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Abstract

The electric field dependence of charge carrier transport and the effect of carrier heating in

disordered conjugated polymers were investigated. A parameter-free multiscale methodology con-

sisting of classical molecular dynamics simulation for the generation of the atomic structure, large

system electronic structure and electron-phonon coupling constants calculations and the procedure

for extracting the bulk polymer mobility, was used. The results suggested that the mobility of

a fully disordered poly(3-hexylthiophene) (P3HT) polymer increases with electric field which is

consistent with the experimental results on samples of regiorandom P3HT and different from the

results on more ordered regioregular P3HT polymers, where the opposite trend is often observed at

low electric fields. We calculated the electric field dependence of the effective carrier temperature

and showed however that the effective temperature cannot be used to replace the joint effect of

temperature and electric field, in contrast to previous theoretical results from phenomenological

models. Such a difference was traced to originate from the use of simplified Miller-Abrahams hop-

ping rates in phenomenological models in contrast to our considerations that explicitly take into

account the electronic state wave functions and the interaction with all phonon modes.
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I. INTRODUCTION

Semiconducting conjugated polymers have become the materials of great interest for the

use in electronic and optical devices, such as field-effect transistors, light-emitting diodes

and solar cells.1–7 Efficient charge transport through the polymer material is an essential

requirement for the operation of these devices. One should therefore understand the factors

that influence the charge carrier mobility in conjugated polymers. It is currently understood

that the mobility depends both on the electric field8–16 and the carrier density.9,13,14,16–19

The dependence on the electric field is in particular interesting as the region of negative

differential mobility at low electric fields is often observed.12,20,21 In this paper, we therefore

focus on the effect of electric field on the transport.

The mobility of the polymer material is often estimated from the measurements of diode

or transistor current-voltage device characteristics. It is however very difficult to extract the

effect of the electric field from such measurements. This is due to the fact that nonuniform

distribution of carrier density, the electric field and consequently the mobility, is formed in

the devices, while one normally measures just the total current that reaches the electrodes.22

Other techniques for the measurement of mobility of organic materials are the time of flight

(TOF) and the pulse radiolysis time resolved microwave conductivity (PR-TRMC). It is

however sometimes argued that these techniques probe only the fastest carriers.16,22,23

On the other hand, in theoretical considerations, certain effects can be included or ex-

cluded from the formalism, and their influence therefore separated. Unfortunately, due to

complicated structure of these polymer materials, their electronic structure and relevant

charge transport parameters are poorly known. Most of the existing theories therefore rely

on phenomenological models that assume certain spatial and energetic distribution of states

and certain form of the transition rates between them.9,24–27 Such models contain several free

parameters that should be in principle fitted to the experimental results for the mobility,

which are however not always reliable, as discussed above.

In the last few years, significant advances have been made in simulations of transport in

disordered organic systems toward the development of parameter free methods.28–36 Most

of these works, however, analyze the systems consisting of small molecules. We have there-

fore recently developed a multiscale parameter-free approach for the simulation of charge

transport in disordered conjugated polymers.37 Here, we extend this approach to include
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the effect of electric field and apply the method to simulate the effect of electric field on

hole transport in a fully disordered P3HT polymer. Our methodology therefore serves as

a tool that provides an insight into the electric field dependence of the charge transport,

complementary to the one obtained from experimental techniques. Our results give new

insight into the effect of carrier heating in conjugated polymers – we find, in contrast to

previous theoretical considerations based on simplified models, that the concept of effective

temperature fails to describe the carrier distribution in the presence of electric field.

