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Detection of QCD axion dark matter by coherent scattering
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The QCD axion is a promising candidate of the dark matter. In this paper, we discuss elastic scattering
processes between nucleons and the QCD axion dark matter. We point out that the cross section can be
enhanced by more than Oð1025Þ by the coherent effect, compared to classical processes. As a result, for
example, we show that QCD axions may scatter at the sun with Oð1Þ probability for fa ≲ 1011 GeV.
In addition, one may expect stimulated emission effects can also enhance the cross section because the
number density of the axion DM is very large. The enhancement factor can be as large as another Oð1025Þ
and, if the factor exists, the force from the dark matter wind may be detected via, e.g., torsion balance
experiments. However, it is also found that there is a cancellation of the stimulated emission factor and the
force is too small to be detected.

DOI: 10.1103/PhysRevD.105.095030

I. INTRODUCTION

The absence of a dark matter (DM) candidate in the
Standard Model (SM) invokes the strongest motivation for
the extension of the SM. The QCD axion [1,2] is one of the
leading candidates of the DM. The QCD axion is a pseudo-
Nambu-Goldstone boson associated with the spontaneous
breaking of Peccei-Quinn (PQ) symmetry. Originally, it has
been introduced as a solution to the strong CP problem;
the unnaturally tiny value of the θ angle in the QCD,
jθj≲ 10−10 [3]. Later, it has turned out that axions may be
created in the early universe and be the DM in the present
universe [4–6].
The axion is nothing but the dynamical QCD θ term.

The QCD axion a inevitably couples to the gluon via the
Chern-Simons term, a

fa
Ga

μνG̃
aμν, where fa is the axion

decay constant. The vacuum expectation value (VEV) of
the axion field hai determines to an effective θ angle as
θeff ¼ θ þ hai=fa. If the axion potential is solely generated
by the QCD dynamics, the axion VEVexactly cancels the θ
angle [7,8]. For this axion solution to the strong CP
problem to work well, the axion potential contributions
other than QCD must be almost exactly zero. This property
of the axion is dubbed a “shift symmetry”; the UV
Lagrangian of the axion must be invariant under the

constant shift of the axion field, a → aþ a0, except for
the axion-gluon interaction. For the axion-gluon interac-
tion, the shift is equivalent to the shift of the θ angle.
Because the SM quarks have nonvanishing masses, this
shift symmetry is explicitly broken, which introduces the
axion potential. In other words, the axion-gluon Chern-
Simons term is the only term representing the breaking of
the shift symmetry in the UV theory.
In the IR theory below the QCD scale, we can write down

the effective interaction of the axion by using, e.g., the chiral
perturbation and the largeNc expansion [7].We can estimate
the axion mass, axion-hadron, and axion-photon couplings
in the IR Lagrangian. At the leading order of the chiral
perturbation, the effective interactions of the axion respect
the shift symmetry. For example, the axion-photon coupling,
aFμνF̃μν, has the shift symmetry and the axion-nucleon
coupling is a derivative coupling, ∂μaN̄γμγ5N, whereN is a
nucleon fermion and respects the shift symmetry.
Many studies to date have aimed at detection based on

this leading order interaction between the axion and
Standard Model particles. The QCD axion is strongly
constrained from astrophysical observations such as stellar
cooling [9]. The current constraint indicates that axion
decay constant fa must be larger than ∼109 GeV. To
explore higher fa regions, experiments on the ground are
necessary, and this research is being conducted vigorously.
In particular, many attempts have been made to observe
the axions as the DM, as the axion is the most important
and natural candidate of the DM. See Refs. [10–15] for
recent works. However, such experiments are not sensitive
to most of the parameter regions predicted by the QCD
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axion DM. It is thus important to investigate another
detection method.
In this paper, we discuss the direct detection, i.e., elastic

scatterings, of the axion DM. Although the axion is very
light and the recoil energy of each scattering is small, the
number of the axion is large, and in principle, the direct
detection of the axion can be important. However, in most
of the previous studies, elastic scattering processes of
axions have not been considered. This is because the cross
section is considered to be small. The shift-symmetric
interactions between axions and fermions such as axion-
nucleon interactions, ∂μaN̄γμγ5N, are dependent on the
spin of the fermion. The scattering amplitudes are, when
added up over multiple fermion scatterers with unaligned
spins, mostly canceled.
However, we point out that spin-independent inter-

actions between axions and nucleons, ða=faÞ2N̄N, actually
do exist. Those interactions break the shift symmetry and
are proportional to the shift-symmetry-violating parameter.
It may be naively expected that such interactions are
suppressed by the axion mass in addition to the f−2a
suppression as only the axion mass seems to violate the
shift symmetry in the IR Lagrangian. However, this is not
the case. In the leading order of the chiral perturbation and
the large Nc expansion, the shift-symmetry-violating
parameters in the UV Lagrangian are the quark masses.
Indeed, we find that the four-point interaction, ða=faÞ2N̄N,
is proportional to the quark mass and not very much smaller
than shift-symmetric interactions.
Unlike spin-dependent amplitudes, spin-independent

amplitudes are constructively summed over multiple fer-
mion scatterers within one Compton length of the axion.
Cross sections, which are proportional to the amplitudes
squared, are enhanced by the number of the scatterer
compared to classical estimations. This is called the
coherent enhancement effect and is included in the context
of the direct detection of heavier mass dark matters [16]. An
important point is that the mass of the axion is much lighter
and the Compton length of the DM axion is macroscopic.
The resultant enhancement effect is expected to be gigantic.
Another important enhancement effect for the direct

detection of the axion is the stimulated emission effect. As a
rule of quantum mechanics, the scattering amplitude of the
process aþ b → cþ d, Mðab → cdÞ, is enhanced by the
phase space number density of particles d if d is a boson.
For example,

jMðab → cdÞj2 ¼ jM0ðab → cdÞj2 × ð1þ fdÞ; ð1Þ

whereM0 is the amplitude without the background and fd
is the phase space number density of the final state particle
d. Given that we know the DM energy density ρDM and
velocity vDM, the phase space number density of the light
DM such as an axion is very large. The phase space number
density of the DM of a mass mDM, fDM, is

fDM ∼
ρDM

mDMðmDMvDMÞ3
∼ 1027

�
mDM

1 μeV

�
−4
: ð2Þ

One may expect that the cross section is enhanced by fDM.
If this is the case, it will enhance the rate of the direct
detection of light bosonic DMs such as axions very much.
As we will see later, although the cross section is indeed
enhanced, the recoil momentum is not enhanced by this
stimulated effect.
The rest of this paper is organized as follows. First, in

Sec. II, we review the axion interaction. We use the chiral
perturbation to derive the effective Lagrangian for the axion
and hadrons. In Sec. III, we discuss the detection method
using the interaction. In quantum mechanics, forward
scattering amplitudes, not amplitudes squared, may induce
a physical effect. Because the axion DM is light and has a
wave nature, we discuss both forward scatterings and
ordinary scatterings. In Sec. IV, we conclude the paper
with discussing other possible applications.

