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Abstract: This paper considers the construction of minimum aberra-

tion (MA) blocked factorial designs. Based on coding theory, the con-

cept of minimum moment aberration due to Xu (2003) for unblocked

designs is extended to blocked designs. The coding theory approach

studies designs in a row-wise fashion and therefore links blocked designs

with nonregular and supersaturated designs. A lower bound on blocked

wordlength pattern is established. It is shown that a blocked design has

MA if it originates from an unblocked MA design and achieves the lower

bound. It is also shown that a regular design can be partitioned into

maximal blocks if and only if it contains a row without zeros. Sufficient

conditions are given for constructing MA blocked designs from unblocked

MA designs. The theory is then applied to construct MA blocked designs

for all 32 runs, 64 runs up to 32 factors, and all 81 runs with respect to

four combined wordlength patterns.

AMS 2000 subject classifications. Primary 62K15; secondary 62K05.

Key words and phrases. Blocking scheme, linear code, minimum aberration,

minimum moment aberration, Pless power moment identity, projective geome-

try.

Running title. Minimum Aberration Blocked Factorial Designs

1Supported by NSF Grant DMS-0204009.

1



1 Introduction

Fractional factorial designs are widely used in scientific and industrial experiments.

Blocking is an effective method for reducing systematic variations and therefore

increasing precision of effect estimation. Experimenters often face the practical

problem of choosing good fractional factorial designs and blocking schemes.

Fractional factorial designs are typically chosen according to the minimum aber-

ration (MA) criterion [Fries and Hunter (1980)], which includes the maximum res-

olution criterion [Box and Hunter (1961)] as a special case. The study of blocking

in fractional factorial designs is complicated by the presence of two defining con-

trast subgroups, one for defining the fraction and another for defining the blocking

scheme, and therefore, resulting in two types of wordlength patterns, one for treat-

ment and another for block. The MA criterion can be applied to the treatment and

block wordlength patterns separately. However, MA designs with respect to one

wordlength pattern may not have MA with respect to the other wordlength pattern.

One approach, as done by Sun, Wu and Chen (1997) and Mukerjee and Wu (1999),

is to consider the concept of admissible blocking schemes, but it is often to have too

many admissible designs. Another approach is to combine the treatment and block

wordlength patterns into one single wordlength pattern so that the criterion of MA

can be applied to it in the usual way. Sitter, Chen and Feder (1997), Chen and

Cheng (1999) and Cheng and Wu (2002) have proposed four combined sequences,

resulting in four MA criteria (to be defined later). See Cheng and Mukerjee (2001)

for a related approach.

A practical and important issue is how to construct MA blocked designs with

respect to one or more criteria. This question is not adequately addressed in the

literature. Most of existing MA blocked designs rely on the work of Sun, Wu and

Chen (1997), who obtained the complete catalog of blocked designs with 8, 16, 32,

64 and 128 runs up to 9 factors. MA criteria rank blocked designs according to

the treatment and block wordlength patterns, which are often obtained by count-

ing words in the treatment defining contrast subgroups and alias sets. When the

number of factors is large, there are a huge number of words to be counted, causing

considerable difficulties in computation. For example, when a design with 64 runs

and 25 factors is arranged in 8 blocks, there are 222 − 1 = 4, 194, 303 words to be

2



counted. It is cumbersome and sometimes even impossible to do so for thousands

or millions of different designs. This calls for alternative computational methods.

To avoid the aforementioned computational difficulties, we take a coding theory

approach and propose new methods to compare and rank blocked designs without

using defining contrast subgroups and alias sets. The idea was originally due to Xu

(2003), who proposed the concept of minimum moment aberration and established

its equivalence to MA for unblocked designs. We extend the concept of minimum

moment aberration to blocked designs for three of the four MA criteria in Section

2.

To further ease the computation burden, we study relationship among MA

blocked designs under different criteria and develop a general theory on MA blocked

designs. The coding theory approach studies designs in a row-wise fashion and

therefore links blocked designs with nonregular and supersaturated designs. Results

on nonregular and supersaturated designs are used to establish an important lower

bound on blocked wordlength pattern. It is shown that a blocked design has MA

with respect to all four criteria if it originates from an unblocked MA design and

achieves the lower bound. It is also shown that a regular design can be partitioned

into maximal blocks if and only if it contains a row (i.e., treatment combination)

without zeros. Sufficient conditions are given for constructing MA blocked designs

from unblocked MA designs. Some technical lemmas are presented in Section 3 and

main results are given in Section 4. We shall point out that, for simplicity, we focus

entirely on regular designs, even though most of the results can be easily extended

to nonregular designs.

With the concept of minimum moment aberration and developed theory, we

present methods to construct MA blocked designs in Section 5. We obtain MA

blocked designs for all 8, 16, 27 and 32 runs, 64 runs up to 32 factors, and all 81

runs with respect to four combined wordlength patterns. The difference among MA

blocked designs under different criteria is summarized.

The rest of this section introduces some background. A regular sn−k design is

defined by k treatment defining words, which form the treatment defining contrast

subgroup. The resolution [Box and Hunter (1961)] is the length of the shortest

word in the treatment defining contrast subgroup. For i = 1, . . . , n, let Ai,0 denote

the number of words of length i in its treatment defining contrast subgroup. For
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two unblocked regular sn−k designs D1 and D2, let r be the smallest integer such

that Ar,0(D1) 6= Ar,0(D2). Then D1 is said to have less aberration than D2 if

Ar,0(D1) < Ar,0(D2). If there is no design with less aberration than D1, then D1

has MA. In short, the MA criterion sequentially minimizes A1,0, A2,0, . . . , An,0.

To arrange a regular sn−k design in sp blocks of size sn−k−p, one can choose p

independent block defining words, which form the block defining contrast subgroup.

There are (sp − 1)/(s− 1) block effects, each confounded with sk treatment effects.

For i = 1, . . . , n, let Ai,1 denote the number of treatment words of length i that are

confounded with some block effects.

As done in the literature, we shall only consider regular main effect (RME) de-

signs where none of the main effects is aliased with another main effect or confounded

with a block effect. It is evident that for RME designs, A1,0 = A2,0 = A1,1 = 0. The

vectors Wt = (A3,0, . . . , An,0) and Wb = (A2,1, . . . , An,1) are called the treatment

and block wordlength pattern, respectively. Let A0,1 = 0 for convenience.

MA criteria for blocked designs differ in the way how the treatment and block

wordlength patterns are combined. Sitter, Chen and Feder (1997) first proposed the

following combined wordlength pattern

Wscf = (A3,0, A2,1, A4,0, A3,1, A5,0, A4,1, . . .), (1)

where Ai,1 is ranked after Ai+1,0 for i = 2, 3, . . .. Chen and Cheng (1999) pointed out

that the ordering of wordlength patterns in (1) violates the hierarchical assumption,

and proposed the following sequence

Wcc = (3A3,0 + A2,1, A4,0, 10A5,0 + A3,1, A6,0, . . .), (2)

where the sum of
(2i−1

i

)
A2i−1,0 and Ai,1 is ranked before A2i,0 for i = 2, 3, . . .. Cheng

and Wu (2002) proposed the following two combined wordlength patterns

W1 = (A3,0, A4,0, A2,1, A5,0, A6,0, A3,1, . . .), (3)

W2 = (A3,0, A2,1, A4,0, A5,0, A3,1, A6,0, . . .), (4)

where Ai,1 is ranked after A2i,0 in W1 and after A2i−1,0 in W2 for i = 2, 3, . . .. We

shall mention that sequence (4) was first proposed by Chen and Cheng (1999) and

later independently by Zhang and Park (2000) and Cheng and Wu (2002).
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Four MA criteria result from sequentially minimizing the corresponding com-

bined wordlength patterns. MA blocked designs under the W sequence are called

MA W designs.

