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Engineering and Reverse Engineering of the Yeast 

Regulatory Network  

Kieran Mace 

 

Abstract 

Complex emergent biological behavior requires coordinated activity among an entire 

genome’s biomolecules. Cells respond to changes in environmental conditions by 

activating signaling pathways and gene expression programs to maintain homeostasis. 

Here, we first present a synthetic tool that can either dynamically regulate the 

expression levels of two genes independently or regulate the log mean and variance of 

a single gene’s expression. We then present the use of similar tools to perturb and 

produce a large dataset of perturbed, whole genome, gene expression measurements 

to explore the relationship between environmental stresses, kinase signaling, and global 

gene expression in S. Cerevisiae. With these data, we reconstructed canonical stress 

pathways, identified examples of crosstalk among pathways, and implicated numerous 

kinases in novel environment-specific roles. Specifically, we investigated how individual 

kinases tuned the magnitude of induction of the environmental stress response (ESR) in 

environment-specific ways. Our findings suggest that the ESR integrates inputs from 

multiple sensory kinases to modulate gene expression and growth control. 
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Chapter 1 

 

Introduction 

Emergent behavior occurs when relatively simple entities interact in a system to 

produce complex phenomena unrevealed at the level of the individual entity. Many 

fields are dedicated to investigating emergent behavior from complex systems, including 

ecology (species), anthropology and sociology (humans), physiology (organs), 

morphology (cells), and neurology (neurons). This dissertation focuses on systems 

biology, a domain of complex biological systems, defined here as the study of 

subcellular systems in which distinct biomolecular entities, such as genes and proteins, 

interact to produce an emergent behavior or functionality at the level of the cell. 

 

Among the many functions a cell routinely performs (such as cell division, structural 

integrity, motility, metabolism, etc), here we focus on the homeostatic gene regulatory 

pathways of the model organism Saccharomyces Cerevisiae (budding yeast). 

Homeostasis can be defined as the optimal internal physiological state for a cell to 

function (live). Deviations from homeostasis can cause significant issues for the cell’s 

growth rate, and major deviations outside of the homeostatic range may result in cell 

death. Stress occurs when the external environment challenges a cell’s homeostasis. 

All organisms have evolved behaviors and abilities to adapt to and mitigate the effects 

of environmental stress (and therefore maintain homeostasis). This set of behaviors is 

generally referred to as the stress response. As a relatively immotile single-celled 
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organism, yeast cannot evade environmental stress and therefore must resist stress by 

modifying its internal physiology. Examples of such modification include producing more 

protein chaperones in high temperatures to maintain protein integrity, storing glycogen, 

synthesizing glycerol, synthesizing salt pumps in hyperosmotic environments to 

maintain osmolarity, and slowing growth and increasing glucose absorption when 

carbon sources are limited to maintain overall metabolism. 

 

A cell’s internal physiology can be changed by altering the relative abundance of genes 

and their associated proteins inside the cell. This change in relative protein composition 

allows the cell to allocate appropriate focus to the biological processes most relevant to 

tasks at hand (maintaining homeostasis, survival, growth, etc.). The mechanism that 

produces gene transcripts (RNA) from the hereditary material (DNA) is called 

transcription or gene expression, and the cell’s ability to dynamically tune each gene’s 

relative abundance is called gene regulation. A modern sequencing technology known 

as RNA-seq and the computational techniques collectively called bioinformatics have 

made it possible to routinely assess the relative activity of genes inside a population of 

cells. Fortunately, previous research has provided functional descriptions to for majority 

of yeast genes, making it one of the best understood species in biology, making it a 

great candidate for genetic modification and engineering. 

In order to support, refute, or validate a scientific hypothesis, scientists must conduct 

experiments to gather data and compare findings against competing hypotheses. 

Studies can be subdivided into two forms – observational studies, where data is 

passively collected, and experimental studies, where the scientist administers some 

treatment or perturbation and collects the data resulting from that perturbation. While 
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observational studies have great strengths, they lack the ability to cleanly demonstrate 

causation due to confounding factors. We utilize synthetic biological circuits as a 

mechanism to create perturbations in biological systems, which is critical in determining 

causal associations between biomolecules and emergent cellular phenomena.  

In Chapter 2 we develop synthetic modules that use different arrangements of two 

transcriptional regulators to achieve either concurrent and independent control of the 

expression of two genes, or decoupled control of the mean and variance of a single 

gene. We use these modules to perturb the expression levels of the cell cycle gene 

SIC1. In Chapter 3 we inactivate kinase signaling pathways in the context of various 

environmental stresses to determine their contribution in activating the transcriptional 

stress response, identifying novel interactions between kinases and operons.  
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Chapter 2 

 

Robust Synthetic Circuits for Two-Dimensional Control 

of Gene Expression in Yeast 

 

2.1 ABSTRACT 

 

Cellular phenotypes are the result of complex interactions between many components. 

Understanding and predicting the system level properties of the resulting networks 

requires the development of perturbation tools that can simultaneously and 

independently modulate multiple cellular variables. Here, we develop synthetic modules 

that use different arrangements of two transcriptional regulators to achieve either 

concurrent and independent control of the expression of two genes, or decoupled 

control of the mean and variance of a single gene.   These modules constitute powerful 

tools to probe the quantitative attributes of network wiring and function.  

2.2 INTRODUCTION 

Functional outputs of cellular networks rely on intricate interactions between their 

component genes and proteins. A systems-level understanding of the operation of these 

networks requires probing the individual roles of these components and then mapping 

their quantitative interactions. 
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Assessing the roles of individual genes has traditionally relied on gene deletions, 

knockdowns, and over expression. Combinatorial perturbations of mean gene 

expression, such as genome-wide epistasis studies based on deletions1 and 

knockdowns2 have led to important discoveries about the relationship between different 

genes and their concerted impact on functional phenotypes. These technologies are 

very informative about the specific arrangements of these genes with respect to each 

other in a network (e.g. their position in series or in parallel) and their involvement in 

particular biological processes (such as membership in a macromolecular complex). 

However, this information is often insufficient to predict how perturbations of these 

genes, especially concurrent perturbations, quantitatively affect network output or 

complex activity. To do so, technologies that provide simultaneous, graded and 

independent perturbations to multiple genes are needed3,4.  

 

Methods for graded perturbations of single genes include synthetic hormone inducible 

transcription circuits5–8, repurposed bacterial systems9–12, yeast galactose-inducible 

promoters13 and plant-derived light-inducible transcription factors14,15. These 

technologies perturb the mean expression of a gene under study and conclusions are 

drawn from the ensuing changes in the mean behavior of a functional phenotype. 

 

However, single cell studies have indicated that cell-to-cell variability, or noise16,17, in 

gene expression has dramatic relevance to many phenotypes in a variety of biological 

systems18–23. Systematic mapping of the contribution of noise in a given gene to 

network function has awaited the development of perturbation methods to 

simultaneously and independently control the mean and variance of gene expression. 
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Mutations in promoters24,25 and ribosome competing RNAs26 allow for modulation of 

noise but not independently from the mean, with low noise levels correlating with high 

mean expression levels24. Strategies that achieve different noise levels for the same 

mean include propagating noise through transcriptional cascades27,28. While successful, 

these approaches do not provide the flexibility needed to achieve the desired 

quantitative, predictable, tunable and dynamical noise modulation. A system with such 

properties has only been described in bacteria by modulating bias and frequency of a 

genetic switch29. 

 

In this work, we demonstrate how different arrangements of two simple inducible 

synthetic Transcriptional Regulators (TRs) can address the challenges of dual gene 

activation, as well as mean and variance control of gene expression. Specifically, two 

inducible TRs arranged in parallel can drive the simultaneous and independent 

expression of two genes, while their arrangement in series can decouple mean and 

variability of a single gene in a substantial dynamic range. Together, these circuits 

provide a versatile and robust technology to elucidate the quantitative relationships 

between genes and the causal impact of their expression noise on cellular function.  