II. AXION INTERACTION

The Lagrangian of the QCD axion above the QCD scale
is written as follows:

L¼ 1

2
∂μa∂μaþ αs

8π
NDW

a
fa

Ga
μνG̃

aμνþ α

4π
c
a
fa

FμνF̃μν; ð3Þ

where a, G, and F are the axion, gluon, and photon fields,
respectively, and NDW and c are Oð1Þ integer and rational
constants, respectively. For simplicity, we take NDW ¼ 1
and c ¼ 0. Here, the origin of the axion field is chosen to
absorb the θ angle in QCD. The axion may also couple to
the SM fermions f via derivative couplings as

∂μa

fa
f̄γ5γμf: ð4Þ

This does not alter our discussion, because the derivative
couplings respect the shift symmetry.
We now discuss the axion Lagrangian below the QCD

scale. The axion-gluon interaction term in the UV
Lagrangian, Eq. (3), breaks the shift symmetry by the
virtue of the nonzero masses of the SM quarks. As a result,
in the IR Lagrangian, shift-symmetry breaking terms
appear, being proportional to the quark masses. The typical
example is the axion mass,

m2
a ≃

Λ3

f2a

mumd

mu þmd
; ð5Þ

where Λ is the QCD scale and muðdÞ is the up (down)
quark mass.
We point out that the effect of the shift symmetry

breaking, i.e., the quark mass in the UV Lagrangian, also
appears in the axion-nucleon interaction in the IR
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Lagrangian. Using the chiral perturbation theory, we obtain
a spin-independent interaction as

ΔL ¼ a2

8f2a

X
N¼p;n

δmNN̄N; ð6Þ

where δmN is a parameter related to the quark mass
contribution to the nucleon mass, δmN ∼Oð10Þ MeV,
and is given in Eq. (A36). Note that, as discussed in
Appendix A, the δmN ∝ mumd and represent the shift-
symmetry breaking of the UV theory. The detailed calcu-
lation is found in Appendix A.
At the first glance, the same operator, a2N̄N, comes from

the axion-nucleon interaction usually considered,

mNN̄ exp ð2iaγ5=faÞN; ð7Þ

where mN is the mass of the nucleon. Indeed, if we expand
this interaction in a, one finds the term a2N̄N. However,
spin-independent interactions induced by Eq. (7) are sup-
pressed by the axion mass. This is because the interaction
Eq. (7) respects the shift symmetry. To see this point
clearly, by the chiral rotations of nucleons, the interaction is
rewritten as

∂μa
fa

N̄γμγ
5N; ð8Þ

which is explicitly shift-symmetry preserving. Although we
may write the four-point correlation function for aaNN
with this term, it is obvious that the correlator is suppressed
by the momentum of the axion. In terms of Eq. (7), this can
be explained as follows: indeed, the a2N̄N term exists in
Eq. (7), but for the scattering amplitude for the soft axions,
the diagram from a2N̄N cancels against the diagrams with
two aN̄iγ5N vertices which are also included in the
expansion of Eq. (7). Because of the momentum suppres-
sion, in total, Eq. (7) hardly contributes to the spin-
independent cross section. On the other hand, as we discuss
in Appendix A, Eq. (6) does contribute to the aaNN
amplitude without the momentum suppression. This is due
to the nature of the Goldstone boson, and the similar
property of the pion is known as the soft-pion theorem [17].
Let us discuss a nonrelativistic scattering process

between DM axions and the target nucleons, aN → aN,
by Eq. (6). Because Eq. (6) does not include γ5 in the
nucleon bilinears, the scattering amplitude is independent
of the spin of the nucleon. Thus, if multiple nucleons exist
within one Compton length of the incoming axion, the
phases of each scattering amplitude are the same. Because
all the phases are the same, the total amplitude is added up
constructively, being proportional to the number of nucle-
ons. The cross section, which is proportional to the absolute
value squared of the total amplitude, is then proportional to
the number squared. The cross section is enhanced by the

number of nucleons, compared to the classical scattering,
where the total scattering cross section is the sum of each
cross section. This is the coherent enhancement and is
common for low-energy scatterings in quantum mechanics.
As the Compton length of the axion DM is macroscopic as

ðmavDMÞ−1 ∼
10−1 eV

ma
cm; ð9Þ

the number of nucleons within the Compton length can be as
large as ≳1025, which leads to a significant enhancement of
the cross section. In the present analysis, we adopt the
approximation using free nucleon although actual detectors
are composed of nuclei. However, because binding energies
of nuclei are much smaller than the mass of nucleons in the
nuclei, the estimation does not lead to significant differences.
To quantitatively evaluate scattering amplitudes with the

large coherent enhancement in the nonrelativistic limit, it is
convenient to use the first quantization formalism, as the
process aN → aN is number conserving. To derive a
potential of the axion-nucleon system, we rewrite Eq. (6)
using the number densities,

HIðxÞ ¼ −
naðxÞ

4bmπfπfa

X
N¼p;n

δmNðnNðxÞ þ nN̄ðxÞÞ; ð10Þ

where HIðxÞ ¼ −ΔL is the interaction Hamiltonian, na is
the number density of the axion, nNðnN̄Þ is the number
density of the (anti)nucleonN, and b≡ 2mafa

mπfπ
, which reduces

to b ∼ 1 for the QCD axion. Therefore, the potential energy
for each axion is

VðxÞ ¼ −
X
N¼p;n

δmN

4bmπfπfa
nNðxÞ; ð11Þ

where we assume nN̄ ¼ 0. With this potential, we can write
the Schrödinger equation for the axion,

