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Abstract 

Fitting multi-parameter models to the behavior of individual 
participants is a popular approach in cognitive science to 
measuring individual differences. This approach assumes that 
the model parameters capture psychologically meaningful and 
stable characteristics of a person. If so, the estimated 
parameters should show, to some extent, stability across time. 
Recently, it has been proposed that hierarchical procedures 
might provide more reliable parameter estimates than non-
hierarchical procedures. Here, we examine the benefits of 
hierarchical parameter estimation for assessing parameter 
stability using Bayesian techniques. Using the transfer-of-
attention-exchange model (TAX; Birnbaum & Chavez, 1997), 
a highly successful account of risky decision making, we 
compare parameter stability based on hierarchically versus 
non-hierarchically estimated parameters. Surprisingly, we 
find that parameter stability for TAX is not improved by 
using a hierarchical Bayesian as compared to a non-
hierarchical Bayesian approach. Further analyses suggest that 
this is because the shrinkage induced by hierarchical 
estimation overcorrects for extreme yet reliable parameter 
values. We suggest that the benefits of hierarchical techniques 
may be limited to particular conditions, such as sparse data on 
the individual level or very homogenous samples.  

 

Keywords: cognitive modeling; parameter consistency; risky 
choice; hierarchical Bayesian modeling; transfer-of-attention-
exchange model 

Introduction 
In cognitive science, a highly popular approach to 
describing and understanding behavior is to develop models 
with adjustable parameters that can be fitted to data. As 
parameters of cognitive models are usually supposed to 
represent meaningful aspects of cognitive processing, they 
are often used to study, measure, and describe individual 
differences between people. For illustration, consider 
cumulative prospect theory (CPT; Tversky & Kahneman, 
1992), one of the most prominent models of decision 
making under risk. According to CPT, responses to a risky 
alternative (which lead to different outcomes with particular 
probabilities) are a function of several factors including a 
person’s sensitivity to probability information and her 
relative overweighting of losses as compared to gains (“loss 
aversion”). In the model, both probability sensitivity and 
loss aversion can be quantified by adjustable parameters, 
and several studies have employed CPT to investigate how 

differences in age (Harbaugh, Krause, & Vesterlund, 2002), 
gender (e.g., Fehr-Duda, Gennaro, & Schubert, 2006), or 
personality (Pachur, Hanoch, & Gummerum, 2010) affect 
risky decision making. Cognitive modeling thus allows 
individual differences in behavior to be decomposed into 
underlying cognitive components. 

Using individually fitted model parameters to measure 
individual differences relies on the assumption of parameter 
stability—that is, that the parameter values estimated for a 
person remain relatively invariant across time (Yechiam & 
Busemeyer, 2008). This applies in particular when modeling 
risky decision making, where it is often assumed that 
people’s choices and their cognitive underpinnings reflect 
stable preferences (Yechiam & Ert, 2011). In principle, 
however, it is possible that differences in parameter 
estimates between people simply reflect unsystematic 
variability (i.e., noise) rather than stable characteristics. In 
that case, fitting parameters of cognitive models would not 
be very useful because the results obtained would not 
generalize beyond a given task or situation.  

Glöckner and Pachur (2012) found some evidence for 
temporal stability of the parameters of CPT: parameters 
fitted to individual participants’ choices at each of two 
separate experimental sessions were (moderately) 
correlated. But does this finding also extend to other models 
of risky decision making? And—more importantly—do 
conclusions regarding a model’s parameter stability depend 
on how the parameters are estimated? Whereas parameters 
are traditionally estimated independently for each single 
participant, it has recently been proposed that more reliable 
estimates might be achieved by using hierarchical Bayesian 
procedures, which exploit group-level distributions to 
inform individual-level estimation (e.g., Gelman & Hill, 
2007; Lee & Webb, 2005).  

Our goal is to examine whether conclusions regarding the 
parameter stability of a cognitive model are affected by the 
statistical method used to obtain the estimates. In particular, 
we compare hierarchical Bayesian techniques against non-
hierarchical Bayesian procedures in a decision-making 
context. We investigate this issue for the transfer-of-
attention-exchange model (TAX; Birnbaum & Chavez, 
1997), which has been claimed to provide a better account 
of decision making under risk than CPT (Birnbaum, 2008). 
For example, Birnbaum (2008) showed that TAX can 
correctly account for several violations of CPT, such as 
violations of gain–loss separability, coalescing, and 
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stochastic dominance, while being able to also 
accommodate apparent loss aversion and risk aversion. 