 

2.3 RESULTS 

2.3.1 A 2D-parallel circuit is a quantitative tool for simultaneously 

perturbing two cellular variables  

The inducible activation of human hormone receptors has been previously exploited to 

modulate the activity of synthetic TRs in mammalian cell lines. In these constructs, the 

ligand binding domain (LBD) of either the human estradiol30 or progesterone31,32 
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receptors (hER and hPR, respectively) is fused to the Gal4p DNA binding domain (GAL4-

DBD) and to the viral VP16 activation domain. Both the apo-receptor and the ligand-

bound TRs interact with Hsp90 and other auxiliary proteins, which regulate the nuclear 

localization and activity of the TR33,34. In the absence of hormone, the TRs are localized 

in the cytoplasm. When the inducing hormone binds the LBD of one of these chimeric 

TRs, the complex  translocates to the nucleus and controls expression from promoters 

containing Gal4p binding sites6. An estradiol-responsive variant of these TRs has also 

been implemented in S. cerevisiae5–8 to control the galactose regulon. More recently, the 

Gal4p DBD was replaced by the DBD of the mouse transcription factor Zif26835, 

successfully targeting the TR to only one promoter engineered to contain the 

corresponding binding motifs. These inducible circuits each provided quantitative graded 

control of the expression of one gene.  

To simultaneously and independently control the expression level of two different genes, 

we constitutively expressed two chimeric TRs in the same cell. The first is an estradiol-

responsive TR in which the GAL4-DBD is fused to the hER-LBD and the transcription 

factor Msn2p activation domain (MSN2-AD) (GEM, Fig 2.1a, upper). The second TR is 

a new recombinant protein consisting of the ZIF268-DBD, the hPR-LBD and the MSN2-

AD (ZPM, Fig 2.1a, bottom). Estradiol-bound GEM translocates into the nucleus and 

binds and activates transcription from promoters that contain Gal4p binding sites, such 

as pGAL1, which contains four dimeric Gal4 binding sites36,37. Similarly, progesterone-

bound ZPM activates transcription from pZ, a modified pGAL1 promoter containing three 

dimeric Zif268 binding sites but lacking Gal4p binding sites35 (Fig 2.1b, Supplementary 

Information).  
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To characterize the dynamics of  this 2D-parallel circuit, we used automated high-

throughput flow cytometry38 to monitor the time-resolved expression of a yellow 

fluorescent protein (YFP) under the transcriptional control of either pZ or pGAL1. We co-

cultured two strains each containing both the GEM and ZPM constructs driving YFP.  We 

could differentiate the two co-cultured strains by labeling the strain containing the pGAL1-

YFP reporter with a constitutively expressed red fluorescent protein (mKate2) expressed 

from the TDH3 promoter (Fig 2.1c).  In this scheme, we are able to control for well-to-well 

variability in hormone concentration and assess gene expression elicited by the two 

inducible TRs on equal footing using the same fluorescent protein. 

In cultures stimulated with estradiol and progesterone, we observed exclusive and graded 

gene expression corresponding to action of the two TRs (Fig 2.1d), suggesting that there 

is little detectable cross-activation between the two systems. Cells containing both 

constructs, one driving expression of YFP and the other driving expression of mKate2 

confirmed their simultaneous and independent operation (Fig 2.4). Furthermore, 

induction of either or both TRs activity did not cause any growth defects (Supplementary 

Table 1). 

To quantify promoter activity, we calculated the expression rate of pGAL1-YFP and pZ-

YFP as the growth-corrected change in fluorescence38 (See Methods). The steady state 

expression rate of pGAL1-YFP as a function of estradiol shows that GEM activity has a 

graded dependence on estradiol and is largely independent of progesterone at all tested 

concentrations (Fig 2.1e and Supplementary Fig 2.6 and 2.7, left panels). Likewise, 

pZ-YFP expression rate at steady-state has graded dependence on progesterone and 

slight inhibition by estradiol at very high concentrations (Fig 2.1f and Supplementary Fig 
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2.6 and 2.7, right panels), consistent with previous observations on human hormone 

receptors 39.  

Close examination of the outputs of the GEM and ZPM circuits indicated that ZPM 

achieves a higher steady state expression rate than GEM at saturating doses of the 

hormones (Fig 2.1e-f and Supplementary Fig 2.8a). Furthermore, ZPM reaches its 

maximal activity faster than GEM, as quantified by the time it takes to achieve half-

maximum expression (Supplementary Fig 2.8b-c). These differences are quantitative 

but reproducible. In order to dissect the contribution of the different TR domains to these 

differences, we exchanged either the DBD or the LBD in the GEM construct. First, we 

replaced the GAL4-DBD with the ZIF268-DBD. This new chimeric TR (ZEM), which still 

responds to estradiol but now activates pZ-YFP expression, exhibited higher expression 

rates but similar activation times when compared to the original GEM construct 

(Supplementary Fig 2.9). Secondly, we replaced the hER-LBD with the hPR-LBD. This 

modified version of the GEM construct (GPM) is now responsive to progesterone, but 

activates pGAL1-YFP expression. GPM exhibited similar expression rates but faster 

responses when compared to the original GEM (Supplementary Fig 2.10). Taken 

together, these results suggest that the hormone-LBD pair is the major contributor to the 

differences in the timescale of induction, whereas the DBD-promoter pair is the major 

contributor to differences in maximal expression rate. 

To characterize the 2D-parallel circuit under different operating conditions, we measured 

circuit output in three scenarios: varying cell densities, different growth media and time-

varying induction levels. We found that as cell density increased over time, the expression 

rates of both ZPM and GEM slowly declined (Supplementary Fig 2.11a-b). By contrast, 
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when we matched the culture dilution rate to that of the population proliferation rate, 

thereby keeping the number of cells in the culture constant, the expression rates of both 

constructs remained constant for hours after the addition of hormone inputs 

(Supplementary Fig 2.11c-d). In agreement, in a separate experiment, in cultures 

originally inoculated at different densities, GEM and ZPM also showed different 

expression rates for different densities, with decreasing expression with increasing 

density (Supplementary Fig 2.12). We next investigated the differential impact of growth 

in YPD versus minimal (SDC) media. In SDC, the 2D parallel circuit maintained inducibility 

and component independence, but exhibited a quantitatively different dose response than 

that in YPD (Supplementary Fig 2.13). These results highlight the quantitative 

dependence of this synthetic circuit on experimental conditions, a feature that is likely to 

hold for most synthetic constructs, therefore motivating their thorough characterizations 

under appropriate operating conditions for practical applications. Finally, we probed the 

ability of the 2D circuit to be switched off for applications that require a regulated pulse-

like operation. In this experiment, we induced cultures with different estradiol and 

progesterone concentrations, and then washed out the hormones after 3.7 hours. We 

observed that the expression rates for both TR systems dropped to basal levels in 

approximately 2 hours, thereby demonstrating the reversibility of this system 

(Supplementary Fig 2.14). Taken together, these data demonstrate that the 2D-parallel 

circuit is tunable and reversible, as previously described for a single TR6.   

To demonstrate the capabilities of the 2D-parallel circuit, we used it to quantitatively map 

the dose dependent genetic interactions of positive and negative regulators of an 

endogenous cellular pathway, the yeast pheromone mating response, a canonical GPCR-
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MAPK signaling cascade40. In this pathway, the binding of pheromone to a GPCR 

membrane receptor is transduced to the cell through a series of phosphorylation events 

that ultimately activate the transcription factor Ste12p and result in the subsequent 

expression of various proteins required for mating. Many regulators tune the activity of 

this pathway in a dose dependent fashion. Positive regulators include the beta-gamma 

subunit of the G protein, Ste4p41, which recruits the MAPKs to the membrane to initiate 

the phosphorylation cascade. Negative regulators of the pathway include the 

transcriptional repressor Dig1p42, which binds and inhibits Ste12p; the dual-specificity 

phosphatase, Msg5p43, which dephosphorylates and deactivates the MAPK Fus3p; and 

the GTP-binding alpha subunit of the G protein, Gpa1p44, which sequesters and inhibits 

Ste4p (Fig 2.2a).  