�
−

∇2

2ma
þ V

�
ψðxÞ ¼ EψðxÞ; ð12Þ

where ψðxÞ is the wave function of the axion and E is the
energy eigenvalue. Solving the equation with appropriate
boundary conditions, we can derive the scattering cross
section for any nucleon configuration. In the Born approxi-
mation, the differential cross section is

dσ
dΩ

≃
�
2ma

4π

�
2
����
Z

d3xeiq⃗·x⃗VðxÞ
����
2

; ð13Þ

where q⃗ ¼ q⃗ðΩÞ is the momentum transfer. For the long-
Compton-length limit, q ≲mavDM → 0, σ ∝ N2

N , whereNN
is the number of nucleons. This result reproduces the
qualitative argument of the coherent enhancement above.
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We discuss possible ground experiments exploiting this
potential for the axion DM detection in the next section.
To close this section, we make a few comments on other

aspects of the interaction, Eq. (10). First, it can be
interpreted as potential energies for nucleons. As in the
case of the axion potential Eq. (11), the potential for the
nucleon is

VNðxÞ ¼ −
δmN

4f2a
a2ðxÞ: ð14Þ

This induces the mass correction to the nucleons with an
axion background. In particular, this potential affects the
mass difference between the neutron and proton and
modifies the lifetime of the neutron [18]. For cosmological
constraints, see Ref. [19].
Second, because the axion is a dynamical field, it also

mediates the Yukawa potential between two nucleons via
Eq. (6), with an axion background haðxÞi ¼ a0. The
Lagrangian (6) is, with the background, read as

ΔL ¼
X
N¼p;n

a0δmN

4f2a
aN̄N: ð15Þ

This induces a long-range attractive force between the
nucleons. The Yukawa potential for two N with a distance
of r is

VYðrÞ ¼ −
� ffiffiffi

π
p

rNMPla0ffiffiffi
2

p
f2a

�
2 m2

N

8πM2
Pl

e−mar

r
; ð16Þ

where rN ≡ δmN=mN and MPl is the reduced Planck mass.
This result is essentially the same as one given in Ref. [20].

III. SIGNAL OF AXION SCATTERING

In this section, we discuss experimental setups of the
axion DM direct detection to use the potential (11).
Because the Compton length of the axion DM is macro-
scopic and can be comparable to detector sizes, the wave
nature of the axion is also important. In addition to
conventional “hard” scattering, which is proportional to
the square of the scattering potential jVj2, there is forward
amplitude proportional to V, which corresponds to refrac-
tion of a wave and may provide observable signatures.
Here, we discuss bothOðf−1a Þ andOðf−2a Þ effects, although
it will turn out that the former effect is hardly possible to
use with conventional detectors.

A. Oðf − 1a Þ effect
Because the Compton length of the axion DM is

macroscopic, the axion DM can be regarded as a wave.
When a wave enters a medium, the wave is refracted. As we
discuss in Appendix B, the index of refraction n is given as

n − 1 ≃ 1 × 10−10
�

δρ

0.01 g=cm3

��
10−3

vDM

�
2

b−2: ð17Þ

Here,

δρ ¼
X
N¼p;n

δmNnN ¼
�
δmp

mp
·
Z
A
þ δmn

mn
·
A − Z
A

�
ρ; ð18Þ

where ZðAÞ is the atomic (mass) number of the target
medium and ρ is the mass density of the medium. The
parametersmp;n are quark mass contributions to the proton/
neutron masses and are given in Eq. (A36). The index is
small, but it is not obvious that we may ignore it. Let us
discuss how the index of refraction may contribute to the
observational quantity in the following.
Suppose an incoming axion DM is refracted on the

surface of a target composed of nucleons. As the momen-
tum of the axion is altered, a momentum of order
mavDMðn − 1Þ is transferred to the target. Because of the
motion of the solar system and the earth through the
Milky Way (v⊕ ∼ 200 km=s), there is a DM wind from
the direction of travel of the solar system. For the DMwind,
one may expect that the net momentum transfer by the
refraction is nonzero if we choose a target with an
appropriate surface. Naively, for a target with surface area
S and mass M, the axion DM wind induces an acceleration
a on the target of order

a∼?
ρDMvDMjn−1jS

M
¼10−17

�jn−1j
10−10

��
S

cm2

��
g
M

�
cm=s2:

ð19Þ

Although this acceleration looks small, it is large enough to
be detected in an experiment such as a torsion balance [21].
Thus, it is worth asking if the refraction indeed induces
such a large acceleration. As we will see soon, this
estimation is incorrect.
In fact, similar discussions have been made for the

detection of the cosmic neutrino background (CνB) [22].
The CνB is expected to be as cold as ∼1.9 K, and thus its
Compton length is also macroscopic. The weak boson
exchange processes induce a potential between neutrinos
and matters. If the neutrino is a Dirac fermion, the potential
for a neutrino νi (i ¼ e, μ, and τ) is given as [22]

Vνi ¼
GFfiffiffiffi

2
p nA: ð20Þ

Here,GF is the Fermi constant, and nA is the atomic number
density in the target medium. The parameter fi is a
numerical constant given as
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fi ¼
�
Z − A i ≠ e;

3Z − A i ¼ e:
ð21Þ

As in the discussion of the axion DM, the neutrino
potential contributes to the refractive index; the refractive
index of the cosmic background neutrino in a medium is

n− 1

fi
∼ 10−5

�
nA

6× 1023=cm3

��
0.01 eV
mν

��
10−3

vν

�
2

: ð22Þ

This refraction index seems to be large. Several proposals
were, accordingly, made for the CνB detection [23–25].
However, it has turned out that the refraction effect is

hardly detectable [26,27], as the total momentum transfer is
completely canceled for the refraction effect for spatially
uniform CνB density. The net momentum transfer from the

neutrino background to a target per unit time, _P⃗, is given as

_P⃗ ¼ − _P⃗ν ¼ −i½HI; P⃗ν� ¼ −
Z

d3xVν∇⃗nν; ð23Þ

where _P⃗ν is the momentum change of the neutrino back-
ground, nν is the number density of the CνB, HI is the
interaction Hamiltonian given as HI ¼

R
d3xVνnν, and Vν

is the neutrino potential (20). This equation shows that as
long as the neutrino background is homogeneous,
∇nν ¼ 0, the total momentum transfer vanishes.
The same result holds for the axion DM. As long as the

axion DM distribution is uniform, the static force by the
refraction vanishes. One important difference is that axions
are bosons and can form lumps, where ∇na ≠ 0. For
example, if axions move together as a wave packet with
the width ∼mavDM, the axion density may be nonhomo-
geneous; ∇na ∼mavDMna ¼ vDMρDM. In this case, we
estimate the refractive force as

_P ≃ −
Z

d3xVðxÞvDMρDM

¼ vDMρDM
8maf2a

Mr

≃ 2 × 10−20 g · cm=s2 × b

�
ρDM

0.3 GeV=cm3

��
vDM
10−3

�

×

�
Mr

0.01 g

��
109 GeV

fa

�
; ð24Þ

where Mr ≡ R
d3xδρ for the target. The resulting accel-

eration, 10−20 cm=s−2, is larger than the ultimate sensitivity
of torsion balance experiments, 10−23 cm=s−2 [21].
Nonetheless, conventional torsion balance experiments
are not able to detect the signal [28] because the force
depends on the dark matter local density configuration
and has a strong time dependence with a frequency
OðmavDMÞ ∼ ðma=1 μeVÞ MHz. Moreover, as the axion

is massive, the axion wave packet is dissipative, and it is
likely that ∇na ≪ vDMρDM in reality. Therefore, we con-
sider the axion DM detection with the refraction effect
is hard.