Hierarchical Bayesian Parameter Estimation  
The application of hierarchical Bayesian techniques is 
becoming an increasingly popular tool to estimate cognitive 
models, including models of judgment and decision making 
(Lee & Wagenmakers, 2013; Nilsson, Rieskamp, & 
Wagenmakers, 2011; Scheibehenne, Rieskamp, & 
Wagenmakers, 2013). Hierarchical Bayesian techniques are 
attractive because the approach naturally lends itself to the 
hierarchical data structure inherent in many psychological 
experiments, where a single individual provides many 
observations and researchers aim to draw conclusions on the 
aggregate group level. The alternative, “independence” 
approach, by contrast, is to first estimate the parameters of 
each individual participant separately and then aggregate 
these measures in a second step (Gelman & Hill, 2007). 
While feasible, this approach ignores possible similarities 
between individuals and does not take into account that 
some participants might allow more precise and reliable 
estimates than others. Bayesian hierarchical techniques 
account for these differences and thus promise to yield more 
consistent and accurate estimates (Rouder & Lu, 2005).  

The Bayesian approach achieves this because the imposed 
hierarchical structure simultaneously informs the individual 
level, such that potentially unreliable individual estimates 
can borrow strength from the other estimates (Gelman, 
Carlin, Stern, & Rubin, 2004). Furthermore, parameter 
estimates that are deemed unlikely given the distribution of 
the remaining parameter values (i.e., because they are 
located at the extremes of the distribution) are pulled closer 
towards the group mean and implicitly receive less weight. 
This property is referred to as “shrinkage.” For these 
reasons, it has been argued that hierarchical methods often 
provide a more thorough evaluation of models in cognitive 
science (Shiffrin, Lee, Kim, & Wagenmakers, 2008).  

Though increasingly popular, Bayesian hierarchical 
implementations have been developed for only relatively 
few cognitive models of decision making under risk (but see 
Nilsson et al., 2011; Wetzels, Vandekerckhove, Tuerlinckx, 
& Wagenmakers, 2010). Below we develop, to our 
knowledge for the first time, a hierarchical model for 
estimating individual participants’ TAX parameters. 

Transfer-of-Attention-Exchange Model 
TAX is a model of how people evaluate risky alternatives 
that can lead to certain outcomes x, each of which occurring 
with probability p. For instance, consider whether you 
would prefer to play a lottery with a 90% chance of winning 
$100 (otherwise nothing) or a lottery with a 10% chance of 
winning $1000 (otherwise nothing). According to TAX, the 
valuation of a lottery is a weighted average of the utilities of 
the outcomes; the weight that each outcome receives 
depends on its rank among all possible outcomes (the n 
outcomes being ordered such that x1 < x2 < x3 … xn) and its 
probability. To account for the typically found risk aversion 

(risk seeking) in gains (losses), is the model assumes that 
attention (i.e., weight) is “transferred” from better (worse) to 
worse (better) outcomes. Specifically, the valuation, V, of a 
lottery A is calculated as 
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where  is a free parameter governing the attention shift 
from higher to lower outcomes (or vice versa); with 0 <  < 
1 attention is shifted from higher (lower) to lower (higher) 
outcomes in gains (losses), with 0 >  > -1 the opposite 
would occur. The function u(x) is the utility function, u(x) = 
xβ, transforming objective outcomes into subjective utilities. 
The free parameter β indicates the curvature of the value 
function and reflects the decision maker’s sensitivity to 
outcome information (with lower values of β indicating 
lower sensitivity). t(p) is the probability weighting function, 
transforming objective into subjective probabilities, and 
equals t(p) = p.  is a free parameter reflecting the decision 
maker’s sensitivity to probability information (with lower 
values of  indicating lower sensitivity). To derive the 
predicted probability that lottery A is preferred over lottery 
B, we used an exponential version of Luce’s choice axiom:  

)()(

)(

),(
BVAV

AV

ee

e
BAp 




 



,                       (2) 

where θ is a choice sensitivity parameter, indicating how 
sensitively a decision maker reacts to differences in the 
valuation of lotteries A and B. To summarize, TAX as 
implemented here has four free parameters: attention shift 
(δ), outcome sensitivity (β), probability sensitivity (γ), and 
choice sensitivity (θ).  

Data We applied TAX to model the data reported in 
Glöckner and Pachur (2012). In this study, 63 participants 
(25 male, mean age 24.7 years) indicated their preference 
between two-outcome monetary lotteries at two 
experimental sessions that were one week apart. At each 
session, the participants were presented (on a computer) 
with 138 lottery problems that contained pure gain, pure 
loss, and mixed lotteries, all drawn from sets of lottery 
problems used in previously published studies; 38 of the 
problems were shown at both sessions (see Glöckner & 
Pachur for details). The outcomes of the lotteries ranged 
from –€1000 to €1200. At the completion of each session, 
one of the chosen lotteries was picked randomly, played out, 
and the participant received an additional payment 
proportional to the outcome.  

