Riggleman 768 
and Skinner, 2018).  769 

Epigenetic modifications acting on somatic tissues typically only influence the 770 
physiology of the exposed individual, changing the risk of disease development later in life. 771 
This might partly explain the developmental origins of disease (Burdge, Hanson, Slater-772 
Jefferies et al., 2007). However, in some cases environmental factors alter the epigenetic 773 
programming of germ cells (sperm or egg) and phenotypes can appear in future generations 774 
without further direct exposure. This can lead to epigenetic transgenerational inheritance 775 
(Skinner, 2011). Therefore, epigenetic changes might be a plausible explanation for the 776 
pandemic of obesity and related diseases that cannot be fully accounted for by genetic 777 
variations and lifestyle factors.  778 

Environmental factor-induced transgenerational inheritance of pathologies and 779 
phenotypic variations have been found in different species (Nilsson et al., 2018). Many 780 
studies showed that EDC exposure can result in increased disease susceptibility later in life 781 
and in subsequent generations (Anway and Skinner, 2006,Uzumcu, Zama and Oruc, 782 
2012,Skinner, Manikkam and Guerrero-Bosagna, 2011,Rissman and Adli, 2014,Ho, Johnson, 783 
Tarapore et al., 2012,Skinner and Anway, 2005,Guerrero-Bosagna, Weeks and Skinner, 784 
2014). A number of studies revealed that pesticides such as vinclozolin (Nilsson et al., 785 
2018,Beck, Sadler-Riggleman and Skinner, 2017,Anway, Cupp, Uzumcu et al., 2005), 786 
permethrin, methoxychlor (Manikkam, Haque, Guerrero-Bosagna et al., 2014), DDT 787 
(Skinner, Ben Maamar, Sadler-Riggleman et al., 2018,Ben Maamar, Nilsson, Sadler-788 
Riggleman et al., 2019), atrazine (McBirney, King, Pappalardo et al., 2017,Hao, Gely-Pernot, 789 
Kervarrec et al., 2016) and the insect repellant diethyltoluamide, (Manikkam, Tracey, 790 
Guerrero-Bosagna et al., 2012) promoted transgenerational inheritance of disease 791 
susceptibility and sperm epimutations. Transgenerational disease pathologies related to 792 



pesticide exposure included effects on the testis (King et al., 2019,Skinner et al., 2013,Anway, 793 
Leathers and Skinner, 2006), prostate (King et al., 2019,Anway et al., 2006), ovaries (King et 794 
al., 2019,Skinner et al., 2013,Manikkam et al., 2014,Manikkam et al., 2012), kidneys (King et 795 
al., 2019,Skinner et al., 2013,Manikkam et al., 2014,Anway et al., 2006), immune system 796 
(Anway et al., 2006), behavior (McBirney et al., 2017) and tumor development (Anway et al., 797 
2006). 798 

Exposure to obesogenic chemicals during critical periods of development might alter 799 
epigenetic programming processes that predispose a stem cell or progenitor cell toward a 800 
particular lineage such as the adipocyte. Epigenetic changes caused by exposures to EDCs 801 
such as TBT and DES may lead to obesity in subsequent generations (Chamorro-Garcia, 802 
Diaz-Castillo, Shoucri et al., 2017,Chamorro-Garcia and Blumberg, 2014,Stel and Legler, 803 
2015,van Dijk, Tellam, Morrison et al., 2015). Skinner and colleagues showed that ancestral 804 
exposures of F0 rat dams to DDT led to a striking increase in the incidence of obesity in both 805 
F3 males and females (King et al., 2019,Skinner et al., 2013). In a similarly designed 806 
transgenerational experiment, they found that F0 exposure to glyphosate led to increased 807 
obesity rates in subsequent generations (Kubsad et al., 2019). Exposure to vinclozolin 808 
induced epigenetic transgenerational inheritance of increased obesity rates in F3 generation 809 
female rats (Nilsson et al., 2018). However, the molecular mechanisms underlying how these 810 
chemicals induce epigenetic changes and how these changes are transmitted to future 811 
generations to produce obesity and other adverse outcomes remains unclear. Many different 812 
mechanisms have been proposed for how epigenetic changes can affect subsequent disease 813 
outcomes including modulating methyl donor availability and altering the expression of 814 
enzymes that act as epigenetic readers, writers and erasers (Walker, 2016). However, at the 815 
time of this writing no convincing evidence exists that precisely establishes the molecular 816 
mechanisms through which epigenetic transgenerational inheritance of any phenotype, 817 
including obesity occurs. 818 