B. Oðf − 2a Þ effect
In this subsection, we discuss elastic scattering processes

by Eq. (11), which are suppressed by f−2a . For quantum
mechanical scatterings, we possibly have two enhancement
effects, the coherent enhancement and the stimulated
emission effect. As we have discussed in Sec. II, the
coherent effect is properly included if we solve the
Schrödinger equation with the potential, Eq. (11).
Because we cannot analytically solve the Schrödinger
equation for generic potentials, we rely on the Born
approximation instead, although the validity of the approxi-
mation must be discussed. On the other hand, the stimu-
lated emission effect is needed to be independently
included in the estimation.
Roughly speaking, the stimulated emission effect comes

from a matrix element M being evaluated as follows:

M ¼ hNX − 1; NY þ 1jSjNX;NYi

≃ hNX − 1; NY þ 1j − i
Z

dtHeff jNX;NYi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NY þ 1

p
hNX − 1; 1j − i

Z
dtHeff jNX; 0i; ð25Þ

where Heff is the effective Hamiltonian, S is the S matrix,
NX is the number of initial particles in the initial state, and
NY is the number of the particle in the initial state with the
same quantum number, e.g., a momentum, as the final
particle. The matrix element is enhanced by a remainder of
normalization factors,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NY þ 1

p
, as multiparticle states are

normalized as

jNYi ¼
1ffiffiffiffiffiffiffiffi
NY!

p ða†YÞNY j0i; ð26Þ

where a†Y is a creation operator. This enhancement is called
the stimulated emission effect. For the scattering process,N
corresponds to the phase space number density fðpÞ, where
we assume a spatially uniform distribution. Typically,

fðp⃗Þ ∼ ρDM
maðmavDMÞ3

∼ 1011
�

ρDM
0.3 GeV=cm3

��
mDM

10−2 eV

�
−4
; ð27Þ

and we may naively expect a gigantic enhancement.
In the following, we include both effects to estimate the

scattering effects of the axion DM. We first discuss the
validity of the Born approximation and show when
the approximation cannot be used. We then estimate the
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scattering cross section without the stimulated emission
effect and see the difference when the stimulated emission
effect is included. However, it will turn out that the
stimulated emission effect makes no difference for detec-
tion experiments. Hereafter, we assume that the scattering
target is a sphere of a radius R with constant nucleon
densities nN , unless otherwise noted.
First, we discuss the validity of the Born approximation;

the Born approximation is not always valid even though the
potential Eq. (11) itself is much smaller than the energy
scale of the scattering. This is because Rmay be very large.
The Born approximation is a good approximation as long
as the scattering process is rare; i.e., the amplitude of the
scattered wave is smaller than the incoming wave. For a
very large R, this may not hold anymore, since any
incoming wave eventually scatters if we take R → ∞.
Let us see what happens in the limit of R → ∞. We may

formally calculate the cross section according to Eq. (13)
for an arbitrary R. First, let us estimate the cross section for
mavDMR ≫ 1. The differential cross section for q ≫ 1=R
is, in the limit of R → ∞,

dσ
dΩ

≃
�
2ma

4π

�
2
���� 4πR cos qR

q2
·

δρ

4bmπfπfa

����
2

: ð28Þ

The cross section is

σ ∼
Z 1

R2

−2ðmavDMÞ2
dq2

dσ
dq2

¼ R2

���� R
vDM

δρ

4bmπfπfa

����
2

: ð29Þ

On the other hand, for mavDM ≪ 1=R,

σ ≃ πR2

�
R2δρ

6f2a

�
2

: ð30Þ

When we take R → ∞, the cross section exceeds the
geometrical cross section, σ ∼ πR2. It is expected that
the Born approximation must be invalid as R becomes
bigger.
Indeed, as discussed in Appendix C, the condition for the

Born approximation to be valid reads

1≫
R

vDM

δρ

4bmπfπfa

¼ 4.3×10−6

b

�
R
km

��
δρ

0.01 g=cm3

��
10−3

vDM

��
109 GeV

fa

�
;

ð31Þ
for mavDMR ≫ 1 and

1≫
R2δρ

8f2a

¼ 1.4×10−13
�

R
mm

�
2
�

δρ

0.01 g=cm3

��
109 GeV

fa

�
2

ð32Þ

for mavDMR ≪ 1. As expected, the cross section is geo-
metrical at the point where the inequality does not hold
anymore. For small size targets, the latter equation con-
cludes that the Born approximation is always correct in
realistic setups. However, for large-size targets, the former
condition does not necessarily hold. In particular, if we
consider scatterings between the axion DM and celestial
bodies, the condition can be violated.
Suppose, for example, we take the sun as the target,