II. THEORY

The theoretical approach used to simulate the transport in the disordered polymer is

based on a multiscale methodology37 that consists of several steps that we outline here:

A. Step 1

Atomic structure of the amorphous P3HT material is obtained from classical molecular

dynamics using a simulated annealing procedure. The details of this procedure have been

reported in Ref. 38, and will be only briefly outlined here. Five P3HT chains, each 20

rings long, are initially placed in a cubic box much larger than the box corresponding to

the density of the system. The temperature is initially set to a value significantly larger

than the room temperature and the system is allowed to equilibrate. The size of the box

is then gradually decreased down to 29.286Åwhich corresponds to experimental density of

P3HT. Finally, the system is gradually cooled down to room temperature and subsequently

relaxed to a local minimum. CFF91 force field,39,40 modified to properly take into account

the interring torsion potentials,38 was used, and the simulation was performed using the

LAMMPS code.41,42 The atomic structure obtained in one such simulation is presented in

the left part of Fig. 1.

B. Step 2

The electronic structure (wave functions and energies of single particle states) of the

system obtained in Step 1 was calculated within the framework of density functional theory
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(DFT) in local density approximation (LDA). This was done using our recently developed

charge patching method (CPM).38,43 Within the CPM, the electronic charge density of the

system is constructed by adding together the precalculated charge density motifs assigned to

each of the atoms in the system. Charge density motifs are obtained from direct DFT/LDA

calculations on small prototype systems where the atoms have the same bonding environment

as in the large system. Once the charge density is obtained, one constructs the single particle

Hamiltonian H by solving the Poisson equation for the Hartree potential and using the LDA

formula for the exchange correlation potential. Several top states in the valence band are

then found using the folded spectrum method.44,45 The wavefunctions of top 7 of these states

for one such calculation are given in the left part of Fig. 1.

C. Step 3

All phonon modes and electron-phonon coupling constants of the system obtained in Step

1 are then calculated. The phonon modes are calculated by diagonalizing the dynamical

matrix

Ki,j
a,b =

1
√

mimj

∂2E

∂x
(i)
a ∂x

(j)
b

(1)

obtained from the same classical force field used in molecular dynamics simulation. In Eq.

(1), E is the total force field energy, x
(i)
a is the displacement of atom i in the direction a

from its equilibrium position and mi the mass of atom i. The eigenvalue problem of the

dynamical matrix reads
∑

jb

Ki,j
a,bR

(j)
b (ν) = ω2

νR
(i)
a (ν), (2)

where ων is the angular frequency of the mode ν. The normal coordinate of mode ν is given

as

v(ν) =
∑

ia

R(i)
a (ν)x(i)

a

√
mi. (3)

To construct the electron-phonon coupling constants, one needs to find the perturbation of

the single particle Hamiltonian ∂H/∂x
(i)
a due to the displacement of atom i in the direction

a, for all i and a. This is also done using the CPM, as in step 2. In this case, there is no

need to construct the charge density of the perturbed system from the beginning. Since

only one atom is moved, one can just use the charge density of the unperturbed system and

add to it the change in the motifs of the displaced atom and its neighbors. This makes
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the CPM highly suitable for the efficient computational construction of such perturbation

Hamiltonians. From ∂H/∂x
(i)
a one obtains the matrix element N (i)

αβ,a = 〈α|∂H/∂x
(i)
a |β〉

between electronic states (obtained in step 2) |α〉 and |β〉. The electron-phonon coupling

element between states |α〉 and |β〉 due to phonon mode ν defined as

Mαβ(ν) = 〈α|∂H/∂v(ν)|β〉 (4)

can then be obtained as

Mαβ(ν) =
∑

ia

N (i)
αβ,a

1√
mi

R(i)
a (ν). (5)

One can note that in an N atom system (in our case N = 2510), using the straightforward

DFT approach (instead of CPM), one would require 3N DFT calculations on an N atom

system to calculate the coupling to all phonon modes, which is impossible in practice.

