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Geometric Metastability, Quivers

and

Holography

Mina Aganagic, Christopher Beem and Ben Freivogel

University of California, Berkeley, CA 94720

We use large N duality to study brane/anti-brane configurations on a class of Calabi-

Yau manifolds. With only branes present, the Calabi-Yau manifolds in question give rise

to N = 2 ADE quiver theories deformed by superpotential terms. We show that the

large N duality conjecture of [1] reproduces correctly the known qualitative features of the

brane/anti-brane physics. In the supersymmetric case, the gauge theories have Seiberg

dualities, which are represented as flops in the geometry. Moreover, the holographic dual

geometry encodes the whole RG flow of the gauge theory. In the non-supersymmetric case,

the large N duality predicts that the brane/anti-brane theories also enjoy such dualities,

and allows one to pick out the good description at a given energy scale.
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1. Introduction

Geometric transitions have proven to be a powerful means of studying the dynamics

of supersymmetric D-branes. String theory relates these transitions to large N dualities,

where before the transition, at small ’t Hooft coupling, one has D-branes wrapping cycles in

the geometry, and after the transition, at large ’t Hooft coupling, the system is represented

by a different geometry, with branes replaced by fluxes. The AdS/CFT correspondence

can be thought of in this way. Geometric transitions are particularly powerful when the

D-branes in question wrap cycles in a Calabi-Yau manifold. Then, the topological string

can be used to study the dual geometry exactly to all orders in the ’t Hooft coupling. In

[1] it was conjectured that topological strings and large N dualities can also be used to

study non-supersymmetric, metastable configurations of branes in Calabi-Yau manifolds,

that confine at low energies. This conjecture was considered in greater detail in [2,3].

String theory realizations of metastable, supersymmetry breaking vacua have appeared in

[4-13]. The gauge theoretic mechanism of [14] has further been explored in string theory

in [15-22].

In this paper we study D5 brane/anti-D5 brane systems in IIB on non-compact,

Calabi-Yau manifolds that are ADE type ALE space fibrations over a plane. These gener-

alize the case of the A1 ALE space studied in detail in [1,2,3]. The ALE space is fibered

over the complex plane in such a way that at isolated points, the 2-cycles inherited from the

ALE space have minimal area. These minimal 2-cycles are associated to positive roots of

the corresponding ADE Lie algebra. Wrapping these with branes and anti-branes is equiv-

alent to considering only branes, but allowing both positive and negative roots to appear,

corresponding to two different orientations of the S2’s. The system can be metastable since

the branes wrap isolated minimal 2-cycles, and the cost in energy for the branes to move,

due to the tensions of the branes, can overwhelm the Coulomb/gravitational attraction

between them.

The geometries in question have geometric transitions in which the sizes of the minimal

S2’s go to zero, and the singularities are resolved instead by finite sized S3’s. The conjecture

of [1] is that at large N , the S2’s disappear along with the branes and anti-branes and are

replaced by S3’s with positive and negative fluxes, the sign depending on the charge of the

replaced branes. As in the supersymmetric case (see [23,24,25]), the dual gravity theory

has N = 2 supersymmetry softly broken to N = 1 by the fluxes. The only difference is

that now some of the fluxes are negative. On-shell, the positive and the negative fluxes
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preserve different halves of the original supersymmetry, and with both present, the N = 2

supersymmetry is completely broken in the vacuum (see [26] for discussion of a similar

supersymmetry breaking mechanism and its phenomenological features in the context of

heterotic M-theory). The topological string computes not only the superpotential, but also

the Kähler potential.1 We show that the Calabi-Yau’s with fluxes obtained in this way are

indeed metastable, as expected by holography. In particular, for widely separated branes,

the supersymmetry breaking can be made arbitrarily weak.2 In fact, we can use the gravity

dual to learn about the physics of branes and anti-branes. We find that at one-loop, the

interaction between the branes depends on the topological data of the Calabi-Yau in a

simple way. Namely, for every brane/anti-brane pair, so for every positive root e+ and

negative root e−, we find that the branes and the anti-branes attract if the inner product

e+ · e−

is positive. They repel if it is negative, and do not interact at all if it is zero. In the Ak type

ALE spaces, this result is already known from the direct open string computation [27,28],

so this is a simple but nice test of the conjecture for these geometries. Moreover, we show

that certain aspects of these systems are universal. We find that generically, just like in

[2], metastability is lost when the ’t Hooft coupling becomes sufficiently large. Moreover,

once stability is lost, the system appears to roll down toward a vacuum in which domain

walls interpolating between different values of the fluxes become light. We also present

some special cases where the non-supersymmetric brane/anti-brane systems are exactly

stable. In these cases, there are no supersymmetric vacua to which the system can decay.

When all the branes are D5 branes and supersymmetry is preserved, the low energy

theory geometrically realizes [24,25] a 4d N = 2 supersymmetric quiver gauge theory with

a superpotential for the world-volume adjoints which breaks N = 2 to N = 1. These

theories are known to have Seiberg-like dualities [29] in which the dual theories flow to the

same IR fixed point, and where different descriptions are more weakly coupled, and hence

1 While the superpotential is exact, the Kähler potential is not. Corrections to the Kähler

potential coming from warping, present when the Calabi-Yau is compact, have been investigated

in [13].
2 The natural measure of supersymmetry breaking in this case is the mass splitting between the

bosons and their superpartners. For a compact Calabi-Yau, the scale of supersymmetry breaking

is set by the mass of the gravitino, which is of the order of the cosmological constant. In our case,

gravity is not dynamical, and the mass splittings of the dynamical fields are tunable [1].

3



preferred, at different energy scales. The Seiberg dualities are realized in the geometry in

a beautiful way [25]. The ADE fibered Calabi-Yau geometries used to engineer the gauge

theories have intrinsic ambiguities in how one resolves the singularities by blowing up S2’s.

The different possible resolutions are related by flops that shrink some 2-cycles, and blow

up others. The flops act non-trivially on the brane charges, and hence on the ranks of

the gauge groups. The flop of a 2-cycle S2
i0

corresponds to a Weyl reflection about the

corresponding root of the Lie algebra. On the simple roots ei, this acts by

S2
i → S̃2

i = S2
i − (ei · ei0)S

2
i0
.

Brane charge conservation then implies that the net brane charges transform satisfying

∑

i

Ni S
2
i =

∑

i

Ñi S̃
2
i . (1.1)

Moreover, from the dual gravity solution one can reconstruct the whole RG flow of the

gauge theory. The sizes of the wrapped 2-cycles encode the gauge couplings, and one

can read off how these vary over the geometry, and correspondingly, what is the weakly

coupled description at a given scale. Near the S3’s, close to where the branes were prior

to the transition, corresponds to long distances in the gauge theory. There, the S2’s have

shrunken, corresponding to the fact that in the deep IR the gauge theories confine. As

one goes to higher energies, the gauge couplings may simply become weaker, and the

corresponding S2’s larger, in which case the same theory will describe physics at all energy

scales. Sometimes, however, some of the gauge couplings grow stronger, and the areas of the

S2’s eventually become negative. Then, to keep the couplings positive, the geometry must

undergo flop transitions.3 This rearranges the brane charges and corresponds to replacing

the original description at low energies by a different one at high energies. Moreover, the

flops of the S2’s were found to coincide exactly with Seiberg dualities of the supersymmetric

gauge theories.

In the non-supersymmetric case we do not have gauge theory predictions to guide

us. However, the string theory still has intrinsic ambiguities in how the singularities are

resolved. This is exactly the same as in the supersymmetric case, except that now not all

3 It is important, and one can verify this, that this happens in a completely smooth way in

the geometry, as the gauge coupling going to infinity corresponds to zero Kähler volume of the

2-cycle, while the physical size of the 2-cycle is finite everywhere away from the S3’s.
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Ni’s in (1.1) need be positive. Moreover, we can use holography to follow the varying sizes

of 2-cycles over the geometry, and find that indeed in some cases they can undergo flops

in going from the IR to the UV. When this happens, descriptions in terms of different

brane/anti-brane configurations are more natural at different energy scales, and one can

smoothly interpolate between them. This is to be contrasted with, say, the A1 case, where

regardless of whether one considers just branes or branes and anti-branes, it is only one

description that is ever really weakly coupled, and the fact that another exists is purely

formal.

The paper is organized as follows. In section 2 we introduce the metastable D5

brane/anti-D5 brane configurations, focusing on Ak singularities, and review the conjec-

ture of [1] applied to this setting. In section 3 we study in detail the A2 case with a

quadratic superpotential. In section 4 we consider general ADE type geometries. In sec-

tion 5 we discuss Seiberg-like dualities of these theories. In section 6 we study a very simple,

exactly solvable case. In appendices A and B, we present the matrix model computation

of the prepotential for A2 ALE space fibration, as well as the direct computation from

the geometry. To our knowledge, these computations have not been done before, and the

agreement provides a direct check of the Dijkgraaf-Vafa conjecture for these geometries.

Moreover, our methods extend easily to the other An cases. In appendix C, we collect

some formulas useful in studying the metastability of our solutions in section 3.

2. Quiver Branes and Anti-branes

Consider a Calabi-Yau which is an Ak type ALE space,

x2 + y2 +

k+1∏

i=1

(z − zi(t)) = 0, (2.1)

fibered over the t plane. Here, zi(t) are polynomials in t. Viewed as a family of ALE

spaces parameterized by t, there are k vanishing 2-cycles,

S2
i , i = 1, . . . , k (2.2)

that deform the the singularities of (2.1). In the fiber over each point t in the base, the

2-cycle in the class S2
i has holomorphic area given by

∫

S2
i,t

ω2,0 = zi(t) − zi+1(t). (2.3)
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where ω2,0 is the reduction of the holomorphic three-form Ω on the fiber. The only singu-

larities are at points where x = y = 0 and

zi(t) = zj(t), i 6= j (2.4)

for some i and j. At these points, the area of one of the 2-cycles inherited from the ALE

space goes to zero.

These singularities can be smoothed out by blowing up the 2-cycles, i.e., by changing

the Kähler structure of the Calabi-Yau to give them all non-vanishing area.4 The homology

classes of the vanishing cycles (2.4) then correspond to positive roots of the Ak Lie algebra

(see e.g. [24]).5 In this case, the k simple, positive roots ei correspond to the generators

of the second homology group. These are the classes of the S2
i mentioned above which

resolve the singularities where zi(t) = zi+1(t). We denote the complexified Kähler areas of

the simple roots by

ri =

∫

S2
i

k + iBNS ,

where k is the Kähler form. In most of our applications, we’ll take the real part of ri to

vanish. The string theory background is non-singular as long as the imaginary parts do not

also vanish. They are positive, per definition, since we have taken the S2
i to correspond to

positive roots. In classical geometry, the ri are independent of t. Quantum mechanically,

in the presence of branes, one finds that they are not.

There are also positive, non-simple roots eI =
∑l

i=j ei, for l > j where zl+1(t) = zj(t).

The 2-cycle that resolves the singularity is given by

S2
I =

l∑

i=j

S2
i

in homology. Its complexified Kähler area is given as a sum of Kähler areas of simple roots

rI =
l∑

i=j

ri.

4 As we will review later, the blowup is not unique, as not all the Kähler areas of the cycles in

(2.2) need to be positive for the space to be smooth. Instead, there are different possible blowups

which differ by flops.
5 The negative roots correspond to 2-cycles of the opposite orientation.
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The total area A(t) of a 2-cycle S2
I at a fixed t receives contributions from both Kähler

and holomorphic areas:

AI(t) =
√
|rI |2 + |W ′

I(t)|
2. (2.5)

The functions W ′
I capture the holomorphic volumes of 2-cycles, and are related to the

geometry by

WI(t) =
k∑

i=j

Wi(t),

Wi(t) =

∫
(zi(t) − zi+1(t))dt. (2.6)

These will reappear as superpotentials in matrix models which govern the open and closed

topological string theory on these geometries.

For each positive root I there may be more than one solution to (2.4). We will label

these with an additional index p when denoting the corresponding 2-cycles, S2
I,p. For each

solution there is an isolated, minimal area S2, but they are all in the same homology class,

labeled by the root. They have minimal area because (2.5) is minimized at those points in

the t plane where W ′
I(t) vanishes. These, in turn, correspond to solutions of (2.4).

We will consider wrapping branes in the homology class

∑

I,p

MI,p S
2
I ,

with I running over all positive roots, and p over the corresponding critical points. We

get branes or anti-branes on S2
I,p depending on whether the charge MI,p is positive or

negative.6 We will study what happens when we wrap branes on some of the minimal S2’s

and anti-branes on others.

