
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Human control strategy in operating a telerobot

Permalink
https://escholarship.org/uc/item/8t01b0rs

Author
Takeda, Munehisa,

Publication Date
1988

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8t01b0rs
https://escholarship.org
http://www.cdlib.org/

Human Control Strategy in Operating a Telerobot

by

Munehisa Takeda

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

BIOENGINEERING

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA

San Francisco

Approved:

+

2//ºr

A/º
Committee in Charge

Deposited in the Library, University of California, San Francisco

Date
- - - - - - - - - - - - - - -

University Librarian

Degree Conferred:
-

MAR 27 1988.

Acknowledgements

My gratitude and appreciation first goes to Prof. Lawrence Stark for providing me with

the opportunity to perform this research. Under his tutelage, I have realized how little I know. His

broad knowledge, consideration, enthusiasm, energy, and humor have strongly influenced my

developing career. I wish to thank Prof. Steven Lehman for his good advice to decide my

curriculum, good lecture, and suggestion for this thesis. Without his guidance, I could not have

finished this thesis. I also wish to thank Prof. David M. Auslander for his useful lecture and

suggestion for this thesis. His ME 230 course was very beneficial for me to finish up this thesis.

| also thank those who have been in the lab, especially, Dr. Wonsoo Kim, Dr. Katsuya

Matsunaga, Dr. Masaru Miyao, and Mr. Frank Tendick. Dr. Kim taught me a lot of things:

research attitude, research approach, way of thinking, life, English, etc. Without his help, I could

not have finished this thesis. Dr. Matsunaga's suggestion was very beneficial for designing

experiments. Dr. Miyao's advice about my research and health encourage me to keep this

research. Frank read through this thesis and helped me to revise this thesis.

| also owe a tremendous debt to Mitsubishi Electric Corporation. The company have

supported me to study at the University of California, San Francisco and Berkeley. Especially,

wish to thank Dr. Akemi Futakawa, Mr. Kouji Namura, Mr. Takahiro Masuda, and Mr. Kurita for

providing me with this wonderful opportunity and supporting me during studying at UCSF/UCB.

Finally, I am very grateful to my parents, sister, and my wife, Kumiko, for their support

with deep care and great love.

Human Control Strategy in Operating a Telerobot

Munehisa Takeda

Abstract

Efficient human-robot interaction is necessary in telerobotics because a fully automated

robotic system is not yet feasible for performing general purpose telerobotic tasks that require

flexibility. The study of human control strategy is important in order to achieve more efficient
human-robot interactions.

In this thesis, human coordination and motion control strategies in operating a telerobot

were investigated using placement tasks with a joystick-controlled robot. Preliminary

experimental results show that human motion control demonstrates two strategies, coarse and

fine motion control. Coarse motion is fast, large, and rough motion from the initial position to the

vicinity of the target position. Fine motion is slow, small, and accurate motion from the vicinity

of the target position to the actual target position. Two experiments are performed to examine

these human control strategies. The first experiment compares end effector control (E.E.C.) and

joint angle control (J.A.C.) in coarse motion. The second experiment compares E.E.C. and J.A.C.

in fine motion. A placement task was chosen as a typical example of telerobotic tasks. For

simplicity, the robot motion is confined to a vertical 2-D plane in these experiments. The

experimental results indicate that for coarse motion control no significant difference in success

rate or completion time was observed between end effector control(E.E.C.) and joint angle control

(J.A.C.), whereas for fine motion control E.E.C. was significantly better than J.A.C.

Table of Contents

1. Introduction

2. Human control strategy in telemanipulation tasks

2.1 Coordination strategy:

End effector control (E.F.C.) vs. Joint angle control (J.A.C)

2.2 Motion control strategy:

Coarse motion control vs. Fine motion Control

3. Experimental system

3.1 Hardware

3.1.1 Robot system

3.1.2 Joysticks

3.1.3 Computer system

3.1.4 Objects and target boxes

3.2 Software

4. Experimental methods

4.1 Coarse motion Control

4.2 Fine motion Control

5. Experimental results

5.1 Coarse motion control

5.2 Fine motion Control

6. DiSCUSSion

6.1 Control strategy in coarse motion

6.2 Control strategy in fine motion

7. Conclusions

vi

3.1

3.2

4.1

4.2

5.1

List of Tables

Robot Commands

Specification of the robot system

Initial and target positions for coarse motion experiment

Initial and target positions for fine motion experiment

Experimental results for fine motion control

21

3.1

3.2

3.3

3.4

3.5

3.6

4.1

42

4.3

5.1

52

5.3

5.4

55

56

57

58

59

5.10

5.11

5.12

5.13

5.14

List of Figures

Placement task trajectory for E.E.C.

Placement task trajectory for J.A.C.

Experimental arrangement

Moving range of the robot

2-D workspace of the robot

Perspective view of an object

Perspective view of large target boxes

Perspective view of a small target box

Initial and target positions for coarse motion control

Position and Orientation deviation

Target positions for fine motion control

Completion time comparison (coarse motion, subject WK)

Completion time comparison (coarse motion, subject KM)

Completion time comparison (coarse motion, subject KT)

Completion time comparison (coarse motion, average)

Coarse motion trajectory for E.E.C. (position 7)

Coarse motion trajectory for J.A.C. (position 7)

Coarse motion trajectory for E.E.C. (position 8)

Coarse motion trajectory for J.A.C. (position 8)

Fine motion trajectory for E.E.C. (position 4)

Fine motion trajectory for E.E.C. (position 6)

Fine motion trajectory for J.A.C. (position 4)

Fine motion trajectory for J.A.C. (position 2)

Fine motion trajectory for J.A.C. (position 7)

Completion time comparison (fine motion, subject WK)

viii

515 Completion time comparison (fine motion, subject KM)

5.16 Completion time comparison (fine motion, subject KT)

1. Introduction

Human-robot interaction is becoming an interesting field in telerobotics. Since a fully

automated robotic system is not yet feasible for performing general purpose telerobotic tasks

that require flexibility, both humans and robots are used in situations where complicated and

hazardous conditions exist or the safety of the humans is threatened!') The study of human
control strategy is thus important in order to achieve more efficient human-robot interactions.

Apparently human operators use many different strategies in controlling telerobots. This thesis,

in particular, addresses two human control strategies: coordination and motion control strategy.

In a coordination strategy study, Whitney” mentioned that end effector control strategy
(E.E.C.) would be much easier in controlling a prosthetic arm than joint angle control strategy

(J.A.C.), and proposed resolved motion rate control. Recently Hollerbach and Atkeson!"
examined the simplest and most commonly proposed coordination strategy, simple linear

interpolation, for both end point variables and joint variables and tried to find the best match of

predicted trajectories to experimental human arm movements. They found that this group of

planning strategies was inadequate and that a generalization of the coordination strategy to

"staggered interpolation" for joint variables best described existing data." This means that

humans may use a modified joint angle control strategy in moving their arm. What kinds of

strategy does the human use in Operating a telerobot? One purpose of this research is to try to

answer this question by experiments.

Regarding motion control strategy, Fu, Gonzalez and Lee*) mentioned in their book that
the movement of a robot arm could be performed in two distinct control phases: gross motion

control and fine motion control. Brady” also mentioned that two modes exist for pick-and-place
tasks: fast free motion and slow guarded motion. By observing telerobot motion in a placement

task, we can easily see these two modes. We call these two modes coarse motion and fine

motion. Another purpose of this research is to figure out the characteristics of these two motion

control modes and find the human coordination strategies underlying these motion strategies.

This thesis first describes characteristics of each strategy. Then two experiments are

presented. The first experiment compares end effector control (E.E.C.) and joint angle control

(J.A.C.) in coarse motion. The second experiment compares E.E.C. and J.A.C. in fine motion. A

placement task was chosen as a typical example of telerobotic tasks. For simplicity, the robot

motion is confined to a vertical 2-D plane in these experiments. Finally, the control strategies for

each motion are discussed.

2. Human control strategy in telemanipulation tasks

2.1 Coordination strategy:
End effector control(E.E.C.) vs. Joint angle control(J.A.C.)*W.

End effector control (E.E.C.) and joint angle control (J.A.C.) are two major human

coordination strategies in operating a telerobot. E.E.C. is the strategy which directly controls the

end effector (hand) position and Orientation in Cartesian coordinates, while J.A.C. is the strategy

which controls each joint angle of the telerobot directly.

In E.E.C. it is easy to visualize the correct end effector configurations in Cartesian

coordinates and to separate position variables from Orientation variables. E.E.C., however,

requires an inverse kinematics calculation in order to calculate the joint actuation values. This

causes degeneracy problems of the manipulator, multiple solutions of the joint angles, and

additional computation time. Furthermore, it is difficult to predict physical constraints such as

the torque, force, velocity, and acceleration limits of each joint motor, implying that a straight

line movement based on E.E.C. may not be time or energy optimal.

J.A.C. does not require inverse kinematics calculations for the robot. Thus there are no

degeneracy problems, and one can obtain unique solutions of joint angles and faster calculations

for the robot system. This strategy is very efficient, being limited only by joint accelerations

and maximum joint velocities. But the strategy imposes the inverse kinematics calculation on the

human operator. Another disadvantage is difficulty in determining locations of the various links

and the hand during motion. Two reasons for this difficulty in J.A.C. are that its coordinates are

not orthogonal and it does not separate position variables from Orientation variables.

Furthermore, it is usually required to guarantee obstacle avoidance along trajectory.

Early teleoperator systems found it difficult to achieve Cartesian space straight line

motions, since the switches manipulated by the operator controlled individual joint angles.

Whitney's resolved motion rate control first demonstrated how to achieve Cartesian space

straight line paths. He focused on the advantages of E.E.C. and disadvantages of J.A.C., but this

does not mean that E.E.C. is always more suitable for teleoperation than J.A.C.

J.A.C. also has advantages and E.E.C. has disadvantages. As Hollerbach and Atkeson's

study of human arm movement showed, humans may use the J.A.C. strategy in moving their

arms. Are there some tasks or modes which are suitable for J.A.C. in Operating a telerobot?

This research gives some answers to this question by experiments.

2.2 Motion control strategy:
Coarse motion control vs. finemotion controlºlºl

Fu, Gonzalez, and Lee mentioned in their book that the movement of a robot arm is

usually performed in two distinct control phases : gross motion control and fine motion control.

According to them, the arm moves from an initial location (position/Orientation) to the vicinity of

the desired target location along a planned trajectory in gross motion. The end effector of the

arm dynamically interacts with the object using sensory feedback information from sensors to

complete the task in fine motion control. Brady also mentioned that two motions exist : slow

guarded motion and fast free motion.

In order to examine these two motions, placement task trajectories were investigated.

The placement task trajectories of E.E.C. and J.A.C. with initial and final robot postures are

shown in Fig. 2.1 and Fig. 2.2, respectively. In these figures, the trajectories were plotted every

sampling time. Therefore, the beginning coarsely spaced dotted curve means that the hand of

the robot moved fast, and later densely spaced dotted curve, witch appears to be almost a solid

curve, means that the hand of the robot moved slowly. These figures indicate that the

trajectories of the placement task can be divided into two different motions in both E.E.C. and

J.A.C. We call these two motions coarse motion and fine motion. Coarse motion is fast, large,

and rough motion from the initial position to the vicinity of the target position. Fine motion is slow,

small, and accurate motion from the vicinity of the target position to the actual target position.

Fig. 2.1 Placement task trajectory for E.E.C.

Fig. 2.2 Placement task trajectory for J.A.C.

3. Experimental system

3.1 Hardware

The experimental system consists of a robot system (Mitsubishi Electric Corporation

Movemaster II), 2 joysticks (Measurement Systems Model 521z), a computer system (IBM PC

AT), objects and target boxes (Fig. 3.1). The robot is connected to the computer through a

Centronics parallel printer port. Two joysticks, which are used as the robot control device for

both E.E.C. and J.A.C, are connected to the computer through an 12-bit A/D converter

(Metrabyte, DASH 16). The computer system includes a peripheral printer and a plotter.

3.1.1 Robot system

The robot system consists of a robot (RM-501), a drive unit, and a teaching box. The

robot has 5 degrees of freedom, but only 3 degrees of freedom (shoulder, elbow, and wrist bend)

are used in the experiments. The drive unit controls the 5 joint d.c. motors and hand gripper

open/close. Inner position and velocity feedback loops for each d.c. motor of the robot are

imbedded in this unit. Two input modes were provided: teaching box control mode and computer

control mode. The teaching box is connected to the unit. An operator can control each joint angle

and send several commands to the robot through the teaching box. This teaching box was used

for initialization or emergency recovery in this experiment. Normally, computer control mode was

used in this experiment. The computer sends robot commands (Table 3.1) through the Centronics

printer port. The unit receives and interprets the commands and sends the motor actuation

output to the robot. The specification of the robot system is shown in Table 3.2. The moving

range without hand is shown in Fig. 3.2. It has been found that the workspace of the robot hand

is severely limited when the desired orientation of the robot hand is specified. The workspace

limitation for the specific pitch angle (0,-30,-60,-90 degrees) is illustrated in Fig. 3.3.

ulensksTequeu■ Iædx3
|°€*
6■ J

præOq■ ex{

€.|O|
XOG■

swoj■
sfio■ 6u■■ 3e341\■

■ ^■ º■ 44■ un

*336
Ie■ u

1344O■ dIænu■■ d|xoq\0&04

Table 3. 1 Robot commands

ROM
-

Type No Name Input format Function conver Remarks
sºon

1 Nest NT Mechanical point of Yes
origin output

2 Horne HO Setting of basic Yes
Operat. On DOSItion

Origin OG Return to basic position Yes

4 Move Mia: a, a 3 a. | The individual joints NC Ode" a "g arge a'te'
as at move the number o! executio’ d’ NEST

steps spec ■ ect, pa - 2002 s a 3 C,
ramete's a to a: - 5203 s a 3 -

Cs a , $ 360
Berc ng
0s a 2- as 's 480C
Rota: ºr 9600s

-
(a- + a. s.9602

5 a, a v. a.s ze’cc

8 5 Move M0. The robot moves to the Yes is as £29
5 point cataloged in the (c. a = C.
: teaching box or set by
: the PS cornmanc
C

c 6 Increment IP Move the robo" to the Yes
position one step aneac
of the curren: positor

7 Decrement DP Mcve the robot to the Yes
position one step ben, no
the current postic".

8 Position set PS a a a. Define a positºcroete". Yes s = < * ~ *
as as as as mined by the number o' to a = C

steps from the origin of a - a, sare as Mi
operation, togethe' with cc ---anc
the position numbe"

9 Here HEa Store a position of oper Yes s as £29
at or specified by an (c. a = 0)
M. command etc to:

gether with the position
nurntyer

10 | Position clear PC a. a. Delete position numbers Nc a-sa.
between a. and a: is a 3: , s 629

to: a = 0,

11 Grip set GP as a: a 3 || Increase or decrease the Yes 0s (a a s 7
pressure 0s ass 99

£ | 12 Grp opened GO Open the grip Yesc

8 13 Grip closed GC Close the gºr Yes

P 14 Grip flag GF, Used when setting grip Yes a = C o' "
open close condition

during execution of the
PS command

15 Speed SP, Set the operation speed Yes Os as 9
(0 low speed 9 high
speed)

16 Time T. Stop the operation for Yes 0; as 99
the time specified by the
parameter (in increments
of 0 1 sec)

Table 3. 2 Specification of the robot system

|tem Specification

Structure Five degrees of freedom-Vertical multi-joint type

Range of Waist rotation 300

movement Shoulder rotation 130°

Elbow rotation 90°

Wrist pitch +90°

Wrist roll +180°

Permissible handling weight max. 1 2 kg (includes weight of hand)

Maximum synthesis speed 400 mm/sec (wrist tool surface)

Position repeat accuracy +0.5 mm (wrist tool surface)

Drive svstem Electroservo drive by a DC servomotor

Main unit weight about 27 kg

Note: The permissible handling weight (1.2 kg) is the value at a point
100 mm from the wrist tool surface.

1 O

4oqoraq■go36ue■6u■ AOW
Z*{*6■ .Jº-~■ i■■ FS■TÆT- -

-|■|8?■ ~%N----//N}/

-``■ <•.tº■ Å
·~■ 8■ |TIT■

-––T·|
|

--GE----\|{--
-

-—13lä■ -ni--Fºx-+-+·==
L

\\±\
*
\yº
|
>,

•

0!~|~~~~

11

750 H

5 OOH

25 O.

Fig 3-3 2-D workspace of the robot

12

3.12 Joysticks

Two joysticks were used for controlling the rate of the robot. Each joystick had two

degrees of freedom. The right side joystick had an additional switch for hand open/close control.