Parameter Estimation 
To estimate the free parameters of TAX, we implemented 
two Bayesian versions of the model—a hierarchical version 
and an independent (i.e., non-hierarchical) version. 
Bayesian modeling requires a detailed specification of the 
likelihood function and the prior probability distributions of 
all model parameters. For the independent version, we 
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specified the likelihood function based on Equations (1) and 
(2). The priors for the free parameters were set to uniform 
probability distributions that span a “reasonable” range that 
excluded theoretically implausible values and allowed for 
ample space to include parameter values found in previous 
research (Michael Birnbaum, personal communication). In 
particular, the priors ranged from –2 to 2 for the δ parameter 
and from 0 to 5 for the β, γ, and θ parameters. 

In the hierarchical version, we utilized the same functions 
as in the independent version but partially pooled the 
individual parameters using normally distributed group-
level distributions. Uninformative priors were assigned to 
the respective means and standard deviation of these group-
level distributions. The group-level means were assumed to 
be normally distributed with mean 0 and variance 1. The 
prior on the group-level standard deviation was uniformly 
distributed ranging from 0 to 10. To ensure proper 
parameter scaling, the group-level parameters were linked 
onto the individual level through a probit transformation 
(Rouder & Lu, 2005). As this transformation yields a 
parameter range from 0 to 1 on the individual level, an 
additional, linear linkage function was interposed that 
stretched the parameter range to match the scale used in the 
independent model implementation outlined above (i.e., a 
range from –2 to 2 for the δ parameter, and a range from 0 
to 5 for the β, γ, and θ parameters). 

For both the individual and the hierarchical model we 
estimated the joint posterior parameter distributions using 
Monte Carlo Markov Chain methods implemented in JAGS, 
a sampler that utilizes a version of the BUGS programming 
language (Lunn, Spiegelhalter, Thomas, & Best, 2009; 
Plummer, 2011) that was called from the R statistics 
software (version 2.14.0; R Core Team, 2012). A total of 
10,000 representative samples were drawn from the 
posterior distributions after a “burn-in” period of 1,000 
samples. The sampling procedure was efficient as indicated 
by a low autocorrelation of the samples, the Gelman–Rubin 
statistic, and visual inspection of the chains.  

Quantifying Parameter Stability 
To the extent that the parameters of a cognitive model 
capture stable characteristics of an individual, the 
parameters should be invariant across time—at least for 
relatively short time intervals and under comparable 
measurement conditions (Bland & Altman, 1986). One way 
to quantify parameter stability (or reliability) is to correlate 
individual parameter estimates between two points in time 
(i.e., test and re-test). Higher correlations indicate higher 
parameter stability.  

As outlined above, one rationale for using hierarchical 
Bayesian techniques for parameter estimation is to obtain 
more reliable estimates. Thus, one might expect a higher 
test–retest correlation when parameters are estimated 
hierarchically than when they are estimated for each 
participant independently. To test this prediction, we 
calculated correlations between the parameter values 
estimated for each participant at the two measurement 

points (t1 and t2), separately for the individual model and 
the hierarchical model.  

Correlations were calculated based on the mean posterior 
parameter estimates for each measurement point, using 
Bayesian techniques implemented in BUGS. A Bayesian 
approach to calculating correlations allows correlation 
coefficients to be compared based on their posterior 
distributions. This avoids many problems inherent in 
traditional frequentist statistical procedures that rely on null-
hypothesis significance testing (Kruschke, 2011). 

Results 
Table 1 reports the best-fitting TAX parameter values on the 
group level, obtained from the hierarchical model. As 
indicated by the δ parameter being larger than 0, participants 
displayed risk aversion in gains and risk seeking in losses, 
and some reduced sensitivity to outcomes (β being smaller 
than 1) and probabilities (γ being smaller than 1). Overall, 
the parameter values obtained are within the range of values 
obtained or used in previous applications of TAX (e.g., 
Birnbaum, 2008). 
 

Table 1: Best-fitting group-level TAX parameters and 
their 95% highest density intervals (HDI95). 

