Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Title

Notes on Quadrupole Focusing
Permalink
https://escholarship.org/uc/item/8t05k5pw
Author
McMillan, Edwin M.
Publication Date
1956-02-09

UNIVERSITY OF CALIFORNIA
 Radiation Laboratory Berkeley, California
 Contract No. W-7405-eng-48

NOTES ON QUADRUPOLE FOCUSING
 Edwin M. McMillan

February 9, 1956

MOTES ON QUADRUPOLE FOCUSING
Edwin M. McMillan
Radiation Laboratory
University of California
Berkeley, California
February 9, 1956

A. General Considerations

1. Consider two planes perpendicular to the axis of the system, with coordinates x and y in these planes lying along the principal directions of the quadrupoles. Let x_{1} and x_{1} ' be the x displacement and slope of an orbit at the first plane, while x_{2} and $x_{2}{ }^{2}$ are the corresponding quantities at the second plane. Then the most general linear relations between these quantities are

$$
\begin{aligned}
& x_{2}=a x_{1}+b x_{1}^{\prime} \\
& x_{2}^{\prime}=c x_{1}+d x_{1}^{\prime}
\end{aligned}
$$

This pair of equations can be represented by the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
2. In all matrices encountered in this application, the determinant $a d-b c=1$. This fact can be used either to simplify the calculations, or $2 s$ a check on calculations made without specifically using this fact.
3. If the orbit goes in succession through two regions for which the matrices are known, the matrix for the whole systern is the product of the individual matrices. The matrix for the region traversed first appears at the right in the product.
4. If all elements of a region with matrix ($a_{r} b_{0}, c_{9}$ d) are physically inverted along the axis, as if by reflection in a plane midway between the planes described in (A. 1) the matrix representing the new situation is: $\left(\begin{array}{ll}d & b \\ c & a\end{array}\right)$ A corollary of this is that if a region has a plane of symmetry.効ea $a=d$ 。
5. If a region with matrix a, b, c di is followed by the sarse cegon inverted as in (A. A) the resultant matrix is

$$
\left(\begin{array}{cc}
a d+b c & 2 a b \\
2 a c & a d+b c
\end{array}\right)
$$

(Note that $a d+b c=2 a d-1=2 b c+1$.)
6. Matrices for the y direction are obtained from those for the x direction by simply changing the sign of the magnetic field gradient throughont.
7. Signiiicance of vanishing matrix elements: From the equaticne in (A. 1 . it is apparent that if the coefficient $a=0$, parallel rays incident at the left are focused to a point at the second plane; if $d=0$, a point source at the first plane gives a parallel beam at the right; if $b=0$, a point source at the first plane gives a point focus at the second; if $c=0$, an iacident parallel beam gives an emergent parallel beam.

B. Analogy with Geometrical Optics

8. The matris for a field-free region of leugth L is

$$
\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)
$$

9. The matrix for a thin lens of focal length is

$$
\left(\begin{array}{rr}
1 & 0 \\
-1 / f & 1
\end{array}\right)
$$

10. Make the following combination: Field-free region of length L_{1}. followed by region of matrix $(a b c d$, followed by field-free region of length L_{2}. The revulting matrix is

$$
\left(\begin{array}{cc}
a+c L_{2} & b+a L_{1}+d L_{2}+c L_{1} L_{2} \\
c & a+c L_{1}
\end{array}\right)
$$

If faks combiaation is to give a point-to-point focus, then accordiag to fa. 7 the sperer right element must ranish. Usiag fA. 2), we can write this condition in the form

$$
\left(L_{1}+d / c \mid\left(L_{2}+a / c\right\rangle=1 / c^{2}\right.
$$

A plot of L_{1} against L_{2} is thus a hyperbole. This can also be written

$$
\frac{1}{L_{1}+/ d-I T / c}+\frac{1}{L_{2}+(2-I) / c}=-c_{3}
$$

which has the form of the standard lens formula, if $-1 / \mathrm{c}$ is taken for the focal leagth and $(d-1) / c_{0}(a-1) / c$ are taken for the distances of the principal plames inward from the ends of the leas. Note that if the cofficients $a_{g} b, c_{c} d$ given for the thin lens in (B. 9) are substituted into this, it gives