Horizontal movement of the stick on the right joystick was assigned as y-axis direction control

for E.E.C. or as shoulder angle control for J.A.C. Vertical movement of the stick on the right

joystick was assigned as z-axis direction control for E.E.C. or as elbow angle control for J.A.C.

Vertical movement of the stick on the left joystick was assigned as pitch angle control for E.E.C.

or as wrist angle control for J.A.C. Springs were installed on the bottom of the joystick stick to

keep the central position of the stick. 4.- 15 volts were supplied to the joysticks. #10 volt was

sent to a 12-bit A/D converter as the maximum output (rightmost or upmost position of the

stick) and 0 volt was sent as the minimum output (leftmost or downmost position of the stick).

Center position voltage was adjusted by potentiometers.

3.1.3 Computer system

A PC-AT system is used for developing the program, controlling the robot and analyzing

the data. This system consists of CPU, 12-bit A/D converter (DASH-16), parallel printer port,

EGA board, 20Mb hard disk, and floppy disk. The system also has a keyboard, a graphic

display, a printer, and a plotter. The A/D converter received the signal from the joysticks and

sent the 12-bit binary number to the CPU. The CPU calculated the next joint angles from the

binary number and sent the robot command to the Centronics printer port. The printer port sent

the command to the drive unit of the robot system. The EGA board can generate graphic

figures for analyzing the measured data. Plotter outputs are also available.

3.14 Objects and target boxes

A micro-switch (Fig. 34), which is 20, 15, and 50 millimeters in length, width, and height,

respectively, was used as an object. This switch was grasped by the robot hand and placed into

two kinds of target boxes. For the coarse motion control experiment, large boxes with a 75

1 3

Fig. 34 Perspective view of an object

1 4

millimeters square entrance hole were chosen as a targets (Fig. 3.5). Three different heights of

boxes (75 millimeters, 150 millimeters, and 225 millimeters) were prepared for the experiment.

The box was put on the base floor vertically. For fine motion control, a small box was chosen as

the target. This small box had approximately 2 millimeters clearance in inserting the object into

the box and could be located at any position and Orientation by the stand (Fig. 3.6).

3.2 Software

In order to perform the experiments, an end effector control program and a joint angle

control program were developed in the C language. Each program included subprograms which

acquired the joystick signals and sent the robot command to the drive unit of the robot system.

An inverse kinematics calculation subprogram was only embedded in the end effector control

program. In this program, only the elbow up solution was chosen in order to avoid the multiple

solutions problem of joint angles. The joint angle limitation was informed to the operator by beep.

In order to analyze the experimental data, display and plot routines were also developed.

These programs calculated the hand trajectory from the measured data and displayed or plotted

the results. The program lists are attached in Appendix A.

15

V -
T

|-

Fig. 3.5 Perspective view of large target boxes

Fig. 3.6 Perspective view of a small target box with an object

16

4. Experimental methods

4.1 Coarse motion Control

In order to investigate coarse motion control, a placement task was performed. Initially,

an object was held by the robot hand at some distance from the target box. Then a subject was

seated approximately 1 meter away from the robot and was asked to control the robot hand

with two joysticks. The task was to move the object from the initial position to right above a

large target box and drop it in. Since the box had a large entrance hole, the subject did not need

high precision in placing the object into the box. Thus, the task appeared to be suitable to

examine human coarse motion control strategy. Each subject performed 11 trials of the

placement task with different initial positions and target positions for both E.E.C. and J.A.C.

experiments. The eleven sets of different initial positions and target positions (Fig. 4.1 and Table

4.1) were chosen within the allowed workspace (Fig.3.3). The experimental trial order was 1, 7,

3, 10, 5, 11, 6, 8, 2, 9, 4. This order was selected at random but the adjacent positions have

much difference in orientation. During the experiment, time and joint angles were stored in a

computer file at every sampling time of 500 milliseconds.

Before the experiment, subjects practiced both J.A.C. and E.E.C. operations for more

than 30 minutes until they felt comfortable with the operations. Before starting each experiment

(J.A.C. or E.E.C.), each subject also performed 2 trials (in different positions from the actual

experimental positions) in order to confirm each operation.

Three subjects participated in the experiments. Subjects WK and KM are 32 and 45

year-old males, respectively, and subject KT is a 28 year-old female. All three subjects

performed both E.E.C. and J.A.C. experiments. Two subjects (WK and KT) performed the E.E.C.

experiment first, whereas the other subject (KM) did the J.A.C. experiment first.

17

75O

500

250+

1(15°),
+ \

4–30°) \
7:52s' 24s,

—ar" 35-22.É.
1O■ 39 less,

-)
-

11-75°)” **■ ars",
||’sº| | | | *

250
ºr Y

2^
Nº T

Fig. 4.1 Initial and target positions for coarse motion control

18

Table 4.1 Initial and target positions for coarse motion experiment

Target initial position target position
position Z pitch y Z
number (mm) (mm) (dºg) (mm) (mm)

1 415.4 520 15 300 || 75 (M)

2 510 300 -15 400 || 75 (M)

3 480 65.4 O 300 O (S)

4 380 434,6 –30 400 | 150 (T)

5 465,4 || 270 –22.5 300 0 (S)

6 460 100 –37.5 300 | 150 (T)

7 320 334,6 -52.5 500 | 150 (T)

8 360 200 –67.5 | 400 0 (S)

9 380 134,6 –60 500 O (S)

1 O 270 204,6 -90 400 || 75 (M)

1 1 330 134,6 –75 500 150 (T)

19

4.2 Fine motion Control

An insertion task was performed to investigate fine motion control. The subject inserted

the object into a small box from an initial position in the vicinity of the target position. The initial

position and Orientation had some relationship to the target position and Orientation. These

position and Orientation deviations are represented

by 1 - 5 numbers shown in Fig. 4.2. As the initial position was near the target position and the

small box had only 2 millimeters clearance in inserting the object into the box, this task appeared

to be suitable to examine human fine motion control strategy.

In the same way as the coarse motion control experiment, each subject performed 11

trials of the placement task with different initial positions and target positions for both E.E.C.

and J.A.C. experiments. The eleven sets of different initial positions and target positions (Fig. 4.3

and Table 4.2) were chosen within the allowed workspace. The experimental trial order was 1,

7, 3, 10, 5, 11, 6, 8, 2, 9, 4. This order was the same as the coarse motion experiment. During

the experiment, time and joint angles were stored to the file in the hard disk every sampling time.

Each subject performed two trials before starting each experiment (J.A.C. or E.E.C.) in order to

confirm the control strategy.

The same subjects as the coarse motion control experiment participated in this

experiment. Two subjects (WK and KT) performed the E.E.C. experiment first, whereas the

other subject (KM) did the J.A.C. experiment first.

20

Position deviation

30 deg 30 deg (target orientation)

Orientation deviation

7.5
9 7.5 deg

5 || 4 3 (target orientation)

target position

Fig. 4.2 Position and orientation deviation

21

... Tº
1(o°)

5 OO } + \
\

25O + © 8(-60°)
-

Fig. 4.3 Target positions for fine motion control

22

Table 4.2 Initial and target positions for fine motion experiment

target initial position target position
position

º -

number Z pitch y Z pitch
(mm) (mm) (dºg) (mm) (mm) (dºg)

1 (4,1) 415,4 520 15 450 500 O

2 (3,5) 510 300 -15 550 300 O

3 (1,3) 480 65.4 O 500 100 O

4 (4.3) | 380 434.6 || -30 400 400 –30

5 (3.2) || 465.4 || 270 –22.5 500 250 –30

6 (2.1) || 460 100 –37.5 500 100 –30

7 (5.2) || 320 334.6 || -52.5 300 300 –60

8 (1,4) 360 200 –67.5 400 200 -60

9 (3.3) | 380 134.6 || -60 400 100 –60

10 (4.3) 270 204.6 –90 250 170 –90

11 (2,1) || 330 134,6 || -75 350 100 –90

23

5. Experimental results

5.1 Coarse motion Control

In the coarse motion control experiment, All three subjects succeeded in the placement

tasks 100% for both E.E.C. and J.A.C. The completion time plots of the coarse motion control

experiments for three subjects are shown in Fig. 5.1 - Fig. 5.3., respectively. The average

completion time plot of these three subjects is also shown in Fig. 5.4. In these figures, the

completion times of the placement task are plotted for the initial position numbers. The distance

and the height of the target position are written below the initial position numbers. Open marks

show the results of E.E.C. and filled marks show that of J.A.C.

These figures indicate that no significant difference in the completion time was observed

between E.E.C. and J.A.C. The mean completion times of E.E.C. and J.A.C. are 28.60 seconds and

27.56 seconds, respectively.

These figures also show that in E.E.C. some positions (initial positions 3 and 7) are

significantly more difficult to control than the other positions. But in J.A.C. the dependence upon

the position is not significant as in E.E.C. The trajectories of position 7 and 8 of subject KT for

E.E.C. and J.A.C. are shown in Fig. 5.5-Fig. 5.8., respectively.

5.2 Fine motion Control

The results of the fine motion control experiment are shown in Table 5.1. In this table, a

circle indicates that a subject inserted the object into the target box successfully without moving

the box. A triangle is used when a subject moved the target box but managed to insert the

object. A 'x' mark is used when a subject failed to insert the object. This table shows that each

Subject succeeded the task for most cases in E.E.C., but moved the target box for most cases in

J.A.C.

24

100

80 H. -o- E.E.C.(WK)
-o- J.A.C.(WK)

3
#

Tº 60 F
■ º

.S.
3.
■ º
F
C

C 40
º

20 F

0 L —l I | I I l I I I I

0 1 1 2 3 || 4 5 6 7 8 9 10 11 12

Orientation angle (0 deg) (-30 deg) (-60 deg) (-90 deg)

Target distance 300 400 300 || 400 300 300 || 500 400 500 || 400 500

Target height M M S | T S T | T S S | M T

Initial position number

Fig. 5.1 Completion time comparison (coarse motion)

25

I

-o- E.E.C.(KM)
-o- J.A.C.(KM)

100

80 H.

#
‘E 60 F
F

.S.
$35
TS.
F
©

C 40
º

20 H

0
0

Orientation angle

Target distance

Target height

1 2 3 || 4 5 6 7 8 9 || 10 11 12

(0 deg) (-30 deg) (-60 deg) (-90 deg)

300 400 300 | 400 300 300 || 500 400 500 | 400 500

M M S | T S T | T S S M T

Initial position number

Fig. 5.2 Completion time comparison (coarse motion)

26

100

80

#
*E 60

■ º
.S.
*5
TS.
F
C

O 40

20

0

Orientation angle

Target distance

Target height

L

-o- E.E.C. (KT)
-o- J.A.C.(KT)

1 2 3 || 4 5 6 7 8 9 || 10 1 1 12

(0 deg) (-30 deg) (-60 deg) (-90 deg)

300 400 300 || 400 300 300 || 500 400 500 | 400 500

| M M S | T S T | T S S | M T

Initial position number

Fig. 5.3 Completion time comparison (coarse motion)

27

100

80 H. -o- E.E.C. (aver)
-º- J.A.C. (aver)

3
#

‘E 60 F
:-

.3
3.
C
F
->

C 40
º

20 F

0 I 1 I 1 I I I I L l I

0 1 1 2 3 || 4 5 6 7 8 9 || 10 11 12

Orientation angle (0 deg) (-30 deg) (-60 deg) (-90 deg)

Target distance 300 400 300 | 400 300 300 || 500 400 500 | 400 500

Target height M M S | T S T | T S S | M T

Initial position number

Fig. 5.4 Completion time comparison (coarse motion)

28

Fig. 5.5 Coarse motion trajectory for E.E.C. (position 7)

Fig. 5.6 Coarse motion trajectory for J.A.C. (position 7)

29

|
|
I
I
|
I
l
|
I

TWT

Fig. 5.7 Coarse motion trajectory for E.E.C. (position 8)

7

Fig. 5.8 Coarse motion trajectory for J.A.C. (position 8)

30

Table 5.1 Experimental results for fine motion control

Target subject(WK) subject(KM) subject(KT)
position
number E.F.C. J.A.C. | E.F.C. J.A.C. E.F.C. J.A.C.

1 O | O | O | ZN | O | ZN
2 O | 2N | O | X | O | Zs
3 O | ZN | O | ZN | O | ZS
4 ^ | 2N | O | 2N | O | Zs
5 O | 2N | O | 2N | Z\ | X
6 O | 2N | O | 2N | 2N | Zs
7 O | 2N | O | ZN | O O
8 ^ | 2N | O | 2N | Zs 2&
9 O | O | Z\ | 2N | O | ZS

1 O O | 2N | O | 2N | O O

1 1 O ZS | <> | ZS O ^

O success ZS : move target box X: failure

3 1

The cases in which at least one subject moves the target box in E.E.C. are 4, 5, 6, 8, 9,

11. The typical trajectories of these cases are shown in Fig. 5.9 - 5.10. A typical moved box

trajectory in J.A.C. is shown in Fig. 5.11. The cases in which one subject failed the task are 2

and 5. The cases that one subject succeeded the task in J.A.C. are 1, 7, 9, 10. The examples of

failed trajectories and succeeded trajectories in J.A.C. are shown in Fig.5.12. and Fig.

5.13.,respectively.

The completion time plots of fine motion control for the three subjects are shown in Fig.

5.14 - Fig. 5.16. In these figures, the abscissa represents 11 experiment conditions. The

Orientation angles, position deviation numbers and Orientation deviation numbers are indicated in

the figures. Open marks show the results of E.E.C. and filled marks show those of J.A.C.

These figures show that E.E.C. resulted in shorter completion times than J.A.C. for all

positions, orientations and subjects except for target position 7 of subject KM.

Subject WK had trouble at position 3 and took 360 seconds to insert the object for J.A.C.

Subject KM and KT had trouble at positions 2 and 5, respectively, and failed to insert the object

for J.A.C.

32

Fig. 5.9 Fine motion trajectory for E.E.C. (position 4)

Fig.5:10 Fine motion trajectory for E.E.C. (position 6)

33

Fig.5:11 Fine motion trajectory for J.A.C. (position 4)

34

I
1

I I
l I
I l
I I
I l
I I
I I
I l
j l
I l
I 1
I !
I l
■ !
i º

Fig. 5.12 Fine motion trajectory for J.A.C. (position 2)

Fig. 5.13 Fine motion trajectory for J.A.C. (position 7)

35

greater than 200

150 H -o- E.E.C. (WK)
,- -e- J.A.C. (WK)
Jº
Q

.5
*

■ º
.S.
$35

|-# 100
F
C

C

50 F.

0 I I I I l I _l l —1 I I

0 1 1 2 3 || 4 5 6 7 8 9 || 10 11 12

Orientation angle (0 deg) (-30 deg) (-60 deg) (-90 deg)

Position deviation 4 3 1 4 3 2 5 1 3 || 4 2

Orientation deviation 1 5 3 3 2 1 2 4 3 3 1

Target position number

Fig. 5.14 Completion time comparison (fine motion)

36

greater than 200

150 H

3.
Q

.5
■ º

.3
Yº |-# 100
F
C

C

50 H

0 I l I 1 1 I l l I l

0 1 1 2 3 || 4 5 6 7 8 9 || 10 11 12

Orientation angle (0 deg) (-30 deg) (-60 deg) (-90 deg)
Position deviation 4 3 1 4 3 2 5 1 3 4 2

Orientation deviation 1 5 3 3 2 1 2 4 3 3 1

Target position number

Fig. 5.15 Completion time comparison (fine motion)

37

greater than 200

150 -o- E.E.C. (KT)
,- -o- J.A.C. (KT)
Je.