The brane/anti-brane system is not supersymmetric. If we had branes wrapping

all of the S2’s, they would have each preserved the same half of the original N = 2

supersymmetry. However, with some of the branes replaced by anti-branes, some stacks

preserve the opposite half of the original supersymmetry, and so globally, supersymmetry

is completely broken. The system can still be metastable. As in flat space, there can

be attractive Coulomb/gravitational forces between the branes and the anti-branes. For

them to annihilate, however, they have to leave the minimal 2-cycles that they wrap. In

6 We could have instead declared all the MI,p to be positive, and summed instead over positive

and negative roots.
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doing so, the area of the wrapped 2-cycle increases, as can be seen from (2.5), and this

costs energy due to the tension of the branes. At sufficiently weak coupling, the Coulomb

and gravitational interactions should be negligible compared to the tension forces – the

former are a one-loop effect in the open string theory, while the latter are present already

at tree-level – so the system should indeed be metastable. For this to be possible, it is

crucial that the parameters of the background, i.e. the Kähler moduli ri and the complex

structure moduli that enter into the Wi(t), are all non-normalizable, and so can be tuned

at will.

While this theory is hard to study directly in the open string language, it was con-

jectured in [1] to have a holographic dual which gives an excellent description when the

number of branes is large.

2.1. Supersymmetric Large N Duality

Here we review the case where only branes are wrapped on the minimal S2’s, and so

supersymmetry is preserved. Denoting the net brane charge in the class S2
i by Ni, this

geometrically engineers an N = 2 supersymmetric
∏k

i=1 U(Ni) quiver gauge theory in four

dimensions, deformed to N = 1 by the presence of a superpotential. The corresponding

quiver diagram is the same as the Dynkin diagram of the Ak Lie algebra. The k nodes

correspond to the k gauge groups, and the links between them to bifundamental hyper-

multiplets coming from the lowest lying string modes at the intersections of the S2’s in

the ALE space. The superpotential for the adjoint valued chiral field Φi, which breaks the

supersymmetry to N = 1, is

Wi(Φi), i = 1, . . . k

where Wi(t) is given in (2.6). The chiral field Φi describes the position of the branes on the

t plane. As shown in [24], the gauge theory has many supersymmetric vacua, corresponding

to all possible ways of distributing the branes on the S2’s,

k∑

i=1

Ni S
2
i =

∑

I,p

Mp,I S
2
I ,

where I labels the positive roots and p the critical points associated with a given root.

This breaks the gauge symmetry as

∏

i

U(Ni) →
∏

p,I

U(Mp,I). (2.7)
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At low energies the branes are isolated and the theory is a pure N = 1 gauge theory

with gauge group (2.7). The SU(MI,p) subgroups of the U(MI,p) gauge groups experience

confinement and gaugino condensation.

This theory has a holographic, large N dual where branes are replaced by fluxes. The

large N duality is a geometric transition which replaces (2.1) with a dual geometry

x2 + y2 +

k+1∏

i=1

(z − zi(t)) = fr−1(t)z
k−1 + f2r−1(t)z

k−2 + . . .+ fkr−1(t), (2.8)

where fn(t) are polynomials of degree n, with r being the highest of the degrees of zi(t).

The geometric transition replaces each of the S2
I,p’s by a three-sphere, which will be denoted

AI,p, with MI,p units of Ramond-Ramond flux through it,

∫

AI,p

HRR + τHNS = MI,p.

In addition, there is flux through the non-compact dual cycles BI,p,

∫

BI,p

HRR + τHNS = −αI ,

where τ is the IIB axion-dilaton τ = a+ i
gs

. These cycles arise by fibering S2
I,p over the t

plane, with the 2-cycles vanishing at the branch cuts where the S3’s open up. The nonzero

H flux through the B-type cycles means that

∫

S2
I,p

BRR + τBNS

varies over the t plane. In the gauge theory, this combination determines the complexified

gauge coupling. Since

4π

g2
i

=
1

gs

∫

S2
i

BNS ,
θi
2π

=

∫

S2
i

BRR + aBNS ,

one naturally identifies αi with the gauge coupling of the U(Ni), N = 2 theory at a high

scale7

αi = −
θi
2π

−
4πi

g2
i

.

7 For the large N dual to be an honest Calabi-Yau, as opposed to a generalized one, we will

work with
∫

S2
i

k = 0.
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For each positive root I, we then define αI as

αI =
k∑

i=j

αi

Turning on fluxes gives rise to an effective superpotential [30]

Weff =

∫

CY

(HRR + τHNS) ∧ Ω.

Using the special geometry relations

∫

AI,p

Ω = SI,p,

∫

BI,p

Ω = ∂SI,p
F0,

the effective superpotential can be written as

Weff =
∑

I,p

αI SI,p +MI,p ∂SI,p
F0. (2.9)

Here, SI,p gets identified with the value of the gaugino bilinear of the U(MI,p) gauge

group factor on the open string side. The effective superpotential (2.9) can be computed

directly in the gauge theory. Alternatively, it can be shown [31,32] that the relevant

computation reduces to computing planar diagrams in a gauged matrix model given by

the zero-dimensional path integral

1
∏k

i=1 vol U(Ni)

∫ k∏

i=1

dΦi dQi,i+1dQi+1,i exp
(
−

1

gs
TrW(Φ, Q)

)

where

TrW(Φ, Q) =

r∑

i=1

TrW (Φi) + Tr (Qi+1,iΦiQi,i+1 −Qi,i+1Φi+1Qi+1,i).

The critical points of the matrix model superpotential correspond to the supersym-

metric vacua of the gauge theory. The prepotential F0(SI,p) that enters the superpotential

(2.9) is the planar free energy of the matrix model [31,33,34,35], expanded about a critical

point where the gauge group is broken as in (2.7). More precisely, we have

2πiF0(S) = F np
0 (S) +

∑

{ha}

F0,{ha}

∏

a

Sha
a
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where F0,{ha}

∏
a(Mags)

ha is the contribution to the planar free energy coming from dia-

grams with ha boundaries carrying the index of the U(Ma) factor of the unbroken gauge

group. Here a represents a pair of indices,

a = (I, p),

and we’ve denoted Sa = Mags. The “non-perturbative” contribution, F np
0 (S), to the

matrix model amplitude comes from the volume of the gauge group (2.7) that is unbroken in

the vacuum at hand [33,35], and is the prepotential of the leading order conifold singularity

corresponding to the shrinking S3, which is universal. We will explain how to compute the

matrix integrals in appendix A. The supersymmetric vacua of the theory are then given

by the critical points of the superpotential Weff ,

∂Sa
Weff = 0.

2.2. Non-Supersymmetric Large N Duality

Now consider replacing some of the branes with anti-branes while keeping the back-

ground fixed. The charge of the branes, as measured at infinity, is computed by the RR

flux through the S3 that surrounds the branes. In the large N dual geometry, the S3 sur-

rounding the wrapped S2
I,p is just the cycle AI,p. Replacing the branes with anti-branes

on some of the S2’s then has the effect of changing the signs of the corresponding MI,p’s.

Moreover, supersymmetry is now broken, so the vacua of the theory will appear as critical

points of the physical potential

V = GSaSb ∂Sa
Weff ∂Sb

Weff + V0. (2.10)

The superpotential Weff is still given by (2.9), and G is the Kähler metric of the N = 2

theory,

G
ab

= Im(τ)
ab

where

τab = ∂Sa
∂Sb

F0

and a, b stand for pairs of indices (I, p). In the absence of gravity, we are free to add a

constant, V0, to the potential,8 which we’ll take to be

V0 =
∑

I,p

MI,p

g2
I

. (2.11)

8 This simply adds a constant to the Lagrangian, having nothing to do with supersymmetry,

or its breaking.
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A priori, V0 can be either positive or negative, depending on the charges. However, we’ll

see that in all the vacua where the theory is weakly coupled, the leading contribution to

the effective potential at the critical point will turn out to be just the tensions of all the

branes, which is strictly positive.

3. A Simple Example

We now specialize to an A2 quiver theory with quadratic superpotential. The geometry

which engineers this theory is given by (2.1), with

z1(t) = −m1(t− a1), z2(t) = 0, z3(t) = m2(t− a2).

There are three singular critical points (2.4) (assuming generic mi) corresponding to

t = ai, i = 1, 2, 3

where a3 = (m1a1 +m2a2)/(m1 +m2). Blowing up to recover a smooth Calabi-Yau, the

singular points are replaced by three positive area S2’s,

S2
1 , S

2
2 , S

2
3

with one homological relation among them,

S2
3 = S2

1 + S2
2 . (3.1)

S2
1,2 then correspond to the two simple roots of the A2 Lie algebra, e1,2, and S2

3 is the one

non-simple positive root, e1 + e2. Now consider wrapping branes on the three minimal

2-cycles so that the total wrapped cycle C is given by

C = M1 S
2
1 +M2 S

2
2 +M3 S

2
3 .

If some, but not all, of the MI are negative, supersymmetry is broken. As was explained

in the previous section, as long as the branes are widely separated, this system should be

perturbatively stable.
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Fig. 1. The figure corresponds to the A2 singularity in the z-t plane with quadratic “superpo-

tential”. There are three conifold singularities at zi = zj which can be blown up by three S2’s,

spanning two homology classes. Wrapping M1 anti-D5 branes on S2
1 and M2,3 D5 branes on S2

2,3,

we can engineer a metastable vacuum. The orientations of the branes are indicated by arrows.

Non-perturbatively, we expect the branes to be able to tunnel to a lower energy state.

The minimum energy configuration that this system can achieve depends on the net brane

charges in the homology classes S2
1 and S2

2 , given by N1 = M1 +M3 and N2 = M2 +M3.

When N1 and N2 have the same sign, the system can tunnel to a supersymmetric vacuum

with new charges

MI →M ′
I

where all theM ′
I share the same sign, and the net chargesN1 = M ′

1+M
′
3 andN2 = M ′

2+M
′
3

are unchanged. All the supersymmetric vacua are degenerate in energy, but for the

metastable, non-supersymmetric vacua, the decay rates will depend on the M ′
I . Alter-

natively, if one of the N1,2 is positive and the other is negative, the lowest energy configu-

ration is necessarily not supersymmetric. In this way we get a stable, non-supersymmetric

state which has nowhere to which it can decay.

In the remainder of this section, we will study these systems using the large N dual

geometry with fluxes.

3.1. The Large N Dual

The large N dual geometry in this case is given by

x2 + y2 + z(z −m1(t− a1))(z +m2(t− a2)) = cz + dt+ e. (3.2)

13



The three S2’s at the critical points have been replaced by three S3’s, AI , whose sizes are

related to the coefficients c, d, e above. There are also three non-compact, dual 3-cycles

BI . The geometry of the Calabi-Yau is closely related to the geometry of the Riemann

surface obtained by setting x = y = 0 in (2.8). The Riemann surface can be viewed as a

triple cover of the t plane, by writing (3.2) as

0 = (z − z′1(t))(z − z′2(t))(z − z′3(t))

where z′i(t) correspond to the zi(t) which are deformed in going from (2.1) to (3.2) . In

particular, the holomorphic three-form Ω of the Calabi-Yau manifold descends to a 1-form

on the Riemann surface, as can be seen by writing

Ω = ω2,0 ∧ dt

and integrating ω2,0 over the S2 fibers, as in (2.3). The A and B cycles then project to

1-cycles on the Riemann surface. The three sheets are glued together over branch cuts

which open up at t = aI . We have

SI =
1

2πi

∫ aI
+

aI
−

(z′J(t) − z′K(t)) dt, ∂SI
F0 =

1

2πi

∫ Λ0

aI
+

(z′J (t) − z′K(t)) dt

for cyclic permutations of distinct I, J and K. This allows one to compute the prepotential

F0 by direct integration (see appendix B). Alternatively, by the conjecture of [33], the same

prepotential can be computed from the corresponding matrix model. The gauge fixing of

the matrix model is somewhat involved, and we have relegated it to appendix A, but the

end result is very simple. The field content consists of:

a. Three sets of adjoints Φii of U(Mi), which describe the fluctuations of the branes

around the three S2’s.

b. A pair of bifundamental matter fields Q12, Q̃21, coming from the 12 strings.

c. Anti-commuting bosonic ghosts, B13, C31 and B32, C23, representing the 23 and 31

strings.