$$
1 / L_{1}+1 / L_{2}=1 / \mathrm{f}_{0}
$$

If L_{1} and L_{2} satisfy the conditions given above, the linear magnification is equal to the upper left element in the matrix, a $+\mathrm{cL}_{2}$. The retio of angular spreads is the reciprocal of this. These are negative if the image is inverted.
11. If $L_{1}=L_{2}=L$ in the above,

$$
L=-\frac{1}{c}\left[\frac{a+d}{2}+\sqrt{\left(\frac{a-d}{2}\right)^{2}+1}\right]
$$

Inear nagninication $=\frac{a-a}{2}-\sqrt{\left(\frac{a-d}{2}\right)^{2}+1}$.
The general solution has a a sign in front of the square roots, but since the t sign is to be chosen in most practical cases, it is written this way to avoid confusion.
C. Basic Quadrupole Formulas
12. Let p be the radius of curvature of the particle in the field at a distance s from the axis, and let $\&$ be the leagth of the region considered.

Define

$$
\phi=\frac{2}{\sqrt{\rho r}} .
$$

Then the matrix for a focusing section is

$$
\left(\begin{array}{cr}
\cos \phi & \frac{2}{\phi} \sin \phi \\
-\frac{\phi}{2} \sin \phi & \cos \phi
\end{array}\right)
$$

For a defocusing section, replace ϕ by i ϕ to get

$$
\left(\begin{array}{lr}
\cosh \phi & \frac{1}{\phi} \sinh \phi \\
\frac{\phi}{2} \sinh \phi & \cosh \phi
\end{array}\right)
$$

13. A focusing section of strength ϕ_{1} followed by a defocusing section of strength $\phi_{2^{\prime}}$ both having the same length z_{0} has the matrix
$\left(\begin{array}{ll}\cos \phi_{1} \cosh \phi_{2}-\frac{\phi_{1}}{\phi_{2}} \sin \phi_{1} \sinh \phi_{2} & 2\left(\frac{1}{\phi_{1}} \sin \phi_{1} \cosh \phi_{2}+\frac{1}{\phi_{2}} \cos \phi_{1} \sinh \phi_{2}\right. \\ \frac{1}{1}\left(-\phi_{1} \sin \phi_{1} \cosh \phi_{2}+\phi_{2} \cos \phi_{1} \sinh \phi_{2}\right) & \cos \phi_{1} \cosh \phi_{2}+\frac{\phi_{2}}{\phi_{1}} \sin \phi_{1} \sinh \phi_{2}\end{array}\right.$

The corresponding matrix for the y-direction is derived from this by replacing ϕ by i ϕ_{0} This combination will be called a symmetrical doublet if $\phi_{1}=\phi_{2^{\circ}}$ A useful approximation is obtained by letting $\phi_{1}=\phi(1+a), \phi_{2}=\phi(1-a)_{0}$ and expanding to order ϕ^{2} the coefficients of terms of order a. Then, for $a \ll 1$ and ϕ not too large, the above matrix is represented approximately by
$\left(\begin{array}{l}\cos \phi \cosh \phi-\sin \phi \sinh \phi-4 \phi^{2} a \\ \frac{\phi}{(-\sin \phi \cosh \phi+\cos \phi \sinh \phi-4 \phi a)}\end{array}\right.$ $\frac{1}{\phi}(\sin \phi \cosh \phi+\cos \phi \sinh \phi$
$\cos \phi \cosh \phi+\sin \phi \sinh \phi-4 \phi^{2}$