QD

.5
■ º

.E
$º

|-# 100
F
C

C

50 H

N. . . . ~~~~
0 1 —1 I | I I I I I I 1

0 1 1 2 3 || 4 5 6 7 8 9 || 10 1 1 12

Orientation angle (0 deg) (-30 deg) (-60 deg) (-90 deg)
Position deviation 4 3 1 4 3 2 5 1 3 4 2

Orientation deviation 1 5 3 3 2 1 2 4 3 3 1

Target position number

Fig. 5.16 Completion time comparison (fine motion)

38

6. Discussion

6.1 Control strategy in coarse motion
The experimental results show that no significant difference between E.E.C. and J.A.C.

existed for coarse motion. All subjects succeeded all placement tasks in both strategies. E.E.C.

took less time than J.A.C. in some conditions, while in the other conditions J.A.C. took less time

than E.E.C. The mean completion times of E.E.C. and J.A.C. are almost the same, that is, 28.60

seconds and 27.56 seconds, respectively. Two cases (target positions 7 and 8) which had the

largest average difference in completion time between E.E.C. and J.A.C. are considered to find out

the human control strategy for coarse motion in this section.

At position 7, J.A.C. took less time than E.E.C. for all subjects. The trajectories of

subject KT are examined for comparing E.E.C. and J.A.C. In E.E.C. the subject KT tried to move

the robot hand along a straight line, but she could not move the hand to the target position along

the straight line because of the joint angle limitation (Fig. 5.5). The subject had to change the

pitch angle or direction when she reached the joint angle limitation. The trajectories of the other

subjects in E.E.C. were different from this trajectory. Each subject moved the hand in different

direction, but all subjects reached the joint angle limitation and changed the pitch angle or

direction. The subjects changed their strategies only after reaching the joint angle limitation,

because it is difficult to predict the joint angle limitation in E.E.C. This changing strategy during

the operation caused additional time in E.E.C. The results revealed one of the disadvantages of

E.E.C., difficulty in visualizing the physical constraints.

On the other hand, in J.A.C. the subject KT moved the hand in a zigzag fashion but never

reached the joint angle limitation (Fig. 5.6). In J.A.C. the subject controlled the joint angles directly.

Therefore, the subject always paid attention to the joint angle limitation. The subject did not

need to change her strategy during operation of the robot. The subjects, did, however, have to

calculate inverse kinematics. A human operator can calculate inverse kinematics only roughly.

This rough inverse kinematics calculation caused the zigzag trajectory in J.A.C. of the subject

39

KT, but performance was good enough for coarse motion control. The trajectories of the other

subjects in J.A.C. were different from this trajectory, but they did not reach to the joint angle

limitation in J.A.C. The reason that E.E.C. took longer time than J.A.C. at position 7 is that E.E.C.

required thinking time to avoid the joint angle limitation after reaching the limitation.

At position 8, E.E.C. took less time than J.A.C. for all subjects. In this case the subject

KT could move the hand to the target position along an almost straight line without reaching the

joint angle limitation for E.E.C. (Fig. 5.7). The subject moved the hand in a zigzag fashion in

J.A.C., same as that of position 7 (Fig. 5.8), because the subject could not calculate the inverse

kinematics accurately. The trajectories of the other subjects had the same tendency, that is,

E.E.C. had a straighter trajectory than J.A.C. and J.A.C. had a zigzag or detoured trajectory.

The reason that J.A.C. took more time than E.E.C. at position 8 is that J.A.C. had a zigzag or

detoured movement because of the rough inverse kinematics of a human operator.

These considerations also answer why some positions were more difficult to control than

other positions in E.E.C., but no significant difference between positions were observed in J.A.C.

6.2Control strategy infine motion
The experimental results show that E.E.C. had better performance than J.A.C. for fine

motion. For E.E.C. the subjects succeeded in 78.8% of the insertion tasks, managed to insert the

object but moved the target box in 21.2% of the tasks, and never failed. Using J.A.C., however,

the subjects succeeded in only 12.1% of the total tasks, and managed to insert the object but

moved the target box in 81.8% of the tasks, and failed 6.1% of the task (Table 5.1). E.E.C. took

less time than J.A.C. for all positions, orientations, and subjects except for target position 7 of

the subject KM (Fig. 5.14 - Fig. 5.16).

For fine motion control, accurate inverse kinematics calculation is necessary. E.E.C.

imposes the inverse kinematics calculation on a computer. Therefore, the human operator does

not need to calculate the inverse kinematics. What a human operator has to do is to specify the

movement direction with the joysticks. E.E.C. can also separate position control from Orientation

40

control. In this simple 2-D experiment, the only coupling in E.E.C. was the coupling between

horizontal and vertical axes. The experimental results show that the cases in witch the subjects

moved the target box in E.E.C. were those coupling movements, that is, the cases with pitch

angles of -30 or -60 degrees, except for target position 11 of the subject KM, for witch the

subject inserted the object into the target box before adjusting the orientation (Table 5.1).

Typical examples of the subjects moving the target box were the case in which the subject

moved the hand horizontally and vertically by turns (Fig. 5.9) and the case in which the subject

moved the hand to a different direction (Fig. 5.10). For a human operator, it is difficult to control

more than 2 degrees of freedom at the same time.

On the other hand, J.A.C. imposes the inverse kinematics calculation on the human

operator. The human operator can roughly calculate inverse kinematics within a short time, but

this rough calculation is not enough for fine motion control. Even in this easy experiment

(insertion task with 2 millimeters clearance), the subjects succeeded in only 12.1% of the tasks

for J.A.C. Examining the trajectories of fine motion in J.A.C., we can see that the subjects

carefully adjusted each joint angle so that the robot's hand followed the line constrained by the

target box, but this resulted in zigzag movements because of the rough inverse kinematics

calculation of the subjects and the necessity of multiple joint angle control (Fig. 5.11). The subject

had to move 3 joint angles simultaneously for the failed case (Fig. 5.12), but the subject could

move only two joints for the successful case (Fig. 5.13). Multiple joint angle control is difficult for

the subjects.

The completion times of E.E.C. and J.A.C. also show that E.E.C. is easier than J.A.C. for

fine motion control (Fig.5:14-Fig. 5.16). For J.A.C. some positions took more time than the other

positions. The reasons were that at some positions the inverse kinematics calculation was more

difficult than that at the other positions and control of 3 joint angles was necessary.

The reasons that E.E.C. had better performance than J.A.C. for fine motion are that

E.E.C. gives an accurate inverse kinematics calculation, which is difficult for the human operator,

on a computer and can separate position control from orientation control, whereas J.A.C. imposes

4 1

the inverse kinematics calculation and simultaneous multiple joint angle control on a human

operator.

In these experiments, the subjects were allowed to practice the operation before the

different control strategy experiment. Therefore, the order of the experiment (E.E.C. and

J.A.C.) did not affect the results.

42

7. Conclusions

Human coordination and motion control strategies in operating a telerobot were

investigated using placement tasks with a joystick-controlled robot. Preliminary experimental

results show that human motion control demonstrates two strategies, coarse and fine motion

control. Coarse motion is fast, large, and rough motion from the initial position to the vicinity of

the target position. Fine motion is slow, small, and accurate motion from the vicinity of the

target position to the actual target position. The experimental results indicate that for coarse

motion control no significant difference in success rate or completion time was observed between

end effector control(E.E.C.) and joint angle control (J.A.C.), whereas for fine motion control E.E.C.

was significantly better than J.A.C.

One of the disadvantages of E.E.C., difficulty in visualizing the physical constraints,

sometimes emerged in coarse motion control because of its large motion characteristics. The

disadvantage of J.A.C., difficulty in predicting the movement of the hand from joint commands,

was not important in coarse motion control because of its rough motion characteristics.

Therefore, no significant difference in performance was observed between E.E.C. and J.A.C. for

Coarse motion.

On the other hand, one of the disadvantages of E.E.C., difficulty in visualizing the

physical constraints, was unimportant in fine motion control because of its small motion

characteristics. The disadvantage of J.A.C., difficulty in predicting the motion of the hand,

always emerged in fine motion control because of its accurate motion characteristics.

Therefore, E.E.C. had better performance than J.A.C. for fine motion.

43

1)

2)

Bibliography

A. K. Bejczy, "Sensors, controls, and man-machine interface for advanced
teleoperation", Science, vol. 208, no.4450, pp 1327-1335, 1980
D. E. Whitney, "Resolved motion rate control of manipulators and human prostheses",
IEEE Tran. Man-Mach. Syst., vol. MMS-10, pp47-53, 1969
J. M. Hollerbach and C. G. Atkeson, "Deducing planning variables from experimental
arm trajectories: pitfalls and possibilities", Biol. Cybern., Submitted, 1986

J. F. Soechting and F. Lacquaniti, "Invariant characteristics of a pointing movement in
man", J. Neurosci. 1, pp 710-720, 1981
K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: control, sensing, vision, and
intelligence, McGraw-Hill Book Company, 1987
M. Brady, J. M. Hollerbach, T. L. Johnson, T. Lozano-Perez, and M. T. Mason, Robot

Motion : Planning and control, Cambridge, The MIT Press, 1982
R. P. Paul, Robot manipulators: Mathematics, programming, and control, Cambridge, The
MIT Press, 1981

44

Appendix A

Program lists

1. Control programs

1.1 End effector control program (2robjme.c)

1.2 Joint angle control program (2robjae.c)

2. Display program (drobic.c)

3. Plot program (problo.c)

/*--

File
2robjme. c – operate robot using joystick and measure joint

angle (2-D version experiment, 10 target position)
Synopsis

include <stdio. h>
include <math. h.”
include <conio. h.”
include "ad. C"

lcl 2robjme
linkml 2robjme draw display atime

Description
This program controls end effector position and orientation
of a movemaster II and stores time and joystick angles (robot
command parameters) in file.
This program uses a function "jtctran ()" which transforms
joystick signal to cartesian coordinate value. The joystick
signal is converted to cartesian coordinate value by multi
pling gains. The joystick signal is connected to a/d converter.
The right side joystick is used for control y and z coordinates
movement. The left side joystick (vertical) is used for pitch
angle control. In addition to the joystick handle, each joystick
box has a swich on the top face. The switch of the right side
joystickh is used for hand open and close control (up and middle
position is assigned to close and down position is assigned to
open). The switch of the left side joystick is not used in this
program. The a/d converter configuration is as following:

a/d channel 0 -- x coordinate movement or roll movement
(right horizontal, red wire, 0-2047)

a/d channel 1 -- y coordinate movement (right vertical,
green wire, 0-2047)

a/d channel 2 -- hand open close (right switch, white
wire, open: 0 close: X900)

a/d channel 3 -- z coordinate movement or pitch movement
(left vertical, green wire, 0-2047)

a/d channel 4 -- position and orientation control change
(left switch, white wire,
position: X 1400, orientation: <1400)

This program uses a function "ttrtran ()" which transforms
joint angles (theta) to robot command parameters (ja). The re
lation between 'theta' and 'ja' is as following:

ja1 = -40 * theta1 (-6000& jalº 6000)
ja2 = 40 * theta2 – 1400 (-2600& jaz K2600)
ja3 = 40 * theta3 + 1800 (–1800.<ja3& 1800)
ja4 = 13.333 * (theta4 – theta■) + 200

(-2400&ja4-jaš■ 2400)
13.333 * (-theta 5 - theta4) + 200

(-4800&ja4+jaš■ 4800)
ja5

The initial position is as following:
theta1 = 0 (deg), ja1 =
theta2 35 (deg), ja2

O
– O

46

theta 3 =
theta4
theta 5

Sub function

–45 (deg),
0 (deg),
O (deg),

ja3 = 0
ja4 = +200
jaS = +200

jtctran (phi, ph, roll, pitch, hi)
caljoy (freq, jmid)
getjoy (freq, phi, jmid)
deadband (ia)
ttrtran (theta, ja)
mrob (ma)
inv_kinem (ph, roll, pitch, theta)

Author
Munehisa Takeda

Date

Jan. 28, 1988

include <stdio. h5
include Kmath. h>
include <conio. h>
include "ad. C"

#define LB 250.0
#define LS 220.0
#define LE 160.0
#define LH 202.0
#define LS2 48400. O
#define LE2 25600.0
#define LSLE 35200.0
#define LR 1.375
#define RTD 57. 29578
#define DBAND 100.0
#define DIS 40.
#define ANG O. 26.1799

int jmid[3];
double kp = 0.01, ka = 0.
long t1, t2, t2 ;

long itime = 0;
long it;
int ma5Old;

FILE *fp1;
FILE *printer;

extern double c [] ;
double tph [11] [4] ;
double iph[11] [4];

main()
{

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

length
length
length
length
square
square

Of
Of
Of
Of
LS
LE

base */
soulder */
elbow */
hand */
*/
*/

multiple LE LS “/
LS over LE */
scaling parameter (rad to degree) */
deadband of joystick reading */
distance from initial to target position */

/*max initial angle from target angle (15 deg) */

/*
OO25/RTD;

/*

/*
/*

/*
/*

joystick mid point */
/* gains “/

starting & close & open time (system
timer) */

software timer */
previous hand information */

target position & pitch */
start position & pitch */

47

/*

extern long time ();
extern long decompose ();
static double theta■ 5) = {0, 35./RTD, -45
static double ph[3] = {0,536. 7,63. 3.};
static int phj[6];
double roll = 0. , pitch = -10./RTD;
double freq;
static double otheta [5] ;
static double oldph[3];
double Oroll, Opitch;
static int ja [5] ;

static int of a[5];

static int ma■■ 6);
char frame [12];
int ij;
int i ;
int ch;
int hi = 1;
int viewmode = 0;
int visual mode = 0;
double x1, y1, x2, y2;
char yn [3];

target position setting */
tph[0] [0] = 0. ;
tph[0][1] = 450. ;
tph[0] [2] = 250. ;
tph[0][3] = -4. / RTD;
tph[1] [0] = 0. ;
tph[1] [1] = 300. ;
tph[1] [2] = 50. ;
tph[1] [3] = -64. / RTD;
tph[2] [0] = 0. ;
tph[2] [1] = 500. ;
tph[2] [2] = -150. ;
tph[2] [3] = -4. / RTD;
tph[3] [0] = 0. ;
tph[3] [1] = 250. ;
tph[3] [2] = -80. ;
tph[3][3] = -94. / RTD;
tph[4] [0] = 0. ;
tph[4] [1] = 500. ;
tph[4] [2] = 0. ;
tph[4][3] = -34. / RTD;
tph[5] [0] = 0. ;
tph[5] [1] = 350. ;
tph[5] [2] = -150. ;
tph[5] [3] = -94. / RTD;
tph[6] [0] = 0. ;
tph[6] [1] = 500. ;
tph[6] [2] = -150. ;
tph[6][3] = -34. / RTD;

/*

/*

/*

/*
/*

/*

/*

./RTD,0,0}; /*joint angle"/
/* hand position */

joystic digital value */
/* roll and pitch "/

joint angle for robot
command */
old joint angle for robot
command */
robot acctuation parameter */
data file name */

iteration value */

hand information */

48

/*

tph[7][0]
tph[7][1]
tph[7][2]
tph[7] [3]
tph[8] [0]
tph[8] [1]
tph[8] [2]
tph[8] [3]
tph[9][0]
tph[9][1]
tph[9] [2]
tph[9][3]
tph[10] [0]
tph[10][1]
tph[10] [2]
tph[10] [3]

initial

iph[0] [0]
iph[0] [1]
iph[0] [2]
iph[0] [3]
iph[1] [0]
iph[1] [1]
iph[1] [2]
iph[1] [3]
iph[2] [0]
iph[2] [1]
iph[2] [2]
iph[2] [3]
iph[3] [0]
iph[3] [1]
iph[3] [2]
iph[3] [3]
iph[4] [0]
iph[4] [1]
iph[4] [2]
iph[4] [3]
iph[5] [0]
iph[5] [1]
iph[5] [2]
iph[5] [3]
iph[6] [0]
iph[6] [1]
iph[6] [2]
iph[6] [3]
iph[7][0]
iph[7][1]
iph[7][2]
iph[7] [3]
iph[8] [0]
iph[8] [1]
iph[8] [2]
iph[8] [3]

0. ;
400. ;
–50. :

–64. / RTD;
0. ;
550. ;
50. ;
–4. / RTD;
0. ;
400. ;
-150. ;
–64. / RTD;

0. ;
400. ;
150. ;
–34. / RTD;

osition setting
0. ;
tph[0][1]
tph[0] [2]
tph[0] [3]
0. ;
tph[1] [1]
tph[1] [2]
tph[1] [3]
0. ;
tph[2] [1]
tph[2] [2]
tph[2] [3];
0. ;
tph[3] [1]
tph[3] [2]
tph[3] [3];
0. ;
tph[4] [1]
tph[4] [2]
tph[4] [3]
0. ;
tph[5] [1]
tph[5] [2]
tph[5] [3]
0. ;
tph[6] [1]
tph[6] [2];
tph[6][3]
0. ;
tph[7][1]
tph[7][2];
tph[7][3]
0. ;
tph[8] [1]
tph[8] [2];
tph[8] [3]

!