We built a strain containing the ZPM TR in which progesterone induces expression of an 

extra copy of the STE4 gene from the pZ promoter. In the same strain, we also 

incorporated a GEM TR with pGAL1 driving the expression of one of the negative 

regulators Gpa1p, Msg5p or Dig1p (Fig 2.2). We modulated the expression of the 

positive/negative regulator pairs over a large combinatorial range by varying the 

concentrations of the two hormones (Supplementary Fig. 2.15). We then measured 

growth rate and mating pathway activity as quantified by YFP expression rates from the 

Ste12p-responsive promoter of AGA1 (pAGA1-YFP45). 

Estradiol-dependent induction of Ste4p results in graded activation of the mating 

response46. Expression of Ste4p in our strains also induced pAGA1-YFP in a 

progesterone dose dependent fashion (Fig 2.2 b-c, top panels). We could inhibit this 

pathway activity elicited by Ste4p over-expression through induction of the negative 
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regulators, with quantitative effects that depended both on the identity of the regulator 

and the level of Ste4p expression. The two-dimensional dose responses were similar for 

MSG5 and GPA1 (MSG5-STE4 and GPA1-STE4), but were markedly different for DIG1 

(DIG1-STE4). Specifically, Dig1p failed to efficiently overpower Ste4p positive action 

except at very high induction levels, whereas Msg5p and Gpa1p could exert marked 

inhibition at lower Ste4p levels (Fig 2.2 b-d top panels, see for example the estradiol 

dose response for P=4.44 nM).  

Activation of the mating pathway slows growth through Far1p mediated cell cycle arrest47. 

Therefore, increasing Ste4p expression without over-expressing any of the negative 

regulators caused corresponding decrease in growth rate (Fig 2.2 b-c, bottom panels, 

0 estradiol). Counter-balancing over-expression of Ste4p with over-expression of either 

Gpa1p or Msg5p had a favorable effect on growth, culminating in a recovery to normal 

growth rate at concentrations of the negative regulators that abolish signaling in the 

pathway as evidenced by recovery of pAGA1-YFP to pre-stimulus levels (Fig 2.2 b-c, top 

and bottom panels, see as an example P=10 nM and E=100nM). The increase in the 

growth rate coincided with estradiol concentrations where the negative regulators started 

exhibiting their inhibitory action, suggesting that growth recovery is likely resulting from 

decreased signaling in the mating pathway, and that lack of balanced signaling, rather 

than over-expression of the proteins themselves, is likely to be the major contributor to 

growth penalty upon over-expression of positive regulators.  

Interestingly, however, expression of Gpa1p and Msg5p at concentrations below those 

needed to overcome Ste4 induced pathway activity seemed to reproducibly penalize 

growth (Fig 2.2b, lower panel, see for example P=2.96 nM, E=0-2 nM). As mentioned 
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above, this detrimental effect on growth was reversed at supra-inhibitory Gpa1p and 

Msg5p levels, where growth rate now increased as a function of Gpa1p and Msg5p (Fig 

2.2b, lower panel, see P=2.96 nM, E>2 nM). This non-monotonic behavior cannot be 

solely attributed to generic over-expression effects of these regulators, since this over-

expression in the absence of Ste4p induction does not affect growth. Also, the growth 

recovery phase for MSG5-STE4 occurred at higher levels of estradiol than GPA1-STE4 

(Supplementary Fig. 2.16).  Finally, Dig1 over-expression did not seem to markedly 

affect growth. Taken together, these data suggest that intricate epistatic relationships 

exist between these positive and negative regulators of the mating pathway, and that 

quantitative mapping is needed to uncover their existence. Traditional epistatic mapping 

using only extreme over-expression or complete deletion would miss Gpa1p and Msg5p’s 

effects on growth rate as well as pathway repression by Dig1p, both of which occur at 

intermediate levels of Ste4p and are only observed by looking at the entire dual dose 

responses of Figure 2. These data suggest that the 2D-parallel circuit constitutes a useful 

tool to perform next generation genetic rescue experiments in which a quantitative 

phenotype is systematically mapped as a function of its effectors. These methods are 

crucial for generating a systems-level understanding of biological pathways.  

 

2.3.2 A 2D-series circuit is a versatile noise rheostat 

 

  The 2D-parallel circuit is able to independently and simultaneously modulate the 

first moments, or means, of two transcriptional output distributions. We now explore 

whether a different configuration of the ZPM and GEM modules can be used to 
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simultaneously control two moments (mean and variance) of the distribution of a single 

transcriptional output. Such a “noise rheostat” circuit would be a powerful tool for adding 

different amounts of noise into a cellular process and quantifying the repercussions of this 

noise.   

We explored the behavior that would ensure from connecting the GEM and ZPM TRs in 

series instead of in parallel. In this circuit, the expression of ZPM is under the control of 

GEM and both are activated by their respective inputs (progesterone and estradiol) 

(Supplementary Fig 2.17a). Computational modeling demonstrated that this 

configuration allows for the same transcriptional mean output to be achieved with different 

combinations of GEM and ZPM activation levels (Supplementary Fig 2.17b and 

Supplementary Note). This phenomenon is mediated by the fact that this circuit 

effectively operates as a multiplier—at all combinatorial estradiol and progesterone 

concentrations, the mean output is the simple products of two doses responses, the first 

being the mean steady-state dose response of circuit output as a function of estradiol at 

saturating concentration of progesterone while the second is the mean steady-state dose 

response as a function of progesterone at a saturating concentration of estradiol. 

Modeling of this circuit also demonstrated that different combinations of estradiol and 

progesterone can produce the same mean output but with different variances. 

Specifically, for the same mean output, high upstream (GEM) activity and correspondingly 

low ZPM activity leads to low variability while low upstream (GEM) activity leads to larger 

variability. That is, the model predicted that different output noise levels could be 

achieved, with high output variance for low levels of estradiol and high levels of 
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progesterone and low variance for high levels of estradiol and low levels of progesterone 

(Supplementary Fig 2.17b and c).  

To experimentally implement this design and verify its predictions, we built a strain in 

which a constitutively expressed GEM TR drives the expression of the ZPM TR from 

pGAL1 in response to estradiol. The ZPM TR in turn drives the expression of YFP from 

the pZ promoter in response to progesterone (Fig 2.3a). We measured the two-

dimensional dose response output of this circuit for different combinations of estradiol 

and progesterone (Supplementary Fig 2.18). As expected, the output increased 

gradually as a function of both inputs and was highest for maximum concentrations of 

both estradiol and progesterone (Fig 2.3b). From out data, we extracted output dose 

response as a function of estradiol at saturating progesterone concentration, and vice 

versa, as a function of progesterone at saturating estradiol concentration. We then used 

these functions to confirm the multiplicative property of the circuit as suggested by the 

computational model (Supplementary Fig 2.19, Supplementary Note).  

Furthermore, as predicted by the model, different combinations of estradiol and 

progesterone yielded similar mean expression values over a substantial dynamic range 

(Fig. 3b). Gratifyingly, in agreement with the principles of the design, we also observed 

wide differences in the transient and steady-state fluorescence distributions for these 

similar means (Fig. 3c and d). We quantified the spread of these distributions using the 

squared coefficient of variation (CV2=variance/mean2) of fluorescence at steady state, 

and confirmed that different CV2 values can be achieved for the same mean (Fig. 3b and 

e). We note here that the observation that multiple-input/single-output systems can give 

rise to different variances for the same mean has previously been reported48. Our work 
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exploits a similar principle to implement noise modulation, but using synthetic 

components that are orthogonal to the endogenous cellular circuitry.   

