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Abstract

Two-process theories of human cognition, that state that
learning can occur by both associative and rule-based
processes, are currently popular. We report two
experiments which support such a view. Both employed a
set of six stimuli which varied along a luminance
dimension, and followed the same general design. That is,
participants were trained to discriminate between the two
stimuli in the middle of this set, before being tested on the
whole set. In Experiment I, the length of training was
varied.  Following  short  training,  participants’
performance on test exhibited a peak-shifi, and therefore
may be explained in associative terms. After longer
training, however, their behavior was consistent with rule-
based learning. In Experiment 11, the contingency during
the training phase was varied. Participants in the ‘Full
Contingency' group performed in a manner consistent with
rule-learning, while the ‘Reduced Contingency’ condition
produced a peak-shift. These results are discussed in terms
of McLaren, Green & Mackintosh's (1994) version of the
associative/rule-based distinction,

Introduction

The idea that human cognition comprises both associative
and rule-based processes has a long history, that stretches at
least as far back as William James. Moreover, its current
popularity is illustrated by the volume of literature devoted
to the subject (e.g. the entire issue of Cognition 65). One
recent incarnation of this ‘hybrid’ view can be found in
McLaren, Green & Mackintosh (1994). Their two process
model of human learning comprises: (i) an associative
system that is sensitive to the statistical structure —resent in
the surface features of the environment, and operates through
the establishment and alteration of connections between
representations; and (ii) a ‘cognitive’ process capable of rule
abstraction, whose behavior resembles that of a symbolic
logic machine.

There already exists a considerable body of evidence in
support of such a dichotomy (see Shanks & St John, 1994,
Shanks, 1995; and Sloman, 1996 for reviews). Briefly, in
some categorization experiments participants' performance
on novel transfer items is dependent on their similarity to
the training exemplars (e.g. Perruchet, 1994), which
suggests that the knowledge acquired is encoded in terms of
surface features. Alternatively, under different conditions, the
results from transfer tests and verbal reports are more
consistent with participants having abstracted rules (e.g.
Regehr & Brooks, 1993). Furthermore, this dissociation can
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be observed within the same experiment (e.g. Nosofsky,
Clark & Shin, 1989), with some participants responding on
the basis of similarity and others abstracting rules.

The aim of the research presented here was to further
investigate the viability of this associative/rule-based
distinction, and examine some of the conditions under which
each process could dominate performance. Like the previous
work described above, we differentiated between rule-based
and associative learning by examining how participants'
performance generalized to novel stimuli. To make this
more concrete, consider a set of stimuli that vary along a
hypothetical dimension, with a midpoint ‘d’. Further,
suppose that we create a category structure, such that all
those stimuli to the left of d form one group, while those to
the right form another; and train participants on one example
from each category -namely Ryp,y and Loy An
examination of participants’ performance, when they are
subsequently required to categorise stimuli spanning the
entire dimension, should then allow these two forms of
learning to be distinguished.

If their learning is rule-based, then we might expect them
to abstract the rule: "greater than d respond category one, less
than d respond category two'. As a result, unless their
performance is at asymptote, their accuracy may well be
dependent on the stimulus’ distance from the category
boundary, with more extreme stimuli being classified more
accurately. Alternatively, if their learning is just encoded in
terms of surface-features, we might expect performance on
the transfer stimuli to be dominated by their similarity to
the training examples, and to exhibit a pattern known as
‘peak-shift’. That is, as we pass along the dimension from
the category boundary, we might expect accuracy to increase
to a maximum and then drop off, with the peak being
positioned further along the dimension than the training
stimuli -hence the term peak-shift. Such a pattern of results
was first demonstrated by Hanson (1959), in pigeons trained
on a wavelength discrimination, and may be explained in
associative terms. '

Consider the simple associative network illustrated in
Figure 1B. The input layer comprises a bank of feature
detectors, the pattern of activation across which represents
the current stimulus being presented to the network. The
activation of each of these detectors is a Gaussian function
of stimulus’ position on the dimension, with each unit