Note that physical bifundamental matter from S2’s with positive intersection corresponds

to commuting bosonic bifundamentals in the matrix model, whereas W bosons between

S2’s with negative intersection in the physical theory correspond to bosonic ghosts, simi-

larly to what happened in [35].
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The effective superpotential for these fields is

Weff =
1

2
m1 TrΦ2

11 +
1

2
m2 TrΦ2

22 +
1

2
m3 TrΦ2

33

+ a12 TrQ12Q̃21 + a23 TrB32C23 + a31 TrB13C31

+Tr(B32Φ22C23 − C23Φ33B32) + Tr(B13Φ33C31 − C31Φ11B13)

+Tr(Q̃21Φ11Q12 −Q12Φ22Q̃21)

where aij = ai − aj . From this we can read off the propagators

〈ΦiiΦii〉 =
1

mi

, 〈Q12Q̃21〉 =
1

a12

and

〈B23C32〉 = −
1

a23
, 〈B31C13〉 = −

1

a31
,

as well as the vertices.

Fig. 2. Some of the two-loop Feynman graphs of the matrix model path integral, which are

computing the prepotential F0. The path integral is expanded about a vacuum corresponding

to distributing branes on the three nodes. Here, the boundaries on node one are colored red, on

node two are green and on node three are blue.

Keeping only those contractions of color indices that correspond to planar diagrams,

and carefully keeping track of the signs associated with fermion loops, we find:

2πiF0(Si) =
1

2
S2

1 (log(
S1

m1Λ2
0

) −
3

2
) +

1

2
S2

2 (log(
S2

m2Λ2
0

) −
3

2
) +

1

2
S2

3 (log(
S3

m3Λ2
0

) −
3

2
)

− log(
a12

Λ0
)S1S2 + log(

a31

Λ0
)S1S3 + log(

a23

Λ0
)S2S3

+
1

2∆3
(S2

1S2 + S2
2S1 + S2

3S1 + S2
3S2 − S2

1S3 − S2
2S3 − 6S1S2S3) + . . .
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where

∆3 =
m1m2

m3
a2
12, m3 = m1 +m2. (3.3)

The terms quadratic in the Si’s correspond to one-loop terms in the matrix model, the

cubic terms to two-loop terms, and so on. The fact that the matrix model result agrees

with the direct computation from the geometry is a nice direct check of the Dijkgraaf-Vafa

conjecture for quiver theories. The large N limit of quiver matrix models was previously

studied using large N saddle point techniques in [24,25,36,37].

Consider now the critical points of the potential (2.10),

∂SI
V = 0.

The full potential is very complicated, but at weak ’t Hooft coupling (we will show this

is consistent a posteriori) it should be sufficient to keep only the leading terms in the

expansion of F0 in powers of S/∆3. These correspond to keeping only the one-loop terms

in the matrix model. In this approximation, the physical vacua of the potential (2.10)

correspond to solutions of

αI +
∑

MJ>0

τIJM
J +

∑

MJ<0

τ IJM
J = 0. (3.4)

To be more precise, there are more solutions with other sign choices for ±MJ , but only

this choice leads to Im(τ) being positive definite. Since Im(τ) is also the metric on the

moduli space, only this solution is physical.

Depending on how we choose to distribute the branes, there are two distinct classes

of non-supersymmetric vacua which can be constructed in this way. We will discuss both

of them presently.

3.2. M1 < 0, M2,3 > 0

In this case, the critical points of the potential correspond to

S1
|M1|

=
(
Λ2

0m1

)|M1|(a12

Λ0

)|M2|(a31

Λ0

)−|M3|

exp(−2πiα1)

S2
|M2| =

(
Λ2

0m2

)|M2|(a12

Λ0

)|M1|(a23

Λ0

)−|M3|

exp(−2πiα2)

S3
|M3| =

(
Λ2

0m3

)|M3|(a23

Λ0

)−|M2|(a31

Λ0

)−|M1|

exp(−2πiα3)

.

16



The Si are identified with the gaugino condensates of the low energy, U(M1) × U(M2) ×

U(M3) gauge theory. The gaugino condensates are the order parameters of the low energy

physics and as such should not depend on the cutoff Λ0. Let’s then introduce three new

confinement scales, Λi, defined as

Si = Λ3
i .

In fact, only two of these are independent. As a consequence of homology relation (3.1),

the gauge couplings satisfy α1 + α2 = α3, which implies that

(Λ1

∆

)3|M1|(Λ2

∆

)3|M2|

=
(Λ3

∆

)3|M3|

,

where ∆ is given in (3.3). Requiring that the scales Λi do not depend on the cutoff scale,

we can read off how the gauge couplings run with Λ0,

g−2
1 (Λ0) = − log

( Λ3
1

Λ2
0m1

)|M1|

− log
( Λ0

a12

)|M2|

− log
( Λ0

a13

)−|M3|

g−2
2 (Λ0) = − log

( Λ3
2

Λ2
0m2

)|M2|

− log
( Λ0

a12

)|M1|

− log
( Λ0

a23

)−|M3|

.

(3.5)

As was noticed in [1], this kind of running of the gauge couplings and relation between

strong coupling scales is very similar to what occurs in the supersymmetric gauge theory

(as studied in [25]) obtained by wrapping Mi branes of the same kind on the three S2’s.

The only difference is that branes and anti-branes lead to complex conjugate runnings, as

if the spectrum of the theory remained the same, apart from the chirality of the fermions

on the brane and the anti-brane getting flipped. This is natural, as the branes and the

anti-branes have opposite GSO projections, so indeed a different chirality fermion is kept.

In addition, the open string RR sectors with one boundary on branes and the other on

anti-branes has opposite chirality kept as well, and this is reflected in the above formulas.

To this order, the value of the potential at the critical point is

V∗ =
∑

I

|MI |

g2
I

−
1

2π
|M1||M2| log

(
|
a12

Λ0
|
)

+
1

2π
|M1||M3| log

(
|
a13

Λ0
|
)

The first terms are just due to the tensions of the branes. The remaining terms are due to

the Coulomb and gravitational interactions of the branes, which come from the one-loop

interaction in the open string theory. There is no force between the M2 branes wrapping

S2
2 and the M3 branes on S2

3 , since M2,3 are both positive, so the open strings stretching

between them should be supersymmetric. On the other hand, the M1 anti-branes on S2
1
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should interact with the M2,3 branes as the Coulomb and gravitational interactions should

no longer cancel. This is exactly what one sees above. The M1 anti-branes on S2
1 attract

the M3 branes on S2
3 , while they repel the branes on S2

2 . We will see in the next section

that more generally, branes and anti-branes wrapping 2-cycles with negative intersection

numbers (in the ALE space) attract, and those wrapping 2-cycles with positive intersection

numbers repel. Since9

e1 · e2 = 1, e1 · e3 = −1,

this is exactly what we see here.

3.3. M1,2 > 0, M3 < 0

With only the non-simple root wrapped by anti-branes, the critical points of the

potential now correspond to

S1
|M1| =

(
Λ2

0m1

)|M1|(a12

Λ0

)|M2|(a31

Λ0

)−|M3|

exp(−2πiα1)

S2
|M2| =

(
Λ2

0m2

)|M2|(a12

Λ0

)|M1|(a23

Λ0

)−|M3|

exp(−2πiα2)

S3
|M3|

=
(
Λ2

0m3

)|M3|(a23

Λ0

)−|M2|(a31

Λ0

)−|M1|

exp(−2πiα3)

In this case, the Kähler parameters α1,2 run as

g−2
1 (Λ0) = − log

( Λ3
1

Λ2
0m1

)|M1|

− log
( Λ0

a12

)|M2|

− log
( Λ0

a13

)−|M3|

g−2
2 (Λ0) = − log

( Λ3
2

Λ2
0m2

)|M2|

− log
( Λ0

a12

)|M1|

− log
( Λ0

a23

)−|M3|

where (Λ1

∆

)3|M1|(Λ2

∆

)3|M2|

=
(Λ3

∆

)3|M3|

.

This follows the same pattern as seen in [1] and in the previous subsection. The branes and

anti-branes give complex conjugate runnings, as do the strings stretching between them.

The value of potential at the critical point is, to this order,

V∗ =
∑

I

|MI |

g2
I

+
1

2π
|M1||M3| log

(
|
a13

Λ0
|
)

+
1

2π
|M2||M3| log

(
|
a23

Λ0
|
)
.

9 The second relation is due to the self intersection numbers of S2
1 and S2

2 being −2.
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Again, the first terms are universal, coming from the brane tensions. The remaining terms

are the one-loop interaction terms. There is no force between the M1 branes wrapping S2
1

and the M2 branes on S2
2 , since now both M1,2 have the same sign. The M3 anti-branes

on S2
3 attract both M1 branes on S2

1 and the M2 branes on S2
2 , since, in the ALE space

e1 · e3 = e2 · e3 = −1.

In the next subsection, we will show that both of these brane/anti-brane systems are

perturbatively stable for large separations.

3.4. Metastability

The system of branes and anti-branes engineered above should be perturbatively stable

when the branes are weakly interacting – in particular, at weak ’t Hooft coupling. The

open/closed string duality implies that the dual closed string vacuum should be metastable

as well. In this subsection, we’ll show that this indeed is the case. Moreover, following [2],

we’ll show that perturbative stability is lost as we increase the ’t Hooft coupling. While

some details of this section will be specific to the A2 case discussed above, the general

aspects of the analysis will be valid for any of the ADE fibrations discussed in the next

section.

To begin with, we note that the equations of motion, derived from the potential (2.10),

are

∂kV =
−1

2i
FkefG

aeGbf (αa +M cτac)(αb +Mdτ bd) = 0, (3.6)

and moreover, the elements of the Hessian are

∂p∂qV =GiaGbjiFabpq(αi +Mkτki)(αj +M rτ rj)

+ 2GiaGbcGdjiFabpiFcdq(αi +Mkτki)(αj +M rτ rj)

∂q∂qV = −GiaGbcGdjiFabpiFcdq(αi +Mkτki)(αj +M rτrj)

−GicGdaGbjiFabpiFcdq(αi +Mkτki)(αj +M rτ rj)

(3.7)

where we have denoted ∂cτab = Fabc, and similarly for higher derivatives of τ .

In the limit where all the ’t Hooft couplings g2
iNi are very small, the sizes of the dual

3-cycles Sa = Λ3
a are small compared to the separations between them, so we can keep

only the leading terms in the expansion of F0 in powers of S, i.e., the one-loop terms in

the matrix model. At one-loop, the third and fourth derivatives of the prepotential are
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nonzero only if all of the derivatives are with respect to the same variable. Expanding

about the physical solution to this order,

αa +
∑

Mb>0

τabMb +
∑

Mb<0

τabMb = 0. (3.8)

The non-vanishing elements of the Hessian are

∂i∂jV =
1

4π2

|M iM j |

SiSj
Gij i, j opposite type

∂i∂jV =
1

4π2

|M iM j |

SiSj
Gij i, j same type

(3.9)

where the ‘type’ of an index refers to whether it corresponds to branes or anti-branes.

To get a measure of supersymmetry breaking, consider the fermion bilinear couplings.

Before turning on fluxes, the theory has N = 2 supersymmetry, and the choice of super-

potential (2.6) breaks this explicitly to N = 1. For each 3-cycle, we get a chiral multiplet

(Si, ψi) and a vector multiplet (Ai, λi) where ψi, λi are a pair of Weyl fermions. It is easy

to work out [1] that the coefficients of the non-vanishing fermion bilinears are

mψaψb =
1

2
Gcd(αd +M eτde)Fabc,

mλaλb =
1

2
Gcd(αd +M eτde)Fabc,

and evaluating this in the vacuum we find

mψaψb = −
1

4π

Ma + |Ma|

Sa
δab,

mλaλb = −
1

4π

Ma − |Ma|

Sa
δab.

Bose-Fermi degeneracy is restored in the limit where we take

(Gij)
2/GiiGjj ≪ 1, i, j opposite type.

In this limit we get a decoupled system of branes and anti-branes except that for nodes

wrapped with branes, Sa’s get paired up with ψ′s, and for nodes wrapped with anti-

branes they pair with λ’s, corresponding to a different half of N = 2 supersymmetry being
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preserved in the two cases.10 This is the limit of extremely weak ’t Hooft coupling, and

the sizes of the cuts are the smallest scale in the problem by far

Λi
∆

≪
aij
Λ0

,
∆

Λ0
< 1. (3.10)

In this limit the Hessian is manifestly positive definite. In fact the Hessian is positive def-

inite as long as the one-loop approximation is valid. To see this note that the determinant

of the Hessian is, up to a constant, given by

Det(∂2V ) ∼

(
1

DetG

n∏

i=1

∣∣∣∣
M i

Si

∣∣∣∣
2
)2

. (3.11)

It is never zero while the metric remains positive definite, so a negative eigenvalue can

never appear. Thus, one can conclude that as long as all the moduli are in the regime

where the ’t Hooft couplings are small enough for the one-loop approximation to be valid,

the system will remain stable to small perturbations.