D. Step 4

Steps 1-3 give a detailed description of the electronic structure and electron-phonon cou-

pling constants of the portion of material of ∼30Å size. This size is significantly larger than

the wave function localization length and therefore each electronic state exhibits a typi-

cal environment as in an infinite material in terms of the presence of the other states and

phonon modes available for coupling. However, this length scale is too small to obtain the

information about the mobility through the bulk polymer material. Therefore, in this step,

we construct a larger system consisting of k1×k1×k1 (where k1 = 7) boxes used in steps 1-3

(referred to as small boxes in the rest of this paragraph), as illustrated in the middle part

of Fig. 1. To construct such a system, we repeat m1 = 10 times the calculation performed

in steps 1-3 with different initial atomic positions in MD simulation. In addition, we repeat

m2 = 100 times steps 1 and 2, where in step 2 only the valence band maximum (VBM)

state is calculated to get a reliable information about the distribution of the VBM states

of different small boxes. The larger system is then constructed by randomly choosing one

of the m1 calculations of steps 1-3 to construct the wavefunctions in each small box. The

orientation of the small box is also chosen randomly from one of the permutations of x, y

and z axes. The eigenenergies of the states in each of the small boxes are then shifted by the

same amount, in such a way to enforce the VBM states of small boxes to obey the calculated

distribution (obtained from the m2 calculations mentioned previously). Finally, to include
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the effect of the electric field, the eigenenergies of the states are shifted by a linear potential

caused by the electric field as

εα = ε(0)
α + eF · rα. (6)

In Eq. (6), e is the absolute magnitude of the charge of an electron, ε
(0)
α is the eigenenergy

of state |α〉 in the absence of electric field, εα its eigenenergy in electric field F and rα

the spatial position of state |α〉 (defined as the center of mass of its probability density

distribution).

The transition rates between the states are then calculated using the Fermi’s Golden rule

expression as37

Wαβ = π
∑

ν

|Mαβ(ν)|2
ων

[(Nν + 1) δ (εα − εβ − h̄ων) + Nνδ (εα − εβ + h̄ων)] , (7)

where Nν is the phonon occupation number given by the Bose-Einstein distribution at a

temperature T . The Mαβ(ν) for the states from the same small box are directly available

from the calculation in step 3, while these constants for the states from neighboring boxes

need to be approximated, as described in Ref. 37.

We note that Eq. (7) does not take into account the effect of polarons. Recent den-

sity functional theory calculations46,47 based either on LDA46 or B3LYP47 functionals have

shown that polaron binding energy in long straight polythiophene chains is very small – of

the order of few meVs only. As a consequence, it has been concluded in Refs. 17,46 that

polaron effects could be ignored in practice. It nevertheless remained unclear whether a

conclusion based on calculations on ordered polythiophene chains can be extended to disor-

dered polymers. Our calculations (reported in Sec. 5 in Supporting information of Ref. 37)

suggested that this is largely the case. It would still be very interesting to use nonperturba-

tive formula for transition rates, and compare to the present results. That will be, however,

more computationally demanding, and is beyond the scope of the present work.

Once the transition rates between the states are known, the time evolution of the occu-

pations nα of electronic states (whose positions in space are symbolically marked by small

circles in the schematic representation in the middle part of Fig. 1) is given as

dnα

dt
= −

∑

β

nαWαβ +
∑

β

nβWβα, (8)

where the first term on the right-hand side represents the total number of carriers leaving

the state α in a unit of time and the second term is the number of carriers coming to the
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state α in a unit of time. In the low-carrier density limit that we consider here the effect

of Pauli blocking is negligible, and was therefore not included in Eq. (8). We are interested

here in the steady state transport when dnα

dt
= 0. The system of equations from which the

populations of eigenstates can be found reads then

0 = −
∑

β

nαWαβ +
∑

β

nβWβα, whenα ∈ {1, . . . , NS − 1}

nt =
∑

α

nα, (9)

where NS is the total number of states considered and nt their total occupation, which is

a predefined small number determined by the carrier density in the system. Appropriate

boundary conditions need to be applied to the large k1 × k1 × k1 system to close the current

flow. This was done in the following manner. The system was firstly periodically replicated

in all three directions to form an infinite system. The electric field induced potential was