:

!

*/

(DIS · cos(30.
(DIS " sin (30.
ANG;

(DIS " sin(30.
(DIS · cos(30.
(ANG / 2.);

(DIS " sin (30.
(DIS ^ cos (30.

(DIS " sin (30.
(DIS “ cos(30.

(DIS · cos(30.
(DIS " sin (30.
(ANG / 2.);

(DIS " sin(30
(DIS " cos(30
ANG;

DIS;

(ANG / 2.);

DIS;

(ANG / 2.);

DIS;

ANG;

RTD));
RTD));■

RTD));
RTD));■

RTD));
RTD));■

RTD));
RTD));■

RTD));
RTD));■

... / RTD));

... / RTD));

49

iph[9] [0] = 0. ;
iph[9][1] = tph [9][1] – (DIS " sin(30. / RTD));
iph[9] [2] = tph [9] [2] + (DIS " cos(30. / RTD));
iph[9][3] = tph[9][3];
iph[10] [0] = 0. ;
iph[10][1] = tph[10][1] – (DIS " sin(30. / RTD));
iph[10] [2] tph[10] [2] + (DIS " cos(30. / RTD));
iph[10] [3] = tph [10][3];

printf("direct view or camera view (0 or 1): ");
scanf ("%d", &viewmode);
if (viewmode == 1) {

printf("without or with visual enhancements (0 or 1): ");
scanf ("%d", &visualmode);

}

printf(" input gains kp and ka (0.01 0.0025) = ");
scanf ("%lf &lf", &kp, &ka);
ka /= RTD;

printf(" input sampling frequency = ");
scanf ("%lf", &freq.);

printf(" data file name (jº * * * * * *.dat) = ");
scanf ("%s", frame);

printer = fopen ("prn", "w"); /* printer open for robot output */
fp1 = fopen (fname, "w"); /* file open for measurement */

printf(" start joystick calibration\n ");
caljoy (&freq, jmid);
printf(" end joystick calibration\n ");

if (viewmode == 1) {
init_video ();
sample_picture();
camcal (c);

}

printf("the robot is going to move to the initial position. \n");
printf("make sure that the work space is clear\n");
printf("ready? ");
scanf ("%s", &yn);
printf("are you sure? ");
scanf ("%s", &yn);

fprintf(printer, "nt\n"); /* move nest position */
fflush (printer);
fprintf(printer, "SP 9Vn"); /* maximum speed set */
fflush (printer);
fprintf(printer, "MI -6000,-2600, 1800, 1400, -1000,0\n");

/* move to initial position */

50

/*

fflush (printer);
fprintf(printer, "HONn"); /* move initial position */
fflush (printer);

timer setting (t1: start time) */
t1 = decompose (time ());
itime = 0;

for (ij = 0; ii < 11; i.j++)
{

/*

/* save values */
for (i-0; i3; i3-4.)

oldph[i] = ph[i];
for (i=0; i35; it +)

otheta [i] = theta [i];
oroll = roll;
opitch = pitch;

ttrtran (otheta, oia); /* change otheta to oja */

for (i = 0; i < 3; it +)
ph[i] = tph[ij] [i];

pitch = tph [ij] [3];

if (inv_kinem (ph, &roll, &pitch, theta) == 0) {
printf("%c",07); /* sound beep */
printf(" wrong target position setting !!!\n ");
goto ex;

}

ttrtran (theta, ja); /* change theta to ja */

calculate robot acctuation parameter */
for (i = 0; i < 5; it 4)

ma[i] = ja■ i) - oia [i];
ma[5] = hi;

mrob (ma); /* move robot */

printf("set the objects and target box. Then remove target for
moving initial position\n");
printf("ready? ");
scanf ("%s", &yn);

/* save values */
for (i-0; i3; it 4-)

oldph[i] = ph[i];
for (i-0; i35; it +)

otheta [i] = theta [i];
oroll = roll;
opitch = pitch;

ttrtran (otheta, oia); /* change otheta to oja ”/

51

/*

for (i = 0; i < 3; it +)
ph[i] = iph[ij] [i];

pitch = iph[ij] [3];

if (inv_kinem(ph, &roll, &pitch, theta) == 0) {
printf("%c",07); /* sound beep */
printf(" wrong start position setting !!!\n ");
goto ex;

}

ttrtran (theta, ja); /* change theta to ja ”/

calculate robot acctuation parameter */
for (i = 0; i < 5; it 4)

ma[i] = ja■ il - oia [i];
ma[5] = hi;

mrob (ma); /* move robot */

printf("set the objects again. \n");
printf("did you pick the object?\n");
printf("pick the object by using swich on the joystick. \n");
printf("after grasping the object , hit the 'p' key. \n");
printf("ready? ");
scanf ("%s", &yn);
for (; ;)
{

ch = baos (0x06, 0x00ff) & Ox00ff;
switch (ch)
{

case 'p':
goto start;

default:
break;

}
getjoy (&freq, phi,jmid);

/* save values */
for (i-0; i3; i3-4)

oldph[i] = ph[i];
for (i-0; i35; i3-4)

otheta [i] = theta [i];
oroll = roll;
opitch = pitch;

ttrtran (otheta, oia); /* change otheta to oja ”/

jtctran (phi, ph, &roll, &pitch, &hi);

if (inv_kinem (ph, &roll, &pitch, theta) == 0) {
printf("%c",07); /* sound beep */
for (i-0; i3; it +) /*restore old values"/

ph[i] = oldph[i];
for (i-0; i35; i3-4)

52

/*

}

start:

theta [i] = otheta|[i];
roll = oroll;
pitch = opitch;

}

ttrtran (theta, ja); /* change theta to ja “/

calculate robot acctuation parameter */
for (i = 0; i < 5; it +)

ma[i] = ja[i] - oia [i];
ma[5] = hi;

mrob (ma); /* move robot */
/* end of infinite loop */

printf("start experiment \n");
printf("ready? ");
scanf ("%s", &yn);

/* timer setting (t1: start time) */
t1
itime

for (; ;)
{

decompose (time ());
= 0;

ch = baos (0x06, 0x00ff) & 0x00ff;
switch (ch)
{

case 'e' :

printf("the robot is going to move to the initial
position. \n");
printf("make sure that the work space is clear\n");
printf("ready? ");
scanf ("%s", &yn);
fprintf(printer,"OG\n"); /* move initial position */
fflush (printer);
fprintf(printer, "MI 0,0,0, -500, -500,0\n");

/* move initial position */
fflush (printer);
fprintf(printer,"nt\n"); /* move nest position */
fflush (printer);
folose (printer);
fprintf(fp1,"%ld #d *d $d #d #d #d\n", (t2-t1), ja■ 0), ja■ 1],
ja■ 2), ja [3], ja■ 4), 1010); /* write to data file */
folose (fpl.);
exit (1);
break;

case 'n' :
fprintf(fpl., "%ld #d #d #d $d $d #d\n", (t2-t1), ja(0), ja(1],
ja■ 2), ja■ 3], ja■ 4), 1010); /* write to data file */
folose (fpl.);
printf(" new data file name (jº ******.dat) = ");
scanf ("%s", frame);

53

fp1 = fopen(fname, "w"); /* file open for measuring */
printf("the robot is going to move to the next target
position. \n");
printf("make sure that the work space is clear\n");
printf("ready? ");
scanf ("%s", &yn);
goto next;

default:
break;

}

getjoy (&freq, phi, jmid);

/* save values */
for (i-O; i3; it +)

oldph[i] = ph[i];
for (i-0; i35; it +)

otheta [i] = theta■ i) ;
oroll = roll;
opitch = pitch;

ttrtran (otheta, oia); /* change otheta to oja */

jtctran (phi, ph, &roll, &pitch, &hi);

if (inv_kinem (ph, &roll, &pitch, theta) == 0) {
printf("%c",07); /* sound beep */
for (i=0; i3; i3-4.) /* restore old values */

ph[i] = oldph[i];
for (i-0; i35; it +)

theta [i] = otheta|[i];
roll = oroll;
pitch = opitch;

}

ttrtran (theta, ja); /* change theta to ja */

/* calculate robot acctuation parameter */
for (i = 0; i < 5; i-4)

ma[i] = ja [i] - oia [i];
ma[5] = hi;

mrob (ma); /* move robot */

if (viewmode == 1) {
if (visual mode == 1)

projection (ph, C., &x1, &y1, &x2, &y2);

sample_picture ();

if (visualmode == 1)
line (x1, y1, x2, y2);

54

fprintf(fp1, "%ld #d *d ºd ■ d $d #d\n", (t2-t1), ja(0), ja■ 1], ja■ 2.],
ja■ 3], ja|4), hi); /* write to data file */

itime--- ;
it = (long) (itime * 1000 / freq.);

} /* end of infinite for loop */

next:

} /* end of ij for loop */

ex:

printf("finish the experiment : " : \n");
printf("the robot is going to move to the initial position. \n");
printf("make sure that the work space is clear\n");
printf("ready? ");
scanf ("%s", &yn);
fprintf(printer,"OG\n"); /* move initial position */
fflush (printer);
fprintf(printer, "MI 0,0,0,-500, -500,0\n"); /* move initial position */
fflush (printer);
fprintf(printer, "nt\n"); /* move nest position */
fflush (printer);
folose (printer);
fprintf(fp1,"%ld $d #d #d #d #d #d\n", (t2-t1), ja(0), ja■ 1], ja■ 2), ja■ 3],
ja(4), 1010); /* write to data file */
folose (fpl.);
exit (1);

} /* end of main */

/*
timer function (return milisecond)
*/
long decompose (t)
long t,
{
long ms;

ms = (t X > 24) & 0xFF;
ms = ms “ 60 + ((t X > 16) & 0xFF);
ms = ms “ 60 + ((t X > 8) & OxEF);
ms = ms “ 100 + (it & 0xFF);
return (ms “ 10);

}

/*
joystick value to cartesian value transformation function
*/

jtctran (phi, ph, roll, pitch, hi.)
int phi [6] ;
double ph[3];
double *roll, *pitch;

55

int *hi;
{

int i ;

for (i-0; i < 3; it 4)
ph[i] += kp * phj[i];

/* limit range check for position */
ph[0] = (ph[0] × 582.) 7 582. : ph[0];
ph[0] = (ph[0] K -582.) 2 –582. : ph[0];
ph [1] = (ph[1] × 582.) 7 582. : ph[1];
ph [1] = (ph [1] K -504.) 2 -504. : ph[1];
ph[2] = (ph[2] × 582.) 2 582. : ph[2];
ph[2] = (ph[2] K -467.) 2 -467. : ph[2];

/* update orientation */
*roll += ka “ phj[3];
*pitch += ka “ phj[4];

/* limit the range of the orientation */
*roll = (*roll > 3. 14159) 2 3.14159 : *roll;
*roll = (*roll K -3.14159) 2 –3. 14159 : *roll;
*pitch = (*pitch > 3. 14159) 2 3.14159 : *pitch;
*pitch = (*pitch K -3.14159) 2 –3. 14159 : *pitch;

/* hand information calculation */
if (phi [5] × 850)

*hi = 0;
else

*hi = 1;
}

/*
calibration joystick
*/

caljoy (freq, jmid)
double *freq;
int jmid[3];
{

}

/*

settimer (*freq.);
startadc();

jmid[0] = t_adc(0); /* x coordinate joystick middle value */
jmid[1] = add (1); /* y coordinate joystick middle value */
jmid[2] = add (3); /* z coordinate joystick middle value */

stopadc();

joystick value get function
*/

56

getjoy (freq, phi, jmid)
double *freq;
int jmid[3];
int phy [6];
{

/*

settimer (*freq.);
startadc();

{
phj [0] =
phj[1] =
phj[2] =
phj[3] =
phj[4] =

}
else

{
phj[0] =
phj[1] =
phj[2] =
phj[3] =
phj[4] =

}
phj[5] = add (2);

stopadc ();

if (t_adc(4) > 1400)

0;
—deadband (adc (0) - jmid[0]);
deadband (adc (1) - jmid[1]);
0;
deadband (adc(3) — jmid[2]);

O;
-deadband (adc (0) - jmid[0]);
deadband (adc (1) - jmid[1]);
0;
deadband (adc(3) - jmid[2]);

deadband calculation
*/

deadband (ia)
int ia;
{

/*

/* hand

int ix;

if (ia > DBAND)
ix = ia

else if (ia
ix = ia

else
ix = 0;

return (ix);

- DBAND;
< -DBAND)
+ DBAND;

/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*

y, z, pitch control”/
x coordinate value */
y coordinate value */
z coordinate value */
roll value */
pitch value */

y, z, pitch control “/
x coordinate value */
y coordinate value */
z coordinate value */
roll value */
pitch value */

open close */

theta to robot command parameter transformation function
*/

ttrtran (theta, ja)
double theta■ 5);
int ja [5] ;
{

/* calculate robot command parameter */
ja■ 0) = (int) (-40 * RTD " theta(0));
ja■ 1) = (int) (40 * RTD " theta■ 1]) - 1400;
ja■ 2} = (int) (40 * RTD " theta(2)) + 1800;
ja■ 3] = (int) (13.333 * RTD " (theta(3] - theta(4))) + 200;
ja [4] (int) (13.333 * RTD " (—theta|[4] - theta|[3])) + 200;

/* limit range check for robot command parameter */
ja■ 0) = (ja [0] × 6000) P 6000 : ja [0] ;
ja■ 0) = (ja■ 0 } –6000) * -6000 : ja [0];
ja [1] = (ja [1] 2600) * 2600 : ja [1];
ja [1] = (ja [1] –2600) 2 – 2600 : ja [1];
ja [2] = (ja [2] 1800) * 1800 : ja [2];

.
ja■ 2) = (ja [2] K - 1800) 2 – 1800 : ja [2];
if (((ja■ 3] - ja [4]) < –2400) ((ja■ 3]. - ja [4]) > 2400))

exit (1);
if (((ja■ 3] + ja■ 41) < −4800) { } ((ja■ 3] + ja [4]) > 4800))

exit (1);

}

mrob (ma)
int ma[6];
{

fprintf(printer, "MI &d, *d, *d, *d, *d,0\n", ma■■ 0), ma■■ 1], ma■■ 2), ma[3],
ma[4]);
fflush (printer);
t2 = decompose (time ());
if (ma■ 5] := ma5old)
{

if (ma■ 5] == 1)
{

fprintf(printer, "go)\n");
fflush (printer);
t3 = decompose (time ());
printf(" hand open time = %ld #ld \n", (t3–t1), it);

}
else

{
fprintf(printer, "go)\n");
fflush (printer);
t3 = decompose (time ());
printf(" hand close time = %ld #ld\n", (t3-t1), it);

}
}
ma5old = ma[5];

58

/*
inverse kinematic function

x /
inv_kinem (ph, roll, pitch, theta)
double ph[3]; /* hand position */
double * pitch, *roll; /* pitch & roll “/
double theta|[5] ; /* joint angle */
{

double a■ 3]; /* hand approach vector */
double pw[3]; /* wrist position */
double a_norm; /* nomarizing of approach vector */
double d2, dd; /* supplement variable */
double c1, C3, c23; /* cos theta value */
double s1, s3, s23; /* sin theta value */
double will, w]3, w?2, wa2; /* element of R4R5 matrix */
double lr; /* soulder & elbow length ratio "/
int i ; /* iteration valiable */

/* calculate approach vector */
a_norm = cos(*pitch) / sqrt{ph[0] * ph[0] + ph[1] * ph[1]);
a■ 0) = ph[0] * a_norm;
a■ 1) = ph[1] * a_norm;
a■ 2.] sin(*pitch);

/*
printf(" a vector = %f $f $f\n", a [0], a [1], a [2]);
printf(" pitch roll = %f $f\n", *pitch, *roll);

x /
/* calculate wrist position */

pw [0] = ph[0] – LH + a■ 0);
pw [1] = ph[1] – LH “ a■ 1);
pw [2] = ph[2] – LH + a [2];

/* calculate theta 1 */
if (pw[1] K 0.) {

/* printf(" outside the range of theta 1 \n");
*/

return (0);
}
theta [0] = atan2(-pw[0], pv [1]); /* pi/2 < theta(0) < pi/2 */
if (theta(0) > 3. 14159265) /* compensate of calculation error */

theta|[0] = 0 . ;