An orthogonal array (OA) of N runs, n columns, s levels and strength t, denoted

by OA(N,n, s, t), is an N × n matrix in which all possible st level combinations

appear equally often as rows for any set of t columns.

2 A coding theory approach: minimum moment aber-

ration

For a prime power s, let GF (s) be the finite field of s elements. Let Vn be

the n-dimensional row vector space over GF (s), i.e., Vn = {(v1, . . . , vn) : vi ∈
GF (s) for i = 1, . . . n}.

An [n, m] linear code over GF (s) is a vector subspace of Vn with dimension

m so that it has sm distinct vectors. An [n, m] linear code D can be specified

by an m × n generator matrix G, whose rows form a basis for the code. Then

D = {u ∈ Vn : u = vG, v ∈ Vm}. A regular sn−k design is an [n, n − k] linear code

over GF (s). For an introduction to coding theory, see Hedayat, Sloane and Stufken

(1999, Chap. 4), Pless (1998) and van Lint (1999).

Consider arranging a regular sn−k design in sp equal-sized blocks. A design of

this kind is called a regular (sn−k : sp) design. Such a design is specified by a pair

of matrices T and B, defined over GF (s) and of orders (n− k)× n and (n− k)× p

respectively, such that T has full row rank and B has full column rank. Then a

typical block of the design consists of all level combinations of the form uT , with

u ∈ Vn−k and uB = v where v is any fixed vector in Vp. Different blocks corresponds

to different choices of v. Since B has full column rank p, there are sp choices of v,

leading to a division of the sn−k level combinations into sp blocks. See Mukerjee

and Wu (1999) and Cheng and Mukerjee (2001).

Let Lp = (sp−1)/(s−1) throughout this paper. Suppose that the columns of B

are b1, . . . , bp. Let F be the (n−k)×Lp matrix whose columns are λ1b1 + . . .+λpbp,

where λi ∈ GF (s), at least one λi 6= 0 and the first nonzero λi is 1.

The columns of T and F can be viewed as points of PG(n − k − 1, s), the
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projective geometry of dimension n − k − 1 over GF (s). In the terminology of

projective geometry, F is a (p−1)-flat in PG(n−k−1, s). Then a regular (sn−k : sp)

design is an RME design if and only if T and F are disjoint; see Chen and Cheng

(1999) and Mukerjee and Wu (1999).

Let G = (T, F ) be the (n − k) × (n + Lp) matrix and D be the linear code

generated by G. For convenience, write D = (DT , DF ) where DT is the N × n

treatment matrix and DF is the N ×Lp block matrix, with N = sn−k. For integers

t ≥ 0, define moments

Kt,0(D) = N−2
N∑

i=1

N∑
j=1

[δij(DT )]t, (5)

Kt,1(D) = N−2
N∑

i=1

N∑
j=1

[δij(DT )]tδij(DF ), (6)

where δij(DT ) and δij(DF ) are the number of coincidences between the ith and

jth rows of DT and DF , respectively. For two vectors u = (u1, . . . , un) and v =

(v1, . . . , vn), the number of coincidences is the number of i’s such that ui = vi. We

take 00 = 1 throughout the paper.

Remark 1. The definitions of Kt,0(D) and Kt,1(D) given in (5) and (6) work for

both regular and nonregular designs. For regular designs, the double summation

can be replaced with a single summation; for example, (6) can be simplified to

Kt,1(D) = N−1
N∑

i=1

[δij(DT )]tδij(DF ), (7)

where j can be any row number.

Remark 2. Note that DF is a replicated OA(sp, Lp, s, 2). It follows from Lemma 1

of Mukerjee and Wu (1995) that δij(DF ) takes on only two different values. Specially,

let y1, . . . , yN be the rows of DF . Then

δij(DF ) =

 Lp = (sp − 1)/(s− 1) if yi = yj

Lp−1 = Lp − sp−1 otherwise.
(8)

For an integer k, let
(x
k

)
= x(x−1) · · · (x−k+1)/k! if k > 0,

(x
0

)
= 1 and

(x
k

)
= 0

if k < 0. For integers k, j ≥ 0, let S(k, j) be a Stirling number of the second kind,
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i.e., the number of ways of partitioning a set of k elements into j nonempty sets.

It is well known that S(k, j) = (1/j!)
∑j

i=0(−1)j−i
(j
i

)
ik for k ≥ j ≥ 0. For integers

k, i ≥ 0, define

Qk(i;n, s) = (−1)i
k∑

j=0

j!S(k, j)s−j(s− 1)j−i

(
n− i

j − i

)
. (9)

For integers t, i ≥ 0, define

ct(i;n, s) = (s− 1)
t∑

k=0

(−1)k

(
t

k

)
nt−kQk(i;n, s). (10)

It is easy to show that S(k, k) = 1, Qk(k;n, s) = (−1)ks−kk! and Qk(i;n, s) = 0

when i > k. Therefore, ct(t;n, s) = s−t(s− 1)t! and ct(i;n, s) = 0 when i > t.

The following two lemmas regarding unblocked designs are from Xu (2003, 2004).

Lemma 1. For a regular sn−k design D and integers t ≥ 0,

Kt,0(D) =
min(t,n)∑

i=0

ct(i;n, s)Ai,0(D), (11)

where ct(i;n, s) are constants defined in (10) and A0,0(D) = 1/(s− 1).

Lemma 2. Sequentially minimizing K1,0,K2,0, . . . ,Kn,0 is equivalent to sequentially

minimizing A1,0, A2,0, . . . , An,0.

The minimum moment aberration criterion [Xu (2003)] sequentially minimizes

K1,0,K2,0, . . ., Kn,0. Lemma 2 implies that the minimum moment aberration crite-

rion is equivalent to the MA criterion for unblocked designs.

Extending Lemma 1 to blocked designs, we have the following result.

Theorem 1. For a regular (sn−k : sp) design D and integers t ≥ 0,

Kt,1(D) = s−1
min(t,n)∑

i=0

ct(i;n, s)[Ai,1(D) + Lp Ai,0(D)], (12)

sKt,1(D)− Lp Kt,0(D) =
min(t,n)∑

i=0

ct(i;n, s)Ai,1(D), (13)

where Lp = (sp − 1)/(s− 1), ct(i;n, s) are constants defined in (10) and A0,0(D) =

1/(s− 1).
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The proof of Theorem 1 requires the generalized Pless power moment identities,

a fundamental result in coding theory, and is given in Appendix.