This is exact if a $=0$, A shill further approxination can be obianaed by expanding the functions in all terms. If his is caried out to mo order: above the leadiag term, taking account of the fact that in the cases we wre interested in is of order is 4. we get

$$
\left(\begin{array}{c}
1-\phi^{2} \\
\frac{2 \phi^{2}}{\phi}\left(-\frac{1}{3} \phi^{2}-2 a\right)
\end{array}\right.
$$

$$
\left.\begin{array}{c}
21 \\
1+\phi^{2}
\end{array}\right)=
$$

Note that in these approximate formulas the relation ad -bc $=1$ mut aob be used to compute elements given to higher order than the others.)
14. A symmetrical triplet is produced by placing in series a doublet and a reversed doublet of equal strength. Using (A.5) and the last form given in (C. 13), we get

$$
\begin{equation*}
\left(\frac{4 \phi^{2}}{2}\left(-\frac{1}{3} \phi^{2}+\frac{1}{3} \phi^{4}-2 c\right)\right. \tag{4
1}
\end{equation*}
$$

The more accurate matrix (exact for $a=0$) appears in its simplest form whet functions of double angles are used:
$\left(\begin{array}{l}\cos 2 \phi \cosh 2 \phi-16 \phi^{2} \\ \frac{\phi}{\phi}(\sinh 2 \phi-\sin 2 \phi \cosh 2 \phi-8 \phi \theta)\end{array}\right.$
$\frac{1}{\phi} \sinh 2 \phi+\sin 2 \phi \cosh 2 \phi$
$\cos 2 \phi \cosh 2 \phi-16 \phi^{2} \alpha$

These matrices apply to the case with the focusing section at the ends; the change $\phi=1 \phi$ fakes one to the case with the focuaing section ia the middle.

D. Applications

Th all cases given below, it will be required that the foci coiacide tox x ancy displacements. In piactice, astigmatic arrangenerate may dome times be wanted, but this is a good starting point for examining the properties of quadrupole lenses. Arrangements for producing a parallel begm and for focusing between points at equal distances from the iens will be considered in some detail, and comparisons made between the doublet and triplet lenges. The comparisons will presumably hold in more general cases where the focat distances are unequal.
15. Production of parallel beam from a point source. Refer to the formulas in (B, 10) and note that a parallel beam on the right implies $L_{2}=\infty$. This leads to

$$
L_{1}=-d / c_{0}
$$

With the source at the diatance L_{1}, the ratio of the width of the outgoing beam to the angular spread of the incident beam is $-1 / c$. If the source is displaced laterally by a unit distance, the outgoing beam is deflected by an angle c. This displacement has a further effect, since the priacipal planes are not necessarily at the ends of the lens section; this is a lateral displacenems of the central ray the ray passing through the center of the lens entrance) by an amount $a-1 / d$ at the lens exit.
16. Use of symmetrical tripleta for parallel beam from a point source. Start with the approximate matrix given in (C. 14), and set up the condition that d/e is unchanged when ϕ is changed to i ϕ. This leads to the requirement

$$
a=\frac{1}{6} \phi^{4} .
$$

With this requirement satisfied, the matrix is very simple, and is the same for both x and y directions:

 ratios of deflections and angen has the same value.

Fow good an approximation is this? We can compare with betiar cetw
 agreement is within the eccuracy of a 6 ounch slide rule; at $\phi=0.6$ eaciong the approsimation gives $0=0.022_{8} L_{1}=5.8 L_{0}$ while the betsete calculation gives $\alpha=0.016_{a} L_{1}=4.32$. The cocificient $-1 / c$ is equat to 7.61 and 5.0 why $\mathrm{a}=1 / \mathrm{i}$ is equal to 1.1 and 0.6 . for the cases with the focuaing setoton tathe end and the middle, zespectively. If $\phi=\pi / 4$, the approximation is rather bat an exact calculation shows that the foci coincide at the edge of the lens for $a=0$, with $-1 / \mathrm{c}$ equal to 2.82 and 1.32.
17. Hse of doublets for parallel beara from a point source. Tisiog tha last 10 rm in (C. 13), we find that the condition for coincidiag foci ia agata that $a=\phi^{4} / 6$. The matrix is shen

$$
\left(\begin{array}{cc}
1-\phi^{2} & 21 \\
-12 \phi^{4} / 31 / 1+\phi^{2} & 1+\phi^{2}
\end{array}\right)
$$

The leagth $L_{1}=31 / 2 \phi^{4}$, The coefficients, $-1 / c$ differ for the x and y directions, but their product is equal to $L_{2}{ }^{2}$ to the order for which this calculation is good.