To achieve a thorough characterization of the noise rheostat circuit, we carried out a 

number of experiments. In the first, we decomposed noise in the expression of the pZ 

promoter into its intrinsic and extrinsic49 components by measuring, in the same cell, a 

second fluorescent protein (mCherry) driven by a second pZ promoter (Fig 2.3a, 

Supplementary Fig 2.20 and 2.21a-b). We observed that extrinsic, or correlated, 

variation accounts for the majority of the variation in fluorescence (Fig 3f) and is 

asymmetric with respect to the two estradiol and progesterone inputs (Supplementary 

Fig 17c). On the other hand, intrinsic noise in pZ is symmetric with respect to the inputs 

(Supplementary Fig 2.21d). This suggests that protein number noise in the pZ promoter 

itself is not a significant contribution to the cell-to-cell variation. As expected, a plot of the 

CV2 associated with intrinsic noise for pZ versus mean fluorescence shows a Poisson-

like structure, while the same plot for CV2 of extrinsic noise shows a range of values for 

any given mean (Fig 2.3e and Supplementary Fig 2.17e). Finally, we compared the 

variability of the two promoters in the circuit using a dual-fluorophore strain containing a 

pGAL1-mCherry (to monitor the GEM system, Supplementary Fig 2.22) and a pZ-YFP 

(to monitor the ZPM system).  Most of the variation can be attributed to the correlated 

component (Supplementary Fig 2.23). These noise trends were reproducible across 

experiments (Supplementary Fig 2.24a-b) and reporter fluorophores (Supplementary 

Fig 2.24c-d) and in qualitative agreement with the modeling predictions (Supplementary 

Fig 2.17f). Overall, our data demonstrate that the 2D-series configuration constitutes a 

simple circuit that can be used to achieve noise control in a robust and predictable way.  
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To illustrate an application of the noise rheostat circuit, we used it to assess the impact 

of modulating the mean and noise in the expression of the cell cycle regulator Sic1p. 

Sic1p is a cyclin-dependent kinase inhibitor that regulates the G1/S transition controller 

Cdc28-Clb complex50. Overexpression of wild-type Sic1p has been reported to result in 

cell cycle arrest in G1 and elongated bud morphology51. We built a strain harboring the 

noise rheostat construct controlling the expression of an extra copy of the SIC1 gene (Fig 

2.4a). To measure expression levels from pZ, we included a copy of the transcriptional 

reporter pZ-YFP in the same strain. At high Sic1p level (i.e. high estradiol and 

progesterone doses), cells have a marked phenotypic hallmark, appearing to be bigger 

with elongated buds (Fig 2.4b).  

To probe the fitness effect of increased Sic1 noise beyond the extreme Sic1 expression 

case, we induced expression of Sic1p with different combinations of estradiol and 

progesterone and measured expression levels by flow cytometry.  In the experiment, we 

also estimated growth for the different estradiol-progesterone combinations by measuring 

cell density five hours after induction. As expected, we observed a monotonic decrease 

in growth with increased mean Sic1p expression, corroborating the idea that 

overexpression of this protein promotes cell cycle arrest (Figure 4c, Supplementary Fig 

2.25). We also observed a robust wide regime in which different levels of cell-cell 

variability can be achieved for the same mean (Figure 4c). For this regime, there seemed 

to be a trend of increased growth with increased variability, manifesting as a positive 

correlation between CV2 of Sic1p expression and growth (dotted lines in Figure 4c, 

Supplementary Fig 2.26) in a mean-independent way (Supplementary Fig. 2.27). That 

is, for two estradiol and progesterone combinations that generated the same Sic1 mean, 
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the population subjected to the dosage that also produced higher variability seemed to 

have enhanced growth rate. This counter-intuitive observation may potentially be 

attributed to the fact that increased variability at a given mean simultaneously increases 

the proportion of cells in the lowly and highly expressed tail regions of the Sic1p 

distribution. While cells in the high upper tail of the distribution might be growth stunted, 

those in the lower tail experience attenuated cell cycle arrest. Therefore, the higher 

growth of low-Sic1 expressing cells may supersede the effects of the slow growing, high-

Sic1 expressing cells. Importantly, this effect of increased Sic1p variability is not apparent 

at all levels of induction. It surfaces and disappears as Sic1p levels change, highlighting 

the need to map phenotypes associated with cell-cell variability over a broad range of 

mean expression levels and noise.  

2.3.3 Analysis of multiplicative behavior of mean output of the 2D-series 

noise rheostat circuit 

Using automated flow cytometry, we measured the expression of pZ-YFP over time for 

different combinations of concentrations of estradiol (E) and progesterone (P). We 

averaged the steady state expression rate over the last 10 timepoints for each of 96 

conditions. We refer to this value as the steady state output of the circuit. Now, if the 

circuit is multiplicative, the expression rate for a given combination of E and P, alpha(E,P), 

is the result of the multiplication of the individual contributions: 

𝑎𝑙𝑝ℎ𝑎(𝑬, 𝑷) =
𝑎𝑙𝑝ℎ𝑎(𝑬, 𝑃!"#) × 𝑎𝑙𝑝ℎ𝑎(𝐸!"# , 𝑷)

𝑎𝑙𝑝ℎ𝑎(𝐸!"# , 𝑃!"#)
 

Or, in terms of gains G (between 0 and 1) for the individual steps: 

𝐺 × 𝑎𝑙𝑝ℎ𝑎(𝐸!"# , 𝑃!"#) = 𝐺$ × 𝐺% × 𝑎𝑙𝑝ℎ𝑎(𝐸!"# , 𝑃!"#) 

Where 
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𝐺$ =
𝑎𝑙𝑝ℎ𝑎(𝑬, 𝑃!"#)

𝑎𝑙𝑝ℎ𝑎(𝐸!"# , 𝑃!"#)
 

and 

𝐺% =
𝑎𝑙𝑝ℎ𝑎(𝐸!"# , 𝑷)

𝑎𝑙𝑝ℎ𝑎(𝐸!"# , 𝑃!"#)
 

To quantify the multiplicative behavior of the circuit (Supplementary Fig. 2.19), we 

estimated the output of the circuit for a given dose of estradiol and progesterone, 

alpha(E,P). As mentioned in the main text, we find that indeed the output is, as predicted 

by our qualitative model, multiplicative. 

2.4 CONCLUSION 

 

In this work, we present two synthetic circuits that exploit two degrees of freedom to either 

control two independent cellular outputs or two moments of the distribution of a single 

output. The TRs used here provide high dynamic range control of gene expression, while 

having no (for ZPM) or limited (the GAL regulon activated by GEM) off-targets and no 

detectable leakage in the absence of inputs. Importantly, these TRs do not impact fitness, 

making them suitable for the construction of circuits that operate orthogonally to the 

physiology of the cell. Moreover, the modularity of the hormone-inducible TRs allows for 

future combinations of hormone-LBD pairs to be devised and constructed, therefore 

expanding the number of network components that can be simultaneously manipulated. 

The in-parallel circuit configuration provides a tool that could be instrumental for in vivo 

quantitative characterization of genetic interactions, including protein complexes, 

pathway crosstalk, and genetic rescue experiments in which a quantitative phenotype is 

systematically mapped as a function of its effectors. By capitalizing on this system to drive 
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the expression of mating pathway regulators, we showed quantitative phenotypes that 

could not be revealed without the ability to control the expression of two genes in a graded 

and simultaneous fashion. Conventional epistatic mapping using over expressions and 

deletions would have disregarded Dig1p as a negative regulator of the pathway. In a 

similar way, traditional methods would miss the differences in how Gpa1p and Msg5p 

rescue mating pathway induced growth arrest, which are revealed only when observing 

the entire dual dose response of these negative regulators and Ste4p. We anticipate this 

circuit to be greatly instrumental in probing the hierarchy and timing of interacting cellular 

pathways, for example by mapping the influence of one cellular pathway on another as a 

function of their relative induction delay52,53. 