! The associative explanation offered here is an extension of the
work of Spence (1932), Blough (1975) and Wills & Mackintosh
(1998), respectively.
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responding maximally to a different point on the dimension
(see Figure 1A). The output layer comprises two units,
corresponding to the two categories, and the two layers are
fully interconnected. During training, on each trial either
Rgaw OF Ligam 1s presented as input to the network, and the
activation target for the appropriate category unit is set (o
one, while that for the other unit is zero. The weights are
then updated using the delta-rule (e.g. McClelland &
Rumelhart, 1985).2

1
L Train RTrain

Figure 1: (A): The activation function for feature unit X.
(B): A delta-rule network, with feature units on top and
category units below. (C): Category units’ activations on
test.

On test, the network’s output activations, in response to
stimuli from different points on the dimension, can be
measured. The results of just such a simulation are
illustrated in Figure 1C. It can be seen that, if participants’
responses are dependent on the difference in activation
between the two category units, then they will be most
accurate at positions outside the training examples, because
that is where the difference between the curves is the
greatest.” Thus, peak-shift can be understood in associative
terms.

The differing predictions of associative and simple rule-
based accounts are illustrated in Figure 2. Only half the
dimension is illustrated, because the pattern should be

? This may be formally expressed: dwe =S a, (t.- a.) where
‘dwe' is the change in the weight connecting feature unit ‘F’ to
category unit *C’', ‘a.’ is the activation of category unit ¢ (which
is equal to the weighted sum of the activation from the feature
units), ‘a;’ is the activation of feature unit ‘F’, ‘t.’ is the
activation target for category unit ‘C’, and S is a constant that
determines the rate of learning.

*In fact, a peak-shift may also be obtained if probability of
classifying a stimulus into a particular category is dependent
upon the ratio of that categories’ activation to the total output
activation, provided that noise is added to the system.
Alternatively, if the output activations are first transformed
using an exponential function, then a ratio rule will again
produce the desired pattern. In addition, a ‘winner-take-all’
decision network (e.g. see Jones, Wills & McLaren, 1998)
acting on these activations can also produce a peak-shift.
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symmetrical either side of the category boundary. As shown,
a monotonically increasing trend indicates rule-based
learning, and a peak-shift is diagnostic of associatively based
performance. Thus, we have a way of distinguishing
between rule-based and associative learning.

Accuracy

Figure 2: The predictions of associative (open squares) and
simple rule-based (filled circles) accounts. T refers to
training stimuli, while N and D denote test stimuli that are
further out on the dimension.

Wills & Mackintosh (1998, Experiments 3a & 3b) have
already performed experiments, on people, following the
general design outlined above. For stimuli, they employed
green rectangles that varied along a luminance dimension. In
total, six different shades of green were used, divided equally
between two categories -‘dark’ (D) and ‘light’ (L). When
arranged in order of increasing brightness these stimuli can
be referred to as Dysrants D}jEAR' Dipams Lrrams Lyear and
Lpistants respectively (see Figure 3). During training, on
cach trial participants were either presented with Dygay or
Ligam, Which they had to classify using one of two keys,
before  receiving feedback. Having learned this
discrimination, they were transferred to a test phase. On each
trial of this, any one of the six stimuli could appear and
participants were again required to categorize them, using the
same two keys. No feedback was given.

HEE

Figure 3: From left to right: Dpisrants Dnears Drrams Lras
Lyear and Lpsrant: respectively.

Wills & Mackintosh found that, during the test phase,
participants responded more accurately to the ‘Distant’
stimuli than to the ‘Near’ ones, and were more accurate on
the ‘Near’ stimuli than on those presented in training. In
other words, moving along the dimension away from the
category boundary, participants’ performance improved
monotonically. This, in conjunction with the fact that all
the participants were able to verbalise a variant of the ‘bright
respond key one, dark respond key two’ rule, suggests that
their learning was rule-based. Wills & Mackintosh’s
procedure provides the basis for the two experiments reported
here.