Let’s now find how the solutions are affected by the inclusion of higher order correc-

tions. At two loops, an exact analysis of stability becomes difficult in practice. However, in

various limits one can recover systems which can be understood quite well. For simplicity,

we will assume that the αi are all pure imaginary, and all the parameters aij and Λ0 are

purely real. Then there are solutions where the Si are real. In appendix B, we show that

in this case, upon including the two-loop terms, the determinant of the Hessian becomes

(
Det Gab

)2
(
∏

c

|M c|

iFccc

)4

Det

(
δcb +Gcb

iFbbbbδb

iFbbbiFccc|M c|

)
Det

(
δcb −Gcb

iFbbbbδb

iFbbbiFccc|M c|

)

(3.12)

where

δk =
1

2|Mk|Fkkk
Fkab(−|Ma||M b| +MaM b) (3.13)

and δcb is the Kronecker delta. The first two terms in (3.12) never vanish, since the metric

has to remain positive definite, so we need only analyze the last two determinants. We can

plug in the one-loop values for the various derivatives of the prepotential, and in doing so

obtain

Det

(
δab ± 2πGab

Sa

∆3

xb

|Ma|

)
= 0 (3.14)

10 The kinetic terms of both bosons and fermions are computed with the same metric Gab.
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with either choice of sign. Above, we have rewritten eq. (3.13) as

δa =
Sa

∆3
xa. (3.15)

This is a convenient rewriting because S/∆3 is the parameter controlling the loop expan-

sion, and xa is simply a number which depends on the N i but no other parameters.

Consider the case where, for some i, a given S3
i grows much larger than the other two.

We can think of this as increasing the effective ’t Hooft coupling for that node, or more

precisely, increasing (ΛMi

∆

)3

= exp
(
−

1

|Mi|g2
i,eff (∆)

)
.

Recall that the two-loop equations of motion for real Si, are given by

g−2
i,eff (∆) = −|Mi| log(|

Si
∆3

|) +Gikδ
k (3.16)

where
g−2
1,eff(∆) = g−2

1 (Λ0) − |M1|(L12 + L13) + |M2|L12 − |M3|L13

g−2
2,eff(∆) = g−2

2 (Λ0) − |M2|(L12 + L23) + |M1|L12 − |M3|L13

g−2
3,eff(∆) = g−2

3 (Λ0) − |M3|(L13 + L23) − |M1|L13 − |M2|L23.

Here we’ve adopted the notation Lij = log Λ0

aij
and the δk are as defined in (3.13). Note that

in each case, two of the equations can be solved straight off. It is the remaining equations

which provide interesting behavior and can result in a loss of stability. Correspondingly,

the vanishing of the Hessian determinant in (3.12) is then equivalent to the vanishing of

its ii entry (where we have assumed a vacuum at real S):

1 ±Gii
Si
∆3

xi
|Mi|

= 0. (3.17)

We’ll see that we can approximate

Gii = − log(|
Si
∆3

|) + Li ∼ Li

where we have defined

Li = Lij + Lik, i 6= j 6= k,

so this provides the following conditions:

±1 = Li
xi
|Mi|

Si
∆3

. (3.18)
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The above equation, taken with positive sign, is equivalent to the condition for stability

being lost by setting the determinant of the gradient matrix of the equations to zero. The

equation with minus sign comes from losing stability in imaginary direction. Correspond-

ingly, the equation of motion for the one node with growing ’t Hooft coupling becomes

g−2
i,eff = −|Mi| log

Si
∆3

+ Lixi
Si
∆3

. (3.19)

One of the equations (3.18) must be solved in conjunction with (3.19) if stability is to be

lost.

The sign of xi can vary depending on the specifics of the charges. In all the cases, as the

effective ’t Hooft coupling increases, solutions move to larger values of Si. For sufficiently

large values, in the absence of some special tuning of the charges, (3.18) will be satisfied

for one of the two signs. The only question then is whether the Si can get large enough,

or whether a critical value above which the equation of motion can no longer be solved is

reached before an instability sets in. In the equation above, if xi is negative, then there

will be no such critical value, and Si can continue to grow unbounded. Correspondingly, a

large enough value of the ’t Hooft coupling can always be reached where (3.18) is satisfied

with negative sign. Alternatively, if the coefficient xi is positive, there will be a critical

value for Li at which the right hand side of the equation takes a minimum value. This

occurs at (Si,∗/∆
3) = |Mi|

xiLi
, which is precisely (3.18) with positive left hand side. So, for

any value of xi an instability develops at finite effective ’t Hooft coupling corresponding

to
Si,∗
∆3

=
|Mi|

|xi|Li
,

or more precisely, at

|Mi|g
2
i,eff(∆) = log−1(

|Mi|

xiLi
).

This critical value of the effective ’t Hooft coupling can be achieved by increasing the num-

ber of branes on that node, or, in case of nodes one and two, by letting the corresponding

bare ’t Hooft coupling increase. This is true as long as supersymmetry is broken and the

corresponding two-loop correction is non-vanishing, i.e. as long as xi 6= 0. It is reasonable

to suspect that in the degenerate case, where charges conspire to set xi to zero even with

broken supersymmetry, the instability would set in at three loops.

It is natural to ask the fate of the system once metastability is lost. It should be the

case [2] that it rolls to another a critical point corresponding to shrinking the one compact
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B-type cycle, B1 + B2 − B3. To describe this point in the moduli space, introduce a new

basis of periods in which this shrinking B-cycle becomes one of the A periods:

∮

A′

1

H = M1 +M3,

∮

A′

2

H = M2 +M3,

∮

A′

3

H = 0,

∫

B′

1

H = α1,

∫

B′

2

H = α2,

∫

B′

3

H = M3,

where H = HRR+τHNS . In particular, there is no flux through the new cycle A′
3. In fact,

by setting M1 = M2 = −M3 = M , there is no flux through any of the A′ cycles.11 For

S′
i =

∫
A′

Ω sufficiently large that we can ignore the light D3 branes wrapping this cycle,

τ ′ii ∼
1

2πi
log

S′
i

∆3
, τ ′i6=j ∼ const,

it is easy to see that the system has an effective potential that would attract it to the point

where the S′
i = 0 and the cycles shrink:

Veff ∼ V0 +
∑

i

∣∣∣ ci

log |
S′

i

∆3 |

∣∣∣
2

where ci ∼
∫
B′

i

H. By incorporating the light D3 branes wrapping the flux-less, shrinking

cycles, the system would undergo a geometric transition to a non-Kähler manifold [38].

There, the cycle shrinks and a new 2-cycle opens up, corresponding to condensing a D3

brane hypermultiplet. However, this 2-cycle becomes the boundary of a compact 3-cycle B′

which get punctured in the transition that shrinks the A′ cycles. A manifold where such a

2-cycle has nonzero volume is automatically non-Kähler, but it is supersymmetric. As we’ll

review shortly, the shrinking cycle A′
3 is also the cycle wrapped by the D5 brane domain

walls that mediate the non-perturbative decay of the metastable flux vacua. The loss of

metastability seems to be correlated with existence of of a point in the moduli space where

the domain walls become light and presumably fluxes can annihilate classically (this also

happened in the A1 model studied in [2]). In particular, in the last section of this paper,

we’ll provide two examples of a system where the corresponding points in the complex

structure moduli space are absent, but which are exactly stable perturbatively even though

they are non-supersymmetric (one of them will be stable non-perturbatively as well). It

must be added, as discussed in [2], that it is far from clear whether the light domain walls

11 In the more general case, the system should be attracted to a point where only A′

3 shrinks.
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can be ignored, and so whether the system truly rolls down to a supersymmetric vacuum.

A more detailed analysis of the physics at this critical point is beyond the scope of this

paper.

It was suggested in [2] that the loss of stability might be related to the difference

in the value of V∗ between the starting vacuum and a vacuum to which it might tunnel

becoming small, and thus the point where Coulomb attraction starts to dominate in a

subset of branes. In the more complicated geometries at hand, it seems that such a simple

statement does not carry over. This can be seen by noting that, for certain configurations

of brane charges in our case, an instability can be induced without having any effect on

the ∆V∗ between vacua connected by tunneling events. We are led to conclude that the

loss of stability is a strong coupling effect in the non-supersymmetric system, which has

no simple explanation in terms of our open string intuition. This should have perhaps

been clear, in that the point to which the system apparently rolls has no straightforward

explanation in terms of brane annihilation.

3.5. Decay Rates

We now study the decays of the brane/anti-brane systems of the previous section. This

closely parallels the analysis of [1]. We have shown that when the branes and anti-branes

are sufficiently well-separated, the system is perturbatively stable. Non-perturbatively, the

system can tunnel to lower energy vacua, if they are available. In this case, the available

vacua are constrained by charge conservation – any two vacua with the same net charges

N1 = M1 +M3, N2 = M2 +M3

are connected by finite energy barriers. The false vacuum decay proceeds by the nucleation

of a bubble of lower energy vacuum.

The decay process is easy to understand in the closed string language. The vacua are

labeled by the fluxes through the three S3’s
∫

AI

HRR = MI . I = 1, 2, 3

Since RR 3-form fluxes jump in going from the false vacuum to the true vacuum, the

domain walls that interpolate between the vacua are D5 branes. Over a D5 brane wrapping

a compact 3-cycle C in the Calabi-Yau, the fluxes jump by an amount

∆MI = #(C ∩ AI)
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In the present case, it is easy to see that there is only one compact 3-cycle C that intersects

the A-cycles,

C = B1 + B2 − B3.

So, across a D5 brane wrapping C, the fluxes through A1,2 decrease by one unit, and the

flux through A3 increases by one unit. Note that this is consistent with charge conservation

for the branes. In fact, the domain walls in the open and the closed picture are essentially

the same. In the open string language, the domain wall is also a D5 brane, but in this

case it wraps a three-chain obtained by pushing C through the geometric transition. The

three-chain has boundaries on the minimal S2’s, and facilitates the homology relation (3.1)

between the 2-cycles.

The decay rate Γ is given in terms of the action Sinst of the relevant instanton.

Γ ∼ exp(−Sinst)

Since the Calabi-Yau we have been considering is non-compact, we can neglect gravity,

and the instanton action is given by

Sinst =
27π

2

S4
D

(∆V∗)3

where SD is the tension of the domain wall, and ∆V∗ is the change in the vacuum energy

across the domain wall. While this formula was derived in [39] in a scalar field theory, it

is governed by energetics, and does not depend on the details of the theory as long as the

semi-classical approximation is applicable.

In the present case, the tension of the domain wall is bounded below by

SD =
1

gs

∫

C

Ω, (3.20)

since the
∫
C

Ω computes the lower bound on the volume of any 3-cycle in this class, and

the classical geometry is valid to the leading order in 1/N , the order to which we are

working. The tension of the domain wall is thus the same as the tension of a domain

wall interpolating between the supersymmetric vacua, and to leading order (open-string

tree-level) this is given by the difference between the tree-level superpotentials (2.6)

∫

C

Ω ∼W3(a3) −W1(a1) −W2(a2) =
1

2
∆3,
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where ∆3 is defined in (3.3). This is just the “holomorphic area” of the triangle in figure

1. The area is large as long as all the brane separations are large, and as long as this is so,

it is independent of the fluxes on the two sides of the domain wall.

At the same time, the difference in the potential energy between the initial and the

final states is given by the classical brane tensions,

∆V = Vi − Vf =
∑

I

(|MI | − |M ′
I |)/g

2
I .

The fate of the vacuum depends on the net charges. If N1,2 are both positive, then

the true vacuum is supersymmetric. Moreover, there is a landscape of degenerate such

vacua, corresponding to all possible ways of distributing branes consistent with charge

conservation such that M ′
I are all positive. Starting with, say, (M1,M2,M3) = (N1 +

k,N2 + k,−k), where k > 0, this can decay to (N1, N2, 0) since

∆V = Vi − Vf = 2
k|r3|

gs
,

corresponding to k branes on S2
3 getting annihilated, where r3 is the Kähler area of S2

3 .