R⊙ ≃ 7 × 105 km. The density of the sun varies from
Oð0.1Þ to Oð100Þ g=cm3 for radii R⊙–0.1R⊙, respectively
[29]. For this range of parameters, Eq. (31) does not always
hold for fa ≲ 1011 GeV; i.e., axions scatter at the sun with
Oð1Þ probability for fa ≲ 1011 GeV. For other DM can-
didates such as a DM with the weak interaction, for
example, the expected scattering rate at the sun is much
smaller. This scattering process at the sun is specific to the
axion DM, where a large coherence enhancement effect
exists.
As an application, we point out that one may measure the

axion-gluon coupling by electromagnetic-type axion detec-
tion experiments such as haloscope-type experiments, if the
angular resolution is good enough. Haloscope-type experi-
ments [30], for example, detect axions by converting them
to photons in a magnetic field. Thus, they are sensitive to
the axion-photon coupling but not to the axion-gluon
coupling. Let us assume that such an experiment has a
good angular resolution and can point to the sun, whose
angular diameter is δ ≃ 10−2 rad. Note that this, at least,
requires one to measure the momentum of the converted
photon as accurately as Oðδ · vDMÞ ∼Oð10−5Þ and it will
be challenging.
Because of the peculiar motion of the solar system, it is

expected that there is a dark matter wind. Because of this
DM wind, the axion DM flux on earth is not isotropic. If a
sufficiently good angular resolution is available, it will be
possible to verify this DM wind by observing these
angular dependencies. However, because axion DM with
fa ≲ 1011 GeV strongly interacts with the sun, much of the
axion DM arriving from the sun’s direction is particles that
have been scattered by the sun. Therefore, we expect the
DM flux from the solar direction to be very different from
the value predicted from the unscattered DM wind.
Furthermore, there should be annual modulation in these
solar DM fluxes, which depends on the differential cross
section of the sun and DM axion. Therefore, in principle, it
is possible to study the detailed interaction between the sun
and axion. For example, if this scattering is isotropic, the
DM flux should be constant regardless of the season.
In reality, we need to solve the Schrödinger equation with
an appropriate density profile of the sun to derive the
angular dependence of the scattering of the axion at the
sun. A precise measurement of the angular dependence
would allow us to probe the direct coupling between the
axion and gluon, which plays an important role in

HAJIME FUKUDA and SATOSHI SHIRAI PHYS. REV. D 105, 095030 (2022)

095030-6



establishing the “QCD axion” as a solution of the strong
CP problem.
A few remarks are made on other possible applications

of geometrically large scatterings between axion DMs and
celestial bodies. First, as Eq. (31) shows, for the given mass
of an object, the denser the object is, the stronger the
interaction is. Therefore, the DM axion strongly scatters
with denser astrophysical objects such as white dwarfs and
neutron stars even for much larger fa. Second, since the
axion DM may interact with the celestial bodies with the
Oð1Þ possibility, it may affect the motion of the celestial
bodies. The result of a previous study [31] shows that the
effect is too small to affect the motion of the solar system.
For neutron star binary motions, gravitational dragging
effects are dominant over the axion DM effect [32].
Let us now discuss a much smaller object, where the

Born approximation is valid. Because the coherent effect is
most significant for low energies, jmavDMjR ∼ 1, we
assume R ¼ ðmavDMÞ−1. The scattering cross section in
the Born approximation is

dσ
dΩ

¼ η6
���� δρ

3b2m2
πf2πmav3DM

����
2

¼ 3.1 × 10−20 cm2 × b−4η6
�

δρ

0.01 g=cm3

�
2

×

�
10−3

vDM

�
6
�
10−2 eV

ma

�
2

; ð33Þ

where η ¼ mavDMR. The scattering cross section is not
very small, but each momentum transfer is as small as of
order OðmavDMÞ. We need to detect the collective force on
the target, such as the acceleration on the target [28]. Let
fðp⃗Þ denote the phase space density of the DM axion of a
momentum p⃗, where we assume the DM is spatially
uniform. Without the stimulated emission effect, the force
on the target F⃗ is written as

F⃗ ¼
Z

d3pid3pfδðjp⃗fj − jp⃗ijÞ
jp⃗ij
ma

ðp⃗i − p⃗fÞ
dσ
dΩif

fðp⃗iÞ;

ð34Þ

whereΩif is the solid angle between p⃗i and p⃗f. In this case,
the magnitude of the force induced by the DM wind is
estimated as

F ≃ 4π
dσ
dΩ

ρDMv2DM

≃ 1.9 × 10−33N × b−4η6
�

δρ

0.01 g=cc

�
2
�

ρDM
0.3 GeV=cc

�

×

�
10−3

vDM

�
4
�
10−2 eV

ma

�
2

: ð35Þ

The acceleration induced by this force is

a ≃ 5.8 × 10−30 cm=s2 × b−4η3
�

δρ

0.01 g=cm3

�
2

×

�
ρDM

0.3 GeV=cm3

��
ρ

1 g=cc

�
−1
�
10−3

vDM

��
ma

10−2 eV

�
;

ð36Þ
where ρ is the mass density of the target. Given that the
ultimate sensitivity of the torsion balance experiment is of
order 10−23 cm=s2 [21], the expected acceleration by the
axion wind is too small.
As we have discussed, in quantum mechanics, the

stimulated emission effect must be included. It is worth
asking if the stimulated emission effect may enhance the
acceleration. Again assuming the spatial distribution of
the axion is uniform, the cross section is enhanced with the
stimulated emission effect,

dσ
dΩif

→
dσ
dΩif

ð1þ fðp⃗fÞÞ: ð37Þ

Typically, we have the enhancement factor as

fðp⃗Þ ∼ f0 ¼
ρDM

maðmavDMÞ3

∼ 1011
�

ρDM
0.3 GeV=cm3

��
mDM

10−2 eV

�
−4
: ð38Þ

Therefore we may naively expect an acceleration of order

aQM¼? f0a ∼ 10−19 cm=s2; ð39Þ

which is largeenough tobedetected.However, it turns out that
the enhancement effect actually vanishes for DM detection.
To see that such effects do not appear in the observed

quantities, we must perform calculations that include the
inverse process as well. With the stimulated emission effect
included, Eq. (34) should be written as

F⃗QM ¼
Z

d3pid3pfδðjp⃗fj − jp⃗ijÞ
jp⃗ij
ma

ðp⃗i − p⃗fÞ

×
dσ
dΩif

fðp⃗iÞð1þ fðp⃗fÞÞ: ð40Þ

The difference between Eqs. (34) and (40) is

δF⃗ ¼
Z

d3pid3pfδðjp⃗fj − jp⃗ijÞ
jp⃗ij
ma

ðp⃗i − p⃗fÞ
dσ
dΩif

× fðp⃗iÞfðp⃗fÞ: ð41Þ
However, we observe this integrand is odd under exchange
p⃗i ↔ p⃗f and δF⃗ ¼ 0 after the integration. Therefore, there
is no net effect from the stimulating emission.
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Since we conclude a large cancellation of a factor
f0 ≫ Oð1010Þ, we need to be careful about whether there
is any loophole in this argument or any factor left
uncanceled. First, we stress that the stimulated emission
effect of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NY þ 1

p
enhancement is valid only in perturba-

tion theory. As we have shown in Eq. (25), the stimulated
emission relies on the perturbation; the enhancement factor,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NY þ 1

p
, comes from the perturbative expansion of the S

matrix. For generic cases including Eq. (40), we may need
to use a density matrix as the DM axion is not in a pure
state, but the origin of the enhancement factor fðp⃗fÞ is the
same; it is from the perturbative expansion of the S matrix.
Thus, once the enhancement effect becomes so large that
the scattering process would be larger than the unitarity
bound, a naive use of the stimulated emission effect fails.
The physical interpretation of this is that multiple scatter-
ings such as NX, NY → NX − nm, NY þ nm for nm ≫ 1
occur. For the case in our interest, the rate is much smaller
than the unitarity bound and our present treatment of the
stimulated effect is still valid. The second possible loophole
is that we have assumed that the axion distribution is
spatially uniform to show the cancellation. In our analysis,
we have assumed R≲ ðmavDMÞ−1 and the assumption may
be justified.