 819 
 820 

5. Conclusions and future directions 821 
There is compelling evidence to suggest that widespread exposure to agrochemicals are 822 

is an important factor contributing to the human obesity pandemic in the human population. 823 
For example, DDE has been found to be a probable human obesogen based on multiple 824 
studies in vitro and in vivo using animal models and on longitudinal studies in humans, with 825 
a significant annual cost to the European Union (Legler, Fletcher, Govarts et al., 2015). DDE 826 
is thought to work as an anti-androgen and there are many other agrochemicals that exhibit 827 
anti-androgenic effects in vitro and in vivo (Orton et al., 2012,Orton, Rosivatz, Scholze et al., 828 
2011). Therefore, it will be very important to establish the molecular mechanisms through 829 
which DDT/DDE act to influence obesity and to conduct the same sorts of cell-based, 830 
animal-based and longitudinal cohort studies in humans with other agrochemicals. We need 831 
to understand both the effects of perinatal exposure to obesogenic agrochemicals as well as 832 
the effects of exposures during other times across the life course.  833 

There are many possible modes of action for how agrochemicals can promote obesity as 834 
discussed above. What is missing is a systematic effort to understand which of the many 835 
agrochemicals in current use can lead to adverse health outcomes, including obesity and 836 
through which molecular pathways they act to exert these effects. Current practice in 837 
toxicological research is becoming focused on “adverse outcome pathways” and “molecular 838 
initiating events”. These are useful paradigms for simple systems, but it is abundantly clear 839 
that agrochemicals can act through multiple pathways. These cellular signaling pathways 840 
interact with each other in complex ways. It is likely that individual chemicals act at multiple 841 
levels on metabolic homeostasis. Moreover, humans are typically exposed to poorly defined 842 



mixtures of chemicals that may interact in combinatorial ways that can be additive or 843 
inhibitory. Typical agrochemicals are also applied as mixtures that include so-called “inert 844 
ingredients” that may not be inert and whose composition and levels are not required to be 845 
reported. Much remains undiscovered about the possible molecular mechanisms for 846 
agrochemicals and their relationship with the obesity epidemic.  847 

Epigenetic changes may underlie the transgenerational effects of early life obesogen 848 
exposure; however, we know very little about the operational molecular mechanisms and 849 
even less about how the effects are transmitted across generations. The contributions of the 850 
gut microbiome to human health and disease are becoming widely appreciated, yet the effects 851 
of agrochemicals on the microbiome are only very poorly understood. Many more 852 
epidemiological and molecular studies will be required to clarify these issues.   853 
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Table 1. Literature summarizing Summary of the literatures about the associations between 1695 
agrochemicals and adult obesity. 1696 
References Names Exposure levels 

(serum level) 

Population 

(number of 

subjects) 

Outcomes 

 

(Dusanov et 

al. 2018) 

HCB; 

β-HCH; 

p,p’-DDT; 
DDE 

 

HCB: 

66.8-101.2 pg/mL;  

β-HCH:  
22.9-47.6 pg/mL; 

p,p’-DDT:  

11.3-20 pg/mL; 
DDE:  

315-679 pg/mL; 

Norway, adult, 

(N=431) 

 

Increased odds of metabolic 

syndrome. 

(La Merrill 

et al. 2018) 

DDE 

 

170-570 

ng/g lipid 
 

Sweden, 70 years 

old (N = 988) 

Increased BMI. 

(Jaacks et 

al. 2016) 

p,p'-DDT  Mean level:  

0.0158 ng/mL  
 

USA, pregnant 

women, 18-40 years 
old (N=218)   

Gestational  weight  gain. 

(Arrebola et 

al. 2014) 

HCB; 

DDE; 

β-HCH 

Mean level: 

HCB: 32.81 ng/g 

lipid; 
β-HCH: 19.60ng/g 

lipid; 
DDE: 183.99ng/g 

lipid; 

Spain, adults 

(N=298) 

 
 

Increased BMI and levels of 

total cholesterol, HDL, LDL, 

and total  serum  lipids. 
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(Langer et 

al. 2014) 

DDE; 

HCB 
 

DDE:  

54-22382 ng/g 
lipid; 

HCB:  

22-17928 ng/g 
lipid 

Slovakia, adults, 

(N=2053) 

Increased BMI and increased 

levels of cholesterol and 
triglyceride. 

(Raafat et 

al. 2012) 

Malathion 

 

Mean level: 

0.0746 mg/L 

Egypt, 39±12 years 

old (N=98) 

Increased waist circumference. 