The decay is highly suppressed as long as string coupling gs is weak and the separation

between the branes is large. The action of the domain wall is k times that of (3.20)12, so

Sinst =
27π

32

k

gs

|∆|12

|r3|3
=

27π

32

|g3|3

g4
s

k|∆|12. (3.21)

The instanton action (3.21) depends on the cutoff scale Λ0 due to the running of the gauge

coupling g−2
3 (Λ0). The dependence on Λ0 implies [12] that (3.21) should be interpreted

as the rate of decay corresponding to fluxes decaying in the portion of the Calabi-Yau

bounded by Λ0.

If instead we take say N1 > 0 > N2, then the lowest energy state corresponds to N1

branes on node 1, N2 anti-branes on node 2, with node 3 unoccupied. This is the case

at least for those values of parameters corresponding to the system being weakly coupled.

In this regime, this particular configuration gives an example of an exactly stable, non-

supersymmetric vacuum in string theory – there is no other vacuum with the same charges

that has lower energy. Moreover, as we’ll discuss in section 6, for some special values of

the parameters m1,2 the system is exactly solvable, and can be shown to be exactly stable

even when the branes and the anti-branes are close to each other.

12 All quantities being measured in string units.
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4. Generalizations

Consider now other ADE fibrations over the complex plane. As in (2.1) we start with

the deformations of 2-complex dimensional ALE singularities:

Ak : x2 + y2 + zk+1 = 0

Dr : x2 + y2z + zr−1 = 0

E6 : x2 + y3 + z4 = 0

E7 : x2 + y3 + yz3 = 0

E8 : x2 + y3 + z5 = 0

and fiber these over the complex t plane, allowing the coefficients parameterizing the de-

formations to be t dependent. The requisite deformations of the singularities are canonical

(see [24] and references therein). For example, the deformation of the Dr singularity is

x2 + y2z + z−1(
r∏

i=1

(z − z2
i ) −

r∏

i=1

z2
i ) + 2

r∏

i=1

zi y.

In fibering this over the t plane, the zi become polynomials zi(t) in t.13 After deformation,

at a generic point in the t plane, the ALE space is smooth, with singularities resolved by

a set of r independent 2-cycle classes

S2
i , i = 1, . . . r

where r is the rank of the corresponding Lie algebra. The 2-cycle classes intersect according

to the ADE Dynkin diagram of the singularity:

13 This is the so called “non-monodromic” fibration. The case where the zi are instead multi-

valued functions of t corresponds to the “monodromic” fibration [24].
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Fig. 2. Dynkin diagrams of the ADE Lie algebras. Every node corresponds to a simple root and

to a 2-cycle class of self intersection −2 in the ALE space. The nodes that are linked correspond

to 2-cycles which intersect with intersection number +1.

The deformations can be characterized by “superpotentials”,

W ′
i (t) =

∫

S2
i,t

ω2,0.

which compute the holomorphic volumes of the 2-cycles at fixed t. For each positive root

eI , which can be expanded in terms of simple roots ei as

eI =
∑

I

niIei

for some positive integers niI , one gets a zero-sized, primitive 2-cycle at points in the t-plane

where

W ′
I(t) =

∑

i

niIW
′
i (t) = 0. (4.1)

Blowing up the singularities supplies a minimal area to the 2-cycles at solutions of (4.1),

t = aI,p,

where I labels the positive root and p runs over all the solutions to (4.1) for that root.

As shown in [24] and references therein, the normal bundles to the minimal, holomor-

phic S2’s obtained in this way are always O(−1)⊕O(−1), and correspondingly the S2’s are

isolated.14 This implies that when branes or anti-branes are wrapped on the S2’s, there is

an energy cost to moving them off. Moreover, the parameters that enter into defining the

Wi, as well as the Kähler classes of the S2’s, are all non-dynamical in the Calabi-Yau. As a

consequence, if we wrap branes and anti-branes on minimal S2’s, the non-supersymmetric

system obtained is metastable, at least in the regime of parameters where the S2’s are well

separated.

14 In [24] the authors also considered the monodromic ADE fibrations, where the 2-cycles of

the ALE space undergo monodromies around paths in the t plane. In this case, the novelty is

that the S2’s can appear with normal bundles O ⊕ O(−2) or O(−1) ⊕ O(3). Wrapping branes

and anti-branes on these cycles is not going to give rise to new metastable vacua, since there will

be massless deformations moving the branes off of the S2’s. It would be interesting to check this

explicitly in the large N dual.
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The ALE fibrations have geometric transitions in which each minimal S2 is replaced

by a minimal S3. A key point here is that none of the 2-cycles have compact, dual 4-cycles,

so the transitions are all locally conifold transitions. The one-loop prepotential F0 for all

these singularities was computed in [25], and is given by

2πiF0(S) =
1

2

∑

b

S2
b

(
log
( Sb
W ′′
I (ab) Λ2

0

)
−

3

2

)
+

1

2

∑

b6=c

eI(b) · eJ(c) Sb Sc log
(abc

Λ0

)
, (4.2)

where the sum is over all critical points b = (I, p), and I(b) = I denotes the root I to which

the critical point labeled by b corresponds. We are neglecting cubic and higher order terms

in the SI,p, which are related to higher loop corrections in the open string theory. Above,

WI(t) is the superpotential corresponding to the root eI , and eI ·eJ is the inner product of

two positive, though not necessarily simple, roots. Geometrically, the inner product is the

same as minus the intersection number of the corresponding 2-cycles classes in the ALE

space.

Consider wrapping Mb branes or anti-branes on the minimal S2’s labeled by b = (I, p).

We’ll take all the roots to be positive, so we get branes or anti-branes depending on whether

Mb is positive or negative. The effective superpotential for the dual, closed-string theory

is given by (2.9). From this and the corresponding effective potential (2.10), we compute

the expectation values for Sb in the metastable vacuum to be

Sb
|Mb|

=
(
Λ2

0 W
′′
I (ab)

)|Mb|
Mc<0∏

b6=c

(abc
Λ0

)|Mc|
Mc>0∏

c

(abc
Λ0

)|Mc|

exp(−2πiαI(b)), Mb < 0

Sb
|Mb| =

(
Λ2

0 W
′′
I (ab)

)|Mb|
Mc>0∏

b6=c

(abc
Λ0

)|Mc|
Mc<0∏

c

(abc
Λ0

)|Mc|

exp(−2πiαI(b)). Mb > 0

The value of the effective potential at the critical point is given by

V∗ =
∑

b

|Mb|

g2
I(b)

+

Mb>0>Mc∑

b,c

1

2π
eI(b) · eJ(c) log

(∣∣∣abc
Λ0

∣∣∣
)
.

The first term in the potential is just the contribution of the tensions of all the branes

and anti-branes. The second term comes from the Coulomb and gravitational interactions

between branes, which is a one-loop effect in the open string theory. As expected, at this

order only the brane/anti-brane interactions affect the potential energy. The open strings
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stretching between a pair of (anti-)branes, are supersymmetric, and the (anti-)branes do

not interact. The interactions between branes and anti-branes depend on

eI · eJ

which is minus the intersection number – in the ALE space – of the 2-cycle classes wrapped

by the branes. The branes and anti-branes attract if the 2-cycles they wrap have negative

intersection, while they repel if the intersection number is positive, and do not interact at

all if the 2-cycles do not intersect.

For example, consider the Ak quiver case, and a set of branes and anti-branes wrapping

the 2-cycles obtained by blowing up the singularities at

zi(t) = zj(t), zm(t) = zn(t)

where i < j and m < n. The branes do not interact unless i or j coincide with either

m or n. The branes attract if i = m or j = n, in which case the intersection is either

−1 or −2, depending on whether one or both of the above conditions are satisfied. This

is precisely the case when the branes and anti-branes can at least partially annihilate. If

j = m or i = n, then the 2-cycles have intersection +1, and the branes repel. In this

case, the presence of branes and anti-branes should break supersymmetry, but there is a

topological obstruction to the branes annihilating, even partially. In fact, in the Ak type

ALE spaces, this result is known from the direct, open string computation [27,28]. The

fact that the direct computation agrees with the results presented here is a nice test of the

conjecture of [1].

5. A Non-Supersymmetric Seiberg Duality

In the supersymmetric case, with all MI positive, the engineered quiver gauge theories

have Seiberg-like dualities. In string theory, as explained in [25], the duality comes from

an intrinsic ambiguity in how we resolve the ADE singularities to formulate the brane

theory.15 The different resolutions are related by flops of the S2’s under which the charges

of the branes, and hence the ranks of the gauge groups, transform in non-trivial ways.

The RG flows, which are manifest in the large N dual description, force some of the S2’s

to shrink and others to grow, making one description preferred over the others at a given

energy scale. In this section, we argue that Seiberg dualities of this sort persist even when

some of the branes are changed to anti-branes and supersymmetry is broken.

15 The idea that Seiberg dualities have a geometric interpretation in string theory goes back

a long while, see for example [40-44]. The fact that these dualities arise dynamically in string

theory has for the first time been manifested in [25,45].
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5.1. Flops as Seiberg Dualities

For a fixed set of brane charges, one can associate different Calabi-Yau geometries.

There is not a unique way to blow up the singularity where an S2 shrinks, and the different

blowups are related by flops that shrink some 2-cycles and grow others. Instead of giving

a 2-cycle class S2
i a positive Kähler volume

ri =

∫

S2
i

BNS

we can give it a negative volume, instead. This can be thought of as replacing the 2-cycle

class by one of the opposite orientation

S2
i → S̃2

i = −S2
i .

The flop of a simple root S2
i acts as on the other roots as a Weyl reflection which permutes

the positive roots

S2
j → S̃2

j = S2
j − (ej · ei) S

2
i . (5.1)

The net brane charges change in the process, but in a way consistent with charge conser-

vation ∑

i

Ni S
2
i =

∑

i

Ñi S̃
2
i . (5.2)

We can follow how the number of branes wrapping the minimal 2-cycles change in this

process. If i is the simple root that gets flopped16, then Mi,p goes to M̃i,p = −Mi,p and

for other roots labeled by J 6= i

MJ,p = M̃w(J),p (5.3)

where w(J) is the image of J under the Weyl group action.

The size of the wrapped S2 is proportional to the inverse gauge coupling for the theory

on the wrapping branes,

g−2
i (t) ∝

1

gs

∫

S2
i,t

BNS , (5.4)

so the flop (5.1) transforms the gauge couplings according to

g−2
j → g̃−2

j = g−2
j − (ej · ei) g

−2
i . (5.5)

16 Flopping non-simple roots can be thought of in terms of a sequence of simple node flops, as

this generates the full Weyl group.
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Generally, there is one preferred description for which the gauge couplings are all positive.

In the geometry, we have the freedom to choose the sizes of the 2-cycles S2
i,t at some

fixed high scale, but the rest of their profile is determined by the one-loop running of the

couplings (3.5) throughout the geometry and by the brane charges. The most invariant

way of doing this is to specify the scales Λi at which the couplings (5.4) become strong.

We can then follow, using holography, the way the B-fields vary over the geometry as one

goes from near where the S3’s are minimal, which corresponds to low energies in the brane

theory, to longer distances, far from where the branes were located, which corresponds

to going to higher energies. The S2’s have finite size and shrink or grow depending on

whether the gauge coupling is increasing or decreasing. We’ll see that as we vary the

strong coupling scales of the theory, we can smoothly interpolate between the two dual

descriptions. Here it is crucial that the gauge coupling going through zero is a smooth

process in the geometry: while the Kähler volume of the 2-cycle vanishes as one goes

through a flop, the physical volume, given by (2.5), remains finite. Moreover, we can read

off from the geometry which description is the more appropriate one at a given scale.

5.2. The A2 Example

For illustration, we return to the example of the A2 quiver studied in section 3. To

begin with, for a given set of charges Mi, we take the couplings g−2
i of the theory to be

weak at the scale ∆ set by the “superpotential”. This is the characteristic scale of the

open-string ALE geometry. Then Si/∆
3 is small in the vacuum, and the weak coupling

expansion is valid. From (3.5), we can deduce the one-loop running of the couplings with

energy scale µ = t

µ
d

dµ
g−2
1 (µ) = (2|M1| + |M3| − |M2|), µ

d

dµ
g−2
2 (µ) = (2|M2| + |M3| − |M1|). (5.6)

Suppose now, for example

2|M1| + |M3| ≤ |M2|, (5.7)

so then at high enough energies, g−2
1 (µ) will become negative, meaning that the size of

S2
i,t has become negative. To keep the size of all the S2’s positive, at large enough t, the

geometry undergoes a flop of S2
1 that sends

S2
1 → S̃2

1 = −S2
1

S2
2 → S̃2

2 = S2
2 + S2

1 ,
(5.8)
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and correspondingly,

Ñ1 = N2 −N1, Ñ2 = N2, (5.9)

while

M̃1 = −M1, M̃2 = M3, M̃3 = M2. (5.10)

Recall the supersymmetric case first. The supersymmetric case with M1 = 0 was studied

in detail in [25]. It corresponds to a vacuum of a low energy U(N1)×U(N2), N = 2 theory

where the superpotential breaks the gauge group to U(M2) × U(M3). The formulas (5.6)

are in fact the same as in the supersymmetric case, when all the Mi are positive – the beta

functions simply depend on the absolute values of the charges. If (5.7) is satisfied, the

U(N1) factor is not asymptotically free, and the coupling grows strong at high energies.