The serial configuration of the two synthetic TRs allows for the modulation of noise 

independently of mean at low and medium expression levels, a range where variability 

is most physiologically relevant. This capability is primarily achieved through the 

presence of two dials that can be simultaneously changed to achieve the same mean, 

but with different consequences for output variability. The simplicity of this design and 

its robust operation makes it instrumental for testing the causal connections between 

noise and fitness, which has so far eluded systematic exploration because schemes for 

modulating variability, such as mutations to pathway components, are often 

accompanied by a change in mean, are not tunable or require changing nutritional 

composition of the media. The ability to compare phenotypes induced by different cell-

cell variability in a signal in the context of the same population mean can bridge this 

gap, providing an invaluable resource for delineating the biological repercussions of 

molecular noise. Here, we have illustrated a simple manifestation of this point, 
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demonstrating that it is possible to impact population-level fitness by changing the 

single-cell expression level distribution of the cell cycle regulator Sic1. Much 

investigation is still needed to go beyond the phenomenology we report, and to extract 

the underlying principles of noise regulation in this system as well as its exact map to 

cellular physiology. However, the intricate relationship between mean Sic1 expression, 

its cell-cell variability, and the resulting morphological and growth phenotypes argues 

that a tunable noise-controlling circuit such as the one we report here is crucially 

needed to pinpoint interesting operational regimes of cell-cell variability and delineate 

the contexts in which more mechanistic investigations should be deployed.  

 

2.5 MATERIALS AND METHODS 

 

2.5.1 Plasmids and strains 

 

All plasmids used in this study are listed in Supplementary Table 2. Plasmids were cut 

or PCR-amplified (pHES941) and transformed into S. cerevisiae with standard lithium 

acetate transformation protocol. The resulting yeast strains are listed in Supplementary 

Table 3. All plasmids are single-integration constructs when cut with PmeI or PCR-

amplified. All constructs were built by restriction/ligation of plasmids and PCR products 

amplified with Elongase Enzyme Mix (Life Technologies). 

The TR constructs consist of a constitutive promoter (a crippled version of the ADH1 

promoter) driving the expression of the chimeric transcription factor (Figure 1a). The ZPM 

construct was built by inserting the hPR-LBD (amplified from Addgene plasmid pRR-PR-
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5Z, generated in the Miller lab) flanked with BamHI and NotI sites and a small linker into 

a plasmid containing a BamHI and a NotI restriction site downstream of pADH1(cr) and 

upstream of the MSN2-AD. The Zif268-LBD (amplified from genomic DNA of an S. 

cerevisiae strain provided by David Botstein’s lab) flanked by NheI and BglII restriction 

sites was inserted in between pADH1(cr) and the Zif268-LBD using NheI and BamHI 

restriction sites.  

The TRs reporters were built in a similar way, inserting pGAL1 or pZ upstream of YFP or 

mCherry, using PspOMI and XhoI restriction sites. The pZ promoter was amplified from 

strains containing a pGAL1 promoter where three GAL4 binding sites were replaced by 

four Zif268 binding sites 6. We mutated an extra putative GAL4 binding site (see sequence 

in Supplementary Text) to avoid activation of transcription from this promoter with either 

galactose-containing media or the GEM construct. Mating pathway and SIC1 expression 

plasmids were built by inserting the GPA1, MSG5, DIG1, STE4 or SIC1 ORFs in pGAL1 

or pZ-containing plasmids.  

The mating pathway reporter was built by inserting a pAGA1-YFP construct, flanked by 

PspOMI and XhoI restriction sites, into a plasmid containing a geneticin resistance 

cassette downstream of the insertion. This construct, including the resistance marker, 

was then PCR-amplified with homology regions to the CAN1 locus flanking the amplicon 

and transformed into yeast. 

2.5.2 Media and growth conditions 

 

Cells were inoculated from single colonies into liquid media and grown for at least 20h in 

exponential phase at 30ºC with constant shaking before starting experiments. Complete 
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media (YPD) consists of 10 g/L yeast extract, 20 g/L Bacto peptoneTM (Becton Dickinson) 

and 0.2 g/L dextrose (Sigma-Aldrich). Complete synthetic media (SDC) consists of 6.7 

g/L nitrogen base without amino acids, 2 g/L dextrose (Sigma-Aldrich) and 0.79 g/L 

complete supplement mixture (MP Biomedicals). 

Most transformations were selected in synthetic media agar plates with the corresponding 

amino acid dropout. The pAGA1-YFP-tKan construct transformation was selected in YPD 

agar plates containing 200ug/mL G418 (Teknova). 

. 

 

2.5.3 In parallel circuit automated flow cytometry measurements 

Experiments were conducted as previously described 38. In the case of multiplexing 

experiments, strains containing a pTdh3-mKate2-labeled strain were mixed with a strain 

lacking the label in a 1:1 ratio at the start of the experiment. All cultures were taken to an 

initial cell density of approximately 6x105 cells/mL. Cells were transferred to a 96-well 

plate and placed in a robotic setup that constantly diluted the cells and took samples to a 

coupled cell cytometer (LSRII BD) every 20 minutes. Estradiol (ß-estradiol, Sigma-

Aldrich) and progesterone (Sigma-Aldrich) were added at the final concentrations 

indicated in the results section at time 0 and were maintained at those concentrations by 

replacing the samples taken by the robotic setup with fresh media containing the 

hormones. To match growth rate, the dilution rate of the cultures was 0.51 h-1, unless 

otherwise noted. Data was analyzed in Matlab®. 
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Red fluorescence measurements for each cell were divided by the cell’s side scattering 

value (SSC) and the 2 subpopulations: mKate2-labeled cells (high red fluorescence) and 

unlabeled cells (low red fluorescence) were identified. The median green fluorescence 

measurements (FITC) each subpopulation was taken for further analysis. Histograms 

were computed on volume-corrected fluorescence, by dividing each cell's fluorescence 

by its side scattering (SSC). Cell density was calculated as the event rate measured by 

the cytometer for each condition and time-point and this value was used to calculate 

growth rate. Changes in fluorescence over time and growth rates were used to calculate 

expression rates, following the equation: 

αcell,t = (dlog(Ft) + dlog(Nt)) × Ft 

where αcell,t is the expression rate at time t, Ftotal,t is the median fluorescence at time t 

and Nt is the cell density at time t . Since we didn’t observe large fluctuations in growth 

rates over time before saturation or after approximately 1h after transferring the cells to 

the robotic setup, the median dlog(N) value was used for all times t, unless otherwise 

noted. Activation time was calculated as the time to reach half the steady-state mean 

expression rate.   