Experiment I

The aim of the first experiment was to establish whether
varying the amount of training participants received would
determine whether associative or rule-based processes
dominated performance on test. According to McLaren,
Green & Mackintosh (1994), it might be expected that a
short training period would produce an associative pattern of
results, with rule-based performance only emerging after
greater experience of the contingencies. They argue that,
mitially, the stimuli-category associations will be too weak
to support rule abstraction; but that, as training progresses,
these traces will become sufficiently strong to enable the
‘cognitive” process to use them as the basis for the
development of rules.

In order to test this hypothesis, we employed a similar
method to Wills & Mackintosh. There was, however, at
least one important difference. That is, during both the
training and test phases, the green stimuli were only
presented on even numbered trials. On odd numbered trials,
participants were required to perform a filler task.
Specifically, they had to classify stimuli, that comprised a
set of colored icons (see Figure 4), using the same two keys.
Aside from the stimuli being different, the filler task was
identical to that involving the greens. The inclusion of this
additional task served to increase the difficulty of the initial
discrimination, with the purpose of increasing the likelihood
of obtaining an associative pattern of learning after short
training. Without the filler task the discrimination would
have been far easier, because the next green stimulus would
have appeared immediately after the previous one had
disappeared, allowing participants to compare them more
directly.

YO8 Y
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Figure 4: An example of an icon stimulus.

Given space constraints, and the fact that the results from
the filler task do not bear directly on the question under
investigation, details concerning the construction of the
filler stimuli, and participants performance on them, will
not be reported here. However, aside from making the
discrimination harder to learn, we do not believe that the
filler task affected the results for the greens, especially since
its stimuli were identically generated for both conditions.
Suffice to say that, their construction was identical to that in
Wills & Mackintosh’s Experiments 2a & 2b, and that the
results for the filler task do not substantially differ from
their findings.

The experiment comprised two conditions, namely,
‘Short’ and ‘Long’ training, which differed only in the
number of trials of discrimination training the participants
received. As already discussed, on the basis of McLaren,
Green & Mackintosh we might expect associative learning
to occur in the Short Training condition, with rule-based
learning being manifest by Long Training participants. If
this were the case, then we would expect the results for the
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former group to exhibit a peak-shift, compared to a
monotonically increasing trend for the latter. Therefore, if
these predictions are born out, performance on the Near and
Distant test stimuli should differ between the two
conditions, with Near being responded to more accurately
than Distant after short training and vice versa for long
training.

Method

Participants and Apparatus The participants were 58
Cambridge University undergraduates, whose ages ranged
between 18 and 35. They were randomly divided equally
between the two conditions, and did not receive payment for
their help. The experiment was run on a RISC PC 700
computer, situated in a quiet room. Illumination was
provided by a small desk lamp. The low light level was
employed because pilot work suggested that some
participants would be unable to discriminate between some
of the shades of green under normal illumination.

Stimuli Both types of stimuli occupied a rectangle
measuring 3.6 cm wide by 2.8 high, that was surrounded by
a thin grey border. For the greens this rectangle was entirely
filled in green. The luminance of these stimuli was
determined by the value of a computer parameter, that ranges
between 0 and 255. This was set to 50, 108, 137, 166, 195
and 253, for Dpsrants Dnears Drrame Lrame Lnear and
Liistants respectively. The filler stimuli comprised 12 icons
arranged in a 4 by 3 grid, within the rectangle. See Figure 4
for an example, and Wills & Mackintosh (1998),
Experiments 2a & 2b, for further details concerning their
construction.

Design In the Short Training condition, training lasted for
48 trials, compared to 96 for the Long Training group. The
order of stimulus presentation followed a pseudo-random
sequence, such that Ligay and Digan appeared 3 times
during every set of 12 trials and only on even numbered
trials. The test phase was identical for both conditions and
comprised 120 trials. On test, the greens appeared in a
random order, within the constraints that during every batch
of 24 trials each of the six stimuli had to appear twice and
only on even numbered trials. While the orders of
presentation were designed in batches, there was no actual
batching of the stimuli. In both training and test, filler
stimuli appeared on odd numbered trials. The key
assignments were counterbalanced, such that, for a random
half of the participants in each condition, the ‘X’ key
equalled ‘light’ and the ‘.’ key equalled ‘dark’. The remaining
participants had the mapping reversed.