/* calculate theta 3 */
d2 = pw[0] * pw■ 0} + pºw[1] * pw[1] + pw[2] * pw[2];
c3 = (d2 - LS2 - LE2) / (2 * LSLE);

if ((c3 > −1) && (c3 K= 1))
{

s3 = -sqrt (1.-c3*c3); /* elbow up */
theta■ 2) = atan2(s3, c3);

if (!(theta(2) < −1.57079) ; } (theta(2) > 0.)) {

59

/* printf(" outside the range of theta3 \n");
*/

return (0);
}

}
else
{

/* printf(" outside the range of c3 \n");
*/

return (0);
}

/* calculate theta 2 */

s1 = sin (theta■ 0 });
c1 cos (theta [0]);

dd - —s1 * pw[0] + c 1 * pw[1];

theta|[1] = atan2(((c3+LR) *pw[2] – s3*dd), (s3°pw[2] + (c3+LR) *dd));

if ((theta [1] K -0.5236) { } (theta■ 1) > 1.7453))

/* { printf(" outside the range of theta2 \n");

return (0);

/* calculate theta 4 */

c23 = cos (theta [1]+theta [2]);
s23 = sin (theta|[1]+theta [2]);

w22 = -s.1 * c23 * a■ 0} + c 1 * c23 * a■ 1) + s^3 * a■ 2);
w32 = s.1 * s23 * a■ O) — c1 * s23 * a■ 1} + c23 * a■ 21;

theta|[3] = atan2(w32, w?2);

if (!(theta(3] K -1.5707) { } (theta|[3] × 1.5707))
{

/* printf(" outside the range of theta4 \n");

return (0);

/* calculate theta 5 */

theta [4] = *roll;

if (!(theta■ 4) < -3.14159) { } (theta| 4 || > 3. 14159))
{

/* printf(" outside the range of theta■ \n");
*/

return (0);

/*
- -

File
2robjae. c – operate robot using joystick and measure joint

angle for joint angle control (2-D version
experiment, 10 target position)

Synopsis
include <stdio. h.”
include <math. h.”
include <conio. h.”
include "ad. c."

lcl 2robjae
linkml 2robjae draw display atime

Description
This program controls joint angles (shoulder elbow wrist bend)
of a movemaster II and stores time and joystick angles (robot
command parameters) in file every sampling time.
This program uses a function "jtttran ()" which transforms
joystick signal to joint angles. The joystick signal is
converted to joint angle by multipling gains. The joystick
signal is connected to a/d converter.
The right side joystick is used for shoulder and elbow control.
The left side joystick (vertical) is used for wrist control. In
addition to the joystick handle, each joystick box has a swich
on the top face. The switch of the right side joystickh is used
for hand open and close control (up and middle position is
assigned to close and down position is assigned to open). The
switch of the left side joystick is not used in this program.
The a/d converter configuration is as following:

a/d channel 0 -- x coordinate movement or roll movement
(right horizontal, red wire, 0-2047)

a/d channel 1 -- y coordinate movement (right vertical,
green wire, 0-2047)

a/d channel 2 -- hand open close (right switch, white
wire, open: 0 close: X900)

a/d channel 3 –- z coordinate movement or pitch movement
(left vertical, green wire, 0-2047)

a/d channel 4 -- position and orientation control change
(left switch, white wire,
position: X 1400, orientation: <1400)

This program uses a function "ttrtran ()" which transforms
joint angles (theta) to robot command parameters (ja). The re
lation between 'theta' and 'ja' is as following:

ja1 = -40 * theta1 (-6000% ja136000)
ja2 = 40 * theta2 – 1400 (-2600% ja232600)
ja3 = 40 * theta3 + 1800 (–1800.<ja3& 1800)
ja4 = 13.333 * (theta4 – thetaS) + 200

(-2400& jaz!-jaS32400)
13.333 * (-theta■ – theta4) + 200

(-4800& jaz,4-jaš■ 4800)
jaS

The initial position is as following:

62

theta1
theta2
theta 3
theta4
theta 5

Sub function

O (deg),
35 (deg),
-45 (deg),
O
O

(deg),
(deg),

ja1 = 0
ja2 = 0
ja3 = 0
ja4 = +200
jaS = +200

jtttran (phi, theta, &hi);
caljoy (freq, jmid)
getjoy (freq, phi, jmid)
deadband (ia)
ttrtran (theta, ja)
mrob (ma)
inv_kinem (ph, roll, pitch, theta)--for initial &

Author
Munehisa Takeda

Date

Jan. 28, 1988

include <stdio.h>
include Kmath. h5
include <conio. h.”
include "ad. C"

#define LB 250.0
#define LS 220.0
#define LE 160.0
#define LH 202.0
#define LS2 48400.0
#define LE2 25600.0
#define LSLE 35200.0
#define LR 1.375
#define RTD 57. 29578
#define DBAND 100.0
#define DIS 40.
#define ANG O. 26.1799

int jmid[3];
double kp = 0.01, ka = 0.
long t1, t2, t3;
long itime = 0;
long it;
int ma5old;

FILE *fp1;
FILE *printer;

extern double c [] ;
double tph [11] [4];
double iph [11] [4];

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

length
length
length
length
square
square

Of
Of
Of
Of
LS
LE

target setting

base */
soulder */
elbow */
hand */
*/
*/

multiple LE LS “/
LS over LE */
scaling parameter (rad to degree) */
deadband of joystick reading */
distance from initial to target position */
max initial angle from target angle
(15 deg) */

/*
005/RTD;
/*starting

/*
/*

/*
/*

joystick mid point */

&
/* gains “/

close & open time (system timer) */

software timer */
previous hand information */

target position & pitch */
start position & pitch */

63

main()
{

/*

extern long time ();
extern long decompose ();
static double theta(5] = {0, 35./RTD,-45./RTD,0,0}; /*joint angle"/
static double ph[3] = {0,536.7, 63.3}; /* hand position */
static int phi [6]; /* joystic digital value */
double roll = 0. , pitch = -10./RTD; /* roll and pitch "/
double freq;
static double otheta [5] ;
static double oldph[3];
double oroll, opitch;
static int ja■ 5);
static int of a[5] ;
static int ma■■ 6);
char frame [12];
int i ;
int ij;
int Ch;
int hi = 1;
int viewmode = 0;
int visual mode = 0;
double x1, y1, x2, y2;
char yn [3];

target position setting
tph[0] [0] = 0. ;
tph[0][1] = 450. ;
tph[0] [2] = 250. ;
tph[0][3] = -4. / RTD;
tph[1] [0] = 0. ;
tph[1] [1] = 300. ;
tph[1] [2] = 50. ;
tph[1][3] = -64. / RTD;
tph[2] [0] = 0. ;
tph[2] [1] = 500. ;
tph[2] [2] = -150. ;
tph[2][3] = -4. / RTD;
tph[3] [0] = 0. ;
tph[3] [1] = 250. ;
tph[3] [2] = -80.
tph[3] [3] = -34.) RTD;
tph [4] [0] = 0 . ;
tph[4] [1] = 500. ;
tph[4] [2] = 0. ;
tph[4][3] = -34. / RTD;
tph[5] [0] = 0. ;
tph[5] [1] = 350. ;
tph[5] [2] = -150. ;
tph[5] [3] = -94. / RTD;
tph[6][0] = 0. ;
tph[6][1] = 500. ;

/*
/*
/*
/*
/*

*/

joint angle for robot command */
old joint angle for robot command */
robot acctuation parameter */
data file name */
iteration value */

/* hand information */

64

/*

tph[6] [2]
tph[6] [3]
tph[7][0]
tph[7][1]
tph[7] [2]
tph[7][3]
tph[8] [0]
tph[8][1]
tph[8] [2]
tph[8] [3]
tph[9][0]
tph[9][1]
tph[9] [2]
tph[9] [3]
tph[10] [0]
tph[10][1]
tph[10] [2]
tph[10] [3]

initial

iph[0] [0]
iph[0][1]
iph[0] [2]
iph[0] [3]
iph[1] [0]
iph[1] [1]
iph[1] [2]
iph[1] [3]
iph[2] [0]
iph[2] [1]
iph[2] [2]
iph[2] [3]
iph[3] [0]
iph[3] [1]
iph[3] [2]
iph[3] [3]
iph[4] [0]
iph[4] [1]
iph[4] [2]
iph[4] [3]
iph[5] [0]
iph[5] [1]
iph[5] [2]
iph[5] [3]
iph[6] [0]
iph[6][1]
iph[6] [2]
iph[6] [3]
iph[7] [0]
iph[7][1]
iph[7] [2]
iph[7] [3]
iph[8] [0]
iph[8] [1]

-150. ;
–34. / RTD;
0. ;
400. ;
–50.
–64. / RTD;
0. ;
550. ;
50. ;
–4. / RTD;
0. ;
400. ;
-150. ;
–64. / RTD;

0. ;
400 . ;
150. ;
–34. / RTD;

osition setting
0. ;
tph[0][1]
tph[0] [2]
tph[0] [3]
0. ;
tph[1] [1]
tph[1] [2]
tph[1] [3]
0. ;
tph[2] [1]
tph[2] [2]
tph[2] [3];
0. ;
tph[3] [1]
tph[3] [2]
tph[3] [3];
0. ;
tph[4] [1]
tph[4] [2]
tph[4] [3]
0. ;
tph[5] [1]
tph[5] [2]
tph[5] [3]
0. ;
tph[6] [1]
tph[6] [2];
tph[6][3]
0. ;
tph[7][1]
tph[7][2];
tph[7][3]
0. ;
tph[8] [1]

+

:

!

:

:

(DIS
(DIS
ANG;

(DIS
(DIS
(ANG

(DIS
(DIS

*/

*

x

;
x

(DIS +
(DIS +

(DIS
(DIS
(ANG

(DIS
(DIS
ANG;

DIS;

;
×

cos (30.
sin (30.

sin (30.
cos (30.
2.);

sin (30.
cos (30.

sin (30.
cos (30.

cos (30.
sin (30.
2.);

sin (30.
cos (30.

(ANG / 2.);

DIS;

(ANG / 2.);

DIS;

■■■■■
■

RTD));
RTD));

RTD));
RTD));

RTD));
RTD));

RTD));
RTD));

RTD));
RTD));

RTD));
RTD));

65

iph[8] [2] = tph [8] [2];
iph[8] [3] = tph[8] [3] – ANG;
iph[9] [0] = 0. ;
iph[9][1] = tph.[9][1] – (DIS " sin(30. / RTD));
iph[9] [2] = tph[9] [2] + (DIS " cos(30. / RTD));
iph[9][3] = tph[9] [3];
iph[10] [0] = 0. ;
iph[10][1] tph[10][1] – (DIS " sin(30. A RTD));
iph[10] [2] tph[10] [2] + (DIS " cos(30. / RTD));
iph[10] [3] tph[10] [3];

printf("direct view or camera view (0 or 1): ");
scanf ("%d", &viewmode);
if (viewmode == 1) {

printf("without or with visual enhancements (0 or 1): ");
scanf ("%d", &visual mode);

}

/*

*/

printf(" input gain ka (0.005) = ");
scanf ("%lf", &ka);
ka /= RTD;

printf(" input sampling frequency = ");
scan■ ("%lf", &freq.);

printf(" input hand position = ");
scanf ("%lf #lf #lf", &ph[0], &ph [1], &ph[2]);

printf(" data file name (j" " " " " " " .dat) = ");
scanf ("%s", frame);

printer = fopen ("prn", "w"); /* printer open for robot output */
fp1 = fopen (fmame, "w"); /* file open for measurement */

printf(" start joystick calibration\n ");
caljoy (&freq, jmid);
printf(" end joystick calibration\n ");

if (viewmode == 1) {
init_video ();
sample_picture();
camcal (c);

}

printf("the robot is going to move to the initial position. \n");
printf("make sure that the work space is clear\n");
printf("ready? ");
scanf ("%s", &yn);
printf("are you sure? ");
scanf ("%s", &yn);

fprintf(printer, "nt\n"); /* move nest position */
fflush (printer);
fprintf(printer, "SP 9\n"); /* maximum speed set “/

66

/*

fflush (printer);
fprintf(printer, "MI -6000,-2600, 1800, 1400, -1000,0\n");

/* move initial position */
fflush (printer);
fprintf(printer, "HOVn"); /* move initial position */
fflush (printer);

timer setting (t1: start time) */
t1 = decompose (time ());
itime = 0;

for (ij = 0; ii < 11; i.j++)
{

/*

/* save values */
for (i=0; i3; it +)

oldph[i] = ph[i];
for (i-0; i35; it +)

otheta [i] = theta [i];
oroll = roll;
opitch = pitch;

ttrtran (otheta, oia); /* change otheta to oja ”/

for (i = 0; i < 3; it +)
ph[i] = tph [ij] [i];

pitch = tph [ij] [3];

if (inv_kinem (ph, &roll, &pitch, theta) == 0) {
printf("%c",07); /* sound beep */
printf(" wrong target position setting !!!\n ");
goto ex;

}

ttrtran (theta, ja); /* change theta to ja ”/

calculate robot acctuation parameter */
for (i = 0; i < 5; it 4)

ma[i] = ja [i] - oia [i];
ma[5] = hi;

mrob (ma); /* move robot */

printf("set the objects and target box. Then remove target for
moving initial position\n");
printf("ready? ");
scanf ("%s", &yn);

/* save values */
for (i-0; i3; it +)

oldph[i] = ph[i];
for (i-0; i35; i3-4)

otheta■ il = theta|[i];
oroll = roll;
opitch = pitch;

67

ttrtran (otheta, Oja); /* change otheta to oja ”/

for (i = 0; i < 3; it 4)
ph[i] = iph[i,j] [i];

pitch = iph[i,j] [3];

if (inv_kinem (ph, &roll, &pitch, theta) == 0) {
printf("%c",07); /* sound beep */
printf(" wrong start position setting ! ! !\n ");
goto ex;

}

ttrtran (theta, ja); /* change theta to ja ”/

/* calculate robot acctuation parameter */
for (i = 0; i < 5; it 4)

ma[i] = ja[i] - oia [i];
ma[5] = hi;

mrob (ma); /* move robot */

printf("set the objects again. \n");
printf("did you pick the object?\n");
printf("pick the object by using swich on the joystick. \n");
printf("after grasping the object , hit the 'p' key. \n");
printf("ready? ");
scanf ("%s", &yn);
for (; ;)
{

ch = baos (0x06, 0x00ff) & 0x00ff;
switch (ch)
{

case 'p':
goto start;

default:
break;

}
getjoy (&freq, phi, jmid);

/* save values */
for (i=0; i35; it +)

otheta [i] = theta [i];

ttrtran (otheta, oia); /* change otheta to oja ”/

jtttran (phi, theta, &hi);

ttrtran (theta, ja); /* change theta to ja ”/

/* calculate robot acctuation parameter */
for (i = 0; i < 5; it +)

ma[i] = ja [i] – oia [i];
ma[5] = hi;

68

mrob (ma); /* move robot */
} /* end of infinite loop */

Start:

printf("start experiment \n");
printf("ready? ");
scanf ("%s", &yn);

/* timer setting (t1: start time) */
t1 = decompose (time ());
itime = 0;

for (; ;)
{

ch = baos (0x06, 0x00ff) & 0x00ff;
switch (ch)
{

case 'e' :
printf("the robot is going to move to the initial
position. \n");
printf("make sure that the work space is clear\n");
printf("ready? ");
scanf ("%s", &yn);
fprintf(printer,"OG\n"); /* move initial position */
fflush (printer);
fprintf(printer, "MI 0,0,0, -500, -500,0\n");

/* move initial position */
fflush (printer);
fprintf(printer,"nt\n"); /* move nest position */
fflush (printer);
folose (printer);
fprintf(fp1, "%ld #d #d #d #d #d *d Nn", (t2-t1), ja [0], ja [1],
ja(2], ja■ 3], ja■ 4), 1010); /* write to data file */
folose (fpl.);
exit (1);
break;

case 'n' :
fprintf(fp 1, "%ld #d $d #d *d $d *d Nn", (t2-t1), ja [0], ja■ 1),
ja(2), ja■ 3], ja■ 4), 1010); /* write to data file */
folose (fpl.);
printf(" new data file name (jº ******.dat) = ");
scanf ("%s", frame);
fp1 = fopen(fname, "w"); /* file open for measuring */
printf("the robot is going to move to the next target
position. \n");
printf("make sure that the work space is clear\n");
printf("ready? ");
scanf ("%s", &yn);
goto next;

default:
break;