2.5.4 Noise measurements and analysis 

For the in-series circuit two-color experiments, cells of two strains (containing pZ-YFP/ 

pZ-mCherry or pZ-YFP/ pGAL1-mCherry reporters) were grown and measured using an 

automated flow cytometry system as described previously. Using Matlab® we computed 

single-cell fluorescence summary statistics for all timepoints and combinations of 

estradiol and progesterone. To filter out variability due to cell cycle stage, we gated in the 

FSC-SSC plane to extract a subset of cells with similar characteristics for computing 
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intrinsic and extrinsic noise components (see Supplementary Fig. 17). We extracted 

intrinsic and extrinsic noise components using principal component analysis (PCA). For 

comparison, we also computed intrinsic and extrinsic components of noise using the 

expression used by Elowitz et al54: 

𝜂&'() =
〈(𝑥 − 𝑦))〉
2〈𝑥〉〈𝑦〉 					𝜂*#() =

〈𝑥𝑦〉 − 〈𝑥〉〈𝑦〉
〈𝑥〉〈𝑦〉 				𝜂(+() =

〈𝑥) + 𝑦)〉 − 2〈𝑥〉〈𝑦〉
2〈𝑥〉〈𝑦〉  

Where x and y are the fluorescence values of two different reporters in the cell 

(Supplementary Fig. 23) 

 

2.5.5 Expression, density and morphology measurements for noisy 

expression of SIC1 

Cells were grown from saturation for 5 h in exponential phase SDC at 30 ºC. 200 μL of 

culture (OD600 0.05) were transferred to a shallow 96-well plate (Corning). Estradiol and 

progesterone were added at the concentrations indicated in Figure 4 and cells were left 

shaking at 1200 rpm and 30ºC (Thermo-shaker DTS-4, ELMI). After 5 hours, cultures 

were diluted 1:2 with 1X TE buffer and taken to a cytometer (LSR-II, BD Biosciences) 

equipped with a high throughput sampler (BD Biosciences). Data was collected in FACS 

DIVA and analyzed in Matlab®. Cell density was estimated from flow cytometry event 

rate.  

Light microscopy was conducted on samples uninduced and fully induced with both 

hormones. 100 μL of cultures treated for 5 h were sonicated and added to glass-bottom 

plate pre-coated with conavalin-A. Cells were immediately imaged in a Nilon Eclipse-Ti 

microscope with a 40X objective. 
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2.5.6 Quantitative model of asymmetric noise partitioning 

We built a simple 8-species/18-reaction gene expression model for the 2D-series circuit 

using linear propensities (Supplementary Figure 13a). This model is intended to be a 

phenomenological model that captures the ability of an in-series connection of the two 

TRs to produce different noise levels for the same mean expression.    

Given a set of reactions describing a biochemical circuit, we can define the stoichiometry 

matrix S, propensities 𝜐 of these reactions and state vector x = (x1,…,x8). The dynamics 

of the system are given by  

�̇� = 𝑆𝜐 = 𝐴𝑥 + 𝐵 

where A is the Jacobian of the propensities or dynamics matrix and B is the vector of 

zeroth-order inputs into the system. For any choice of parameters the steady state of the 

system is easily computed as 𝑥,, = −𝐴-.𝐵. Furthermore, since all propensities in the 

model are linear or constant on all species, the covariance matrix C of the system at 

steady state can be computed using the fluctuation-dissipation theorem55 by solving the 

Lyapunov equation 

𝐴𝐶 + 𝐶𝐴/ + 𝑆	diag	𝜐,,	𝑆/ = 0 

where 𝜐,, are the steady state propensities for each reaction. The covariance matrix 

diagonal elements are the variances of the individual species, which are used with the 

steady state mean concentrations to compute the square of the coefficient of variation 

(CV2). If we assume that intrinsic noise is accounted for by counting or sampling noise, 

its distribution is Poisson and the associated CV2 is the reciprocal of the mean (1/µ). The 

extrinsic noise is the portion of the CV2 not explained by the counting noise56: 

𝐶𝑉(+("0) = 𝐶𝑉&'() + 𝐶𝑉*#() =
1
𝜇 + 𝐶𝑉*#(

)  
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Where CV2ext accounts for the noise contribution from translation, transcription and other 

upstream molecular processes that give rise to the observed abundances. 

Parameters were chosen as an example to qualitatively show the asymmetry of noise 

partitioning (Supplementary Figure 13b-f). 
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2.9 FIGURES 
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Figure 2.1 Simultaneous and independent control of gene expression using two 
chimeric transcriptional regulators (TRs) in parallel. 
(a) Scheme of two chimeric TRs constitutively expressed under the control of a crippled 
ADH1 promoter (pADH1(cr)). The TRs (GEM and ZPM) are a fusion of a DNA binding 
domain (Gal4p-DBD or Zif268-DBD, respectively), a human hormone receptor li-binding 
domain (from the estradiol or progesterone receptors, hER-LBD and hPR-LBD) and a 
transcriptional activation domain (Msn2p-AD). (b) Representation of the action of the 
TRs GEM (left) and ZPM (right) in the presence of estradiol (E) or progesterone (P), 
respectively. (c) Diagram of the experimental setup. Two strains were co-cultured, both 
expressing the GEM and ZPM constructs but alternatively containing the transcriptional 
reporters pGAL1-YFP (top) or pZ-YFP (bottom). A red-fluorescent protein was used to 
label the pGAL1-YFP-containing strain (top). Fluorescence, volume and cell counts 
were measured by automated flow cytometry. (d) Time-dependent distributions of 
pGAL1-YFP (red) and pZ-YFP (blue) fluorescence for different combinations of 
logarithmically spaced doses of estradiol and progesterone. Fluorescence values are 
volume-corrected (e) Steady-state dose response of the pGAL1-YFP reporter as a 
function of estradiol for different progesterone concentrations (shades of blue). (f) 
Steady-state dose response of the pZ-YFP reporter as a function of progesterone for 
different doses of estradiol (shades of red). In (e) and (f) pGAL1-YFP and pZ-YFP 
expression rates are averaged over progesterone or estradiol concentrations, 
respectively. The expression rates were also averaged from 3 to 12.3h after induction.  
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Figure 2.2: A 2D-parallel circuit controlling the expression of positive and 
negative regulators modulates the transcriptional output of the yeast mating 
pathway 
(a) Mating pathway signaling cascade regulators relevant to this study. A positive 
regulator (Ste4p) is under the control of ZPM and three negative regulators (Gpa1p, 
Msg5p, Dig1p) are under the control of GEM. The activity of the pathway is measured 
with a transcriptional reporter consisting on the AGA1 promoter driving the expression 
of YFP (pAGA1-YFP). (b-d) Upper panels: Schemes of the strains used in each 
experiment. Middle panels: Steady-state dose response of pAGA1-YFP as a function of 
estradiol modulating the expression of Gpa1p (b), Msg5p (c) or Dig1p (d). Different 
doses of progesterone (shades of blue) generate different levels of Ste4p. Fluorescence 
was measured after 4 hours of induction and was volume-corrected. Lower panels: 
Mean steady-state growth rate as a function of estradiol and progesterone (shades of 
blue). Insets: same data as in line graphs, shown as a heat map.  
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Figure 2.3: Two TRs connected in series act as a noise rheostat circuit that 
decouples mean and variance 
(a) Schematic of the noise rheostat. An estradiol-responsive transcriptional regulator 
(GEM) is used to dial the abundance of a progesterone-responsive regulator (ZPM), 
which in turns dials the expression of yellow- and red-fluorescent proteins (YFP and 
mCherry, respectively) under the control of pZ. (b) Mean and CV2 of pZ-YFP 
distribution for different combinations of estradiol and progesterone. (c) Steady-state 
pZ-YFP distributions centered at (i) 750, (ii) 1500, (iii) 3000 and (iv) 6000 arbitrary 
fluorescence units. For each one of these cases, the same mean of the distribution but 
different variance around the mean could be achieved using different combinations of 
estradiol and progesterone (inset).  (d) Time-dependent pZ-YFP distributions for 
conditions in (b) that generate the minimum (upper) and maximum (lower) spread over 
the mean. (e) Coefficient of variation of the intrinsic (green), extrinsic (red) and total 
(blue) noise as a function mean fluorescence, Only conditions for which the 
fluorescence is greater than autofluorescence are plotted.  
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Figure 2.4: Noise rheostat circuit control of cell cycle regulator SIC1 shows 
effects of variability in gene expression at the same mean 
 