For an RME design D, A1,0(D) = A2,0(D) = A0,1(D) = A1,1(D) = 0. From (11)

and (12), we obtain K1,0(D) = s−1n, K2,0(D) = s−2n(n + s− 1), K0,1(D) = s−1Lp

and K1,1(D) = s−2nLp. Furthermore,

K3,0(D) = 6s−3(s− 1)A3,0(D) + s−3n(n2 + 3ns + s2 − 3n− 3s + 2), (14)

K2,1(D) = 2s−3(s− 1)A2,1(D) + s−3n(n + s− 1)Lp. (15)

In general, because ct(t;n, s) is a positive constant, by (11), Kt,0(D) depends on

A1,0(D), . . . , At,0(D) and, by (12), Kt,1(D) depends on A1,0(D), . . . , At,0(D), and

A1,1(D), . . . , At,1(D).

Furthermore, using (11), we can compute A1,0, A2,0, . . . , At,0 recursively from

K1,0,K2,0, . . . ,Kt,0; using (13), we can compute A1,1, A2,1, . . . , At,1 recursively from

K1,1,K1,0, K2,1,K2,0, . . . ,Kt,1,Kt,0.

Extending Lemma 2 to blocked designs, we have the following result.

Theorem 2. For regular (sn−k : sp) RME designs,

(i) sequentially minimizing K3,0,K2,1,K4,0,K3,1,K5,0,K4,1, . . . is equivalent to

sequentially minimizing A3,0, A2,1, A4,0, A3,1, A5,0, A4,1, . . ..

(ii) sequentially minimizing K3,0,K4,0,K2,1,K5,0,K6,0,K3,1, . . . is equivalent to

sequentially minimizing A3,0, A4,0, A2,1, A5,0, A6,0, A3,1, . . ..

(iii) sequentially minimizing K3,0,K2,1,K4,0,K5,0,K3,1,K6,0, . . . is equivalent to

sequentially minimizing A3,0, A2,1, A4,0, A5,0, A3,1, A6,0, . . ..

Proof. (i) First, by (14), minimizing K3,0 is equivalent to minimizing A3,0, and by

(15), minimizing K2,1 is equivalent to minimizing A2,1. Among designs with the

same values of A3,0 and A2,1, by (11), minimizing K4,0 is equivalent to minimizing

A4,0, and by (12), minimizing K3,1 is equivalent to minimizing A3,1. In general,

among designs with the same values of A3,0, . . . , At,0 and A2,1, . . . , At−1,1, it follows

from (11) that minimizing Kt+1,0 is equivalent to minimizing At+1,0, and from (12)

that minimizing Kt,1 is equivalent to minimizing At,1.

(ii) and (iii) The proofs are similar to (i) and therefore omitted.

Replacing Ai,0 and Ai,1 with Ki,0 and Ki,1 in (1), (3) and (4), we can define three

minimum moment aberration criteria for blocked designs. Theorem 2 implies that
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minimum moment aberration criterion with respect to Wscf , W1 or W2 is equivalent

to its corresponding MA criterion.

The MA Wcc criterion defined in (2) is more complicated than the other three

criteria. Nevertheless, from (14) and (15), we obtain

K3,0(D) + K2,1(D) = 2s−3(s− 1)[3A3,0(D) + A2,1(D)]

+ s−3n[(n2 + 3ns + s2 − 3n− 3s + 2) + (n + s− 1)Lp].

Therefore, minimizing K3,0 + K2,1 is equivalent to minimizing 3A3,0 + A2,1.

Theorems 1 and 2 provide an efficient computational method for comparing

blocked designs without using treatment defining contrast subgroup and alias sets.

Note that for a regular (sn−k : sp) design, there are (sk − 1)/(s − 1) words in the

treatment defining contrast subgroup and Lp block effects; therefore, skLp treatment

effects are confounded with some block effects. It is very time consuming to compute

wordlength patterns Ai,0 and Ai,1 by counting all these words, especially when k is

large. In contrast, it is simple and straightforward to compute moments Kt,0 and

Kt,1.

As we will see in the next two sections, the concept of minimum moment aber-

ration is also very useful in the theoretical development.

3 Some Lemmas

Suppose that D = (DT , DF ) is a regular (sn−k : sp) design. Let x1, . . . , xN be the

rows of DT and y1, . . . , yN be the rows of DF , where N = sn−k. For m = 1, . . . , sp,

let Dm be the sn−k−p × n treatment matrix corresponding to the mth block. For

integers t ≥ 0, define moments

Kt(Dm) = s−2(n−k−p)
sn−k−p∑

i=1

sn−k−p∑
j=1

[δij(Dm)]t,

where δij(Dm) is the number of coincidences between the ith and jth rows of Dm.

Let Bm = {i : xi is a row of Dm, 1 ≤ i ≤ N}. It is evident that i ∈ Bm and j ∈ Bm

for some m if and only if yi = yj . It is useful to express Kt(Dm) in terms of the

original design DT as follows:

Kt(Dm) = s−2(n−k−p)
∑

i∈Bm

∑
j∈Bm

[δij(DT )]t. (16)
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Without loss of generality, assume that D1 contains the null treatment (i.e., a

row of zeros) and call D1 the principal block. Then D1 is an [n, n − k − p] linear

code over GF (s) and other blocks Dm, 2 ≤ m ≤ sp, are cosets of D1; therefore,

Kt(Dm) = Kt(D1) for m = 2, . . . , sp. (17)

Note that D1 is possibly a supersaturated design in which the number of columns

is larger than the number of rows.

The next result shows that Kt,1(D) is determined by Kt,0(D) and Kt(D1).

Lemma 3. Suppose that D is a regular (sn−k : sp) design and D1 is its principal

block. For integers t ≥ 0, Kt,1(D) = Lp−1Kt,0(D) + s−1Kt(D1).

Proof. By (8) and (16),

Kt,1(D) = N−2
N∑

i=1

N∑
j=1

[δij(DT )]tδij(DF )

= N−2
N∑

i=1

N∑
j=1

[δij(DT )]tLp−1 + N−2
sp∑

m=1

∑
i∈Bm

∑
j∈Bm

[δij(DT )]t(Lp − Lp−1)

= Lp−1Kt,0(D) + (Lp − Lp−1)s−2p
sp∑

m=1

Kt(Dm).

Then the result follows from (17).

Lemma 4. Suppose that D is an (sn−k : sp) RME design and D1 is its principal

block. Let J = n(sn−k−p−1 − 1)(sn−k−p − 1)−1 and η be the fractional part of J .

(i) K1(D1) = s−1n and D1 is an OA(sn−k−p, n, s, 1).

(ii) K2(D1) ≥ s−(n−k−p)[n2 + (sn−k−p − 1)(J2 + η(1− η))]. The equality holds if

and only if the difference among all δij(D1), i < j, does not exceed one.

(iii) K2,1(D) ≥ Lp−1s
−2n(n+s−1)+s−(n−k−p+1)[n2+(sn−k−p−1)(J2+η(1−η))].