then added according to Eq. (6). In such a way periodic boundary conditions were applied

to ε
(0)
α and not εα. These εα were then used to calculate the transition rates according

to Eq. (7). Periodic boundary conditions for the occupations of all states nα were then

imposed. The number of unknown variables in the system of equations (9) is then equal to

the number of states in the k1 × k1 × k1 system. Such a system of linear equations was then

solved. The current through the system was then calculated by choosing a certain reference

plane perpendicular to the field direction and calculating the total amount of charge that

passes through it in a unit of time. Finally, the mobility was straightforwardly calculated

from the current and the total population of states in the system.

E. Step 5

It turns out that the mobility calculated in step 4 still varies for different random re-

alizations of the system. The calculation in step 4 was therefore repeated m3 = 64 times

and such information is used to construct an even larger system containing k2 × k2 × k2

(where we take k2 = 10) boxes, shown in the right part of Fig. 1. Each of these boxes is

considered as an anisotropic conductor corresponding to one of the m3 calculations in step 4,

randomly chosen and randomly oriented. Its conductivities in the directions perpendicular

to the electric field are taken as the conductivities calculated in step 4 in these directions at
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zero electric field, while the conductivity in the direction of the electric field F is naturally

taken as the conductivity in that direction at the field F . In such a way, a continuum system

with spatially varying conductivity is formed. By solving such a system, we obtain the final

mobility of the bulk P3HT polymer.

III. RESULTS AND DISCUSSION

The dependence of the mobility of disordered P3HT polymer on the electric field cal-

culated using the method described in Sec. II is presented in Fig. 2. The overall trend

that we obtain is that the mobility increases with the increase of electric field (positive field

dependence) at all temperatures. At higher temperatures there is a slight departure from

this trend, as there is a slight decrease of mobility with field (negative field dependence) at

low electric fields, as can be seen by careful inspection of Fig. 2.

The dependence of mobility of P3HT polymers on electric field and in particular the

sign of its slope, has been discussed in several experimental works. The results of Ref. 48

suggest positive dependence in the case of regiorandom P3HT and negative dependence in

regioregular P3HT. In Ref. 12, it was found from TOF measurements that the dependence

is positive for temperatures below 250 K, and negative for higher temperatures, in the

case of regioregular P3HT. Similar results were reported in Ref. 20, as well. The positive

dependence was observed in regiorandom P3HT at room temperature in Ref. 49. Despite

the fact that it was shown50 that the negative dependence can in some cases be an artifact of

the TOF measurement procedure, there seems to be overall consistency among the different

experimental results.

Our simulation results of completely amorphous P3HT polymer should be compared

to the experimental results on regiorandom P3HT, where it is impossible to establish the

ordered structure due to random orientation of alkyl side chains. Therefore, there is an

agreement of our results with Refs. 48 and 49 where positive field dependence was also ob-

tained in the samples of regiorandom P3HT. A closer comparison of our simulation results

with these results is given in Fig. 3. While there is overall agreement in terms of the order

of magnitude of mobility and the overall trends, there are discrepancies both between exper-

imental results from different groups and between experimental results and our simulation.

The differences between experimental results can be to some extent assigned to different
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processing conditions and consequently differences in the structure. The differences between

theory and experiment can also be assigned to the difference of the atomic structure ob-

tained from MD with the realistic one. Furthermore, it is often argued that TOF techniques

probes only the fastest carriers, rather than the steady-state distribution of carriers.16,22,23

Whether this is the case, can often be distinguished from the shape of the photocurrent

transient signal20 in TOF measurements. If the signal is dispersive, then the steady-state

distribution is not formed. Dispersive signal has indeed been reported in Ref. 48. There is a

question to what extent can the mobility extracted from the dispersive signal be compared

to our simulated mobility which probes the carriers obeying the steady-state distribution.