There, the theory is better described in terms of its Seiberg dual, the asymptotically free

U(Ñ1) × U(Ñ2) theory, broken to U(M̃2) × U(M̃3) by the superpotential.17 The vacua at

hand, which are visible semi-classically in the U(N1)×U(N2) theory, are harder to observe

in the U(Ñ1)×U(Ñ2) theory, which is strongly coupled at the scale of the superpotential.

But, the duality predicts that they are there. In particular, we can smoothly vary the strong

coupling scale ΛN1
of the original theory from (i) ΛN1

< ∆ < µ, where the description

at scale µ is better in terms of the original U(N1) × U(N2) theory, to (ii) ∆ < µ < ΛN1
,

where the description is better in terms of the dual U(Ñ1) × U(Ñ2) theory.

For the dual description of a theory to exist, it is necessary, but not sufficient (as

emphasized in [18]), that the brane charges at infinity of the Calabi-Yau be the same in

both descriptions. In addition, the gauge couplings must run in a consistent way. In this

supersymmetric A2 quiver, this is essentially true automatically, but let’s review it anyway

with the non-supersymmetric case in mind. On the one hand, (5.5) implies that the under

the flop, the couplings transform as

g−2
1 (µ) → g̃−2

1 (µ) = −g−2
1 (µ)

g−2
2 (µ) → g̃−2

2 (µ) = g−2
1 (µ) + g−2

2 (µ).
(5.11)

On the other hand, from (3.5) we know how the couplings g̃−2
i corresponding to charges

M̃i run with scale µ. The non-trivial fact is that the these two are consistent – the flop

simply exchanges M̃2 = M3 and M̃3 = M2, and this is consistent with (5.11).

17 The superpotential of the dual theory is not the same as in the original. As explained in [25],

we can think of the flop as permuting the z′

i(t), in this case exchanging z′

1(t) with z′

2(t), which

affects the superpotential as W1(Φ1) → −W1(Φ1), and W2(Φ2) → W1(Φ2) + W2(Φ2).
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Now consider the non-supersymmetric case. Let’s still take M1 = 0, but now with

M2 > 0 > M3, such that (5.7) is satisfied. It is still the case that if we go to high

enough energies, i.e. large enough µ, the gauge coupling g−2
1 will become negative, and

the corresponding S2
1 will undergo a flop. We can change the basis of 2-cycles as in

(5.5) and (5.8) so that the couplings are all positive, and then the charges transform

according to (5.10). Moreover, just as in the supersymmetric theory, after the flop the

gauge couplings run exactly as they should given the new charges M̃i, which are again

obtained by exchanging node two and three. Moreover, by varying the scale ΛN1
where

g−2
1 becomes strong, we can smoothly go over from one description to the other, just as

in the supersymmetric case. For example, in the A2 case we have a non-supersymmetric

duality relating a U(|N1|) × U(N2) theory, where the rank N1 = M3 is negative and

N2 = M2 +M3 positive, which is a better description at low energies, to a U(Ñ1)×U(Ñ2)

theory with positive ranks Ñ1 = N2 − N1 = M2 and Ñ2 = N2 = M2 + M3, which is a

better description at high energies.

More generally, one can see that this will be the case in any of the ADE examples of

the previous section. This is true regardless of whether all MI,p are positive and super-

symmetry is unbroken, or they have different signs and supersymmetry is broken. In the

case where supersymmetry is broken, we have no gauge theory predictions to guide us, but

it is still natural to conjecture the corresponding non-supersymmetric dualities based on

holography. Whenever the charges are such that in going from low to high energies a root

ends up being dualized

S2
i,p → −S2

i,p,

there should be a non-supersymmetric duality relating a brane/anti-brane system which is

a better description at low energies to the one that is a better description at high energies,

with charges transforming as in (5.2) and (5.3). The theories are dual in the sense that they

flow to the same theory in the IR, and moreover, there is no sharp phase transition in going

from one description to the other. This can be seen from the fact that by varying the strong

coupling scales of the theory, one can smoothly interpolate between one description and

the other being preferred at a given energy scale µ. We don’t expect these to correspond to

gauge theory dualities (in the sense of theories with a finite number of degrees of freedom

and a separation of scales), but we do expect them to be string theory dualities.
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5.3. Dualizing an Occupied Root

When an occupied node gets dualized, negative ranks M < 0 will appear. This is true

even in the supersymmetric case. It is natural to wonder whether this is related to the

appearance of non-supersymmetric vacua in a supersymmetric gauge theory. Conversely,

starting with a non-supersymmetric vacuum at high energies, one may find that the good

description at low energies involves all the charges being positive. We propose that when

an occupied node gets dualized, there is essentially only one description which is ever

really weakly coupled. In particular, “negative rank” gauge groups can appear formally

but never at weak coupling. Moreover, while the supersymmetric gauge theories can have

non-supersymmetric vacua, the phenomenon at hand is unrelated to that. This is in tune

with the interpretation given in [25].

Consider the A2 theory in the supersymmetric case, M̃1,2,3 > 0, with both gauge

groups U(Ñ1,2) being asymptotically free. The U(Ñ1) × U(Ñ2) theory gives a good de-

scription at low energies, for

Λ
Ñ1

≪ ∆

where ∆ is the characteristic scale of the ALE space, and Λ
Ñ1

is the strong coupling scale

of the U(Ñ1) theory. Now consider adiabatically increasing the strong coupling scale until

Λ
Ñ1

≥ ∆.

Then the U(N1)×U(N2) description appears to be better at low energies, with N ’s related

as in (5.9). Namely, from (5.11) we can read off the that the strong coupling scales match

up as ΛN1
= Λ

Ñ1

, so at least formally this corresponds to a more weakly coupled, IR free

U(N1) theory. However, after dualizing node 1, its charge becomes negative

M̃1 = −M1.

How is the negative rank M1 < 0 consistent with the theory having a supersymmetric

vacuum?

The dual theory clearly cannot be a weakly coupled theory. A weakly coupled theory

of branes and anti-branes breaks supersymmetry, whereas the solution at hand is super-

symmetric. Instead, as we increase ΛN1
and follow what happens to the supersymmetric

solution, the scale ΛM1
associated with gaugino condensation on node 1 increases as well,

∆ < ΛM1
∼ ΛN1

, and we find that at all energy scales below ΛM1
we have a strongly
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coupled theory, without a simple gauge theoretic description. The holographic dual theory

of course does have a weakly coupled vacuum with charges M1 < 0, M2,3 > 0, which breaks

supersymmetry. However, the gauge couplings in this vacuum run at high energies in a

different way than in the supersymmetric U(N1) × U(N2) gauge theory. As emphasized

in [18], this means we cannot interpret this non-supersymmetric vacuum as a metastable

state of the supersymmetric gauge theory.

We could alternatively start with a weakly coupled, non-supersymmetric A2 theory

withM1 < 0,M2,3 > 0. If (5.7) is not satisfied, the theory is asymptotically free. Increasing

the strong coupling scale ΛN1
of this theory until ΛN1

∼ ∆, the theory becomes strongly

coupled, and one is tempted to dualize it to a theory with M̃i > 0 at lower energies.

However, from the vacuum solutions in section 3, we can read off that, just as in the

supersymmetric case, this implies that the scale ΛM1
of the gaugino condensate of node 1

becomes larger than the scale ∆, and no weakly coupled description exists. What is new

in the non-supersymmetric case is that, as we have seen in section 3, increasing the strong

coupling scale ΛM1
to near ∆ causes the system to lose stability.

Nevertheless, we can formally extend the conjectured Seiberg dualities to all the su-

persymmetric and non-supersymmetric vacua even when the node that gets dualized is

occupied, except that the dual description is, in one way or another, always strongly cou-

pled.

6. A Very Simple Case

Let’s now go back to the A2 case studied in section 3 and suppose that two of the

masses are equal and opposite m1 = −m2 = −m, so18

z1(t) = 0, z2(t) = −mt, z3(t) = −m(t− a). (6.1)

It is easy to see from (2.4) that there are now only two critical points at t = 0 and t = a,

which get replaced by S2
1 and S2

3 . The third intersection point, which corresponds to the

simple root S2
2 , is absent here, and so is the minimal area 2-cycle corresponding to it. We

study this as a special case since now the prepotential F0 can be given in closed form, so

the theory can be solved exactly. This follows easily either by direct computation from the

18 More precisely, relative to the notation of that section, we’ve performed a flop here that

exchanges z1 and z2.
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geometry, or from the corresponding matrix model (see appendix A). The large N dual

geometry corresponds to the two S2’s being replaced by two S3’s:

x2 + y2 + z(z +mt)(z +m(t− a)) = s1(z +ma) + s3(z +m(t− a)).

The exact prepotential is given by

2πiF0(S) =
1

2
S2

1

(
log(

S1

mΛ2
0

) −
3

2

)
+

1

2
S2

3

(
log(

S3

mΛ2
0

) −
3

2

)
+ S1S3 log(

a

Λ0
). (6.2)

Fig. 3. There are only two minimal S2’s in the A2 geometry with m1 = −m2. The figure on the

left corresponds to the first blowup discussed in the text, with two minimal S2’s of intersection

number +1 in the ALE space wrapped by M1 anti-D5 branes and M3 D5 branes. The figure on

the right is the flop of this.

We can now consider wrapping, say, M1 anti-branes on S2
1 and M3 branes on S2

3 . We

get an exact vacuum solution at

S1
|M1|

=
(
Λ2

0m
)|M1|( a

Λ0

)−|M3|

exp(−2πiα1),

S3
|M3| =

(
Λ2

0m
)|M3|( a

Λ0

)−|M1|

exp(−2πiα3),

where the potential between the branes is given by

V∗ =
|M1|

g2
1

+
|M3|

g2
3

+
1

2π
|M1||M3| log

(
|
a

Λ0
|
)
.

Using an analysis identical to that in [1], it follows that the solution is always stable,

at least in perturbation theory. Borrowing results from [1], the masses of the four bosons

corresponding to fluctuations of S1,3 are given by

(m±(c))
2

=
(a2 + b2 + 2abcv) ±

√
(a2 + b2 + 2abcv)2 − 4a2b2(1 − v)2

2(1 − v)2
(6.3)
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and the masses of the corresponding fermions are

|mψ1
| =

a

1 − v
, |mψ2

| =
b

1 − v
(6.4)

where c takes values c = ±1, and

a =

∣∣∣∣
M1

2πΛ3
1Imτ11

∣∣∣∣ , b =

∣∣∣∣
M3

2πΛ3
3Imτ33

∣∣∣∣ . (6.5)

The parameter controlling the strength of supersymmetry breaking v is defined by

v =
(Imτ13)

2

Imτ11Imτ33
.

That v controls the supersymmetry breaking can be seen here from the fact that at v = 0,

the masses of the four real bosons become degenerate in pairs, and match up with the

fermion masses [1]. The masses of bosons are strictly positive since the metric on the

moduli space Imτ is positive definite, which implies

1 > v ≥ 0

ΛN1,2
≪ a

where ΛN1,2
is the scale at which the gauge coupling g−2

1,2 becomes strong.19

The fact that the system is stable perturbatively is at first sight surprising, since from

the open string description one would expect that for sufficiently small a an instability

develops, ultimately related to the tachyon that appears when the brane separation is

below the string scale. In particular, we expect the instability to occur when the coupling

on the branes becomes strong enough that the Coulomb attraction overcomes the tension

effects from the branes. However, it is easy to see that there is no stable solution for small

a. As we decrease a, the solution reaches the boundary of the moduli space,

Λ0 exp(−
1

g2
1,3|M3,1|

) < a,

where Imτ is positive definite, before the instability can develop.20 Namely, if we view Λ0

as a cutoff on how much energy one has available, then for a stable solution to exist at

19 From the solution, one can read off, e.g., g−2

1
= −(2|M1| + |M3|) log(

ΛN1

Λ0
).