Procedure Participants sat approximately Im away from
the computer monitor, which was positioned roughly at eye-
level. Some general instructions and ones specific to
training phase were explained by the experimenter, before he
left the room. Participants were informed that they would be
performing two unrelated categorization tasks and that the
computer would switch between the two on alternate trials.
They were told to use the feedback to help them learn which



key went with which stimulus. Participants initiated
training by pressing the Spacebar. On each trial, the
appropriate stimulus appeared in the centre of the screen,
and, after 3 sec, the words 'Please respond now’ appearcd
below it. Participants then had to respond using either the
*x’ or ." key, as quickly as possible, whilst avoiding errors.
If they pressed the wrong one of these two keys, then the
computer beeped. In addition, if they pressed a key other
than "x’ or *.", or had not responded within 5 secs of the
prompt’s onset, then the stimulus was replaced by error
messages. Respectively, these read: “You have pressed an
invalid key' and *You did not respond in time'. Key presses
prior to the appearance of the prompt were ignored. The next
trial followed immediately after the response.

At the end of training, the computer displayed a message
requesting the participants to find the experimenter, who
then explained the instructions for the test phase, before
again leaving the room. Participants were told to use
whatever they had leamed in training to classify the new
stimuli they would see. The test phase commenced at their
initiation. Test trials were identical to those in training,
except there was now no prompt. Participants were informed
that they could respond as soon as the stimulus appeared,
and were again asked to be as fast as possible, whilst
avoiding errors. No feedback, concerning the accuracy of
their responses, was given. Since there was no prompt, the
time-out occurred 5 sec after the beginning of the trial.

Following testing, participants again had to fetch the
experimenter, who administered a structured questionnaire.
This comprised a series of increasingly specific questions,
designed to determine what strategies the participants had
employed during the task and whether they could verbalise
the underlying rule.

Results and Discussion

During training, unsurprisingly, participants in the Long
Training condition responded significantly more accurately
than those in the Short Training group (means 71.7 and
555 % correct, respectively; t(56)=2.96, p<0.05). The
results for the test phase are shown in Figure 5. It can be
seen that the accuracy of the Long Training group follows a
monotonically increasing trend, while the means for the
Short Training condition exhibit a peak shift. As already
discussed, if our predictions are correct, then it is
performance on the Near and Distant stimuli that should
distinguish between the groups. Therefore, in order to assess
whether the group differences were significant, the mean
accuracy on Distant stimuli was subtracted from the value
for Near stimuli, for each participant, and a planned contrast
performed on the resulting scores. This demonstrated that the
two conditions did, indeed, significantly differ
(F(1,56)=5.03, p<0.05).

Given this, and in order to allow a more detailed
examination, the data from the two groups was then
analysed separately. Planned contrasts were used to compare
performance on Training and Near stimuli, and performance
on Near and Distant stimuli. Since the hypothesis we were
testing made clear the directions of the expected effects, these
contrasts were one-tailed. For the Short Training group, the
contrasts revealed that Near stimuli were responded to
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significantly more accurately than to both Training and
Distant ones (F(1,28)=8.05 and 3.29 respectively, one-tailed
p<0.05 for both). Therefore, the peak-shift was reliable.
With regards to the Long Training condition, accuracy on
Near stimuli was significant higher than that on Training
ones (F(1,28)=28.37, one-tailed p<0.01). However, while
participants responded more accurately to Distant stimuli
than to Near ones, this difference was only marginally
significant (F(1,28)=1.75, one-tailed p<0.10). Nevertheless,
the results for this condition are consistent with application
of arule, and clearly do not exhibit a peak-shift. Moreover,
when questioned, all the Long Training participants were
able to verbalise a variant of the underlying rule, as
compared to none in the Short Training group.

90 |
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Figure 5: Participants’ mean accuracy on test, for

Expeniment 1. Open squares=Short Training, Filled circles=
Long Training. T=Training, N=Near, D=Distant.

In summary, as predicted, the short training participants
produced a pattern of performance, on test, that is explicable
in associative terms. Following more lengthy exposure to
the contingencies, participants were able to abstract the
underlying rule, and their behavior was consistent with its
application.