IV. CONCLUSION AND DISCUSSION

In this paper, we have discussed the spin-independent
interaction of the QCD axion. Contrary to a naive expect-
ation, the size of the interaction is not suppressed more than
Oðf−2a Þ. In particular, we focus on the axion DM and
estimate the axion-nucleon scattering effect.
The forward scattering process by the spin-independent

interaction induces the index of refraction for DM axions.
At first glance, it causes acceleration on targets, since
momenta are transferred for each refraction process.
However, the acceleration from the refractive effect is
canceled after integrating over the entire surface of the
target, if the axion DM density is spatially uniform.
As the DM axion has a macroscopic Compton length, the

coherent enhancement effect on the scattering is very large.
On the one hand, the scattering cross section between
gigantic objects as celestial bodies, including the sun, can
be geometrically large. The scattering may be a good tool to
measure axion-gluon coupling.
On the other hand, the scattering cross section between

smaller objects such as a test target on the ground can be
enhanced by the coherent effect. However, the acceleration
to the target by the axion DM wind is smaller than the
ultimate sensitivity of the torsion balance experiment.
Although the quantum stimulated emission effect can
enhance the scattering cross section, we have found that
the stimulated emission effect is canceled after integrating
over the phase space of the axion DM.

We have left a few points as open questions. First, it is
not clear whether any other experimental setups can detect
the acceleration better. In addition to the static acceleration
by elastic scatterings, time-varying acceleration due to the
refractive effect with inhomogeneous DM density can exist.
We need a new type of experiment to detect such signals.
Second, we have not discussed astrophysical signals by the
spin-independent interaction. In particular, we have pointed
out that interactions with denser objects such as white
dwarfs or neutron stars are very strong. It is worth asking if
the impact between these objects and the axion DM, which
may form denser clusters, may cause any signal such as
seismic waves.
Finally, let us comment on the case of the more generic

axionlike particle. Although our present analysis focuses on
the QCD axion, its application to the axionlike particle case
where the relation between the gluon coupling and mass is
not correlated is straightforward. One can simply change
the value of b≡ 2mafa

mπfπ
in the above expressions. A model

with b ≪ 1 for small fa may already be tested by the
torsion balance experiments.
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APPENDIX A: CHIRAL PERTURBATION
FOR UðnÞL × UðnÞR → UðnÞV

In this section, we derive the chiral effective Lagrangian
for two-flavor QCD, UðnÞL × UðnÞR → UðnÞV for n ¼ 2,
based on Ref. [17]. We assume the large Nc limit [7] as
well. Note that we adopt a notation that the pion decay
constant fπ ≃ 93 MeV, which differs from the notation in
Ref. [17] by a factor of 2.

1. Goldstone degrees of freedom

In the effective Lagrangian, we may regard the coset
space of the symmetry, G=H, where G ¼ Uð2ÞL × Uð2ÞR
and H ¼ Uð2ÞV , as the Goldstone boson degrees of free-
dom. To write down the Lagrangian invariant under the
group G, we need to know the transformation rule for the
Goldstone bosons under G. We start to write the trans-
formation rule for the quark field:
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q≡
�
u

d

�
→ exp

�
i
X
a

ðθVa λa þ θAaλaγ5Þ
�
q; ðA1Þ

where λa is the U(2) generators normalized as
TrðλaλbÞ ¼ δab and θV and θA are the parameters of G.
Because θV corresponds to H and θA does to the coset
space, we may map the Goldstone bosons ξaðxÞ to θAa . For
convenience, we define γðξÞ, an element of G:

γðξðxÞÞ≡ exp

�
−iγ5

X
a

ξaðxÞλa
�
: ðA2Þ

For any constant g ∈ G, gγðξÞ is the element of G. We can
define ξ0 and hðg; ξÞ such that gγðξÞ corresponds to an
element in the right coset space, γðξ0Þ, up to the right action
of some element inH, which in general depends on ξ and is
written as hðg; ξÞ:

gγðξðxÞÞ ¼ γðξ0ðxÞÞhðg; ξðxÞÞ: ðA3Þ

We may impose on ξ0 a condition that ∀ h0 ∈ H,
hðh0; ξðxÞÞ ¼ h0 ¼ const because the symmetry H should
be linearly realized. We then assume the transformation
rule for ξ under G is given as this ξ0; namely,

γðξÞ → γðξ0Þ ¼ gγðξÞhðg; ξÞ−1: ðA4Þ

This is the nonlinear realization of G on the Goldstone
bosons ξ.
Using γ, we may construct a nonlinear realization base

for the quark. From q, which transforms as Eq. (A1) and
called the linear base, we define a new field q̃:

q≡ γq̃: ðA5Þ

This is the nonlinear realization base for q. Under the action
of G,

q̃ → q̃0 ¼ hðg; ξÞγ−1g−1gq ¼ hðg; ξÞq̃: ðA6Þ

Indeed, G nonlinearly acts on q̃. Since the action of G on q̃
is always vectorial, we may regard q̃ does not contain the
Goldstone degree of freedom. In particular, the quark
condensation should be written as

q̃iq̃j ¼ −Λ3δij; ðA7Þ

after integrating out UV degrees of freedom. Here, we call
Λ the QCD scale.
We may separate the left- and right-hand part of γðξÞ as

γðξÞ¼βðξÞPLþβðξÞ−1PR, where βðξÞ≡ expð−iPa ξaλaÞ.
The transformation rule for βðξÞ is written as

LβðξÞ ¼ βðξ0Þhðξ; gÞ ðA8Þ

or

RβðξÞ−1 ¼ βðξ0Þ−1hðξ; gÞ; ðA9Þ

where

L ¼ exp

�
i
X
a

θLaλa

�
; ðA10Þ

R ¼ exp

�
i
X
a

θRaλa

�
: ðA11Þ

Here, g¼ exp ½iPa ðθVa λaþθAaλaγ5Þ� and θLðRÞ ¼ θV � θA.
Using βðξÞ, we can define a new field UðξÞ:

UðξÞ≡ βðξÞ2 ¼ exp

�
−2i

X
a

ξaλa

�
: ðA12Þ

The transformation rule of UðξÞ is now simple:

UðξÞ → Uðξ0Þ≡ LUðξÞR−1: ðA13Þ

Note that the action of G onto U is nonlinear as well, but it
is constant in the spacetime.