From our simulation, we can further gain insight into the nature of steady-state distribu-

tion of carriers at the electric field F . Such a distribution for one realization of the system

in step 4 is presented in Fig. 4 (bottom part) along with the density of electronic states (top

part). The density of states cannot be described by a single Gaussian. Similar result for

the density of states has been obtained in recent works on ordered P3HT at room temper-

ature.51,52 At low electric fields, the carriers obey the Boltzmann distribution. As the field

increases, carriers get hotter, which can be seen from the change in the overall slope of ln n

vs. energy distribution. Additionally, the distribution of carriers starts to deviate from the

Boltzmann-like, i.e. the spread from the straight line on the plot becomes larger. Despite

these deviations from the straight line, it is tempting to fit the whole distribution with a

Boltzmann distribution with a different temperature and introduce an effective temperature

obtained from such a fit. The dependence of the effective temperature obtained this way on

electric field is presented in Fig. 5.

We would like further to understand the meaning of the effective temperature introduced

this way. It is certainly a measure of the degree of carrier heating but can it be used for

something else? Can the joint effects of temperature T and electric field F be replaced with

the effect of effective temperature Teff = f(T, F ) when carrier transport is concerned? Two

studies based on phenomenological models53,54 have suggested that this is the case. We will

however show here the opposite.

In Fig. 6 we therefore present the dependence of the mobility on the effective electronic

temperature Teff. The circles in Fig. 6 do not fall into a single curve, therefore the concept

of the effective temperature cannot be used to describe the transport in disordered P3HT

material. We would like however to gain a deeper insight into this issue.
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One should note first that not all the hole states in the polymer are relevant for transport.

States well below the VBM are certainly not relevant as they are weakly populated. Fur-

thermore, even the states that are occupied can be irrelevant if there are no states in their

neighborhood to which carrier can jump. We define the relevant current path according to

the following criterion: the connection between states α and β is on the relevant current path

if |nαWαβ − nβWβα| > Icutt, where Icutt is chosen such that the relevant path contributes to

at least 75% of the sum of currents at each cross section. The relevant current path for one

of the realizations of the system in step 4 at three different electric fields is shown in Fig. 7.

At low electric field, the relevant current path is rather sparse, while at higher fields it is

quite dense.

Transport properties of the system are clearly mostly determined by the carriers on the

relevant current path. One should therefore look at the distribution of states on the relevant

current path (rather than all states) to determine whether the Boltzmann-like distribution

with an effective temperature is appropriate. The distribution of these states for one real-

ization of the system in step 4 is presented in Fig. 8. It is clear that it is not reasonable

to fit such a distribution with a Boltzmann-like one, which contributes to the failure of the

concept of effective temperature for the description of transport properties.

In Fig. 9a, we present the histogram of hopping distances in the relevant current path

at low electric field and room temperature. This clearly shows that hopping does not take

place to nearest neighbors only but it covers a wide range of distances. In the classical

Mott’s variable-range hopping model55 with constant density of states in the region around

the Fermi energy and its generalizations,56 one can derive analytically56 that the concept of

effective temperature is valid. In the dilute carrier density limit for the disordered polymer

system that we consider here, the density of states in the relevant energy region is certainly

not constant and is usually modeled in the literature as the tail of the Gaussian or exponential

distribution. Numerical simulations based on such models53,54 have also implied that the

effective temperature approach is quite satisfactory. It is thus important to understand why

our detailed, parameter-free approach gives a qualitatively different result.