69

getjoy (&freq, phj, jmid);

/* save values */
for (i-0; i35; i3-4.)

otheta■ i) = theta [i];

ttrtran (otheta, oia); /* change otheta to oja ”/

jtttran (phi, theta, &hi);

ttrtran (theta, ja); /* change theta to ja ”/

/* calculate robot acctuation parameter */
for (i = 0; i < 5; it 4)

ma[i] = ja [i] - oia [i];
ma[5] = hi;

mrob (ma); /* move robot */

if (viewmode == 1) {
if (visual mode == 1)

projection (ph, C, &x1, &y1, &x2, &y2);

sample_picture();

if (visualmode == 1)
line (x1, y1, x2, y2);

}

fprintf(fp1, "%ld #d #d #d #d #d #d\n", (t2–tl), ja■ O J , ja■ 1],
ja [2], ja■ 3], ja■ 4), hi); /* write to data file */

itime--- ;
it = (long) (itime * 1000 / freq.);

} /* end of infinite for loop */

next:

} /* end of ij for loop */

ex:

printf("finish the experiment : " : \n");
printf("the robot is going to move to the initial position. \n");
printf("make sure that the work space is clear\n");
printf("ready? ");
scanf ("%s", &yn);
fprintf(printer,"OG\n"); /* move initial position */
fflush (printer);
fprintf(printer, "MI 0,0,0,-500, -500,0\n");

/* move initial position */
fflush (printer);
fprintf(printer, "nt\n"); /* move nest position */
fflush (printer);

70

folose (printer);
fprintf(fpl., "%ld #d *d $d #d $d $d\n", (t2-t1), ja(0), ja■ 1], ja■ 2),
ja■ 3], ja■ 4), 1010); /* write to data file */
folose (fpl.);
exit (1);

} /* end of main */

/*
timer function (return milisecond)
*/
long decompose (t)
long t?
{
long ms;

ms = (t >> 24) & 0xFF;
ms = mS # 60 + ((t X > 16) & OxFF);
mS ms “ 60 + ((t X > 8) & OxEF);
ms = ms “ 100 + (t & 0xFF);
return (ms “ 10);

/*
joystick value to cartesian value transformation function
*/

jtttran (phi, theta, hi.)
int phi [6];
double theta [5] ;
int *hi;
{

int i ;

for (i-0; i < 5; it 4)
theta [i] += ka “ phj[i];

/* limit range check for position */
theta|[0]
theta(0) =
theta [1]
theta■ 1)
theta [2] =
theta [2]
theta■ 3]
theta|[3] =
theta.[4]
theta.[4] =

(theta|[0]
(theta|[0]
(theta [1]

= (theta [1]
(theta [2]
(theta [2]
(theta|[3]
(theta|[3]
(theta.[4]
(theta [4]

(90. / RTD)) 2 (90. / RTD) : theta(0);
–(90. / RTD)) 2 - (90. / RTD) : theta(0);
(100. / RTD)) 2 (100. / RTD) : theta■ 1];
- (30. / RTD)) 2 - (30. / RTD) : theta(1];
(0. / RTD)) 2 (0. / RTD) : theta■ 2.];
–(90. / RTD)) 2 - (90. / RTD) : theta(2];
(90. / RTD)) 2 (90. / RTD) : theta■ 3];
–(90. / RTD)) 2 - (90. / RTD) : theta(3];
(195. / RTD)) 2 (195. / RTD) : theta|[4];
– (165. / RTD)) 2 - (165. / RTD) : theta■ 4);

/* hand information calculation */
if (phi [5] × 850)

*hi = 0;
else

*hi = 1;

71

/*
calibration joystick
*/

caljoy (freq, jmid)
double *freq;
int jmid[3];
{

settimer (*freq.);
startadc ();

jmid[0] = t_adc(0);
jmid[1] = add (1);
jmid[2] = add (3);

stopadc();
}

/*
joystick value get function
*/

getjoy (freq, phi, jmid)
double *freq;
int jmid[3];
int phi [6] ;
{

settimer (*freq.);
startadc();

if (t_adc(4) > 1400)
{

phj[0] = 0;
phj[1] = deadband (adc (0)
phj[2] = deadband (adc (1)
phj[3] = deadband (adc (3)
phj[4] = 0;

}
else
{

phj[0] = 0;
phj[1] = deadband(adc(0)
phj[2] = deadband (adc (1)
phj[3] = deadband (adc(3)

} phj[4] = 0;
phj[5] = add (2);

stopadc();

/* x coordinate joystick middle value */
/* y Coordinate joystick middle value */
/* z coordinate joystick middle value */

– jmid[0]);
– jmid[1]);
- jmid[2]);

– jmid[0]);
– jmid[1]);
- jmid[2]);

/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*

j2, 3, 4 control”/
j.1 value
j2 value
j3 value
j4 value
j5 value

*/
*/
*/
*/
*/

j2,3,4 control “/
j1 value
j2 value
j3 value
j4 value
j5 value

*/
*/
*/
*/
*/

/* hand open close */

/*
deadband calculation
*/

deadband (ia)
int ia;
{

int ix;

if (ia > DBAND)
ix = ia - DBAND;

else if (ia K -DBAND)
ix = ia + DBAND;

else
ix = 0;

return (ix);

/*
theta to robot command parameter transformation function
*/

ttrtran (theta, ja)
double theta(5];
int ja■ 5);
{

/* calculate robot command parameter */
ja■ 0) = (int) (-40 * RTD + theta|[0]);
ja■ 1) = (int) (40 * RTD " theta(1)) – 1400;
ja(2) = (int) (40 * RTD " theta(2)) + 1800;
ja■ 3] = (int) (13.333 * RTD " (theta(3) - theta■ 4))) + 200;
ja■ 4) = (int) (13.333 * RTD " (-theta■ 4) – theta|[3])) + 200;

/* limit range check for robot command parameter */
ja■ 0) = (ja■ 0] > 6000) 2 6000 : ja [0];
ja(0) = (ja■ 0} < -6000) 2 -6000 : ja[0];
ja [1] = (ja■ 1) > 2600) 2 2600 : ja[1];
ja■ 1) = (ja■ 1} < −2600) 2 –2600 : ja [1];
ja[2] = (ja [2] × 1800) 2 1800 : ja[2] ;
ja■ 2} = (ja■ 2} < −1800) 2 - 1800 : ja [2];
if (((ja■ 3]. - ja [4]) < –2400) { } ((ja■ 3]. - ja [4]) > 2400))

exit (1);
if (((ja■ 3] + ja(4)) < −4800) ((ja■ 3] + ja(4)) > 4800))

exit (1);

}

mrob (ma)
int ma[6];
{

73

fprintf(printer, "MI &d, *d, *d, *d, *d,0\n", ma[0], ma■■ 1], ma[2], ma■■ 3],
ma[4]);
fflush (printer);
t2 = decompose (time ());
if (ma■ 5) l = ma5Old)
{

if (ma■ 5] == 1)
{

fprintf(printer, "go)\n");
fflush (printer);
t3 = decompose (time ());
printf(" hand open time

|}
else
{

fprintf(printer, "go Vn");
fflush (printer);
t3 = decompose (time ());
printf(" hand close time

}
}
ma5old = ma[5];

}

/*
inverse kinematic function

x /
inv_kinem (ph, roll, pitch, theta)
double ph[3];
double * pitch, *roll;
double theta [5] ;
{

double
double
double
double
double
double
double
double
int i ;

a [3];
pw [3];
a norm;
d2, dd;
C1, C3, C23;
S1, S3, S23;
w11, w] 3, w?2, W22;
lr;

/* calculate approach vector

/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

*/

%ld #ld\n", (t3-t1), it);

%ld $ld\n", (t3-t1), it);

hand position */
pitch & roll “/
joint angle */

hand approach vector */
wrist position */
nomarizing of approach vector */
supplement variable */
cos theta value */
sin theta value */
element of R4R5 matrix */
soulder & elbow length ratio "/
iteration valiable */

a_norm = cos(*pitch) / sqrt{ph[0] * ph[0] + ph[1] * ph[1]);
a■ 0) = ph[0] * a_norm;
a■ 1) = ph[1] * a_norm;
a■ 2) sin(*pitch);

/*
printf(" a vector =
printf(" pitch roll

*/
/*

%f

calculate wrist position
pw[0] = ph[0] – LH + a■ 0);

*/

%f $f\n", a■ 0], a■ 1], a■ 2.]);
%f $f\n", *pitch, *roll);

74

/*

/*

/*

/*

/*

/*
*/

pw [1] = ph[1] – LH " a [1];
pw [2] = ph[2] – LH “ a■ 2) ;

calculate theta 1 */
if (pw[1] K 0.) {

printf(" outside the range of theta 1 \n");

return (0);
}
theta [0] = atan2(-pw[0], pv [1]); /* pi/2 < theta(0) < pi/2 */
if (theta(0) > 3. 14159265) /* compensate of calculation

error */
theta [0] = 0 . ;

calculate theta 3 */
d2 = pw[0] * pw[0] + pºw[1] * pw[1] + pow[2] * pw[2];
c3 = (d2 - LS2 – LE2) / (2 * LSLE);

if ((c3 > −1) && (c3 <= 1.))
{

s3 = -sqrt (1.-c3” c3); /* elbow up */
theta|[2] = atan2(s3, c3);

if ((theta| 2 | < −1.57079) { } (theta■ 2.) > 0.)) {
/* printf(" outside the range of theta3 \n");

return (0);
}

}
else
{

printf(" outside the range of c3 \n");

return (0);
}

calculate theta 2 */

s1 = sin (theta [0]);
C1 cos (theta.[0]);

dd -s1 * pyw■ 0} + c 1 * pw[1];

theta(1] = atan2(((c3+LR) *pw[2] – s3*dd), (s3°pw[2] + (c3+LR) *dd));

if ((theta|[1] K -0.5236) { } (theta(1) > 1.7453))

{ printf(" outside the range of theta2 \n");

/*

return (0);

calculate theta 4 */

75

/*

/*

/*

c23 = cos (theta■ 1} +theta [2]);
s23 = sin (theta■ 1]+theta|[2]);

w22 = -s.1 * c23 * a■ O) + c 1 * c23 * a■ 1) + s23 * a■ 2);
w32 = s.1 * s23 * a■ O J - c1 * s23 * a■ 1} + c23 * a■ 2.];

theta|[3] = atan2(w32, w?2);

if (!(theta■ 3] { -1.5707) { } (theta■ 3] > 1.5707))
{

printf(" outside the range of theta4 \n");

return (0);

calculate theta 5 */

theta■ 4) = *roll;

if (!(theta| 4 || < -3.14159) { } (theta(4) > 3. 14159))

{ printf(" outside the range of theta 5 \n");

return (0);
}
return (1);

/*--

File

droblo. c – draw robot figure from measured data file
with coordinates

Synopsis
include <stdio. h>
include <math. h’
include "robintc. C."

lcl droblo
linkvdi drob1c

Description
This program draws the robot hand trajectory, pitch angle tick,
initial & final robot figures, and coordinates from the data file
of the pick and place task. Perspective view point and zoom is
changeable. The end of file is represented by hi = 1010.

Author
Munehisa Takeda

Date

Jan. 28, 1988

include <stdio. h’
include <math. h>

int hi;
include "robintC. C."

#define RTD 57. 29578 /* scaling parameter (rad to degree) */

FILE * fp1;

main()
{

static double theta [5] ;
char frame [12];
int ja [5] ;
long t,
int i ;
char ch;

printf(" data file name (* * * * * * * *.dat) = ");
scanf ("%s", frame);
printf(" viewing distance (dispz: -1000) = ");
scanf ("%lf", & dispz);
printf(" viewing angle (vax: -45, vay:0, vaz: -45) = ");
scanf ("%lf &lf &lf", &vax, &vay, &vaz);
printf(" zoom factor (zoom: 15) = ");
scanf ("%lf", &zoom);

77

vax /= RTD;
vay /= RTD;
vaz /= RTD;

fp1 = fopen (fname, "r"); /* file open for reading */
v_opnwk (parameter, & screen, savary);

Start:
do
{

/*

*/

fscanf (fpl., "%ld $d *d 3d $d *d ºd", &t, &ja [0], &ja [1], &ja [2], &ja [3],
&ja [4], &hi);

rtttran (ja, theta);

for (i = 0; i < 5; it +)
theta(i) *= RTD;

theta|[4] -= 90. ;

robot1 (theta);

printf(" t, ja hi = %ld #d *d #d *d #d $d Vn", t, ja■ 0], ja■ 1], ja■ 2.],
ja [3], ja[4], hi);
printf(" theta = %lf #lf #lf #lf #lf\n", theta(0), theta■ 1], theta|[2],
theta.[3], theta|[4]);

} while (hi ! = 1010);
/*

printf(" finish task \n ");
printf(" hit 'r' key for repeating. \n ");
printf(" hit 'f'' key for changing data file. \n ");
printf(" hit 'd' key for changing viewing distance. \n ");
printf(" hit 'a' key for changing viewing angle. \n ");
printf(" hit 'z' key for changing zoom factor. \n ");
printf(" hit 'c' key for changing all data. \n ");
printf(" hit 'e' key for ending. \n ");

*/
for (; ;)

{
ch = baos (0x06,0x00ff) & 0x00ff;
switch (ch)
{

case 'r' : /* repeat "/
folose (fpl.);
v_clrwk(screen);
ct = 0;
fp1 = fopen(fname, "r"); /* file open for reading */
goto start;
break;

case 'f'': /* change data file */

78

folose (fpl.);
v_clrwk(screen);
ct = 0;
printf(" data file name (* * * * * * * *.dat) = ");
scanf ("%s", frame);
v_clrwk(screen);
fp1 = fopen(fname, "r"); /* file open for reading */
goto start;
break;

case 'd' : /* change view distance */
folose (fpl.);
v_clrwk(screen);
ct = 0;
printf(" viewing distance (dispz: -1000) = ");
scanf ("%lf", & dispz);
v_clrwk(screen);
fp1 = fopen(fname, "r"); /* file open for reading */
goto start;
break;

case 'a' : /* change view angle */
folose (fpl.);
v_clrwk(screen);
ct = 0;
printf(" viewing angle (vax: -45, vay:0, vaz :-45) = ");
scanf ("%lf &lf &lf", &vax, &vay, &vaz);
v_clrwk(screen);
vax /= RTD;
vay /= RTD;
vaz /= RTD;
fp1 = fopen (fname, "r"); /* file open for reading */
goto start;
break;

case 'z' : /* change zoom */
folose (fpl.);
v_clrwk(screen);
ct = 0;
printf(" zoom factor (zoom: 15) = ");
scanf ("%lf", &zoom);
v_clrwk(screen);
fp1 = fopen(fname, "r"); /* file open for reading */
goto start;
break;

case 'C': /* change all data “/
folose (fpl.);
v_clrwk(screen);
ct = 0;
printf(" data file name (* * * * * * * *.dat) = ");
scanf ("%s", frame);
printf(" viewing distance (dispz:-1000) = ");
scanf ("%lf", &dispz);
printf(" viewing angle (vax: -45, vay:0, vaz :-45) = ");
scanf ("%lf &lf &lf", &vax, &vay, &vaz);
printf(" zoom factor (zoom:15) = ");
scanf ("%lf", &zoom);

v_clrwk(screen);
vax /= RTD;
vay /= RTD;
vaz /= RTD;
fp1 = fopen(fname, "r"); /* file open for reading */
goto start;
break;

case 'e' : /* exit */
folose (fpl.);
v_clrwk(screen);
v_Clswk(screen);
exit (1);
break;

default:

break;
} /* end of switch "/

} /* end of infinit loop */

}

/*
theta to robot command parameter transformation function
*/

rtttran (ja, theta)
int ja[];
double theta [] ;
{

int i ;

/* calculate robot command parameter */
theta(0) = -0.025 * ja■ 0);
theta(1) = 0.025 * (ja■ 1} + 1400);
theta [2] = 0.025 * (ja [2] – 1800);
theta(3] = 0.0375 * (ja■ 3] - ja [4]);
theta■ 4) = -0.0375 * (ja■ 3} + ja■ 4) – 400);