20 Since Im(τ) is a symmetric real matrix of rank two, a necessary condition for the eigenvalues

to be positive is that the diagonal entries are positive. The equation we are writing corresponds

to the positivity of the diagonal entries of Im(τ) evaluated at the critical point. For weak gauge

coupling, this is also the sufficient condition.
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fixed coupling, the branes have to be separated by more than ∼ Λ0, and said minimum

separation increases as one moves towards stronger coupling. The couplings, however, do

run with energy, becoming weaker at higher Λ0, and because of that the lower bound on

a actually decreases with energy. Alternatively, as we will discuss in the next subsection,

there is a lower bound on how small |a| can get, set by the strong coupling scales ΛN1,2
of

the brane theory. When this bound is violated, the dual gravity solution disappears.

The fact that the system is perturbatively stable should be related to the fact that

in this case there is no compact B cycle. Namely, in section 3 we have seen that when

perturbative stability is lost, the system rolls down to a new minimum corresponding to

shrinking a compact B-cycle without flux through it. In this case, such a compact B-cycle

is absent, so the system has no vacuum it can roll away to, and correspondingly it remains

perturbatively stable.

The theory has another vacuum with the same charges, which can have lower energy.

This vacuum is not a purely closed string vacuum, but it involves branes. Consider, for

example, the case with M1 = −M3 = −M . In this case, the brane/anti-brane system

should be exactly stable for large enough separation a. However, when a becomes small

enough, it should be energetically favorable to decay to a system with simply M branes

on S2
2 , which is allowed by charge conservation. This should be the case whenever

A(S2
2) ≤ A(S2

1) +A(S2
3)

where the areas on the right hand side refer to those of the minimal S2’s at the critical

points of W ′
1(t) = z1(t) − z2(t) and W ′

3(t) = z1(t) − z3(t),

A(S2
1) = |r1|, A(S2

3) = |r1| + |r2|.

In the class of S2
2 , there is no holomorphic 2-cycle, as W ′

2(t) = z2(t) − z3(t) = −ma never

vanishes, so

A(S2
2) =

√
|r2|2 + |ma|2. (6.6)

Clearly, when a is sufficiently small, the configuration with M branes on S2
2 should cor-

respond to the ground state of the system. If instead M1,3 are generic, we end up with a

vacuum with intersecting branes, studied recently in [21]. Here one has additional massless

matter coming from open strings at intersection of the branes, and correspondingly there

is no gaugino condensation and no closed string dual. As a result, the methods based on

holography we use here have nothing to say about this vacuum.
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6.1. A Stable Non-Supersymmetric Vacuum

Consider now the flop of the simple A2 singularity of the previous sub-section, where

z1 and z2 get exchanged,

z̃1(t) = −mt, z̃2(t) = 0, z̃3(t) = −m(t− a),

and where

S2
1 → S̃2

1 = −S2
1 .

We now wrap M̃1 < 0 anti-branes on S̃2
1 and M̃2 > 0 branes on S̃2

2 . In this case, one

would expect the system to have a stable, non-supersymmetric vacuum for any separation

between the branes. This is the case because the system has nowhere to which it can decay.

Suppose we wrap one anti-brane on S̃2
1 and one brane on S̃2

2 . If a cycle C exists such that

C = −S̃2
1 + S̃2

2 (6.7)

then the brane/anti-brane system can decay to a brane on C. In the present case, such a C

does not exist. The reason for that is the following. On the one hand, all the curves in this

geometry come from the ALE space fibration, and moreover all the S2’s in the ALE space

have self intersection number −2. On the other hand, because the intersection number of

S̃2
1 and S̃2

2 is +1, (6.7) would imply that the self intersection of C is −6. So, the requisite C

cannot exist. The vacuum is, in fact, both perturbatively and non-perturbatively stable;

we will see that the holographic dual theory has no perturbative instabilities for any

separation between the branes.

Because the z’s have been exchanged and the geometry is now different; we get a new

prepotential F̃0 and effective superpotential

Weff =
∑

i=1,2

α̃i S̃i + M̃i ∂S̃i
F̃0(S̃) (6.8)

where

2πiF0(S̃) =
1

2
S̃2

1 (log(
S̃1

(−m)Λ2
0

) −
3

2
) +

1

2
S̃2

2 (log(
S̃2

mΛ2
0

) −
3

2
) − S̃1S̃2 log(

a

Λ0
).

Alternatively, we should be able to work with the old geometry and prepotential (6.2),

but adjust the charges and the couplings consistently with the flop. The charges and the

couplings of the two configurations are related by

M̃1 = −M1, M̃2 = M3, (6.9)
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where M1,3 are now both positive, and

g̃−2
1 = −g−2

1 , g̃−2
2 = g−2

3 , (6.10)

where g−2
1 is now negative. The effective superpotential is

Weff =
∑

i=1,3

αi Si +Mi ∂Si
F0(S), (6.11)

in terms of the old prepotential (6.2). Indeed, the two are related by F0(S1, S3) =

F̃0(S̃1, S̃2) and a simple change of variables

S̃1 = −S1, S̃2 = S3,

leaves the superpotential invariant. The critical points of the potential associated to (6.11)

with these charges are

S̃1

|M̃1|

=
(
Λ2

0m
)|M̃1|( a

Λ0

)|M̃2|

exp(−2πiα1)

S̃
|M̃2|
2 =

(
Λ2

0m
)|M̃2|( a

Λ0

)|M̃1|

exp(−2πiα2)

with effective potential at the critical point

V∗ =
|M̃1|

g̃2
1

+
|M̃2|

g̃2
2

−
1

2π
|M̃1||M̃2| log

(
|
a

Λ0
|
)
.

The masses of the bosons in this vacuum are again given by (6.3)(6.5) with the obvious

substitution of variables. Just as in the previous subsection, the masses are positive in any

of these vacua. Moreover, because there are no two-loop corrections to the prepotential,

as we have seen in section 3, the vacuum is stable as long as the metric remains positive

definite. In the previous section, we expected an instability for small enough a, and found

that the perturbatively stable non-supersymmetric solution escapes to the boundary of the

moduli space (defined as the region where Imτ is positive definite) when this becomes the

case. In this case, we do not expect any instability for any a, as there is nothing for the

vacuum to decay to. Indeed, we find that Imτ is now positive definite for any a 6= 0.

The vacuum is stable perturbatively and non-perturbatively – there simply are no

lower energy states with the same charges available to which this can decay. So, this

gives an example of an exactly stable, non-supersymmetric vacuum in string theory, albeit
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without four dimensional gravity.21 Moreover, since in this case there are no tachyons in

the brane/anti-brane system, this should have a consistent limit where we decouple gravity

and stringy modes, and are left with a pure, non-supersymmetric, confining gauge theory,

with a large N dual description. This is currently under investigation [46].
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Appendix A. Matrix Model Computation

Using large N duality in the B model topological string [33], the prepotential F0 of

the Calabi-Yau manifolds studied in this paper can be computed using a matrix model

describing branes on the geometry before the transition. The same matrix model [31]

captures the dynamics of the glueball fields S in the N = 1 supersymmetric gauge theory

in space-time, dual to the Calabi-Yau with fluxes in the physical superstring theory. In this

appendix, we use these matrix model/gauge theory techniques to compute the prepotential

for Calabi-Yau manifolds which are A2 fibrations with quadratic superpotentials, as studied

in sections 3 and 6. To our knowledge, this computation has not previously been carried

out.

The matrix model is a U(N1) × U(N2) quiver with Hermitian matrices Φ1 and Φ2

which transform in the adjoint of the respective gauge groups, and bifundamentals Q and

Q̃ which correspond to the bifundamental hypermultiplets coming from 12 and 21 strings.

The relevant matrix integral is then given by

Z =
1

vol (U(N1) × U(N2))

∫
dΦ1dΦ2dQdQ̃ exp

(
1

gs
TrW(Φ1,Φ2, Q, Q̃)

)

where W is the superpotential of the corresponding N = 1 quiver gauge theory, given by

W = TrW1(Φ1) + TrW2(Φ2) + Tr(Q̃Φ1Q) − Tr(QΦ2Q̃) (A.1)

21 This fact has been noted in [28].
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with

TrW1(Φ1) = −
m1

2
Tr(Φ1 − a1idN1

)2, TrW2(Φ2) = −
m2

2
Tr(Φ2 − a2idN2

)2.

The saddle points of the integral correspond to breaking the gauge group as

U(N1) × U(N2) → U(M1) × U(M2) × U(M3) (A.2)

where

N1 = M1 +M3, N2 = M2 +M3,

by taking as expectation values of the adjoints and bifundamentals to be

Φ1,∗ =

(
a1 idM1

0
0 a3 idM3

)
, Φ2,∗ =

(
a2 idM2

0
0 a3 idM3

)

where a3 = (m1a1 +m2a2)/(m1 +m2), and

(QQ̃)∗ =

(
0 0
0 −W ′

1(a3) idM3

)
, (Q̃Q)∗ =

(
0 0
0 W ′

2(a3) idM3

)
,

where −W ′
1(a3) = m1(a1 − a3) = W ′

2(a3).

Now let’s consider the Feynman graph expansion about this vacuum. The end result

is a very simple path integral. However, to get there, we need to properly implement the

gauge fixing (A.2), and this is somewhat laborious. It is best done in two steps. First,

consider fixing the gauge that simply reduces U(N1,2) to U(M1,2) × U(M3). This follows

[35] directly. Let

Φ1 =

(
Φ1

11 Φ1
13

Φ1
31 Φ1

33

)
.

To set the M1 ×M3 block in Φ1 to zero

F1 = Φ1
13 = 0

we insert the identity into the path integral in the form

id =

∫
dΛ δ(F1) Det(

δF1

δΛ
),

where the integral is over those gauge transformations not in U(M1)×U(M3). The deter-

minant can be expressed in terms of two pairs of ghosts, B13, B31 and C31, C13, which are

anti-commuting bosons, as

Det(
δF1

δΛ
) =

∫
dB13dC31dB31dC13 exp

( 1

gs
Tr(B13Φ

1
33C31 − C31Φ

1
11B13)

)

exp
( 1

gs
Tr(B31Φ

1
11C13 − C13Φ

1
33B31)

)
.
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By an identical argument, we can gauge fix the second gauge group factor

U(N2) → U(M1) × U(M3)

to set the M2 ×M3 block of Φ2 to zero. We do this by again inserting the identity into

the path integral, but now with the determinant replaced by

Det(
δF2

δΛ
) =

∫
dB23dC32dB32dC23 exp

( 1

gs
Tr(B23Φ

2
33C32 − C32Φ

2
22B23)

)

exp
( 1

gs
Tr(B32Φ

2
22C23 − C23Φ

2
33B32)

)
.

Finally, since the vacuum will break the two copies of U(M3) to a single copy, we need

to gauge fix that as well. To do this, we’ll fix a gauge

F3 = Q33 − q id = 0

where Q33 refers to the 33 block of Q, and integrate over q. This is invariant under the

diagonal U(M3) only. To implement this, insert the identity in the path integral, written

as

id =

∫
dΛ33

∮
dq

q
δ(Q33 − q id) qM

2
3 .

The above is the identity since

Det(
δF3

δΛ33
) = qM

2
3 ,

and we have taken the q-integral to be around q = 0. Inserting this, we can integrate out

Q33, and Q̃33. The Q33 integral sets it to equal q. The Q̃33 integral is a delta function

setting

Φ1
33 = Φ2

33, (A.3)

but there is a left over factor of q−M
2
3 from the Jacobian of δ(q(Φ1

33 − Φ2
33)). Integrating

over q gives simply 1.

The remaining fields include a pair of regular bosons Q13, Q̃31 in the bifundamental

representation of U(M1) × U(M3) and a pair of ghosts C13, B31, with exactly the same

interactions. Consequently, we can integrate them out exactly and their contribution is

simply 1. This also happens for Q32, Q̃23 and B23, C32, which also cancel out. We are left

with the spectrum presented in section 3 which very naturally describes branes with open

strings stretching between them.
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A.1. A Special Case

In the special case when m2 = −m1 = m, the matrix integral is one-loop exact. To

begin with, the effective superpotential is given by (A.1) with

TrW1(Φ1) = −
m

2
Tr(Φ1)

2, TrW2(Φ2) =
m

2
Tr(Φ2 − a idN2×N2

)2.

The theory now has only one vacuum, where Φ1 and Q, Q̃ vanish, and

Φ2 = a idN2×N2
.

Expanding about this vacuum, the superpotential can be re-written as

Weff = −
m

2
TrΦ2

1 +
m

2
TrΦ2

2 − aTrQQ̃+ Tr(Q̃Φ1Q−QΦ2Q̃).