(a) Cell cycle regulator SIC1 expression under the control of the noise rheostat circuit. 
(b) Bright field microscopy of cells harboring a SIC1 copy driven by the noise rheostat- 
with no or high concentration of estradiol and progesterone. Size bars: 10 µm. (c) 
Coefficient of variation as a function of mean of the single-cell YFP fluorescence 
distribution for different combinations of estradiol and progesterone in a strain 
containing the noise rheostat regulating the expression of SIC1 (left) and a control strain 
containing the noise rheostat without SIC1 construct (right). Cytometry cell counts 
(normalized to non-induced control) are represented in colors of dots. Data for SIC1 
noise rheostat experiment represent mean of three replicates. Dotted lines show 
increasing cell counts with increasing CV2 for data points with similar mean 
fluorescence. 
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Figure 2.5: 2D-parallel circuit characterization using two reporters in the same 
strain 
Median fluorescence output from promoters pGal1 and pZ controlling the expression of 
YFP or mKate2 in strains containing the 2D-parallel circuit constructs, for different 
combinations of estradiol (E) and progesterone (P). One strain contained the reporters 
pGal1-YFP (a) and pZ-mKate2 (b). The other one contained the reporters pGal1-
mKate2 (c) and pZ-YFP (d). Fluorescence was measured 4 hours after induction. 
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Figure 2.6: Steady-state characterization of the 2D-parallel circuit 
(a) Median steady state YFP fluorescence and (b) YFP expression rate at steady state 
for transcriptional reporters pGAL1-YFP (left) and pZ-YFP (right) for different 
combinations of estradiol (E) and progesterone (P). The expression rates were 
averaged from 3.3 to 12.3 h after induction. Same data as in Fig. 1e and f. 
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Figure 2.7: Characterization of the independent operation of the TRs in the 2D 
parallel circuit 
(a) Dose response of pGAL1-YFP as a function of estradiol for different concentrations 
of progesterone. (b) Dose response of pZ-YFP as a function of progesterone for 
different concentrations of estradiol. Fluorescence in (a) and (b) is measured 4 hours 
after induction. (c-f) Quantification of crosstalk between the two TRs. For every estradiol 
concentration, we calculated the error percentage of pGAL1-YFP as difference in 
expression for this output between cells stimulated with estradiol or estradiol and 
progesterone, normalized by the estradiol alone data. This value can be computed and 
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plotted for every progesterone concentration (c,e). The error percentage for pZ-YFP can 
be computed in the same way (d,f). 
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Figure 2.8: Time-resolved and graded control of gene expression by the 2D-
parallel circuit 
 
(a) Time-dependent expression rate for pGAL1-YFP (red) and pZ-YFP (blue) for 
different doses of estradiol (shades of red) and progesterone (shades of blue). pGAL1-
YFP and pZ-YFP expression rates are averaged over progesterone or estradiol 
concentrations, respectively. (b) Mean expression rates normalized by the median 
steady state (3.3 to 12.3 h) value for each hormone concentration. (c) Quantification of 
data in (a) showing the activation time for the pGAL1-YFP at different doses of estradiol 
(shades of red) and progesterone (increasing circle size) and for the pZ-YFP at different 
doses of progesterone (shades of blue) and estradiol (increasing circle size). Activation 
time is defined as the time it takes to reach half-steady state induction. Expression rates 
were averaged from times from 3.3 to 12.3 h after induction.  
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Figure 2.9: Dissection of the roles of the DBD-promoter pair in determining the 
quantitative parameters of the TRs 
(a) Two co-cultured strains containing the GEM TR (left) or a Zif268-DBD-containing 
variant (ZEM, right), both estradiol-responsive but with DNA binding domains that bind 
to pGAL1 or pZ respectively. A red-fluorescent protein was used to label the GEM, 
pGAL1-YFP-containing strain (left). (b) Time-dependent volume-corrected fluorescence 
of pGAL1-YFP controlled by GEM (red) or pZ-YFP controlled by ZEM (blue) for 
different doses of estradiol (E). (c) Time-dependent expression rate for pGAL1-YFP 
(red) or pZ-YFP (blue) for different doses of estradiol (shades of red and blue). (d) 
Steady-state average expression rates for GEM (red) and ZEM (blue). (e) Mean 
expression rates normalized by the maximum value for each hormone concentration. (f) 
Activation time for pGAL1-YFP (red) and pZ-YFP (blue) at different doses of estradiol 
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(shades of red and blue). Expression rates in (d) and (f) were averaged from 1.3 to 5.3 
h after induction. 
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Figure 2.10: Dissection of the roles of the LBD-hormone pair in determining the 
quantitative parameters of the TRs 
(a) Two co-cultured strains containing either the estradiol-responsive GEM TR (left), or 
a progesterone-responsive hPR-LBD-containing variant (GPM, right). Both TRs bind to 
and activate expression of a pGAL1-YFP reporter. A red-fluorescent protein was used 
to label the GEM, pGAL1-YFP-containing strain (left). (b) Time-dependent volume-
corrected fluorescence of pGAL1-YFP controlled by GEM (red) or ZPM (blue) for 
different doses of estradiol (E) and progesterone (P). (c) Time-dependent expression 
rate for pGAL1-YFP controlled by GEM for different doses of estradiol (shades of red) 
and by ZPM for different doses of progesterone (shades of blue). GEM and GPM-
dependent expression rates are averaged over progesterone or estradiol 
concentrations, respectively. (d,e) Dose response of pGAL1-YFP expression rate from 
GEM (d) as a function of estradiol for different doses of progesterone (shades of blue) 
and of GPM (e) as a function of progesterone for different doses of estradiol (shades of 
red). (f) Mean expression rates normalized by the maximum value for each hormone 
concentration. (g) Activation time for GEM at different doses of estradiol (shades of 
red) and progesterone (increasing circle size) and for GPM at different doses of 
progesterone (shades of blue) and estradiol (increasing circle size). Expression rates 
in (d), (e) and (g) were averaged from 2.3 to 5.3 h after induction. 
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Figure 2.11: The 2D-parallel circuit can achieve either pulse-like or sustained 
activation of target genes based on population density 
(a) Time-dependent expression rate for pGAL1-YFP  (red) and pZ-YFP (blue) for 
different doses of estradiol (shades of red) and progesterone (shades of blue), at a low 
dilution rate (0.18 h-1). pGAL1-YFP and pZ-YFP expression rates are averaged over 
progesterone or estradiol concentrations, respectively. (b) Cell density as a function of 
time for the experiment in (a). (c) Time-dependent expression rate for pGAL1-YFP  (red) 
and pZ-YFP (blue) for different doses of estradiol (shades of red) and progesterone 
(shades of blue), at a high dilution rate (0.51 h-1). Same data as in Supplementary Fig. 
3a. (d) Cell density as a function of time for the experiment in (c). 
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Figure 2.12: Expression rates of 2D-parallel circuit decrease proportionally to the 
total density of the culture 
a,c) pZ-YFP and pGAL1-YFP steady-state expression rates as a function of cell count 
for different concentrations of progesterone and estradiol (shades of blue and red, 
respectively). In these experiments, cells were inoculated at a given density, which was 
then maintained over time by matching the dilution rate of the automated cytometry 
setup to the proliferation rate of the strains. For the fixed cell density, cultures were 
exposed to different concentrations of estradiol or progesterone. This experiment was 
done in duplicate and expression rates were averaged from 2 to 6.3 h after induction. 
(b,d) pZ-YFP and pGAL1-YFP steady-state expression rates as a function of cell count 
for different concentrations of progesterone (shades of blue and red, respectively). In 
this experiment, after progesterone or estradiol input, cell density was allowed to 
increase over time (same data as in Supplementary Fig. 6a,b). 
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Figure 2.13: Characterization of the 2D-parallel circuit in complete (YPD) and 
minimal media (SDC) 
Time-dependent volume-corrected distributions of pGAL1-YFP (red) and pZ-YFP (blue) 
fluorescence for different combinations of logarithmically-spaced doses of estradiol and 
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progesterone in (a) complete (YPD) and (b) minimal (SDC) media. (c,d) Time-
dependent expression rate for pZ-YFP (c) or pGAL1-YFP (d) for different doses of 
estradiol (shades of blue) or progesterone (shades of blue), respectively, in YPD (full 
lines) or SDC (dashed lines). pGAL1-YFP and pZ-YFP expression rates are averaged 
over progesterone or estradiol concentrations, respectively. (e) Dose response of 
pGAL1-YFP expression rate as a function of estradiol for different doses of 
progesterone (shades of blue) in YPD (full lines) and SDC (dotted lines). (f) Dose 
response of pZ-YFP expression rate as a function of progesterone for different doses of 
estradiol (shades of red) in YPD (full lines) and SDC (dotted lines). Expression rates 
in (e) and (f) were averaged from 2 to 7 h after induction. For these experiments, cell 
cultures were diluted at a rate of 0.18 h-1, not exactly matching their growth rate. 
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Figure 2.14: Reversibility of the 2D-parallel circuit 
(a,b) Time-dependent volume-corrected distributions of pGAL1-YFP (red) and pZ-YFP 
(blue) fluorescence for different combinations of logarithmically spaced doses of 
estradiol and progesterone. Cultures were induced at time 0, spun-down after 3.7 hours 
and resuspended in media containing hormones (control, a) or fresh media (washout, 
b). (c,d) Time-dependent expression rates of pZ-YFP for different doses of 
progesterone (shades of blue) (c) and pGAL1-YFP for different doses of estradiol 
(shades of red) (d). Solid lines depict the washout experiments, the dotted lines depict 
the control.  We also added a control where the cells were resuspended in media 
containing the hormones but without centrifugation (dashed lines). pGAL1-YFP and pZ-
YFP expression rates are averaged over progesterone or estradiol concentrations, 
respectively. For these experiments, cell cultures were diluted at a rate of 0.18 h-1, not 
exactly matching their growth rate.  
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Figure 2.15: Mean volume-corrected YFP fluorescence at 4h for transcriptional 
reporters 
(a-b) Mean volume-corrected YFP fluorescence at 4h for transcriptional reporters 
pGAL1-YFP (a) and pZ-YFP (b). This is a quantification of the transcriptional output of 
GEM and ZPM for the same hormone doses reported in Fig. 2 of the main text. 
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Figure 2.16: Quantitative differences of influence ofGPA1 and MSG5 on growth 
Mean steady-state growth rate of strains expressing STE4 under the control of ZPM and 
GPA1 (x axis) or MSG5 (y axis) under the control of GEM. Each data point represents 
the growth rate of both strains at the same concentration of estradiol and progesterone. 
The vertical dashed line represents the growth rate of the MSG5 expressing strain in the 
absence of both hormones showing that at intermediate growth rates, for the same 
hormone concentrations, GPA1 expressing cells achieve close to unperturbed growth 
rates while MSG5 expressing cells are still impaired. Same data as in Fig. 2 b and c, 
lower panels. 
  