/* limit range check for robot command parameter */
theta(0) = (theta(0) > 90) 7 90 : theta(0);
theta|[0] = (theta|[0] –90) 2 -90 : theta(0);
theta.[1] = (theta| 1 || > 100) 2 100 : theta.[1];
theta|[1] = (theta|[1] –30) 2 –30 : theta(1];
theta.[2] = (theta|[2] 0) 2 0 : theta■ 2) ;
theta [2] = (theta [2] –90) 2 -90 : theta|[2];
theta|[3] = (theta [3] 90) 2 90 : theta|[3];
theta [3] = (theta [3] –90) 2 -90 : theta|[3];
theta|[4] = (theta [4] 195) 2 195 : theta(4);
theta|[4] = (theta [4] -165) 2 – 165 : theta(4);

for (i = 0; i < 5; it 4)
theta■ i) /= RTD;

80

/* robintc. c */
/* Dec. 12, 1987 */

#define MAXPOINTS 11
#define X 1
#define Y 2
#define Z 3
#define JX 1
#define JY 2
#define J2 3
#define SX 36 /* scaling factors */
#define SY 25
#define TX 320
#define TY 175
#define DEGTORAD . 017453
#define L0 250. /* base length */
#define L1 220. /* shoulder to elbow */
#define L2 160. /* elbow to wrist */
#define L3 177. 6 /* wrist to gripper */
#define L4 30. /* one half of maximum gripper width */
#define L5 37. /* gripper length */
#define L6 24.4 /* gripper base to pad center */

struct vector.3

{
double x;
double y;
double z;

};
struct vectorS nrobot [11];
struct vector 3 robot [11] = { 0. , 0., 0., /* point 0 = base */

0. , 0., 0.,
0. , 0., 0.,
O. , 0., 0.,
0. , 0., 0., /* wrist/gripper joint */
L4, L5, 0., /* */
L4, 0'. , 0., /* 4 points defining */
-L4, 0., 0., /* gripper */
-L4, L5, 0., /* */
0. , L6, 0., /* center of gripper */
0. , L6, 0. /* base of reference line */

};

double jac1, jac2, jac3, jac4, jacS ; /* joint angles cosines */
double jas1, jas2, jas.3, jas4, jas 5; /* joint angles sines */
double jal, ja2, ja3, ja4, jaS; /* joint angles */
double vax=-45*DEGTORAD, vay=0, vaz=-45*DEGTORAD;
double dispz=-1000;
double zoom=15;
double vacz, vacy, vacz;
double vasz, vasy, vasz;
double point [3];
double arrow[3]; /* orientation of the end effector*/
double xy [2];

81

int uv [12] [2];
int cuv[4] [2];

long ct = 0;

int screen, gdms_err, savary [66];
int parameter[19] = {2, 1, 1, 3, 1,1,1,0,0,1,1,

'D', 'I', 'S', 'P', 'L', 'A', 'Y', ' ');

int i ;
int quit;
int again;

robot1 (ja)
double ja(5);
{

/* obtain user inputs jal, ja2, ja3, ja4, jaš , D, and d “/

/* GetAngles (); */
/* Getview (); */

/* computation of sins and cosines */

ja1 = DEGTORAD + ja(0);
ja2 = DEGTORAD + ja■ 1);
ja3 = DEGTORAD + ja■ 21;
ja4 = DEGTORAD + ja[3];
jaS = DEGTORAD + ja■ 4);

/* vax * = DEGTORAD;
vay *= DEGTORAD;
vaz + = DEGTORAD; */

jac1 cos (jal);
jac2 cos (ja2);
jac3 = cos(ja3);
jac4 = cos(ja4);
jacS = cos(jaS);
jas1 = sin (ja.1);
jas2 = sin (ja2);
jas3 = sin (ja3);
jas4 = sin (ja4);
jas 5 = sin (jaS);

vacx = cos (vax);
vacy = cos (vay);
vacz = cos (vaz);
VaSx sin (vax);
vasy = sin (vay);
vasz = sin (vaz);

for (i-O; i < MAXPOINTS; it +)

82

point [0]
point[1]
point [2]
switch (i)
{

case 0:

case 1:

= robot [i].x;
robot [i]. y;
robot [i]. z;

break;

translate (0. , 0., L0, point);
/* printf("\n rotate points ºf $f $f", point[0], point[1], point (2)); */

case 2:

case 3:

Case

Case

Case

Case

CaSe

Case

Case

}
nrobot [i]. x
nrobot [i]. y
nrobot■ il. z

nrobot [10]. z

break;

translate (0. , L1,0., point);

rotate (JX, jac2, jas.2, point);
rotate (JZ, jac1, jas 1, point);
translate (0. , 0., L0, point);
break;

translate (0. , L2, O., point);
rotate (JX, jac3, jas3, point);
translate (0. , L1, 0., point);
rotate (JX, jac2, jas.2, point);
rotate (JZ, jac1, jas 1, point);
translate (0. , 0., L0, point);
break;

translate (0. , L3,0. , point);
rotate (JY, jacS, jas 5, point);
rotate (JX, jac4, jas 4, point);
translate (0. , L2, 0., point);
rotate (JX, jac3, jas3, point);
translate (0. , L1,0., point);
rotate (JX, jac2, jas.2, point);
rotate (JZ, jac1, jas 1, point);
translate (0. , 0., L0, point);
break;

point [0] ;
point [1];
point[2];

/* might consider
writing this */

/* block as function */

0. ; /* reference line base */

83

orientation (nrobot [4] .x, nrobot [4]. y, nrobot■ 4). z, nrobot [9]. x, nrobot [9]. y,
nrobot [9]. z, arrow);

for (i-0; ióMAXPOINTS;
{

point [0] = n robot [i].
point[1] = n robot [i].
point [2] nrobot [i].

i++)

X;

Y;
Z ;

rotate (Z, vacz, vasz, point);
rotate (Y, vacy, vasy, point);
rotate (X, vacz, vasz, point);

translate (0. , 0., dispz, point);
perspective (point, ZOOm, xy);
screen_map(xy, &uv[i] [0]);

if (ct == 0)
{

uv.[11] [0]
uv.[11][1]
draw cood();

uv.[9][0];
uv.[9][1];

}

/* v_opnwk (parameter, & screen, savary); */
/* v_clrwk(screen); */

if ((ct == 0) { } (hi == 1010).)
draw robot();

draw tick.();
draw traject();

uv.[11] [0]
uv.[11][1]
ct-4-;

uv.[9][0];
uv.[9][1];

/* v_Clswk(screen); */
/*printf("\n center of end effector = %f $f $f", nrobot [9].x, nrobot [9]. y,
nrobot■ 9). z); */
/*printf("\n wrist joint position = %f $f $f", nrobot [4].x, nrobot■ 4). y,
nrobot [4]. z);
printf("\n orientation of the end effector is (%f $f $f)", arrow[0],
arrow[1], arrow[2]); */
/* printf("\n run program again (y/n) >> ");
scanf ("%s", &again);
if (again l = 'y')

{
quit = 1;

}

84

}
while (! quit); */

} /* end of main */

GetAngles () /* currently not used "/
{

printf("\n input joint angles 1, 2, 3, 4, 5 : ");
scanf ("%lf &lf &lf &lf &lf", &jal, &ja2, &ja3, &ja4, &ja5);
printf("joint angles are = %lf &lf &lf #lf #lf \n", jal, jaz, ja3,
ja4, jaS);

}

Getview ()
{

printf("\n input angle of X rotation (view): ");
scanf ("%lf", &vax);
printf("x view angle = %lf \n", vax);

printf("\n input angle of Y rotation (view): ");
scanf ("%lf", &vay);
printf("y view angle = %lf \n", vay);

printf("\n input angle of Z rotation (view): ");
scanf ("%lf", &vaz);
printf("z view angle = %lf \n", vaz);

printf("\n input D:");
scanf ("%lf", & dispz);
printf("dispz = %lf \n", dispz);

printf("\n input zoom distance: ");
scanf ("%lf", &zoom);
printf("zoom = %lf \n", zoom);

}

rotate (axis, cosdeg, sindeg, pt)
int axis;
double cosdeg, sindeg;
double pt[] ;
{
static double temp [3];

switch (axis)
{
case 1:

temp [0] = pt[0] ;
temp [1] = cosdeg “ pt[1] – sindeg “ pt[2];
temp [2] = sindeg 2 pt■ 1) + cosdeg 2 pt■ 2) ;
break;

Case 2:

temp [0] = cosdeg “ pt[0] + sindeg “ pt■ 2) ;
temp [1] = pt■ 1);

85

temp (2) = sindeg “ pt■ 0] – cosdeg 4 pt■ 2);
break;

case 3:

temp [0] = cosdeg “ pt[0] – sindeg 4 pt■ 1);
temp [1] = sindeg “ pt[0] + cosdeg 4 pt■ 1];
temp [2] = pt[2];
break;

}

pt [0] = temp [0] ;
pt[1] = temp [1];
pt [2] = temp [2];
/* printf("\n rotate points ºlf #lf #lf", pt■ 0], pt■ 1), pt■ 2]); */

}

Orientation (pt4x, pt.4y, pt.42, pt.2x, pt.2y, pt.82, arow)
double pt4x, pt.4y, pt.42;
double pt.2x, ptºy, ptºz;
double arow [] ;
{

arow[0] = pt.2x - pt4x;
arow[1] = ptºy – pt.4y;
arow [2] = ptºz - pt42;

}

translate (tx, ty, tz, pt)
double tx, ty, tz;
double pt [] ;
{

pt[0] += tx;
pt[1] += ty;
pt [2] += tz;

}

perspective (pt, zoom_d,xy)
double pt [3];
double zoom_d;
double xy [2];
{

xy [0] = zoom_d * pt[0]/pt■ 2);
xy [1] zoom_d * pt■ 1]/pt [2];

}

screen_map(xy, uv)
double xy [2];
int uv [2];
{

uv[0] = SX + xy [0] + TX;
uv.[1] = SY + xy [1] + TY;

}

draw robot()

86

vsl_color (screen, 4);
vsl_type (screen, 1);
draw line (0,1);
draw line (1,2);
draw line (2,3);
draw line (3,4);
draw line (4, 6);
draw line (4,7);
draw line (7,8);
draw line (6,5);
vsl_color (screen, 2);
vsl_type (screen, 5);
draw line (9,10);

draw tick ()
{

vsl_Color (screen, 5); /* set yellow */
vsl_type (screen, 1); /* set solid line */
draw line (4,9);

}

draw traject()
{

vsl_color (screen, 1); /* set white */
vsl_type (screen, 1); /* set solid line */
draw line (9,11);

}

draw line (m, n)
int m, n;
{
static int xy [4] ;
int count;
count = 2;
xy [0] = uv [m] [0] ;
xy [1] = uv [m] [1];
xy [2] = uv [n] [0] ;
xy [3] = uv [n][1];
v_pline (screen, count, xy);
}

draw cood()
{

cuv[0] [0] = uv [0] [0];
cuv[0][1] = uv [0][1];

point [0] = 500. ;
point [1] = 0. ;

87

point■ 2} = 0. ;

rotate (Z, vacz, vasz, point);
rotate (Y, vacy, vasy, point);
rotate (X, vacz, vasz, point);

translate (0. , 0., dispz, point);
perspective (point, zoom, xy);
screen_map (xy, &cuv[1] [0]);

point [0] = 0. ;
point [1] 500. ;
point [2] 0. ;

rotate (Z, vacz, vasz, point);
rotate (Y, vacy, vasy, point);
rotate (X, vacz, vasz, point);

translate (0. , 0., dispz, point);
perspective (point, zoom, xy);
screen_map (xy, &cuv[2] [0]);

point [0] = 0. ;
point [1] 0. ;
point [2] 500. ;

-

rotate (Z, vacz, vasz, point);
rotate (Y, vacy, vasy, point);
rotate (X, vacz, vasz, point);

translate (0. , 0., dispz, point);
perspective (point, zoom, :y);
screen_map(xy, &cuv[3] [0]);

vsl_type (screen, 1); /* set solid line */
vsl_Color (screen, 3); /* set x axis as green */
draw cline (0,1);
vsl_color (screen, 6); /* set y axis as cyan */
draw cline (0,2);
vsl_color (screen, 7); /* set zaxis as magenta “/
draw cline(0,3);

draw cline (m, n)
int m, n;
{
static int cxy[4];
int count;
Count

cxy [0]
cxy[1]
cxy.[2]
cxy.[3]

2;
cuv[m] [0] ;
cuv[m] [1];
cuv [n] [0] ;
cuv[n] [1];

/*
- -

File
problo. c – plot robot figure from measured data file

with coordinates, pitch tick
Synopsis

include <stdio. h.”
include Kmath. h.”
include "probintc.c"

lcl problo
linkvdi problo

Description
This program plots the robot hand trajectory, pitch angle tick,
initial and final figures, and coordinates from the data file
of the pick and place task. Perspective view and zoom aare
changeable. The end of file is represented by hi = 1010.

Author
Munehisa Takeda

Date

include <stdio. h.”
include Kmath. h.”

int hi;
include "probintc. c."

#define RTD 57. 29578 /* scaling parameter (rad to degree) */

FILE * fp1;

main ()
{

static double theta [5] ;
char frame [12];
int ja[5] ;
long t,
int i ;
char ch;

printf(" data file name (***** ***.dat) = ");
scanf ("%s", frame);
printf(" viewing distance (dispz:-1000) = ");
scanf ("%lf", &dispz);
printf(" viewing angle (vax: -45, vay:0, vaz: -45) = ");
scanf ("%lf &lf &lf", &vax, &vay, &vaz);
printf(" zoom factor (zoom:15) = ");
scanf ("%lf", &zoom);
printf(" plotter scaling (SX, SY, TX, TY) = ");

90

scanf ("%lf &lf #lf &lf", &SX, &SY, &TX, &TY);

vax /= RTD;
vay /= RTD;
vaz /= RTD;

fp1 = fopen(fname, "r"); /* file open for reading */
v_opnwk (parameter, & screen, savary);

printf(" hor ver #d #d = \n", savary [51], savary [52]);
start:

do

{

fscanf (fpl., "%ld #d $d $d *d #d *d", &t, &ja [0], &ja [1], &ja [2], &ja [3],
&ja [4], &hi);

rtttran (ja, theta);

for (i = 0; i < 5; it 4)
theta [i] *= RTD;

theta■ 4) –= 90. ;

robot1 (theta);

/*
printf(" t, ja hi = %ld #d *d ºd ■ d $d $d Vn", t, ja [0], ja■ 11, ja■ 21,
ja[3], ja [4], hi.);
printf(" theta = %lf &lf #lf #lf #lf\n", theta(0), theta [1],
theta [2], theta [3], theta [4]);

*/

} while (hi ! = 1010);
/*

printf(" finish task . . \n ");
printf(" hit 'r' key for repeating. \n ");
printf(" hit 'f'' key for changing data file. \n ");
printf(" hit 'd' key for changing viewing distance. \n ");
printf(" hit 'a' key for changing viewing angle. \n ");
printf(" hit 'z' key for changing zoom factor. \n ");
printf(" hit 'c' key for changing all data. \n ");
printf(" hit 'e' key for ending. \n ");

*/
for (; ;)

{
ch = baos (0x06, Ox00ff) & 0x00ff;
switch (ch)
{

case 'r' : /* repeat “/
folose (fpl.);
v_clrwk(screen);
ct = 0;
fp1 = fopen(fname, "r"); /* file open for reading */

91

goto start;
break;

Case 'f'': /* change data file */
folose (fpl.);
v_clrwk(screen);
ct = 0;
printf(" data file name (* * * * * * * *.dat) = ");
scanf ("%s", frame);
v_clrwk(screen);
fp1 = fopen (fmame, "r"); /* file open for reading */
goto start;
break;

case 'd' : /* change view distance */
folose (fpl.);
v_clrwk (screen);
ct = 0;
printf(" viewing distance (dispz:-1000) = ");
scanf ("%lf", & dispz);
v_clrwk(screen);
fp1 = fopen(fname, "r"); /* file open for reading */
goto start;
break;

case 'a' : /* change view angle */
folose (fp1);
v_clrwk(screen);
ct = 0;
printf(" viewing angle (vax: -45, vay:0, vaz: -45) = ");
scanf ("%lf &lf &lf", &vax, &vay, &vaz);
v_clrwk(screen);
vax /= RTD;
vay /= RTD;
vaz /= RTD;
fp1 = fopen(fname, "r"); /* file open for reading */
goto start;
break;

case 'z' : /* change zoom */
folose (fpl.);
v_clrwk(screen);
ct = 0;
printf(" zoom factor (zoom:15) = ");
scanf ("%lf", &zoom);
v_clrwk(screen);
fp1 = fopen(fname, "r"); /* file open for reading */
goto start;
break;

case 'c' : /* change all data “/
folose (fpl.);
v_clrwk(screen);
ct = 0;
printf(" data file name (********.dat) = ");
scanf ("%s", frame);
printf(" viewing distance (dispz: -1000) = ");
scanf ("%lf", &dispz);
printf(" viewing angle (vax: -45, vay:0, vaz: -45) = ");

scanf ("%lf &lf &lf", &vax, &vay, &vaz);
printf(" zoom factor (zoom:15) = ");
scanf ("%lf", &zoom);
v_clrwk (screen);
vax /= RTD;
vay /= RTD;
vaz /= RTD;
fp1 = fopen(fname, "r"); /* file open for reading */
goto start;
break;

case 'e' : /* exit */
folose (fpl.);
v_clrwk (screen);
v_Clswk (screen);
exit (1);
break;

default:
break;