A better calculation fox $\phi=0.6$ radian gives better agreement than with the triplet; I_{1} comea out to be 3% below the approximate value, whule the coericients - $1 / \mathrm{c}$ are boch correct to within 4%, At $=\pi / 4$ the approximate value is still rather good; the correct values are given belows followed by the approximate ones 30 parentheses:
(a $0.056(0.064): L_{1}=3.7(3.91):-1 / c=2.62$ and $8.22(2.45$ and 10.14$)$. Gor cases with the iocusitag section in the ends and in the midde, respectively
18. Socusing between points at equal distances from a symuetricat tiplet. This finution can be thought of as two equa. doublata back to back,

Therefore the reaults of $3 D .17 /$ can be used dizecty in this cane. ghe Heaz magnificatiou $=-1$.

19 Tocusing between points at equal distances from a symmetrical
doublet. Symmetry considerations show that a should be sero in this case. and that the foci will automatically coincide for the x and y displacements. To find the focal distance, use (B,11) and the first form in $1 \subset 13$) giving

$$
L=\frac{1}{\phi} \frac{\cos \phi \cosh \phi+\sqrt{\sin ^{2} \phi \sinh ^{2} \phi+1}}{\sin \phi \cosh \phi-\cos \phi \sinh ^{2} \phi},
$$

or approximately $L=3 \rho / \phi^{4}$. To this approximation, the linear magnification is $-\left(1+\phi^{2}\right)$ when the focusing section is toward the source, and $\left.-11-\phi^{2}\right)$ when it is away from the source; the ratios of angular spreads are the reciprocals of these.
20. Angular aperture. This is the angle of a ray from the source that just touches the boundary of the usable region in the magnetic field. Let the radius of this boundary be r; then the angular aperture for a source distance L_{1} can be written as $\left(r / L_{1}\right)$ times some function of ϕ. In all the cases discussed above, the product of the two functions of ϕ for the x and y direction is equal to $1-\phi^{2}$ in an approximation good to this order in ϕ. More exact values can be computed without too much trouble, and some numerical examples will be given later.
21. Comparison of triplet and doublet. Collecting formulas given earlier to the simplest approximation, we have the following:

$$
\begin{aligned}
& \phi=2 / \sqrt{r \rho} \\
& L_{1}-k \ell / \phi^{4}=k r^{2} p^{2} / l^{3} \\
& \text { Product of } x \text { and } y \text { angular apertures } \\
& \sim\left(r / L l^{2} \mid 1-\phi^{2}-\left(l^{6} / k^{2} r^{2} \rho^{4}\right)\left(1-l^{2} / r \rho \|\right.\right.
\end{aligned}
$$

The numerical coeffictent is $k=3 / 4$ for production of a paraleil beam by a triplet, $3 / 2$ for the same case with a doublet, and twice these yalues for the casc of point-to-point focusing at equal distances by a sriples and doublets. respectively. The comparison of doublet to triplet can now be made under several sets of assumed circumstances. The ratios of quantities in the doublet and triplet arrangements do not depend on whether one is considering point-to-paraliel or point-to-point focusing to this approximation.
(a) Same total leagth and diameter of quadrupole magnet, same focal distance. Let the product of the angular apertures $=A$. Then

$$
\begin{aligned}
& \frac{\rho \text { doublet }}{\text { ptriplet }} \sim z \frac{\phi \text { doublet }}{\phi \text { triplet }} \sim \sqrt{2} \\
& \frac{\text { A doublet }}{\text { Atriplet }} \sim \frac{1-2 \phi_{t}^{2}}{1-\phi_{t}^{2}}
\end{aligned}
$$