(Lee et al. 

2012) 

DDE Mean level: 

2654  ng/g  lipid 

Sweden, 70 years 

old (N=970)   

Increased odds ratios of 

abdominal  obesity. 

(Lee et al. 

2012) 

DDE 

 

11-23271 pg/mL  Sweden, 70 years 

old people  

(N=970) 

Increased existence or 

development of  abdominal 

obesity. 

(Dirinck et 

al. 2011) 

  β-HCH 

 

1.9-200 ng/g lipid Belgium, ≥18 years 

(N=145) 

Increased BMI, waist, fat mass 

percentage, and total and 

subcutaneous abdominal 
adipose tissue. 

(Bachelet et 

al. 2011) 

  DDE 

 

Mean level: 

85 ng/g lipid 
French, women 

(N=  1055) 

Increased BMI. 

(Ibarluzea et 

al. 2011) 

DDE;  

β-HCH; 
HCB 

Mean level:  

DDE:  
110.0 ng/g lipid;  

β-HCH:  

19.1 ng/g lipid;  

HCB:  

33.5 ng/g lipid  

Spain, 

pregnant  women 

(N=1259) 

 

Increased BMI. 

(Lee et al. 

2011) 

HCB; 

DDE; 

 

Not supplied USA, adults, 

(N=5115) 

 

Increased BMI, triglycerides, 

HOMA-IR, lower HDL-

cholesterol and triglycerides.  
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 1725 
Table 2. Literature summarizing Summary of the literatures about the associations between 1726 
agrochemicals and the development of early-onset obesity. 1727 
 1728 
References Names The age of the 

children 

Population 

(number of 

subjects) 

Outcomes 

(Whether showed gender-specific 

effects) 

(Cabrera-

Rodriguez et 

al. 2019) 

DDE 

 

Infants 

 

Spain 

(N=447) 

Increased neonatal birth weight, 

with a special emphasis on girls. 

(Showed gender-specific effects) 

(Warner et 

al. 2017) 

DDT; 

DDE 

12 years old USA 

(N=240) 

Increased BMI for boys but not 

girls.  

(Showed gender-specific effects) 

(Xu et al. 

2017) 

o,p'-DDD; 

p,p'-DDT 

Infants 

 

Chinese 

(N=120) 

Increased neonatal  birth  weight. 

(Vafeiadi et 

al. 2015) 

DDE;  

HCB  

4 years old 

 

Greece  

(N = 689). 

Increased BMI,  obesity, 

abdominal  obesity.   
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(Agay-Shay 

et al. 2015) 

HCB; 

β-HCH; 
DDE 

7  years old 

 

Spain 

(N=657) 

Increased BMI and overweight 

risk. 
 

(Heggeseth 
et al. 2015) 

  o,p’-
DDT; 

p,p’-DDT;  

DDE 

2-9 years old USA 
(N=415) 

Increased BMI among boys but not 
girls.   

(Showed gender-specific effects) 

(Iszatt et al. 

2015) 

DDE 2 years old Norway 

(N=1864) 

Increased  growth. 

(Valvi et al. 

2014) 

DDE; 

HCB 

6 and 14 months old Spain 

(N=1285) 

Increased  growth and overweight.   

 

(Warner et 

al. 2014) 

o,p′-DDT;  

p,p′-DDT; 

DDE 

9 years old USA 

(N=261) 

Increased BMI and waist 

circumference in boys but not in 

girls. 

(Showed gender-specific effects) 

(Delvaux et 

al. 2014) 
DDE 

 

7 to 9 years old 

 

Belgium 

(N=114) 

 

  Increased  waist circumference 

and waist/height ratio in girls but 

not in boys. 

(Showed gender-specific effects) 

(Tang-

Peronard et 

al. 2014) 

DDE 5  and  7  years  old Denmark   

(N=656) 

 

Increased waist circumference in 

girls with overweight mothers but 

not in boys. 
(Showed gender-specific effects) 

(Valvi et al. 
2012) 

DDE; 
DDT; 

6.5 years old 
 

Spain 
(N=344) 

Increased overweight in boys but 
not in girls.  

(Showed gender-specific effects) 

(Mendez et 

al. 2011) 

DDE 6 and 14 months old Spain 

(N=657) 

Increased  weight and BMI.   

(Verhulst et 
al. 2009) 

DDE 1-3  years  old 
 

Belgium 
(N=138) 

Increased BMI.  

(Karmaus et 

al. 2009) 

DDE 20-50 years old 

 

USA 

(N=259) 

Increased weight  and BMI.   