2. Lagrangian for the Goldstone bosons

We use U to construct a G-invariant Lagrangian for
the Goldstone bosons. With the breaking of Uð1ÞA in the
quantum level, the most generic Lagrangian is, in the
leading order of the large Nc expansion and the chiral
perturbation [7,17],

L ¼ −
f2π
4
Trð∂μU∂μU†Þ − aA

Nc
ð−i ln detU − θÞ2; ðA14Þ

where fπ is the pion decay constant, aA is a constant
parameter of mass dimension 4, and θ is the QCD vacuum
angle. We may assume θ ¼ 0, but keep it here for the
discussion of the axion field later; in the presence of the
axion with the decay constant fa and the domain wall
number NDW, we just replace θ → θ þ NDW

a
fa
.

Let us write down the canonical form of the Lagrangian
for the Goldstone bosons. Expanding the Lagrangian up to
the second order of ξa, we obtain

L ¼ −f2πð∂ξÞ2 − aA
Nc

ð−2
ffiffiffi
2

p
ξ0 − θÞ2: ðA15Þ

We can use a base

ðη0; πiÞ ¼
ffiffiffi
2

p
fπðξ0; ξiÞ ðA16Þ

for i ¼ 1, 2, 3 as canonically normalized Goldstone bosons.
Note that π3 is usually called π0.
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Wemay include the explicit symmetry breaking term, the
quark mass. In the UV Lagrangian, the quark mass term is

LM;UV ¼ −q̄Mqq; ðA17Þ

where Mq ≡ diagðmu;mdÞ. For the IR Lagrangian, we
integrate out quarks by using the quark condensation,
Eq. (A7). Replacing ¯̃qiq̃j → −Λ3δij and ¯̃qiγ5q̃j → 0, we
obtain

LM;IR ¼Λ3TrðγðξÞMqγðξÞÞ¼
Λ3

2
Tr½ðUþU†ÞMq�: ðA18Þ

This term gives the mass to the (pseudo-)Goldstone bosons.
Using the canonical basis, we obtain that the pion mass is

m2
π ¼

ðmu þmdÞΛ3

f2π
; ðA19Þ

for instance.

3. Interaction between the nucleon
and the Goldstone bosons

Using the chiral perturbation, we can also write the
interaction terms between the nucleon and the Goldstone
bosons. We know the nucleons, Ñ ¼ ðp; nÞ, transform as a
doublet under H. Thus, we may assume that Ñ is the
nonlinear realization base of the nucleon, which transforms
as Ñ → Ñ0 ¼ hðξ; gÞÑ under ∀ g ∈ G. The linear base can
be defined as

N ≡ γðξÞÑ ðA20Þ

so that the action of SUð2ÞLðRÞ on N is the SU(2) rotation
for the left-(right-)handed Weyl component of N. Using the
linear and nonlinear bases, we may write the most generic
G-invariant Lagrangian for the nucleon and the Goldstone
bosons in the leading order of the chiral perturbation as

L¼ N̄i∂N−mN
¯̃NÑ

þ1

2
ð1−gAÞiN̄γμðU∂μU−1PLþU−1∂μUPRÞN; ðA21Þ

wheremN is the nucleon mass in the absence of the explicit
G breaking and gA is the axial current coupling constant.
The physics is independent of whether we use N or Ñ, but
we need to use only either one of them. We here rewrite the
Lagrangian in terms of Ñ,

L ¼ ¯̃Ni∂Ñ −mN
¯̃N Ñþi ¯̃Nγμ

�
1þ gA

2
γðξÞ−1∂μγðξÞ

þ 1 − gA
2

γðξÞ∂μγðξÞ−1
�
Ñ: ðA22Þ

Note that gA satisfies the so-called Goldberger-Treiman
relation [33].
This Lagrangian is G invariant so that the Goldstone

boson couplings are all derivative. However, as we have
discussed, G is explicitly broken by the quark mass term
and the anomaly. The latter equally contributes to the axion
and the Goldstone boson, and we ignore it in this paper. The
former effect can be included in the effective Lagrangian by
rewriting the quark mass terms in terms of nucleon fields.
Let us define the nucleon form factor fNTq as

mNfNTq ¼ hNjmq
¯̃q q̃ jNi ðA23Þ

for q ¼ u, d. Let us focus on the neutral component of
mesons in the following: ξ1;2 ¼ 0. We may rewrite the
quark mass in terms of the IR degrees of freedom as
follows:

mqq̄q → mNfNTq
¯̃Nγ2ðξÞqqÑ: ðA24Þ

In particular, we are interested in spin-independent inter-
actions, terms without γ5 in nucleon bilinears. For these
terms, the quark mass correction for the nucleon interaction
can be written as

δL ¼ −
X
N¼p;n

mN

2
Tr½FNðU þ U†Þ� ¯̃N Ñ; ðA25Þ

where

FN ¼ diagðfNTu; fNTdÞ: ðA26Þ

For the vacuum, U → 1, these terms play a role of the mass
correction to nucleons by quark masses. In particular, we
define

δmN ≡mNTrðFNÞ: ðA27Þ

fNTq is estimated by lattice simulations [34] and δmN ∼
40 MeV.

4. Inclusion of the axion

Finally, we include the axion in the chiral effective
theory. For simplicity, we assume the Kim-Shifman-
Vainshtein-Zakharov-type axion [35], where the axion does
not have the additional derivative coupling between the
quarks. The kinetic mixing between mesons and an axion is
therefore vanishing. The axion enters the effective
Lagrangian as replacing θ by θ − a=fa, where fa is the
axion decay constant and the domain wall number is
assumed to be unity.
To simplify the analysis, we assume the 1=N contribution

for the η0 mass is much larger than the quark mass contri-
bution, which is phenomenologically sound, m2

η0 ≫m2
π [9],
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and assumed by many references such as Ref. [17]. With this
assumption,we can just replace ξ0 → a

2
ffiffi
2

p
fa
to integrate out η0.