In our work, we use the detailed expression that explicitly considers the wave functions of

electronic states and their coupling with all phonon modes [Eq. (7)], instead of the simplified

Miller-Abrahams16,53,54,57 expression. To see the impact of this difference on the results, we

have repeated all calculations with a change that the transition probabilities between states
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were modeled according to the Miller-Abrahams formula. The energies of the states were

kept the same as in previous calculations. In the Miller-Abrahams expression for downward

hops W = W0 exp (−d/a) (where d is the distance between the sites) we have adopted the

parameters W0 = 1014 s−1 and a = 3Å , which also give the hopping distance histogram that

covers a range of distances, as demonstrated in Fig. 9b. We note that W0 parameter only

scales the absolute value of the mobility and cannot change the conclusions related to the

concept of the effective temperature. The dependence of the mobility obtained this way

on the effective electronic temperature Teff is shown in squares in Fig. 6. To a reasonably

good approximation all squares fall into one curve, which validates the use of effective

temperature in the model with Miller-Abrahams hopping rates. Furthermore, in Fig. 8 we

show (in squares) the dependence of the occupations of states in the relevant current path

on energy. These deviate much less from a Boltzmann distribution than the circles, shown

in the same figure. All these results suggest that the difference between our results and

phenomenological models arise from the use of simple Miller-Abrahams expression for the

transition rates. We have also obtained a similar conclusion from a limited set of calculations

with a = 1.5Å and we further note that the use of the a parameter outside the 1.5 – 3 Å

range yields unrealistically low (high) mobilities, which suggests that these conclusions are

not sensitive to the choice of a, as long as it is reasonable.

It is also important to gain insight into the energy distribution of carriers that carry the

current and the impact of electric field on it. We present the contributions to current of

the carriers of different energies in Fig. 10. Such a histogram is obtained in the following

way. The energy equal to the average of the energies ε
(0)
α and ε

(0)
β of two states involved

is assigned to each transition. The current through a certain plane is then divided into

contributions from different transitions and a histogram is formed based on the energies

assigned to each of the transitions. Such a histogram is then averaged over several reference

planes and over different realizations of the system in step 4, to obtain the histogram given

in Fig. 10. As the electric field increases, such a distribution gets a tail from hole states

significantly below the VBM. It may seem surprising that the relevant current paths are

much more dense at high electric fields than at low electric fields (see Fig. 7), having in

mind that at room temperature the mobility increases only by a factor of 2.8 at a field of

1 MV/cm compared to low electric fields (see Fig. 2). This can be however understood

from the results of Fig. 10. At high electric fields, many more states are contributing to the
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current (thus each contributes to a less amount percentage wise), which makes the relevant

paths so dense. These contributions are nevertheless not very large and therefore do not

lead to a huge increase in mobility.

IV. CONCLUSION

In conclusion, we have simulated the electric field dependence of hole transport in fully

disordered P3HT polymer without the use of any fitting or phenomenological parameters.

The results of our simulation that is designed to probe the steady-state DC mobility, yield

a similar dependence on electric field as the TOF measurements on regiorandom P3HT

samples. Importantly, our simulation gives insight into the nature of nonequilibrium carrier

distribution in disordered conjugated polymers at a nonzero electric field. We show that

as far as the transport properties are considered, the concept of an effective temperature

that replaces the joint effect of electric field and temperature is not valid. This conclusion

is essentially different from previous results based on simplified theoretical models, which

demonstrates the necessity of applying a detailed simulation framework such as the one

presented in this work.

V. ACKNOWLEDGMENTS

This work was supported by the DMS/BES/SC of the U.S. Department of Energy under

Contract No. DE-AC02-05CH11231. It used the resources of National Energy Research

Scientific Computing Center (NERSC).

12



1 H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-

Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Nature

401, 685 (1999).

2 R. J. Kline, M. D. McGehee, and M. F. Toney, Nature Mater. 5, 222 (2006).

3 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L.

Burns, and A. B. Holmes, Nature 347, 539 (1990).

4 B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, Nature Mater.

7, 376 (2008).

5 N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl,

Appl. Phys. Lett. 62, 585 (1993).

6 F. Laquai and D. Hertel, Appl. Phys. Lett. 90, 142109 (2007).

7 Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley,

M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, Nature Mater. 5, 197 (2006).