Proof. Let N1 = sn−k−p and Jt(D1) = [N1(N1 − 1)/2]−1∑
1≤i<j≤N1

[δij(D1)]t for

t ≥ 0. It is easy to verify that for t ≥ 0,

Kt(D1) = N−1
1 [(N1 − 1)Jt(D1) + nt]. (18)

(i) Recall that for an (sn−k : sp) RME design D, K1,0(D) = s−1n and K1,1(D) =

s−2nLp. Then, by Lemma 3, K1(D1) = s[K1,1(D)−Lp−1K1,0(D)] = s−1n. By (18),
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J1(D1) = (N1 − 1)−1[N1K1(D1) − n] = n(N1 − s)[(N1 − 1)s]−1 = J . On the other

hand, Xu (2003) showed that J1(D1) ≥ J , with equality if and only if D1 is an

OA(N1, n, s, 1). Therefore, D1 must be an OA(N1, n, s, 1).

(ii) Since the number of coincidences, δij(D1), must be an integer, it is easy to

verify that, given J1(D1) = J , J2(D1) achieves the minimum value of J2 + η(1− η)

when all δij(D1), i < j, take on only one of the two values: bJc and bJc+ 1, where

bxc is the largest integer that does not exceed x. Then the result follows from (18).

(iii) By Lemma 3, K2,1(D) = Lp−1K2,0(D) + s−1K2(D1). The result follows

from (ii) and the fact that K2,0(D) = s−2n(n + s− 1).

A regular (sn−k : sp) design D = (DT , DF ) can be viewed as an unblocked

regular s(n+Lp)−(k+Lp) design. For clarity, denote this unblocked design as Dun.

For integers t ≥ 0, define moments Kt(Dun) = N−2∑N
i=1

∑N
j=1[δij(Dun)]t, where

N = sn−k and δij(Dun) = δij(DT ) + δij(DF ) is the number of coincidences between

the ith and jth rows of Dun. The next result shows that Kt(Dun) is related to

Kt,0(D), Kt−1,1(D), Kt−2,1(D), Kt−2,0(D) and etc.

Lemma 5. For a regular (sn−k : sp) design D and integers t ≥ 0,

Kt(Dun) = Kt,0(D) + tKt−1,1(D)

+ s−p+1
t∑

r=2

(
t

r

)
[(Lr

p − Lr
p−1)Kt−r,1(D)− LpLp−1(Lr−1

p − Lr−1
p−1)Kt−r,0(D)].

Proof. By the binomial theorem,

Kt(Dun) = N−2
N∑

i=1

N∑
j=1

[δij(DT )+δij(DF )]t = N−2
N∑

i=1

N∑
j=1

t∑
r=0

(
t

r

)
[δij(DT )]t−r[δij(DF )]r.

By (8), (16) and (17),

Kt(Dun) = N−2
t∑

r=0

(
t

r

)
N∑

i=1

N∑
j=1

[δij(DT )]t−rLr
p−1

+ N−2
t∑

r=0

(
t

r

)
sp∑

m=1

∑
i∈Bm

∑
j∈Bm

[δij(DT )]t−r(Lr
p − Lr

p−1)

=
t∑

r=0

(
t

r

)
Lr

p−1Kt−r,0(D) +
t∑

r=0

(
t

r

)
(Lr

p − Lr
p−1)s

−2p
sp∑

m=1

Kt−r(Dm)

= Kt,0(D) +
t∑

r=1

(
t

r

)
Lr

p−1Kt−r,0(D) + s−p
t∑

r=1

(
t

r

)
(Lr

p − Lr
p−1)Kt−r(D1).
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Then the result follows from Lemma 3 with some algebra.

The following two lemmas are useful to know when MA blocked designs are the

same under different criteria.

Lemma 6. If D has MA with respect to both Wscf and W1, then D has MA with

respect to W2.

Proof. First A3,0(D), A2,1(D) and A4,0(D) are minimized sequentially because D

has MA with respect to Wscf . Next among designs with the same values of A3,0(D),

A2,1(D) and A4,0(D), A5,0(D) is minimized because D has MA with respect to W1,

and A3,1(D) is minimized because D has MA with respect to Wscf . Continuing this

type of arguments shows that D has MA with respect to W2.

Lemma 7. Suppose there exists some constant 0 ≤ α < 3 such that αA3,0 + A2,1 is

minimized for D. If D has MA with respect to both Wscf and W2, then D has MA

with respect to Wcc.

Proof. First 3A3,0(D)+A2,1(D) = (3−α)A3,0(D)+[αA3,0(D)+A2,1(D)] is minimized

because both A3,0(D) and αA3,0(D) + A2,1(D) are minimized. For designs with

the same value of 3A3,0(D) + A2,1(D), they must have the same values of A3,0(D)

and A2,1(D). Then A4,0(D) is minimized among designs with the minimum of

3A3,0(D) + A2,1(D) because D has MA with respect to Wscf . Among designs with

the same values of 3A3,0(D) + A2,1(D) and A4,0(D), A5,0(D) is minimized because

D has MA with respect to W2 and A3,1(D) is minimized because D has MA with

respect to Wscf ; therefore, 10A5,0(D)+A3,1(D) is also minimized. For designs with

the same values of 3A3,0(D)+A2,1(D), A4,0(D) and 10A5,0(D)+A3,1(D), they must

have the same A5,0(D) and A3,1(D) values. Continuing this type of arguments shows

that D has MA with respect to Wcc.

Lemma 7 is very useful to show the MA Wcc optimality. The condition α < 3 is

necessary; see Section 5 for counter examples.

4 Main results

Our first result is a lower bound of A2,1, which follows from Lemma 4(iii) and (15).

12



Theorem 3. For an (sn−k : sp) RME design D,

A2,1(D) ≥ [2(s−1)]−1{−n(n+s−1)+s−(n−k−p−2)[n2+(sn−k−p−1)(J2+η(1−η))]},

where J = n(sn−k−p−1 − 1)(sn−k−p − 1)−1 and η is the fractional part of J .

Theorem 3 plays an important role in the theoretical development and construc-

tion of MA blocked designs. The lower bound is tight for p = n−k−1 and n−k−2.

When s = 2 and p < n − k − 2, the lower bound can be improved in some cases if

the results in Butler, Mead, Eskridge and Gilmour (2001) and Bulutoglu and Cheng

(2004) are used. However, the improvement is usually negligible, noting that A2,1

must be an integer for RME designs.

The next result follows from Theorem 3 and Lemma 7.

Corollary 1. If D has MA with respect to Wscf and W2, and D achieves the lower

bound in Theorem 3, then D has MA with respect to Wcc.

The next result provides a sufficient condition on when MA blocked designs are

the same under four criteria.

Theorem 4. If DT has MA among all regular sn−k designs and D achieves the

lower bound in Theorem 3, then D has MA with respect to Wscf , W1, W2 and Wcc.

Proof. Note that D achieves the lower bound in Theorem 3 if and only if D1

achieves the lower bound in Lemma 4(ii). When the latter lower bound is achieved,

K2(D1) is minimized and Kt(D1) is uniquely determined for t ≥ 3. By Lemma

3, Kt,1(D) is determined by Kt,0(D) for t ≥ 3. Because DT has MA, by Lemma

2, K3,0(D),K4,0(D), . . . ,Kn,0(D) are minimized sequentially. Then any combined

sequence of (K3,0(D), K4,0(D), . . . ,Kn,0(D)) and (K2,1(D), K3,1(D), . . . ,Kn,1(D))

is also minimized sequentially as long as Kt,1(D) is minimized after Kt,0(D) for

t = 2, . . . , n. By Theorem 2, D has MA with respect to Wscf , W1 and W2. Finally,

because A2,1(D) is minimized among all possible designs, by Lemma 7, D has MA

with respect to Wcc.