 
Figure 1 shows Pearson’s product–moment correlations 

(across participants) between t1 and t2 for each of the four 
TAX parameters. As can be seen, the mean correlation 
coefficient for the δ and the γ parameters is slightly higher 
when they are estimated hierarchically than when they are 
estimated independently. However, this difference is not 
credible, as the 95% highest posterior density interval 
(HDI95) includes zero. For the β parameter, the correlation is 
slightly higher when parameters are estimated 
independently, and for the θ parameter the test–retest 
correlation is clearly lower for the hierarchical than for the 
independent estimates. A similar picture emerges based on 
Spearman’s rank correlations (not shown).  

Why Does Hierarchical Estimation Fail to Improve 
Parameter Stability? 
The results indicate that applying a hierarchical TAX model 
does not yield higher parameter stability on the individual 
level. At first sight, this seems surprising given the 
supposed advantages of hierarchical techniques that 
“borrow strength” from distributional information on the 
group level to improve estimations on the individual level. 

  TAX parameters 
δ β γ θ 

t1     
  M .33 .65 .64 .14 
HDI95 [.25,.40] [.62,.68] [.57,.71] [.11,.16] 
t2     
  M .35 .63 .61 .16 
HDI95 [.27,.43] [.60,.65] [.51,.72] [.13,.20] 
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Figure 1: Stability of each TAX parameter as indicated by 
the mean product–moment correlation across participants 
between t1 and t2. Circles indicate independent estimates, 

triangles indicate hierarchical estimates. Error bars = HDI95. 
 

To explore the reasons for this result, it is instructive to 
take a closer look at the distribution of the parameter 
estimates obtained. For illustration, Figure 2 displays the 
posterior means for the independently estimated β parameter 
values at t1 and t2 (upper and lower row, respectively) as 
well as the hierarchically informed estimates at t1 (middle 
row) for a subset of 20 representative participants; for each 
person the estimates are connected by a line. As could be 
expected, given the partial pooling enforced through the 
introduction of the higher level group distribution in the 
hierarchical model, the hierarchical estimates show a lower 
dispersion than the individually estimated parameters (the 
same holds for the hierarchical estimates at t2, which are not 
shown). This shrinkage is particularly pronounced for 
extreme parameter estimates, that is, those that are far away 
from the group-level mean. The reason is that these 
estimates appear rather unlikely with respect to the group-
level distribution and are thus implicitly treated as outliers 
in the hierarchical model. 

Unwarranted Shrinkage Importantly, however, Figure 2 
further shows that the shrinkage of the hierarchical method 
is not necessarily warranted: for the independently estimated 
parameter values there is rather good correspondence 
between t1 and t2 even for participants with rather extreme 
parameter values. That is, individuals who have a high β 
value at t1 also tend to have a high β value at t2; the same 
applies for small β values. Thus, our analysis shows that in 
the context on hand extreme estimates often reflect 
meaningful and reliable characteristics of individuals. The 
partial pooling enforced by the hierarchical modeling 
somewhat distorts the individual parameter estimates by 
pulling them too much towards the group-level mean.  

 
Figure 2: Mean posterior estimates of the β parameter of 

TAX separately for each individual at t1 and t2 (upper and 
lower row) and the hierarchically estimated parameters at t1 
(middle row) for a representative subset of 20 participants.  

 
Diminished test-retest correlation The unwarranted 

shrinkage imposed by hierarchical modeling does not 
inevitably lead to lower test–retest correlations. After all, it 
could be that the compressed hierarchical estimates are 
nevertheless more reliable and thus stable over time than the 
(more dispersed) parameter values estimated on the 
individual level. As we will outline next, however, that does 
not seem to be the case. 

Figure 3 displays a scatterplot for the θ parameter 
separately for the independent and the hierarchical 
estimates. The θ parameter provides an instructive example 
because here the difference between the correlations for the 
individual and the hierarchical estimates is particularly large 
(Figure 1). Figure 3 shows that the high correlation for the 
independent estimates is partly due to some individuals 
having high values on the θ parameter at both measurement 
points. As mentioned above, although these values are much 
higher than for most individuals in the group, they 
nevertheless seem to be reliable in the sense that they are 
equally high at both measurement points. In contrast, the 
range of the hierarchically estimated parameters is much 
narrower (note that the axis scales in the figure were 
adjusted to best display the data). Furthermore, the 
hierarchical model seems to affect the individual parameter 
estimates to different degrees. This occurs because the 
influence of the group-level depends, among other aspects, 
on the variance and the mean of the individual estimates. As 
indicated by the shape of the scatterplot in the lower panel 
of Figure 3, this effect pulls the parameter estimates towards 
the mean and thus leads to a lower (linear) relationship 
between the two measurement points. In that sense, the 
hierarchical method also induces shrinkage on the 
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correlation coefficients. In situations where the correlation 
of the individually estimated parameters is reduced due to 
unreliable outliers, however, applying hierarchical 
techniques will shrink these outliers and may then yield 
higher parameter stability.  