} /* end of switch "/
} /* end of infinit loop */

}

/*
theta to robot command parameter transformation function
*/

rtttran (ja, theta)
int ja[];
double theta [] ;
{

int i ;

/* calculate robot command parameter */
theta(0) = -0.025 * ja■ 0);
theta■ 1) = 0.025 * (ja [1] + 1400);
theta(2] = 0.025 * (ja■ 2) – 1800);
theta|[3] = 0.0375 * (ja■ 3]. - ja [4]);
theta■ 4) = -0.0375 * (ja■ 3] + ja■ 4) – 400);

/* limit range check for robot command parameter */
theta|[0] = (theta(0) > 90) 2 90 : theta(0);
theta(0) = (theta(0) < -90) 2 -90 : theta(0);
theta■ 1) = (theta■ 1) > 100) 2 100 : theta|[1];
theta■ 1) = (theta■ 1} < –30) 2 –30 : theta■ 1);
theta(2] = (theta(2) > 0) 2 0 : theta■ 21;
theta(2] = (theta [2] K -90) 2 -90 : theta■ 2.];
theta(3] = (theta [3] × 90) * 90 : theta■ 3];
theta(3) = (theta(3] K -90) 2 -90 : theta■ 3);
theta■ 4) = (theta■ 4) > 195) 2 195 : theta(4);
theta■ 4) = (theta| 4 || < -165) 7 -165 : theta|[4];

for (i = 0; i < 5; i-4)

94

/* probintc. c */
/* Dec. 14, 1987 */

#define MAXPOINTS 11
#define X 1
#define Y 2
#define Z 3
#define JX 1
#define JY 2
#define J2, 3
double SX = 540; /* scaling factors “/
double SY = 375;
double TX = 160;
double TY = 80;
#define DEGTORAD . 017453
#define L0 250. /* base length */
#define L1 220. /* shoulder to elbow */
#define L2 160. /* elbow to wrist */
#define L3 177. 6 /* wrist to gripper */
#define L4 30. /* one half of maximum gripper width */
#define L5 37. /* gripper length */
#define L6 24.4 /* gripper base to pad center */

struct vector.3

{
double x;
double y;
double z;

};
struct vector 3 nrobot [11] ;
struct vector 3 robot [11] = { 0. , 0., 0., /* point 0 = base */

0. , 0., 0.,
0. , 0., 0.,
0. , 0., 0.,
0. , 0. , 0., /* wrist/gripper joint */
L4, L5, 0., /* */
L4, 0., 0., /* 4 points defining */
-L4, O. , 0., /* gripper */
-L4, L5, 0., /* */
0. , L6, 0., /* center of gripper */
O. , L6, 0. /* base of reference line */

};

double jac1, jac2, jac3, jac4, jacS; /* joint angles cosines */
double jas1, jas.2, jas3, jas 4, jas 5; /* joint angles sines */
double jal, jaz, ja3, ja4, ja3; /* joint angles */
double vax=-45*DEGTORAD, vay=0, vaz=-45*DEGTORAD;
double dispz=-1000;
double zoom-15;
double vacz, vacy, vacz;
double vasz, vasy, vasz;
double point [3];
double arrow[3]; /* orientation of the end effector*/
double xy [2];

95

int uv [12] [2
int cuv[4] [2

long ct = 0;

];
];

int screen, gdms_err, savary [66];
int parameter[19] = {2, 1, 1, 3,1,1,1,0,0,1,1,

'P', 'L', 'O', 'T', 'T', 'E', 'R', ' ');

int i ;
int quit;
int again;

robot1 (ja)
double ja■ 5)
{

-

w

/* obtain user inputs jal, jaz, ja3, ja4, ja: , D, and d “/

/* GetAngl
/* Getview (); */

/* computation of sins and cosines */

ja1 = DEGTORAD + ja(0);
ja2 = DEGTORAD + ja■ 1];
ja3 = DEGTORAD + ja■ 21;
ja4 = DEGTORAD + ja[3];
jaS = DEGTORAD + ja[4];

/* vax *= DEGTORAD;
vay *= DEGTORAD;
vaz += DEGTORAD; */

jac1 = cos(ja1);
jac2 = cos(ja2);
jac3 = cos(ja3);
jac4 = cos(ja4);
jacS = cos(jaS);
jas1 = sin (ja.1);
jas2 = sin (ja2);
jas3 = sin (ja3);
jas4 = sin (ja4);
jas 5 = sin (jaS);

vacz = cos (vax);
vacy = cos (vay);
vacz = cos (vaz);
vasz = sin (vax);
vasy = sin (vay);
vasz = sin(vaz);

es(); */

for (i-0; i < MAXPOINTS; it 4-)

96

point[0] = robot [i]. x;
point[1] robot [i]. y;
point[2] = robot [i]. z;
switch (i)
{

case 0:

break;
case 1:

translate (0. , 0., L0, point);
/* printf("\n rotate points ºf $f $f", point[0], point■ 1], point[2]); */

break;

case 2:

translate (0. , L1, 0., point); /* might consider
writing this */

rotate (JX, jac2, jas.2, point); /* block as function */
rotate (JZ, jac1, jas 1, point);
translate (0. , 0., L0, point);
break;

case 3:

translate (0. , L2, O., point);
rotate (JX, jac3, jas3, point);
translate (0. , L1,0., point);
rotate (JX, jac2, jas.2, point);
rotate (JZ, jac1, jas 1, point);
translate (0. , 0., L0, point);
break;

case 4:
case 5:
case 6:
case 7:
case 8:
case 9:
case 10:

translate (0. , L3,0., point);
rotate (JY, jacS, jas 5, point);
rotate (JX, jac4, jas4, point);
translate (0. , L.2,0., point);
rotate (JX, jac3, jas 3, point);
translate (0. , L1,0., point);
rotate (JX, jac2, jas2, point);
rotate (JZ, jac1, jas 1, point);
translate (0. , 0., L0, point);
break;

3.
nrobot [i]. x = point [0] ;
nrobot [i]. y = point [1];
nrobot■ il. z = point [2];

nrobot [10]. z = 0. ; /* reference line base */

97

Orientation (nrobot [4]. x, nrobot [4]. y, nrobot [4]. z., nrobot [9]
nrobot [9]. z, arrow);

for (i=0; ióMAXPOINTS;
{

point [0]
point[1]
point [2]

= n robot [i].
nrobot [i].
nrobot [i].

i++)

X;

Y;
Z ;

.x, nrobot [9]. y,

rotate (Z, vacz, vasz, point);
rotate (Y, vacy, vasy, point);
rotate (X, vacz, vasz, point);

translate (0. , 0., dispz, point);
perspective (point, ZOOm, xy);
screen_map (xy, &uv[i] [0]);

uv.[11] [0]
uv.[11][1]
draw cood ();

uv.[9][0];
uv.[9][1];

}

/* v_opnwk (parameter, & screen, savary); */
/* v_clrwk(screen); */

if ((ct == 0) { } (hi == 1010).)
draw robot();

draw tick();
draw traject();

uv.[11] [0]
uv.[11][1]
ct-4 ;

= uv [9] [0];
uv.[9][1];

/* v_Clswk(screen); */
/*printf("\n center of end effector = %f $f $f", nrobot(9).x, nrobot■ 9]. y,
nrobot (9). z); */
/*printf("\n wrist joint position = %f $f $f", nrobot■ 4).x, nrobot■ 4). y,
nrobot [4]. z);
printf("\n orientation of the end effector is (%f $f $f)", arrow[0],
arrow[1], arrow[2]); */
/* printf("\n run program again (y/n) >> ");
scanf ("%s", &again);
if (again l = 'y')

{
quit = 1;

}

98

}
while (! quit); */

} /* end of main */

GetAngles () /* currently not used */
{

printf("\n input joint angles 1, 2, 3, 4, 5 : ");
scanf ("%lf &lf &lf &lf &lf", &ja.1, &ja2, &ja3, &ja4, & ja5);
printf("joint angles are = %lf &lf #lf &lf &lf \n", jal, jaz, ja3,
ja4, jaS);

}

Getview ()
{

printf("\n input angle of X rotation (view): ");
scanf ("%lf", &vax);
printf("x view angle = %lf \n", vax);

printf("\n input angle of Y rotation (view): ");
scanf ("%lf", &vay);
printf("y view angle = %lf \n", vay);

printf("\n input angle of Z rotation (view): ");
scanf ("%lf", &vaz);
printf("z view angle = %lf \n", vaz);

printf("\n input D:");
scanf ("%lf", & dispz);
printf("dispz = %lf \n", dispz);

printf("\n input zoom distance: ");
scanf ("%lf", &zoom);
printf("zoom = %lf \n", zoom);

}

rotate (axis, Cosdeg, sindeg, pt)
int axis;
double cosdeg, sindeg;
double pt■);
{
static double temp [3];

switch (axis)
{
Case 1:

temp [0] = pt[0] ;
temp [1] = cosdeg “ pt■ 1] – sindeg “ pt■ 2];
temp [2] = sindeg “ pt■ 1} + cosdeg “ pt■ 21;
break;

case 2:

temp■ 0) = cosdeg 4 pt■ 0} + sindeg “ pt■ 21;
temp■ 1) pt[1];

99

temp [2] = sindeg
break;

case 3:

temp■ 0] = cosdeg
temp [1] = sindeg
temp [2] = pt[2];
break;

}

pt[0] = temp [0] ;
pt[1] = temp [1];
pt[2] = temp [2] ;
/* printf("\n rotate points $lf #lf #lf", pt■ 0], pt■ 1], pt■ 21);

}

* pt■ 0] – cosdeg - pt■ 2);

* pt[0] – sindeg 4 pt■ 1];
* pt[0] + cosdeg - pt[1];

*/

orientation (pt.4x, pt.4y, pt.42, pt.8x, ptºy, pt.82, arow)
double pt4x, pt.4y, pt.42;
double pt2x, ptºy, pt.82;
double arow[] ;
{

arow[0] = pt.2x - pt4x;
arow[1] = ptºy - pt4y;
arow [2] = ptºz - pt42;

}

translate (tx, ty, tz, pt)
double tx, ty, tz;
double pt[] ;
{

pt[0] += tx;
pt[1] += ty;
pt[2] += tz;

}

perspective (pt, zoom_d,xy)
double pt[3];
double zoom_d;
double xy [2];
{

xy [0] =
xy [1]

}

screen_map(xy, uv)
double xy [2];
int uv [2];
{

uv[0]
uv.[1]

SX + xy [0] + TX;
SY + xy [1] + TY;

}

draw robot()

zoom_d * pt■ 01/pt (2];
zoom_d * pt■ 1]/pt■ 21;

1 00

vsl_color (screen, 4);
vsl_type (screen, 1);
draw line (0,1);
draw line (1,2);
draw line (2,3);
draw line (3,4);
draw line (4, 6);
draw line (4,7);
draw line (7,8);
draw line (6,5);
vsl_Color (screen, 2);
vsl_type (screen, 5);
draw line (9,10);

draw tick ()
{

vsl_color (screen, 5); /* set yellow */
vsl_type (screen, 1); /* set solid line */
draw line (4,9);

}

draw traject()
{

vsl_Color (screen, 1); /* set white */
vsl_type (screen, 1); /* set solid line */
draw line (9,11);

}

draw line (m, n)
int m, n;
{
static int xy [4];
int count;
count = 2;
xy [0] = uv [m] [0];
xy [1] = uv [m] [1];
xy [2] = uv [n] [0] ;
xy [3] = uv [n] [1];
v_pline (screen, count, xy);
}

draw cood()
{

cuv[0] [0] = uv [0] [0] ;
cuv[0] [1] = uv [0][1];

point[0] = 500. ;
point[1] = 0. ;

1 0 1

point [2] = 0. ;

rotate (Z, vacz, vasz, point);
rotate (Y, vacy, vasy, point);
rotate (X, vacz, vasz, point);

translate (0. , 0., dispz, point);
perspective (point, zoom, xy);
screen_map (xy, &cuv[1] [0]);

point[0] = 0. ;
point[1] 500. ;
point [2] 0. ;

rotate (Z, vacz, vasz, point);
rotate (Y, vacy, vasy, point);
rotate (X, vack, vasz, point);

translate (0. , 0., dispz, point);
perspective (point, zoom, xy);
screen_map(xy, &Cuv[2] [0]);

point [0] = 0. ;
point [1] 0. ;
point [2] 500. ;

rotate (Z, vacz, vasz, point);
rotate (Y, vacy, vasy, point);
rotate (X, vacz, vasz, point);

translate (0. , 0., dispz, point);
perspective (point, zoom, xy);
screen_map (xy, &cuv[3] [0]);

vsl_type (screen, 1); /* set solid line */
vsl_color (screen, 3); /* set x axis as green */
draw cline(0,1);
vsl_color (screen, 6); /* set y axis as cyan */
draw cline (0,2);
vsl_color (screen, 7); /* set zaxis as magenta “/
draw_cline (0,3);

draw cline (m, n)
int m, n;
{
static int Cxy.[4] ;
int count;
count

cxy [0]
cxy[1]
cxy [2]
cxy[3]

2;
= Cuv[m] [0] ;

cuv[m][1];
cuv[n] [0] ;
cuv[n] [1];

…•-· |-

|-|-·----|-
■

-|-•----*■ |--·~--■ ·
•

|-----·…------|--·----
|-

•·--------·----|-|-·-----·|-----|-|-|- ··

--•
----|--*•

•|-|-|-|-•-•
■

|-°
•
×*
--
-

-•
•

•--------|----

***·-
…

|-•-|--------
-■|-·|-----

|------|-----••,■ ••··|-|-·|-|------■ *-|-

|--·|--

----|-----|--
…***

*·
----•
••

•-"-|-………------
--

-··---------

----·-
*

.----•.----■ ae·•ae|---------
••

•|-|-|-|-----
|--…·…-

---------…|-|-|-·
|-----…

·------- -----------
-
-

|-·-
-

~·|-
--

· ----

|-■ -·|-|-
*

-•
.

----•
•-------------~-·----

•

•|-------
■ -|-

|-----|-••
••

--------ae--------·-
…----|--|--

-|-----·|---
■■

|---------|--••----•|-~|-■ ----
-·

--------|-·-*----...
••

•-------|--
--

,

-|-----|-·|--
•

----|-|-------------|-
••

•|----·

----·|--■ …-----·-----|-|-----|-|-|-|-
|-■

|-|×------*----|-|-|-|-…
--*
.

|-••·
-

•|--
…|-■ -

----·|------------|-■ ·----|-••|-|-·•-,
|---•
••

•---|--
-

·|-|-
-

-|-|-·*
*

|-…--·|-
·

-•-…|-·
■ \,-
*

*,
■

|-|-|-|-|--…··----•-

--------|-…|-----
|---aeº•…--■ -
-

-•
••|-*

*----|-,--
|-

|-·|-----•·
|-

----→·----*b·|-
|-■ |-·*-·|-·

•

•|--
-

|-|-■
'-*ae|-|-

*„“----•|-|-----|-|---------|-|--
*

-·
·

·--·•••
…

*|-|------
-

--
-

·|-·-•
■

–*
•

•·º
-

|-·|-··|-·…•·-
-

-■-••
•••

|-|-■,·■ "■ ·
···

·u
º

! FOR REFERENCE

NOT TO BE TAKEN FROM THE ROOM
r§ cat, ºn n. 2:4 at 2 *::so

* - *

“– 1 ** - * * * * * * * * * * * - I º
.

-

- -