When the lower bound in Theorem 3 is achieved, the principal block D1 has

minimum moment aberration among all sn−k−p × n designs. Theorem 4 can be

generalized as follows.
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Corollary 2. If DT has MA among all regular sn−k designs and the principal block

D1 has minimum moment aberration among all sn−k−p×n designs, then D has MA

with respect to Wscf , W1, W2 and Wcc.

The next result gives a simple necessary and sufficient condition on when a

regular sn−k design can be partitioned into maximal sn−k−1 blocks.

Theorem 5. A regular sn−k design can be partitioned into sn−k−1 blocks if and only

if it contains a row without zeros.

Proof. Necessity. When p = n− k− 1, by Lemma 4(i), the principal block D1 is an

OA(s, n, s, 1). Then it must contain a row of all zeros and other s− 1 rows without

zeros.

Sufficiency. Let u = (u1, . . . , un) be a row vector of DT without zeros. Because

none of ui is zero, the linear equation
∑n−k

i=1 xiui = 0 has sn−k−1 solutions over

GF (s). Let F be an (n− k)×Ln−k−1 matrix, where the columns correspond to the

solutions with the first nonzero element being unity. Clearly, F has rank n− k− 1,

and it is an (n − k − 2)-flat in PG(n − k − 1, s). On the other hand, DT is an

[n, n− k] linear code over GF (s). Let T = (tij) be the (n− k)×n generator matrix

of DT . We need show that T and F has no columns in common so that the resulting

blocked design D = (DT , DF ) is an RME design.

Without loss of generality, let T = [In−k, E], where In−k is the n − k identity

matrix and E is an (n− k)× k matrix. Because the row vectors of T form a basis

for DT , u can be uniquely represented as a linear combination of the row vectors of

T . Then it is clear that
∑n−k

i=1 tijui = uj 6= 0 for j = 1, . . . , n. This proves that T

and F has no columns in common.

Mukerjee and Wu (1999) previously studied the maximal blocking problem with

a projective geometric approach. They managed to obtain a complete solution for

sn−1 and sn−2 designs. Our approach appears to be more pleasant than theirs.

Theorem 5 gives a simple answer to the question.

When s = 2, a row without zeros is necessarily a row of all 1’s. Then a row and

its fold-over forms a block. The unblocked design must be a fold-over design. A

regular fold-over design is also called an even design [Draper and Mitchell (1967)],

because it contains only words of even length. Whether or not a design is an even
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design can be simply checked by its wordlength pattern. The following corollary is

a special case of Theorem 5.

Corollary 3. A regular 2n−k design can be partitioned into 2n−k−1 blocks if and

only if it is an even design.

It is of special interest to know when an unblocked MA design can be partitioned

into maximal blocks. Unblocked MA 2n−k designs were given by Chen and Wu

(1991) for k = 1, 2, 3, 4 and by Chen (1992) for k = 5. Combining their results and

Corollary 3, we have the following result.

An unblocked MA 2n−k design can be partitioned into maximal 2n−k−1 blocks

(i) when k = 1 and n is even,

(ii) when k = 2 and n is a multiple of 3,

(iii) when k = 3 and n = 7t + q for integers t ≥ 0 and q = 7, 11,

(iv) when k = 4 and n = 15t + q for integers t ≥ 0 and q = 8, 12, 15, 20,

(v) when k = 5 and n = 31t+q for integers t ≥ 0 and q = 16, 21, 24, 28, 31, 37, 40, 44.

Furthermore, it is known from coding theory that even designs are the only

designs of resolution IV for 5N/16 < n ≤ N/2 with N = 2n−k; see Bruen, Haddad

and Wehlau (1998) and Butler (2003). For such n, an unblocked MA 2n−k design

can always be partitioned into maximal 2n−k−1 blocks.

To describe the next reslt, let F̃ be an (n−k−2)-flat and T̃ be the complement of

F̃ in PG(n−k−1, s). Let H̃n−k be the linear code generated by T̃ . Note that H̃n−k

is unique up to isomorphism. It is evident that H̃n−k and its projection designs can

be partitioned into maximal sn−k−1 blocks. The reverse is also true in the following

sense. If an sn−k design can be partitioned into sn−k−1 blocks, then it is isomorphic

to a projection design of H̃n−k. The next result characterizes MA (sn−k : sn−k−1)

RME designs.

Theorem 6. If DT has MA among all projection designs of H̃n−k, then DT can

be partitioned into maximal sn−k−1 blocks and the resulting (sn−k : sn−k−1) RME

design D has MA with respect to Wscf , W1, W2 and Wcc.

Proof. We only need prove the MA optimality. Following the previous argument, we

can write an (sn−k : sn−k−1) RME design as D = (DT , DF ) where DT is a projection

design of H̃n−k. Recall that the principal block D1 is an OA(s, n, s, 1); therefore,
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each level appears exactly once in each column. It is evident that δij(D1) = 0 when

i 6= j and δij(D1) = n when i = j; hence Kt(D1) = s−1nt for t > 0. By Lemma 3,

Kt,1(D) is determined by Kt,0(D) for t > 0. By (11) and (13), At,1(D) is determined

by A1,0(D), . . . , At,0(D) uniquely. Thus, to sequentially minimize the sequences in

(1), (2), (3) and (4), it is sufficient to sequentially minimize A1,0(D), . . . , An,0(D).

Then the result follows from the condition that DT has MA among all projection

designs of H̃n−k.

Theorem 6 shows that MA blocked (sn−k : sn−k−1) designs are the same for all

four criteria when they exist. As a numeric illustration, consider s = 3. For 27

runs, H̃3 is the unique MA 39−6 design. According to Xu (2004), for 4 ≤ n < 9, MA

3n−(n−3) designs are projection designs of the MA 39−6 design; therefore, they can be

partitioned into maximal 9 blocks and resulting RME designs have MA with respect

to all four criteria. For 81 runs, H̃4 is the unique MA 327−23 design. According to

Xu (2004), for 5 ≤ n ≤ 9 and 12 ≤ n < 27, MA 3n−(n−4) designs are projection

designs of the MA 327−23 design; therefore, they can be partitioned into maximal

27 blocks and resulting RME designs have MA with respect to all four criteria.

For n = 10, 11, MA 3n−(n−4) designs are not projection designs of the MA 327−23

design; therefore, they cannot be partitioned into maximal 27 blocks. The second

best designs are projection designs of the MA 327−23 design; therefore, they can

be partitioned into maximal 27 blocks and resulting RME designs have MA with

respect to all four criteria.

When s = 2, H̃n−k is an even design with resolution IV. We have the following

result.

Corollary 4. If a regular 2n−k design has MA among all even designs, then it can

be partitioned into maximal 2n−k−1 blocks and the resulting (2n−k : 2n−k−1) RME

design has MA with respect to Wscf , W1, W2 and Wcc.