(Smink et al. 
2008) 

HCB 6 years old Spain 
(N=482) 

Increase in weight and BMI.   
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Table 3. Literature sSummary of the literatures of the animal studies about the relationship 1759 
between linking agrochemicals and obesity. 1760 
Reference Names Animal used Dose and exposure 

time 

Outcomes 

(Whether showed 

gender-specific effects) 

(King et al. 

2019) 

 

DDT Sprague Dawley 

rats 

25 mg/kg/day; F0 

females were 

administered on days 8 

to 14 of gestation. 

The F3 generation had 

significant increases in the 

incidence of obesity.  

(Kubsad et al. 
2019) 

Glyphosat
e  

Sprague Dawley 
rats 

25 mg/kg/day; F0 
females were 

administered on days 8 
to 14 of gestation. 

The transgenerational 
pathologies of obesity was 

observed.  

(Basaure et al. 

2019) 

CPF Male apoE4- 

mice   

2 mg/kg/day; 15 days. Increased body weight. 

(Xiao et al. 

2018) 

Permethri

n 

Male C57BL/6J 

mice 

50, 500, and 5000 

μg/kg/day; 12 weeks. 

Increased body weight, fat 

mass, and increased TG 

and TC.  

(Uchendu et 
al. 2018) 

CPF; 
deltameth

rin  

Male Wistar rats CPF: 4.75 mg/ kg/day; 
deltamethrin: 6.25 

mg/kg/day; 120 days. 

Increased levels of TG, 
TC, LDL, and VLDL, and 

decreased HDL level.  

(Fang et al. 
2018) 

CPF Male Wistar rats 0.3 or 3.0 mg/kg/day; 9 
weeks. 

Increased bodyweight.  

(Nilsson et al. 

2018) 

Vinclozol

in 

Sprague Dawley 

rats 

100 mg/kg/day; F0 

females were 

F3 generation rats showed 

transgenerational 



administered on days 8 

to 14 of gestation. 

increased obesity rate in 

females.  
(Showed gender-specific 

effects) 

(Sun et al. 
2017) 

Imidaclop
rid 

Female C57BL/6J 
mice 

0.06, 0.6, or 6 
mg/kg/day; 12 weeks. 

Increased high fat diet-
induced body weight gain 

and adiposity.  

(Sun et al. 

2016) 

Imidaclop

rid 

Male C57BL/6J 

mice 

0.06, 0.6, or 6 

mg/kg/day; 12 weeks. 

Increased high fat diet-

induced body weight gain 

and adiposity. 

(Peris-
Sampedro et 

al. 2015a) 

 

CPF Male apoE 3 mice 2mg/kg/day; 13 weeks. Increased body weight. 

(Peris-

Sampedro et 

al. 2015b) 

CPF apoE 3 mice 2 mg/kg /day; 8 weeks. Increased body weight. 

(Ishikawa et 

al. 2015) 

DDT Obese Sprague 

Dawley rats 

5.60 μg /kg/day; 4 

weeks. 

Increased postprandial 

non-esterified fatty acids 

and decreased body 
temperature.  

(La Merrill et 

al. 2014) 

DDT C57BL/6J mice  1.7 mg/kg/day; From 

gestational day 11.5 to 
postnatal day 5. 

Reduced core body 

temperature, impaired 
cold tolerance, decreased 

energy expenditure, and 

produced a transient 

early-life increase in body 

fat in female offspring.  
(Showed gender-specific 

effects) 

(Howell et al. 
2014) 

DDE Male C57BL/6H 
mice 

0.4 mg/kg/day or 2.0 
mg/kg/day; 5 days. 

Hyperglycemic effect.  

(Bhaskar and 

Mohanty 
2014) 

Mancoze

b; 
Imidaclop

rid 

Swiss albino mice imidacloprid: 131 

mg/kg/day; mancozeb: 
8000 mg/kg/day. 

Lactating mothers were 

exposed to the 
pesticides from PND1 

to natural weaning 

(PND 28). 

Increased body weight. 

(Skinner et al. 

2013) 

DDT Sprague Dawley 

rats 

50 or 25 mg/kg/day; F0 

females were 

administered on days 8 
to 14 of gestation. 

F3 generation developed 

obesity.  

(Li et al. 2012) TFZ CD1 mice 0.1, 1.0, or 10.0 µM; 

During breeding and 

throughout pregnancy. 

Increased adipose depot 

weight.  

(Acker and 

Nogueira 

2012) 

Chlorpyri

fos 

Male Wistar rats 50 mg /kg; A single 

dose. 