Thus the triplet takes twice as great a magnetic field as the doublet, while the doublet has a smaller aperture. In case $\phi_{\mathbf{f}}$ is large enough that the aperture difference is important, and if the availabie field is great enough to achieve the triplet case, the triplet is better; however, the latter may aot prevail in practice.
(b) Same diameter and field strength of magnet, same focal distance.

$$
\frac{\text { total length of doublet }}{\text { total lenght of iriplet }} \sim(1 / 4)^{1 / 3} \cdot \frac{\phi_{d}}{\phi_{t}} \sim 2^{1 / 3}
$$

$$
\frac{A_{d}}{A_{t}}-\frac{1-2^{2 / 3} \phi_{t}^{2}}{1-\phi_{t}^{2}}
$$

Again the triplet gives a larger aperture, but the triplet requires a magaet 3. 59 times as long as the doublet.
(c) Same diameter, total length, and field strength of magnet.

$$
\begin{aligned}
& \frac{L_{d}}{L_{s}}-1 / 44_{b} \frac{\phi_{d}}{\phi_{s}}-2 \\
& \frac{A}{4}-1 / 3 \quad \frac{1-a^{2}}{-\operatorname{Ab}^{2}}
\end{aligned}
$$

The Acublet hes a targer aperture than the triplet by a factor of 16 whet
 the lazger aperture. The formula given here nakes the apernares squal as $\phi_{t}=0.49$ radian $\phi_{d}=0.98$ radian, but the approximations used become rather bad for such large values of φ.
22. Better calculation for (D, 21c) Let $M=$ total lergth of raagnet., A few values computed using the second form in (C. 13) and exact formalas for the orbit amplitudes are:

$\frac{\mathrm{M}}{\sqrt{\text { ² }}}$	ϕ_{t}	${ }^{\dagger}{ }_{d}$	$\frac{\mathrm{L}}{\mathrm{M}}$	$\frac{\mathrm{E}_{\text {c }}}{\text { M }}$	$\left(\frac{M}{2}\right)^{2} A_{1}$	$\left(\frac{M}{r}\right)^{2} A^{4}$	$A_{d} / A_{\text {, }}$
1.57	$\pi / 8$	$\pi / 4$	15.3	4.2	0.0036	0.032	8.7
3.14	$\pi / 4$	$n / 2$	0.92	0.32	0.50	1.02	2.04
4.70	3\%/8	$3 \pi / 4$	0.133	0.002	7.0	2.9	0.41

This shows that the doublet has a larger aperture than the triplet at least up to $\phi_{t}=0.79, \phi_{d}=1.57$, in the case where both doublet and tripler have the same total length and the same field strength. For larger valuea of ϕ the focal point comes uncomfortably close to the magnet for some uses.

The conclusion is that in many applications (particularly where equality of the x and y magnifications is not important) the doublet will do a better job than the triplet arrangement.
23. Effect of Gaps. Gaps between focusing and defocusing sections tend to increase the streagth of quadrupole arrangements. As an illustration, coosider the case of a symmetrical doublet with a field-free gap of length G between the two sections. The matrix elements (for the case with the focusing section at the left) are:
$2=\cos \phi \cosh \phi-\sin \phi \sinh \phi-\frac{L \phi}{L} \sin \phi \cosh \phi_{\theta}$
$b=\frac{L}{\phi} \sin \phi \cosh \phi+\cos \phi \sinh \phi+\frac{L \phi}{2} \cos \phi \cosh \phi l_{0}$
$c \operatorname{s} \frac{\phi}{I}-\sin \phi \cosh \phi+\cos \phi \sinh \phi-\frac{L \phi}{2} \sin \phi \sinh \phi{ }^{2}$
$\mathrm{d}=\cos \phi \cosh \varphi+\sin \phi \sinh \phi+\frac{1 \phi}{2} \cos \phi \sinh \phi$.

 by a factor of 3.6.