Recall that a regular (sn−k : sp) design D can be viewed as an unblocked regular

s(n+Lp)−(k+Lp) design Dun. The next result provides a sufficient condition on when

an MA blocked design originates from an unblocked MA design.

Theorem 7. If DT has MA among all regular sn−k designs and the unblocked design

Dun has MA among all regular s(n+Lp)−(k+Lp) designs, then the blocked (sn−k : sp)
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RME design D has MA with respect to Wscf , W1, W2 and Wcc.

Proof. Given K3,0(D), K4,0(D), . . . ,Kt,0(D), 3 ≤ t ≤ n, by Lemma 5, sequentially

minimizing K2,1(D),K3,1(D), . . . ,Kt−1,1(D) is equivalent to sequentially minimiz-

ing K3(Dun),K4(Dun), . . ., Kt(Dun). Because DT has MA, by Lemma 2, K3,0(D),

K4,0(D), . . ., Kn,0(D) are minimized sequentially. Because Dun has MA, K3(Dun),

K4(Dun), . . ., Kn(Dun) are minimized sequentially. Then any combined sequence of

(K3,0(D), K4,0(D), . . ., Kn,0(D)) and (K2,1(D), K3,1(D), . . . ,Kn,1(D)) is also mini-

mized sequentially as long as Kt−1,1(D) is minimized after Kt,0(D) for t = 3, . . . , n.

By Theorem 2, D has MA with respect to Wscf , W1 and W2. By Lemma 5,

K3(Dun) = K3,0(D) + 3K2,1(D) + constant; therefore, K3,0(D) + 3K2,1(D) is mini-

mized, and, by (14) and (15), A3,0(D) + A2,1(D) is minimized. Then, by Lemma 7,

D has MA with respect to Wcc.

Theorem 7 is the most useful when p = 1. It happens frequently that an un-

blocked MA sn−k design can be extended to an unblocked MA sn+1−k design by

adding an extra column. For example, according to Chen, Sun and Wu (1993) and

Xu (2004), for 8 and 27 runs, MA unblocked designs are in sequential order for all

n. Whenever this happens, the extra column can be used as the block generator,

and the resulting (sn−k : s1) design has MA with respect to Wscf , W1, W2 and Wcc.

Theorem 7 is less useful when p > 1 because Dun usually does not have MA.

The following result is interesting in this regard.

Theorem 8. If DT has MA among all regular sn−k designs and D has MA with

respect to Wscf , then D has MA with respect to both W1 and W2. If, in addition,

αA3,0(D)+A2,1(D) is also minimized for some constant 0 ≤ α < 3, then D has MA

with respect to Wcc.

Proof. Because DT has MA, A3,0(D), A4,0(D), . . . , An,0(D) are minimized sequen-

tially. Note that A2,1(D), A3,1(D), etc. are minimized in W1 or W2 no sooner than

in Wscf . Therefore, if D has MA with respect to Wscf , it must have MA with

respect to W1 and W2. The MA Wcc optimality follows from Lemma 7.

Theorem 8 implies that when MA blocked designs are different under Wscf , W1

and W2, an MA Wscf blocked design must not originate from an unblocked MA

design.
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Note that a regular (sn−k : sp) design can be viewed as a mixed (sp)sn factorial

design, i.e., one factor at sp levels and n factors at s levels. The MA Wscf criterion

is known as the MA criterion (of type 0) proposed by Wu and Zhang (1993) and

Mukerjee and Wu (2001) for mixed factorial designs. Sufficient conditions given by

Mukerjee and Wu (2001) can be used to show when D has MA with respect to Wscf .

The details are omitted.

5 MA blocked designs

Based on Theorem 2, MA blocked designs with respect to Wscf , W1 or W2 can

be obtained by computing and comparing moments Kt,0 and Kt,1 for all possible

blocking schemes. This is a feasible task when the number of blocking schemes is

not too large; see Xu and Lau (2004) for details, where MA blocked designs for all

32 runs, 64 runs up to 32 factors, and all 81 runs with respect to Wscf , W1 and W2

are given.

However, this method cannot be used to construct MA Wcc designs because

there is no equivalent minimum moment aberration criterion with respect to (2).

Furthermore, an essential difference exists between MA Wcc criterion and other three

criteria. Because MA Wscf , W1 and W2 criteria minimize A3,0 first, there is no need

to search over resolution III designs whenever blocking schemes from resolution IV

designs exist. However, MA Wcc criterion minimizes 3A3,0 + A2,1 first. Combining

A3,0 with A2,1 makes it more difficult to construct MA Wcc designs than other types

of MA designs. To determine the minimum of 3A3,0 + A2,1, a simple strategy is to

search over all resolution III designs. This requires a complete catalog of resolution

III designs, but such a catalog is not available for 64-run designs.

Combining the developed theory and computer search, we obtain MA Wcc de-

signs for all 8, 16, 27 and 32 runs, 64 runs up to 32 factors, and all 81 runs. Previ-

ously, Chen and Cheng (1999) developed a theory to characterize MA Wcc designs

in terms of their blocked residual designs and obtained MA Wcc designs for all 8

and 16 runs and 32 runs up to 20 factors.

Here we explain how to construct MA Wcc designs for 64 runs and n ≤ 32 with

the results of Xu and Lau (2004). First, for p = 5 and 6 ≤ n ≤ 32, by Theorem

6, MA (2n−(n−6) : 25) designs are the same under all four criteria; therefore, MA
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designs given by Xu and Lau (2004) have MA with respect to all four criteria.

Indeed, they can be easily constructed by searching over MA projection designs of

the unique even 232−26 design. Next, for p = 1, because unblocked MA 2n−(n−6)

designs are in sequential order for n =6–7, 8–12, 14-20 and 21–33, by Theorem 7, we

obtain MA (2n−(n−6) : 21) designs with respect to all four criteria for all 6 ≤ n ≤ 32

but n = 7, 12, 13 and 20. For n = 7, 12, 13 or 20, according to Xu and Lau (2004),

MA W2 and Wscf design coincides and has A2,1 = 0; therefore, by Lemma 7, MA

Wcc design also coincides with MA W2 and Wscf design.

The situation for p = 2, 3, 4 is more complicated than that for p = 1 or 5. We

first compute the lower bounds of A2,1 in Theorem 3, which are given in Table 1. It

is evident that a lower bound can be replaced by the smallest nonnegative integer

that exceeds it if it is negative or not an integer. According to Xu and Lau (2004),

MA W2 designs achieve the modified lower bounds of A2,1 except for the following 22

cases: p = 2, n =19–26, 31, 32; p = 3, n =29–32; and p = 4, n =25–32. Furthermore,

MA Wscf and W2 designs coincide except for p = 2 and n = 7, 12. Then, by Lemma

7, MA Wscf and W2 designs also have MA with respect to Wcc except for the 24

special cases, which require additional computer search.

For the 24 special cases, Theorem 3 and Lemma 7 are again used to ease com-

putation. Consider, for example, p = 4 and n = 29. According to Xu and Lau

(2004), MA Wscf ,W1 and W2 design coincides and has A3,0 = 0 and A2,1 = 196.