Increased TC, LDL levels 

and caused hyperglycemia 

and hyperlipidemia. 

(Kalender et 

al. 2010) 

Malathion Male Wistar rats 27 mg/kg/day; 4 weeks. Increased TC. 

(Lim et al. 

2009) 

Atrazine Male Sprague 

Dawley rats 

30 or 300 mg/kg/day; 5 

months. 

Increased body weight 

and intra-abdominal fat, 

but decreased basal 
metabolic rate.  

(Lassiter et al. Parathion Sprague Dawley 0.1 or 0.2 mg/kg/day; Increased body weight 



2008) neonatal rats postnatal days 1-4. and impaired fat 

metabolism. Females 
showed greater sensitivity.  

(Showed gender-specific 

effects) 

(Lassiter and 

Brimijoin 

2008) 

CPF Long–Evans rats 2.5 mg/kg/day; From 

gestational day 7 

through the end of 
lactation on postnatal 

day 21. 

Increased body weight in 

males.  

(Showed gender-specific 
effects) 

(Meggs and 
Brewer 2007) 

CPF Female Long-
Evans rats  

5 mg/kg/day; 4 months. Increased body weight. 

 1761 
Note: apolipoprotein E (apoE), triglyceride (TG), total cholesterol (TC), high-density 1762 
lipoprotein (HDL), low-density lipoprotein-cholesterol (LDL), very low-density lipoprotein-1763 
cholesterol (VLDL), 1764 
  1765 
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Table 4. The pPossible mechanisms though which for agrochemicals may leading  to obesity 1802 
and example the chemicals providinge evidence to support these mechanisms.. 1803 
Possible mechanisms Agrochemicals provide evidence for the 

mechanism 

Promote the commitment phase of adipogenesis DDT, chlorpyrifos, carbofuran, zoxamide, 

spirodiclofen, fludioxonil and quinoxyfen, 

triflumizole  

Induce adipocyte differentiation  DDT, DDE, quizalofop-p-ethyl, diazinon, 

pyraclostrobin, imidacloprid, fipronil, permethrin, 

zoxamide, spirodiclofen, quinoxyfen, tebupirimfos, 

forchlorfenuron, flusilazole, acetamiprid, 

pymoetrozine, triflumizole, quinoxyfen, 
fludioxonil, deltamethrin, endrin, tolylfluanid, 

triphenyltin hydroxide, lactofen, halosulfuron-

methyl, cyfluthrin, flufenacet, isoxaflutole, 



piperonyl-butoxide, tebufenozide  

Mediated by sex steroid hormone dysregulation  Permethrin, linuron, prochloraz, procymidone, 
tebuconazole, vinclozolin, DDE, endosulfan, 

dimethoate, deltamethrin, chlorpyrifos, 

methoxychlor, DDT, terbuthylazine, propiconazole, 
prothioconazole, cypermethrin, malathion 

Affecting metabolic homeostasis through PPARs Dicamba, diclofop, diclofop-methyl, pyrethrins, 

2,4-dichlorophenoxyacetic acid, DDT, diclofop-
methyl, pyrethrins, imazalil, diflubenzuron, 

chlorfluazuron, flucycloxuron, noviflumuron, 

flufenoxuron, quizalofop-p-ethyl, spirodiclofen, 

zoxamide, triflumizole, dithiocarbamate, mancozeb  

Affecting metabolic homeostasis through 
disturbing the thyroid hormone pathway 

DDT, DDE, chlorpyrifos-methyl, acetochlor, 
procymidone, imidacloprid, atrazine, fluroxypyr, 

mancozeb, butachlor, beta-cypermethrin, 

fenobucarb, cyhalothrin, theta-cypermethrin, 
bifenthrin, carbaryl, pymetrozine, pendimethalin, 

metolcarb,  

Affecting the gut microbiota  Cis-nonachlor, oxychlordane, trans-nonachlor, 
chlorpyrifos, carbendazim,  

Epigenetic programming and transgenerational 

effects  

DDT, glyphosate, vinclozolin  
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Highlights 

1. Positive associations exist between agrochemical exposures and adult obesity. 

2. Prenatal exposure to agrochemicals could lead to childhood obesity. 

3. Numerous possible mechanisms underlie the obesogenic effects of agrochemicals. 

4. Nuclear receptors likely mediate many obesogenic effects of agrochemicals. 

5. Epigenetics and the gut microbiome likely play key roles in the obesogenic effect of agrochemicals. 

 

*Highlights (for review)