8 S. V. Rakhmanova and E. M. Conwell, Appl. Phys. Lett. 76, 3822 (2000).

9 W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert, P. W. M. Blom, D. M.

de Leeuw, and M. A. J. Michels, Phys. Rev. Lett. 94, 206601 (2005).

10 C. Vijila, A. Pivrikas, H. Chun, C. Zhikuan, R. Osterbacka, and C. S. Jin, Org. Electron. 8, 8

(2007).

11 S. R. Mohan, M. Joshi, and M. P. Singh, Org. Electron. 9, 355 (2008).

12 A. J. Mozer and N. S. Sariciftci, Chem. Phys. Lett. 389, 438 (2004).

13 L. Fumagalli, M. Binda, D. Natali, M. Sampietro, E. Salmoiraghi, and P. D. Gianvincenzo, J.

Appl. Phys. 104, 084513 (2008).

14 S. Scheinert and G. Paasch, J. Appl. Phys. 105, 014509 (2009).

15 N. Tessler, Y. Preezant, N. Rappaport, and Y. Roichman, Adv. Mater. 21, 1 (2009).

16 V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Bredas, Chem.

Rev. 107, 926 (2007).

17 R. Coehoorn, W. F. Pasveer, P. A. Bobbert, and M. A. J. Michels, Phys. Rev. B 72, 155206

(2005).

18 C. Tanase, E. J. Meijer, P. W. M. Blom, and D. M. de Leeuw, Phys. Rev. Lett. 91, 216601

13



(2003).

19 C. Tanase, E. J. Meijer, P. W. M. Blom, and D. M. de Leeuw, Org. Electron. 4, 33 (2003).

20 A. J. Mozer, N. S. Sariciftci, A. Pivrikas, R. Österbacka, G. Juška, L. Brassat, and H. Bässler,
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37 N. Vukmirović and L.-W. Wang, Nano Lett. , Article ASAP, DOI: 10.1021/nl9021539 (2009).
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FIG. 1: (Color online) Schematic view of the P3HT polymer system at three different length scales:

the atomic structure and the wavefunctions (left), hopping sites (middle) and continuum system

(right).
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FIG. 2: The dependence of hole mobility in disordered P3HT polymer on electric field at several

different temperatures.
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FIG. 3: A comparison of the dependence of hole mobility on electric field at room temperature

with experimental measurements of Refs. 48 and 49.
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FIG. 4: (Color online) Hole density of states at zero electric field (top). The dependence of the

occupation nα of hole states on energy ε
(0)
α at several different electric fields and room temperature

(bottom).
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FIG. 5: The dependence of the effective electronic temperature on electric field for several different

values of the true lattice temperature.
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FIG. 6: The dependence of the mobility on the effective electronic temperature Teff. The calcula-

tions done using the method presented in this paper are shown in circles and the calculations done

using the same method but with Miller-Abrahams hopping rates are presented in squares. The

lines are only guides to the eye. Both sets of calculations have been done for temperatures in the

range 200 – 400 K and electric field in the range 0 – 1 MV/cm.
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FIG. 7: (Color online) The relevant current paths at room temperature and electric fields of 0, 0.3

and 1 MV/cm, from left to right respectively. The dots represent the states of the system and the

lines represent the current paths.
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FIG. 8: (Color online) The dependence of the occupation of hole states nα in the relevant current

path on energy ε
(0)
α at electric field of 1MV/cm and room temperature. The results obtained

using the methodology presented in this paper are shown in full circles. The results obtained when

Miller-Abrahams hopping rates are used instead are shown in squares. The line is only a guide to

the eye for these results.
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FIG. 9: The histogram of the hopping distances in the x direction for the transitions in the

relevant current path when: a) the transition rates are modeled according to Eq. (7); b) the Miller-

Abrahams model for the transition rates is used. The results are presented for one realization of

the k1 × k1 × k1 system in step 4 with a small electric field applied in x direction and at room

temperature.
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FIG. 10: Energy distribution of the contributions to current at three different electric fields and

room temperature.
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