Experiment Il

McLaren, Green & Mackintosh (1994) argue that as we
increase the complexity of the contingencies between
stimuli, so also we increase the amount of information that
needs to be stored in working memory in order for a rule to
be abstracted. Thus, as the difficulty of the to-be-learned
mappings is increased, so the likelihood that performance
will be associatively-based, rather than rule-based, increases.

The second experiment sought to test this prediction,
using the same rationale as the first. It comprised two
groups, namely ‘Full Contingency’ and ‘Reduced
Contingency’. The former was identical to the Long
Training condition in the first experiment, while the latter
differed only in that, in the training phase, the contingency
between the two green stimuli and their respective categories
was reduced. The was achieved by reversing the keys
assigned to Lygany and Digan on 25% of the training trials.
Participants were not told about this manipulation.

If McLaren et al.’s predictions proved accurate, we would
expect the Full Contingency condition to exhibit rule-based
performance, and the Reduced Contingency group to produce
a peak-shift. Finally, given that the Full Contingency group



was a straight replication of the Long Training condition,
and that in the previous experiment this did not produce a
completely reliable monotonically increasing trend, a larger
number of participants were run in this group. It was hoped
that the resulting extra power would lead to a significant
monotonically increasing trend.

Method

Participants, Apparatus, Stimuli and Procedure
80 new participants were drawn from the same pool as in
Experiment I, split 60:20 between the Full and Reduced
Contingency conditions, respectively. The stimuli,
apparatus and procedure were identical.

Design The Full Contingency condition was identical to
the Long Training condition in Experiment I. The Reduced
Contingency condition differed from this only in that during
training, on a randomly selected quarter of the Loy, trials
and arbitrary quarter of the Dy, trials, the key assignments
were reversed.

Results and Discussion

The data from Experiment II was analysed in exactly same
way as that from the first experiment. A comparison of the
training scores revealed that participants in the Full
Contingency condition responded significantly more
accurately than those in the Reduced Contingency group
(means 67.4 and 54.9 % correct, respectively; 1(78)=2.87,
p<0.01). Figure 6 shows the mean accuracy results from the
test phase. From this it is clear that, the trend in the
Reduced Contingency group follows a peak-shift, while that
produced by the Full Contingency condition monotonically
increases. As previously, the reliability of these group
differences was assessed by performing a planned contrast on
the differences between Near and Distant stimuli. This
demonstrated that the conditions were significantly different
(F(1,78)=5.28, p<0.05).
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Figure 6: Participants’ mean accuracy on test, for
Experiment II. Open squares=Reduced Contingency, Filled
circles= Full Contingency. T=Training, N=Near, D=Distant.

For each group, planned contrasts were used to compare
performance on Training and Near stimuli, and performance
on Near and Distant stimuli. Again, since the direction of
the predicted effects was pre-specified, these contrasts were
one-tailed. For the Full Contingency condition, these
revealed that Distant stimuli were responded to significantly
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more accurately than to the Near ones, which in turn were
responded to more accurately than the Training stimuli
(F(1,59)=5.51 and 25.85 respectively, one-tailed p<0.05 for
both). Therefore, the monotonically increasing trend was
reliable, suggesting rule-based performance. Since this
condition was a straight replication of the Long Training
condition in Experiment I, this result compensates for the
failure to find a completely reliable trend in that experiment,
and reinforces the conclusion that Long Training participants
were rule-learners. With regards to the Reduced contingency
condition, participants were significantly more accurate on
Near stimuli than Training ones (F(1,19)=15.69, one-tailed
p<0.01), but the difference between Near and Distant stimuli
was not significant (F(1,19)=1.51, one-tailed p=0.12). While
this means that the peak-shift observed in this experiment
was not completely reliable, it is clear that performance in
this condition was more consistent with the associative
predictions than the rule-based ones.