If we now redefine

Φ̃1 = Φ1 +
1

m
QQ̃, Φ̃2 = Φ2 +

1

m
Q̃Q,

the superpotential becomes quadratic in all variables, and the planar free energy is given

by the exact expression:

F0 =
S2

1

2

(
log

S1

mΛ2
0

−
3

2

)
+
S2

2

2

(
log

S2

(−m)Λ2
0

−
3

2

)
− S1S2 log

a

Λ0

There are higher genus corrections to this result, but they all come from the volume of the

U(N) gauge groups, and receive no perturbative corrections.

Appendix B. Geometrical calculation of the Prepotential

One can derive the same prepotential by direct integration. We only sketch the com-

putation here. The equation for the geometry (3.2) can be rewritten

x2 + y2 + z(z−m1(t− a1))(z +m2(t− a2)) =

− s1m1(z +m2(t− a2)) − s2m2(z −m1(t− a1)) − s3m3z.
(B.1)

Here si are deformation parameters. This is a convenient rewriting of (3.2) because we will

find that the periods of the compact cycles are given by Si = si + O(S2). As mentioned

in the main text, the holomorphic three-form Ω of the Calabi-Yau descends to a one-form
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defined on the Riemann surface obtained by setting x = y = 0 in (B.1). The equation for

the Riemann surface is thus

−1 =
m1s1

z(z −m1(t− a1))
+

m2s2
z(z +m2(t− a2))

+
m3s3

(z −m1(t− a1))(z +m2(t− a2)).
(B.2)

The one-form can be taken to be ω = zdt − tdz. The one-form is only defined up to a

total derivative; a total derivative changes only the periods of the non-compact cycles, and

our choice avoids quadratic divergences in the non-compact periods. These divergences

would not contribute to physical quantities in any case. The equation for the Riemann

surface is a cubic equation for z(t), so the Riemann surface has three sheets, which are

glued together along branch cuts. The compact periods are given by integrals around the

cuts, while the non-compact periods are given by integrals from the cuts out to a cutoff,

which we take to be t = Λ0.

It is convenient to make the change of variables

u =
−t+ a1 + z/m1

a21
v = −z

m3

a21m1m2
(B.3)

where a21 = a2 − a1. In the new variables, the equation for the Riemann surface takes the

simple form

1 =
s1
∆3

1

uv
−

s2
∆3

1

v(u+ v + 1)
+

s3
∆3

1

u(u+ v + 1)
(B.4)

with ∆3 = (a2 − a1)
2m1m2/m3 as in the main text. The change of variables is symplectic

up to an overall factor, so in the new variables the one-form becomes

ω = ∆3(udv − vdu). (B.5)

The change of variables makes it clear that we can think of the problem as having one

dimensionful scale ∆, and three dimensionless quantities, si/∆
3, which we will take to

be small. There are many other dimensionless quantities in the problem, such as mi/mj ,

but they do not appear in the rescaled equations so they will not appear in the periods,

with one small caveat. While the equation for the Riemann surface and the one-form only

depend on ∆ and si/∆
3, the cutoff is defined in terms of the original variables, t = Λ0, so

the cutoff dependent contributions to the periods can depend on the other parameters.

We sketch how to compute one compact period and one non-compact period. Though

it is not manifest in our equations, the problem has a complete permutation symmetry
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among (s1, s2,−s3), so this is actually sufficient. One compact cycle (call it S1) is related

to the region in the geometry where u and v are small, so that to a first approximation

1 ≈
s1
∆3

1

uv
. (B.6)

We expand (B.4) for small u, v to get

uv =
s1
∆3

−
s2
∆3

u(1 − u− v) +
s3
∆3

v(1 − u− v) + ... (B.7)

This will be sufficient for the order to which we are working, and the equation is quadratic.

We could solve for u(v) or v(u) in this regime; we would find a branch cut and integrate

the one-form around it. Equivalently, we can do a two dimensional integral

S1 = ∆3

∫
du ∧ dv (B.8)

over the region bounded by the Riemann surface (this is Stokes’ Theorem). One can

derive a general formula for the integral over a region bounded by a quadratic equation by

changing coordinates so that it is the integral over the interior of a circle. In this case, the

result is

S1 = s1 +
1

∆3
(s1s2 − s1s3 − s2s3) + O

(
s3

∆6

)
. (B.9)

The permutation symmetry of the problem then determines the other compact periods.

Now we compute the integral over the cycle dual to S1. The contour should satisfy

uv ≈ s1/∆
3 and go to infinity. Also, the contour must intersect the compact 1-cycle in a

point. A contour which satisfies these criteria is to take u, v to be real and positive (this

choice works as long as the si are real and positive, but the result will be general). We

will need two different perturbative expansions to do this integral: one for small u and the

other for small v. Since we have uv ≈ s1/∆
3, we will need a “small u” expansion which is

valid up to u ∼
√
s1/∆3, and similarly for the small v expansion.

To expand for small v, we first multiply (B.4) through by v to get

v =
s1
∆3

1

u
−

s2
∆3

1

1 + u+ v
+
s3
∆3

v

u(1 + u+ v)

We now solve perturbatively for v(u), using the fact that throughout the regime of interest

v << 1 + u. The largest that v/(1 + u) gets in this regime is

v

1 + u
<

√
s1
∆3

.
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To zeroth order in v/(1 + u),

v(0) =
s1
∆3

1

u
−

s2
∆3

1

1 + u
. (B.10)

To first order,

v(1) =
s1
∆3

1

u
−

s2
∆3

1

1 + u+ v(0)
+

s3
∆3

v(0)

u(1 + u)
,

which upon expanding becomes

v(1) =
s1
∆3

1

u
−

s2
∆3

(
1

1 + u
−

v(0)

(1 + u)2

)
+

s3
∆3

v(0)

u(1 + u)
. (B.11)

We need keep one more order in the perturbative expansion in order to get the prepotential

to the desired order:

v(2) =
s1
∆3

1

u
−

s2
∆3

1

1 + u+ v(1)
+

s3
∆3

v(1)

u(1 + u+ v(0))

which upon expanding becomes

v(2) =
s1
∆3

1

u
−

s2
∆3

[
1

1 + u
−

v(1)

(1 + u)2
+

(v(0))2

(1 + u)3

]
+
s3
∆3

[
v(1)

u(1 + u)
−

(v(0))2

(1 + u)2

]
(B.12)

Note that using (B.10)(B.11), this is an explicit equation for v(u). We could similarly

expand to find u(v) in the regime of small u, but actually we can save ourselves the

computation by noting that the equation for the Riemann surface is invariant under u↔

v, s2 ↔ −s3. We are now in a position to perform the integral of the one-form ω over the

contour. We use the approximation (B.12) for the part of the integral where v is small, and

the corresponding formula for u(v) for the part of the integral where u is small. We can

choose to go over from one approximation to another at a point umin = vmin. Such a point

will be approximately umin =
√
s1/∆3, but we need a more precise formula. By setting

u = v in the equation for the Riemann surface, and perturbing around umin =
√
s1/∆3,

we find

u2
min =

s1
∆3

−
s2 − s3

∆3

√
s1
∆3

+
(s2 − s3)

2

2∆6
+

2s1(s2 − s3)

∆6
+ . . .

We spare the reader the details of the integration. The result is cutoff dependent, and

we assume that the cutoff is sufficiently large so that we can drop contributions which
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depend inversely on the cutoff. After doing the integral, we rewrite the result in terms of

the compact periods Si using (B.9). The result is:

∂S1
F0 = (S1 − S2) log umax + (S1 + S3) log vmax − (S1 log

S1

∆3
− S1)

−
1

∆3

(
1

2
S2

2 +
1

2
S2

3 + S1S2 − S1S3 − 3S2S3

)
+ O

(
S3

∆6

)
.

Here umax and vmax are cutoffs at large u, v. Since our cutoff is t = Λ0, we can solve for

umax, vmax. When u is large, v is small, since uv ≈ S1/∆
3. Looking back at the change of

variables (B.3), we find

umax =
Λ0

a21
vmax =

Λ0m3

a21m2
=

Λ0

a31

Again, the other non-compact periods are determined by symmetry. It is now a simple

matter to find F0:

2πiF0 =
1

2
S2

1 log
Λ2

0

a21a31
+

1

2
S2

2 log
Λ2

0

a21a23
+

1

2
S2

3 log
Λ2

0

a31a23

− S1S2 log
Λ0

a21
+ S1S3 log

Λ0

a31
+ S2S3 log

Λ0

a23

−
1

2
S2

1

(
log

S1

∆3
−

3

2

)
−

1

2
S2

2

(
log

S2

∆3
−

3

2

)
−

1

2
S2

3

(
log

S3

∆3
−

3

2

)

−
1

2∆3

(
S1S

2
2 + S2

1S2 + S1S
2
3 − S2

1S3 + S2S
2
3 − S2

2S3 − 6S1S2S3

)
+ O

(
S4

∆6

)
.

This result agrees with the matrix model computation of appendix A. Recall that we

dropped terms which depend inversely on the cutoff. More precisely, we dropped con-

tributions to the non-compact period of the form Si|a12|/Λ0. This is necessary in order

to match the result of the matrix model computation. In particular, in order to justify

keeping the corrections we do keep, we require

Si
∆3

>>
|a12|

Λ0
. (B.13)

Appendix C. The Hessian at Two Loops

The equations required to analyze stability simplify if we introduce the notation

ua ≡ iGabαb.
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Since we are taking the αi to be pure imaginary, ua will be real and positive. Furthermore,

since we are taking τab to be pure imaginary, we can replace it with the metric, τab = iGab.

Then the equation of motion (3.6) takes the simple form

1

2
iFkab(u

aub −MaM b) = 0. (C.1)

At one-loop, the third derivative of the prepotential is nonzero only if all of the derivatives

are with respect to the same variable, so at one-loop the solutions are ua = ±Ma. As

discussed earlier, the physically relevant solutions are

ua = |Ma|. (C.2)

This is just a rewriting of the one-loop solutions (3.8) in terms of the new notation.

At two loops, we can find the solution by perturbing around the one-loop result. Let

ua = |Ma| + δa. We find that

δk =
1

2|Mk|Fkkk
Fkab(−|Ma||M b| +MaM b). (C.3)

Having solved the equations of motion at two loops, we proceed to the Hessian, providing

less detail. Assuming the same reality conditions, the matrices of second derivatives are

given by

∂k∂lV = ∂
k
∂
l
V =

1

2

(
iFabkl + iFcakiFdblG

cd
)
(uaub −MaM b), (C.4)

∂k∂lV = ∂
k
∂lV =

1

2
iFcakiFdblG

cd(uaub +MaM b). (C.5)

The relations between the different mixed partial derivatives arise because we are perturb-

ing about a real solution.

At two loops, taking four derivatives of the prepotential gives zero unless all of the

derivatives are with respect to the same variable, so the first term in (C.4) can be simplified

as

iFabkl(u
aub −MaM b) = δkliFkkkk(u

kuk −MkMk) = 2δkliFkkkk|M
k|δk. (C.6)

Though it is not obvious at this stage, the other terms on the right hand side can be

approximated by their one-loop value in the regime of interest. This is very useful because,
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as mentioned previously, at one-loop the third derivatives of the prepotential vanish unless

all indices are the same. With these simplifications, the nonzero second derivatives become

(∂a + ∂a)(∂b + ∂
b
)V =

∑

c

2iFaaaiFcccG
ac|Ma||M c|

(
δcb +Gcb

iFbbbbδb

iFbbbiFccc|M c|

)
,

(C.7)

(∂a − ∂a)(−∂b + ∂
b
)V =

∑

c

2iFaaaiFcccG
ac|Ma||M c|

(
δcb −Gcb

iFbbbbδb

iFbbbiFccc|M c|

)
.

(C.8)

In these equations, no indices are implicitly summed over.

In order to analyze the loss of perturbative stability, we compute the determinant of

the Hessian. Since the eigenvalues remain real, in order to go from a stable solution to

an unstable one, an eigenvalue should pass through zero. We therefore analyze where the

determinant is equal to zero. Up to possible constant factors, the determinant is given by

(
Det Gab

)2
(
∏

c

|M c|

iFccc

)4

Det

(
δcb +Gcb

Fbbbbδb

iFbbbFccc|M c|

)
Det

(
δcb −Gcb

Fbbbbδb

iFbbbFccc|M c|

)

(C.9)

and so in order to vanish, one of the last two determinants must go to zero.
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