The lower bound of A2,1 is 126. To determine the minimum of 3A3,0 +A2,1, we only

need search over all designs with A3,0 ≤ (196− 126)/3 = 23.3, leading to A3,0 ≤ 23.

This is a feasible task. A complete enumeration (to be explained later) shows that

there are exactly 17 regular 229−23 designs with A3,0 ≤ 23, among which one has

resolution IV. It is straightforward to verify that 2.9A3,0 + A2,1 has minimum 196

among all 17 232−26 designs with A3,0 ≤ 23. Then, by Lemma 7, MA Wcc design

coincides with MA W2 and Wscf design.

When MA W2 and Wscf designs are different or when they do not minimize

αA3,0+A2,1 for all α with 0 ≤ α < 3, Lemma 7 cannot be used; then MA Wcc designs

are determined by sequentially comparing the complete sequence in (2). Fortunately,

this happens only for the following five cases: (n, p) = (7, 2), (12, 2), (25, 4), (26, 4),

(29, 3). For the first two cases, MA Wcc designs coincide with MA W2 designs;

for the last three cases, MA Wcc designs are different from MA W2 designs, which

19



coincide with MA Wscf and W1 designs.

Now we explain how to enumerate all 229−23 designs with A3,0 ≤ 23. Note

that a 3-letter word consists of 3 factors and there are 29 factors in a 229−23 design.

Therefore, for any 229−23 design with A3,0 = 23, there must exist a column appearing

in at least 3 × 23/29 = 2.4 or 3 words of length 3. Deleting that column yields a

228−22 design with A3,0 ≤ 20. Therefore, all 229−23 designs with A3,0 ≤ 23 can

be enumerated by adding a column to all 228−22 designs with A3,0 ≤ 20, which in

turn can be enumerated by adding a column to all 227−21 designs with A3,0 ≤ 17.

This can be done sequentially in the same way as Chen, Sun and Wu (1993) and Xu

(2004), as long as the number of designs is not too large in each step. We shall point

out the importance of the lower bound of A2,1 in Theorem 3. Without this bound,

one has to search over all 229−23 designs with A3,0 ≤ 196/3 = 65.3. This is not a

feasible task because there are more than 100,000 229−23 designs with A3,0 ≤ 65 and

it is impossible to enumerate all of them with the current method and computer.

Finally, we summarize the difference of MA blocked designs under different cri-

teria for all 8, 16, 27, 32 runs, 64 runs up to 32 factors, and all 81 runs. We observed

that MA blocked designs under all four criteria are the same in most cases. This

occurs for all 8 and 27 runs, which can be easily verified with Theorems 6 and

7. When MA blocked designs under four criteria are not all the same, one of the

following four situations occurs.

1. MA W1, W2 and Wcc designs are the same, but they differ from MA Wscf

designs.

2. MA W2, Wscf and Wcc designs are the same, but they differ from MA W1

designs.

3. MA W1, W2 and Wscf designs are the same, but they differ from MA Wcc

designs.

4. MA W2 and Wcc designs are the same, but they differ from MA W1 or Wscf

designs.

Situation 1 occurs once for 32 runs with (n, p) = (6, 1) and once for 64 runs with

(n, p) = (7, 2), and does not occur for 16 and 81 runs. Situation 2 occurs twice for
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16 runs with (n, p) = (5, 1), (5, 2), 12 times for 32 runs, 35 times for 64 runs, and

twice for 81 runs with (n, p) = (11, 1), (11, 2). Situation 3 occurs once for 32 runs

with (n, p) = (13, 3), three times for 64 runs with (n, p) = (25, 4), (26, 4), (29, 3), and

three times for 81 runs with (n, p) = (9, 2), (17, 2), (21, 2). Situation 4 occurs only

once for 64 runs with (n, p) = (12, 2).

Except for situation 3, MA Wcc designs coincide with MA W2 designs, which

are given by Xu and Lau (2004). Table 2 gives MA designs for situation 3 with

treatment and block columns in the same fashion as Cheng and Wu (2002) and Xu

and Lau (2004). The designs are labeled as n − k.i/Bp(W ), where i denotes the

rank of the unblocked sn−k design under the MA criterion, p denotes the number

of block variables, and W denotes the MA W -criterion. Tables 3 and 4 show the

generator matrices and column labels for 32, 64 and 81 runs. To save space, in Table

2, independent columns (boldfaced in Tables 3 and 4) are omitted in the treatment

columns, only generators are given in the block columns, treatment wordlength

pattern is truncated as Wt = (A3,0, A4,0, A5,0, A6,0) and block wordlength pattern

is truncated as Wb = (A2,1, A3,1, A4,1, A5,1). The last two columns in Table 2 give

the numbers of clear main effects (C1) and of clear two-factor interactions (C2). A

main effect or two-factor interaction is clear if it is not aliased with any other main

effect or two-factor interaction and it is not confounded with any block effect [Sun,

Wu and Chen (1997)].

For all designs given in Table 2, MA Wcc designs have a larger A3,0 value but a

smaller A2,1 value than corresponding MA designs under other three criteria. Indeed,

these MA Wcc designs achieve the lower bound of A2,1 in Theorem 3 whereas MA

designs under other three criteria originate from unblocked MA designs.

Note that for 81 runs, MA Wscf ,W1 and W2 design 9-5.1/B2 has the same

3A3,0 + A2,1 value as MA Wcc design 9-5.2/B2. This also happens with 21-17.1/B2

and 21-17.2/B2. These examples show that the condition α < 3 in Lemma 7 is

necessary.

Appendix

Further notation and results in coding theory are necessary in order to prove Theo-

rem 1. The Hamming weight of a vector u = (u1, . . . , un), denoted by wt(u), is the
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number of its nonzero components ui.

Associated with any linear code D is another linear code, called its dual and

denoted by D⊥. Suppose D is an [n, m] linear code with generator matrix G over

GF (s), the dual D⊥ is the null space of G, i.e., D⊥ = {u ∈ Vn : uG′ = 0}, where G′

is the transpose of G. The dual D⊥ is indeed the defining contrast subgroup of D.

Suppose D is an [n1+n2,m] linear code over GF (s) and D⊥ is its dual code. Each

vector u in D and D⊥ can be written as u = (u1, u2), where u1 ∈ Vn1 and u2 ∈ Vn2 .

Let Bi1,i2(D) and Bi1,i2(D
⊥) be the number of vectors in D and respectively in D⊥

with wt(u1) = i1 and wt(u2) = i2.

The following result, a special case of Lemma 4.3 of Xu (2001), generalizes the

Pless power moment identities [Pless (1963)].

Lemma 8. For integers k1, k2 ≥ 0,

s−m
n1∑

i1=0

n2∑
i2=0

ik1
1 ik2

2 Bi1,i2(D) =
n1∑

j1=0

n2∑
j2=0

Bj1,j2(D
⊥)Qk1(j1;n1, s)Qk2(j2;n2, s),

where Qk(j;n, s) is defined in (9).