In this paper, we focus on the axion and nucleon as the
degrees of freedom; in particular, aaNN coupling is of
phenomenological importance. If we assumemu ¼ md, it is
obtained from Eq. (A25) by taking the second order of a as

δL ¼ a2

8f2a
ðδmpp̄pþ δmnn̄nÞ: ðA28Þ

This equation agrees with the result in Ref. [36].
For generic quark masses, results are the following: the

axion mass is

m2
a ¼

Λ3

8f2af2π
ðfþ − gÞ; ðA29Þ

and the interaction is Eq. (A28) with

δmN → ðj−fNTu þ jþfNTdÞmN; ðA30Þ

where

f� ≡ ð4f2a � f2πÞðmu þmdÞ; ðA31Þ

g≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−64f2af2πmumd þ f2þ

q
; ðA32Þ

h≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16f2af2πðmu −mdÞ2 þ ðf− þ gÞ2

q
; ðA33Þ

j� ≡
�
f− þ g� 8f2aðmu −mdÞ

h

�
2

: ðA34Þ

One can confirm that the axion-proton coupling is vanish-
ing in the limit of mu → 0, as fNTu → 0. Note that for
fa ≫ fπ , the above equations can be reduced to

m2
a ≃

Λ3

f2a

mumd

mu þmd
; ðA35Þ

δmN →

��
2md

muþmd

�
2

fNTuþ
�

2mu

muþmd

�
2

fNTd

�
mN: ðA36Þ

These interactions for the axion have not been explicitly
explored before, but are implicitly used in contexts such as
Refs. [18,20,36]. For an application for the axion in this
context, see Ref. [19].

APPENDIX B: REFRACTIVE INDEX

In this section, we discuss the index of refraction for the
axion DM. The index of refraction of a medium is defined
as the ratio of momenta in a vacuum and in the medium.
Suppose an axion, whose momentum in the vacuum is
pμ ¼ ðE; k⃗Þ so that E2 ¼ k2 þm2

a, goes into a medium and

the four momentum is modified as pμ ¼ ðE; k⃗0Þ. The index
of refraction n is then given as k⃗0 ¼ nk⃗.
In the constant nucleons background, Eq. (A28) becomes

the mass correction to the axion. The Lagrangian for the
axion is

L ¼ 1

2
ð∂aÞ2 − 1

2

�
m2

a −
δρ

4f2a

�
a2; ðB1Þ

where

δρ≡ X
N¼p;n

δmNnN ðB2Þ

and nN is the number density of the nucleon N. We assume
that the nucleon background is sparse, so that δρ

4f2a
≪ m2

a.

Using the mass correction, we can estimate the change of
momentum of an axion. Assuming that the axion is
nonrelativistic but its momentum jk⃗j is much larger than
the mass correction, n is given as

n − 1 ≃
δρ

8k2f2a
¼ δρ

2v2f2πm2
π

≃ 1.2 × 10−10
�

δρ

0.01 g=cm3

��
v

10−3

�
−2
; ðB3Þ

where v is the velocity of the axion. Note that the refractive
index is independent of the mass of the axion.

APPENDIX C: BORN APPROXIMATION

In this section, we review the Born approximation and its
validity condition [37]. The scattering problem in quantum
mechanics is to solve the Schrödinger equation with an
appropriate boundary condition, which fixes the wave
function at infinity as the sum of the plane wave and the
outgoing spherical wave. Suppose a Schrödinger equation

ðH0 þ VÞjψi ¼ Ejψi; ðC1Þ

where E≡ k2=2m, m is the mass of the particle, k is the
momentum of the initial incoming wave,H0 ≡ p2=2m, p is
a momentum operator, and V is the potential. By solving
this Schrödinger equation with the boundary condition, we
can discuss the scattering process by the potential V.
The equation with the boundary condition is rewritten as

jψi ¼ jki þ ðE −H0 þ iεÞ−1Vjψi; ðC2Þ

where jki is a plane wave state with momentum k. This is
the Lippmann-Schwinger equation [38]. The solution of the
Lippmann-Schwinger equation can be formally expanded
in a power series:
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jψi ¼ jkiþ ðE−H0þ iεÞ−1Vjki
þ ðE−H0þ iεÞ−1VðE−H0þ iεÞ−1Vjki � � � : ðC3Þ

This is called the Born series and the (first order) Born
approximation is an approximation to terminate the series
at the first term in V:

jψi ≃ jki þ ðE −H0 þ iεÞ−1Vjki: ðC4Þ
The physical meaning of the approximation is now clear;
the interaction is weak enough for the scattering to occur at
most once in the potential, and the wave function is the
superposition of the incoming plane wave and the outgoing
scattered wave.
For the Born approximation to be valid, the second term

must be much smaller than the first one:

jhxjkij ≫ jhxjðE −H0 þ iεÞ−1Vjkij: ðC5Þ
The right-hand side can be written as

hxjðE −H0 þ iεÞ−1Vjki

¼ −
2m

ð2πÞ32
Z

d3x0
eikjx−x0jþik⃗·x⃗0

4πjx − x0j Vðx0Þ: ðC6Þ

As a scatterer, let us think of a spherical potential with
radius R,

VðxÞ ¼ V0ΘðR − rÞ: ðC7Þ

The condition for the Born approximation is that Eq. (C5)
holds at the origin. It reads as

mR
k

V0 ≪ 1 for kR ≫ 1; ðC8Þ

mR2V0 ≪ 1 for kR ≪ 1: ðC9Þ

Even if the magnitude of the potential is much weaker than
the momentum, the Born approximation is not valid for the
large enough sphere.
Let us estimate the cross section for such large but weak

potential spheres. Supposewe increaseV0 gradually from 0.
For both large and small k, when we formally apply the
Born approximation, the cross section approaches the
geometrical cross section, σ ∼ πR2, as the inequalities
become invalid if the partial waves are appropriately
summed over. On the other hand, as an extreme limit, if
we take V0 → ∞, we may exactly solve the Schrödinger
equation by expanding the scattered wave in spherical
waves [37]. Then, the cross section is again the geometrical
cross section. Thus, it is natural to assume that the cross
section is of order πR2 even in the intermediate regions.
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