The structured questionnaire revealed that 63% of the
participants in the Full Contingency group reported learning
a version of the underlying rule, compared to 40% in the
Reduced Contingency condition. A chi-squared performed on
these scores demonstrated that, as predicted, this proportion
was significantly higher for the Full Contingency group
(x*(1)= 3.34, one-tailed p<0.05).

To summarise, the Full Contingency group produced a
rule-based pattern of performance, with the majority of
participants also being able to verbalise a rule. This
reinforces the findings of Experiment I. The results of the
Reduced Contingency condition significantly differed from
this, and cxhibited a peak-shift trend. Moreover,
significantly fewer participants in this condition were able to
report the rule. This is consistent with the McLaren, Green
& Mackintosh’s prediction that reducing the contingency
decreases the likelihood of rule abstraction, leaving
associative learning to dominate performance.

General Discussion

We have argued that associative and rule-based learning, in
this type of discrimination task, may be distinguished by
examining how participants’ performance generalises to test
stimuli: rule abstraction being indicated by a monotonically
increasing trend and associative learning by a peak-shift. In
two experiments, we have shown that, by these criteria,
both short training and a reduced training contingency
produce associatively based performance, with rule
abstraction only emerging after longer training with a 100%
contingency.

These findings can be understood in terms of McLaren et
al.’s (1994) cognitive/associative dichotomy: After little
training, or exposure to a reduced contingency, stimulus-
category associations will be too weak to support rule
induction, but nevertheless strong enough to produce above
chance test performance. With further training, the strength
of these associative traces will increase sufficiently to enable
rule abstraction, and the resulting rule-based knowledge will
then dominate responding on test. Moreover, a similar peak-
shift/rule-based dissociation has been found using a different
task and type of stimuli (Aitken, McLaren, & Mackintosh,



in preparation), suggesting that these findings apply more
generally.

We will now address three possible criticisms of this
work. First, perhaps apparent rule learning participants
correctly guessed the rule on test, rather than learning it
during training. This is a real possibility, since a light-dark
rule is an obvious way to divide a set of stimuli varying in
luminance. However, if the participants had just guessed the
rule, then their performance as a group would not have been
significantly above chance, because they would not have
known which key to assign to bright and which to dark.

Second, maybe participants classified as rule-learners
would in fact have shown a peak-shift had we tested them
with more extreme stimuli from the dimension. We did not
use such stimuli because they no longer appeared green in
color, a fact which could have introduced some new artifact
into the data. However, we are confident in our conclusion
that they were rule learners, because the majority of them
were able to verbalise the rule. Moreover, previous work
suggests that increasing the amount of training should
produce a peak-shift with its peak closer to the training
examples (Aitken, et al., in preparation). This makes it
unlikely that the Long Training/Full Contingency groups
were showing a peak-shift, with its peak further along the
dimension than we were testing.

Third, a more complex rule-based account can predict a
peak-shift, enabling both patterns of performance to be
explained in rule-based terms. Suppose that after short
training, or exposure to a reduced contingency, the rule that
develops is highly context dependent. If this were the case,
then Distant stimuli might evoke the rule less than Near
stimuli, resulting in a peak-shift pattern. However, it would
be wrong to assume that this ‘single’ mechanism is more
parsimonious than separate cognitive and associative
processes, because it also comprises two processes -namely,
the similarity based context activation of the rule, and the
application of the rule itself. Neither is it clear that such a
context sensitive rule-based account can explain the large
body of evidence consistent with the cognitive/associative
distinction (e.g. Sloman, 1996). Moreover, if we adopted
this explanation then we would lose the ability to account
for peak-shift in pigeons using the same mechanism, since
we probably do not wish to ascribe rule-learning capabilities
to them. In short, we believe that considering both pigeons
and people together, the cognitive/associative explanation is
the more parsimonious.

Finally, it should be made clear that we are not suggesting
that learning must always be initially, purely associatively
driven. Existing evidence suggests that this would be too
simplistic a view for the real world (for a discussion see
Keil, Carter Smith, Simons & Levin, 1998). Rather, we
would argue that, in everyday life, learning occurs via some
complex interaction between cognitive and associative
processes. Clearly, attention now needs to be focused on
further specifying these two processes, and the way in which
they interact.
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