Proof of Theorem 1. Let N = sn−k and n2 = Lp. Then D = (DT , DF ) is an

[n + n2, n− k] linear code. Let D⊥ be the dual code of D. Each vector u in D and

D⊥ can be written as u = (u1, u2), where u1 ∈ Vn and u2 ∈ Vn2 . It is known that

the wordlength patterns are proportional to the split weight distributions of D⊥ as

follows:

Ai,0(D) = Bi,0(D⊥)/(s− 1) and Ai,1(D) = Bi,1(D⊥)/(s− 1) for i = 0, . . . , n; (19)

see Suen, Chen and Wu (1997) and Chen and Cheng (1999). By (7),

Kt,1(D) = N−1
n∑

i1=0

n2∑
i2=0

(n− i1)t(n2 − i2)Bi1,i2(D)

= N−1
n∑

i1=0

n2∑
i2=0

t∑
k=0

(
t

k

)
(−1)knt−kik1(n2 − i2)Bi1,i2(D)

= N−1
t∑

k=0

(
t

k

)
(−1)knt−k

n∑
i1=0

n2∑
i2=0

(ik1n2 − ik1i2)Bi1,i2(D).
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By Lemma 8,

Kt,1(D) =
t∑

k=0

(
t

k

)
(−1)knt−k

n∑
j1=0

n2∑
j2=0

Bj1,j2(D
⊥)Qk(j1;n, s)

×[Q0(j2;n2, s)n2 −Q1(j2;n2, s)].

Recall that Qk(j;n, s) = 0 for j > k. Then

Kt,1(D) =
t∑

k=0

(
t

k

)
(−1)knt−k

n∑
j1=0

Qk(j1;n, s)∆(D⊥, j1;n2, s),

where ∆(D⊥, j1;n2, s) = Bj1,0(D⊥)Q0(0;n2, s)n2 −Bj1,0(D⊥)Q1(0;n2, s)

−Bj1,1(D⊥)Q1(1;n2, s). Note that Q0(0;n2, s) = 1, Q1(0;n2, s) = n2(s− 1)s−1 and

Q1(1;n2, s) = −s−1. Then

Kt,1(D) =
t∑

k=0

(
t

k

)
(−1)knt−k

n∑
j1=0

Qk(j1;n, s)[Bj1,0(D⊥)n2s
−1 + Bj1,1(D⊥)s−1]

=
n∑

j1=0

t∑
k=0

(
t

k

)
(−1)knt−kQk(j1;n, s)[Bj1,0(D⊥)n2s

−1 + Bj1,1(D⊥)s−1]

=
n∑

j1=0

ct(j1;n, s)(s− 1)−1[Bj1,0(D⊥)n2 + Bj1,1(D⊥)]s−1.

Then (12) follows from (19) and the fact that ct(j1;n, s) = 0 when j1 > t. Finally,

(13) follows from (12) and (11).
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Table 1: Lower bound of A2,1 in Theorem 3 for 64 runs, 6 ≤ n ≤ 32 and p = 2, 3, 4

p 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 −1.5 −1.5 −1.5 −1.5 −1.2 −1.3 −0.8 −0.7 0 0 1 1.2 2.3 2.7

3 0 0 1 1.5 2.5 3.5 4.5 6 7 9 10.5 12.5 14.5 16.5

4 3 5 7 9 12 15 18 22 26 30 35 40 45 51

p 20 21 22 23 24 25 26 27 28 29 30 31 32

2 3.8 4.5 5.5 6.5 7.5 8.7 9.8 11.3 12.2 14 15 17 18.2

3 19 21 24 26.5 29.5 32.5 35.5 39 42 46 49.5 53.5 57.5

4 57 63 70 77 84 92 100 108 117 126 135 145 155
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Table 2: MA blocked designs for situation 3

Design Treatment Wt Block Wb C1 C2

32 runs

13-8.1/B3(*) 31 7 11 21 25 13 14 19 0 55 0 96 3 5 17 36 0 310 0 13 0

13-8.4/B3(Wcc) 31 7 11 21 13 14 26 3 4 39 32 48 5 10 19 22 76 124 288 4 0

64 runs

25-19.1/B4(*) 31 35 13 52 14 55 37 61 11 19 0 435 0 3 5 9 48 144 0 5923 0 25 0

21 44 7 62 25 49 22 41 38 5440

25-19.17/B4(Wcc) 31 35 13 52 14 55 21 37 11 19 8 378 336 3 5 17 41 92 568 2688 8 0

25 38 7 26 49 22 28 50 9 4032 13104

26-20.1/B4(*) 31 35 13 52 14 55 37 61 11 19 0 515 0 3 5 9 48 156 0 6999 0 26 0

21 44 7 62 25 49 22 41 38 26 7062

26-20.50/B4(Wcc) 31 35 13 52 14 55 21 37 11 19 16 386 672 3 5 17 41 100 632 3248 0 0

25 38 7 26 49 22 28 50 9 33 4368 15960

29-23.1/B3(*) 31 35 13 52 14 55 37 61 11 19 0 819 0 5 17 33 91 0 5187 0 29 0

21 44 7 62 25 49 22 41 38 26 14560

28 42 47

29-23.4/B3(Wcc) 31 35 13 52 14 55 37 61 11 19 12 707 640 9 20 38 46 484 2252 4 0

21 44 7 62 25 49 22 41 26 28 11536 14016

42 56 3

81 runs

9-5.1/B2(*) 22 9 24 31 34 0 18 36 12 4 20 9 30 117 162 9 0

9-5.2/B2(Wcc) 22 9 24 31 3 1 18 27 28 6 18 6 44 90 186 6 5

17-13.1/B2(*) 22 9 24 31 3 25 13 37 6 18 20 336 1014 4 15 40 210 2079 0 0

7 35 12 5072 9256

17-13.2/B2(Wcc) 22 9 24 31 3 25 13 37 6 18 23 306 1107 12 15 28 303 1782 0 0

7 35 16 4952 9814

21-17.1/B2(*) 22 9 24 31 3 25 13 37 6 18 51 729 3717 4 26 48 550 4590 0 0

7 35 12 38 15 16 19 21819 32418

21-17.2/B2(Wcc) 22 9 24 31 3 25 13 37 15 23 52 720 3735 11 30 45 573 4545 0 0

16 34 6 38 7 18 26 21876 32310

Note: (*) MA Wscf , W1 and W2 designs.
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Table 3: Generator matrices for 32- and 64-run designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
A 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
B 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
C 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
D 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
A 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
B 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
C 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
D 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
E 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
A 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
B 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
C 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
D 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
E 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

For 32 runs use the first 5 rows and 31 columns; for 64 runs use the entire matrix.

The independent columns are in boldface and numbered 1, 2, 4, 8, 16 and 32.

Table 4: Generator matrix for 81-run designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1
B 0 1 1 2 0 0 1 1 2 0 1 1 2 0 0 1 1 2 0 0
C 0 0 0 0 1 1 1 1 1 2 2 2 2 0 0 0 0 0 1 1
D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
A 0 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1
B 1 1 2 0 1 1 2 0 1 1 2 0 0 1 1 2 0 1 1 2
C 1 1 1 2 2 2 2 0 0 0 0 1 1 1 1 1 2 2 2 2
D 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

The independent columns are in boldface and numbered 1, 2, 5 and 14.
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