 
Figure 3: Scatter plot of the mean posterior estimates for the 

θ parameter at t1 and t2. Each point represents one 
participant. The upper panel shows the parameter values 
obtained by individual estimation; the lower panel shows 
the parameter values obtained by hierarchical estimation. 

Note that the value ranges on the axes are much smaller in 
the lower panel. 

 

Discussion 
The psychological content and generalizability of a 
cognitive model hinges on the extent to which its parameters 
reflect stable characteristics of an individual. Conclusions 
regarding a model’s parameter stability may be affected by 
the statistical procedures used to estimate these parameters. 
Specifically, researchers must decide whether to employ 
hierarchical techniques or to estimate each person 
individually. 

Our analyses show that the free parameters of the TAX 
model are rather consistent across time, indicating that the 
model captures stable aspects of decision makers’ risk 
attitude and their outcome and probability sensitivity. This 
finding parallels previous results obtained for CPT based on 
the same data using maximum likelihood estimates 
(Glöckner & Pachur, 2012). Most importantly—and rather 
unexpectedly—our analysis provided no evidence that 
hierarchical Bayesian techniques yield more stable 
parameter estimates than the alternative approach of 
estimating each participant independently from the others. 

Why did the shrinkage of the hierarchical procedure 
yielding distorted estimates? In principle, one possibility is 
that the distribution of the individual parameter values is bi-
modal, which would render group-level means futile. As 
indicated by visual inspection, however, the parameter 
distributions for our data were mostly unimodal in shape, so 
this cannot explain why the hierarchical procedure distorted 
the estimates.  

Another possibility could be the prior distribution used for 
shrinkage. To achieve an optimal balance between complete 
pooling and complete independence, the degree of shrinkage 
in the hierarchical model is represented by a free parameter 
(representing the variance of the group-level distributions) 
estimated from the data. In principle, the choice of prior on 
the variance could impose an unwarranted amount of 
shrinkage (i.e., a low variance), for instance, if much weight 
is put on low variances, or if the prior does not allow for 
large variances in the first place. For the current data, 
however, the posterior estimates for the group-level 
standard deviations were far away from the upper 
boundaries of the uniform prior distributions on the group-
level. The choice of prior on the variance of the group-level 
distributions is thus an unlikely reason for the undue amount 
of shrinkage.  

Generalizability Although our demonstration focused on 
one particular cognitive model, we suspect that the 
conclusions will hold for other models as well—particularly 
in the domain of judgment and decision making; here, 
people often rely on different strategies (e.g., Pachur & 
Olsson, 2012; Scheibehenne et al., 2013) and parameter 
heterogeneity thus reflects genuine differences between 
people. In such a case, the parameter estimates will not 
regress towards the mean if more data or more precise 
measures are collected.  

Advantages of Hierarchical Approaches The case on 
hand may be different from situations in which hierarchical 
Bayesian techniques have been shown to outperform 
independent parameter estimates. In a classic example, 
Efron and Morris, (1975) predicted the success rate of 
professional baseball players for an entire season based on 
their success rate early in the season. This prediction was 
greatly improved through the application of hierarchical 
techniques. Presumably, this improvement occurred because 
the differences in the success rates of professional baseball 
players are rather small (they are all pretty good players) 
and random noise will equal out throughout the season. 
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Under this condition, there will be regression towards the 
mean, which benefits hierarchical Bayesian techniques.  

Another situation in which hierarchical Bayesian 
estimates presumably provide more accurate results than 
independent estimates is when only very little data is 
available for each individual, yielding high uncertainty on 
the individual level. Here, the unreliability on the individual 
level might be reduced through partial pooling.  

Finally, hierarchical modeling techniques might be 
beneficial for comparisons on the group level (Gelman & 
Hill, 2007), where the goal is not to improve the reliability 
on the individual level but to derive robust estimates for the 
group as a whole. As a consequence, the implicit weighting 
imposed through hierarchical estimation methods might also 
be advantageous for making out-of-sample predictions for 
new group members.  

Summary  
Our results indicate that hierarchical Bayesian techniques 

do not necessarily improve the reliability of individual 
parameter estimates. Therefore, researchers aiming to 
predict individual behavior may be better advised to rely on 
individual estimates instead. As discussed above, 
hierarchical models might have specific strengths in 
situations in which very little information is available on the 
individual level, when the group is very homogenous, or 
when the goal is to describe and compare groups as a whole.  
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