 
51 

 
Figure 2.17: Computational design of a noise rheostat based on the connection of 
the two hormone inducible TRs in series 
(a) A diagram of the reactions used in a model of the noise rheostat design. GEM TR is 
constitutively produced but its activation is dependent on estradiol (E). Active GEM TR 
induces the production of the ZPM TR. But production of an active ZPM TR is 
dependent on the presence of progesterone (P). Active ZPM TR in turn activates the 
production of a fluorescent reporter (YFP). (b) Steady-state YFP expression for different 
combinations of E and P generated by a computational model encapsulating the 
reactions depicted in a (see Supplementary Note for details of modeling). (c) Total noise 
(CV2), and (d) intrinsic and (e) extrinsic noise components for all combinations of E and 
P generated by computational model. (f) Model generated intrinsic (green) and extrinsic 
(red) components of noise as a function of mean fluorescence. 
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Figure 2.18: pZ-YFP Noise Dynamics in the 2D-series circuit 
Single-cell fluorescence output distributions for the pZ-YFP reporter of the noise 
rheostat for different combinations of estradiol and progesterone. 
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Figure 2.19: Multiplicative nature of the 2D-series noise rheostat 
(a) Measured dose response of YFP expression rate as a function of estradiol (E) at 
maximum saturating progesterone (P) concentration. (b) Measured dose response of 
YFP expression rate as a function of progesterone (P) at maximum saturating estradiol 
(E) concentration. (c) Measured dose response of YFP expression rate as a function of 
estradiol (E) for different concentrations of progesterone (P, shades of blue). Expression 
rates in (a), (b) and (c) are an average for the last 10 time-points in the experiment. (d) 
Predicted dose response of YFP expression rate as a function of estradiol (E) for 
different concentrations of progesterone. The values in this plot are computed as the 
scaled product of the dose responses at either maximum progesterone (a) or estradiol 
(b) (see Supplementary Note). 
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Figure 2.20: Noise modulation in the 2D-series noise rheostat is reproducible 
irrespective of the fluorescent protein used 
pZ-mCherry single-cell fluorescence output distributions for different combinations of 
estradiol and progesterone. 
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Figure 2.21: Noise decomposition into correlated and uncorrelated components 
in the 2D-series noise rheostat 
Two different copies of pZ are used to drive either YFP or mCherry inside a single cell. 
(a) A size-uniform subpopulation of cells (red) was selected for analysis to remove the 
effect of deterministic cell size variations on protein noise. (b) Principal component 
analysis (PCA) was used to decompose the variance of this subpopulation into two 
orthogonal contributions (correlated and uncorrelated) at every condition and point in 
time. (c) Extrinsic (correlated) and (d) intrinsic (uncorrelated) noise for different doses of 
estradiol and progesterone. Calculations were made with the last time-point data. 
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Figure 2.22: Single-cell fluorescence output distributions as a function of time of 
pGAL1-mCherry for different combinations of estradiol and progesterone in the 
2D-series noise rheostat 
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Figure 2.23: Noise decomposition of correlated and uncorrelated noise between 
upstream and downstream signals in the 2D-series noise rheostat noise 
(a) A GEM-regulated pGAL1-mCherry reporter is used as a measurement of ZPM 
transcription noise. (b) Coefficient of variation associated to upstream-downstream 
correlated (green), uncorrelated (red) and total (blue) noise, as a function of mean 
fluorescence. Calculations were made with the last time-point data. 
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Figure 2.24: Noise profiles are reproducible across experiments and fluorescent 
reporters 
(a) Coefficient of variation and (b) variance of the pZ-YFP reporter in the 2D-series 
noise rheostat for two different experiments (#1 and #2). Dots represent the value of 
each measurement for the same concentration of P and E in each experiment. (c) 
Coefficient of variation and (d) variance of the pZ-YFP and pZ-mCherry reporters. Dots 
represent the value of each measurement for the same concentration of P and E 
calculated with either reporter in the same experiment.  
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Figure 2.25: SIC1 noise profiles and growth phenotypes are reproducible across 
experiments 
Coefficient of variation as a function of mean of the single-cell YFP fluorescence 
distribution for different combinations of estradiol and progesterone in a strain 
containing the noise rheostat regulating the expression of SIC1. Colors of the data 
points correspond to the cell count ratio, computed as the number of cells in 10 µL of 
each sample normalized to that of the control (no estradiol or progesterone) and used 
as a surrogate of differences in growth rate. The plots correspond to three independent 
experiments. Mean values from these replicates are reported in Figure 4c of the main 
text. 
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Figure 2.26: Noise rheostat achieves different variability in equi-mean expression 
regions of Sic1, and differences in variability lead to different growth phenotypes 
(a) Coefficient of variation as a function of mean of the single-cell YFP fluorescence 
distribution for different combinations of estradiol and progesterone in a strain 
containing the noise rheostat regulating the expression of SIC1. Same as Figure 4c left. 
(b) Normalized cell count as a function of coefficient of variation for estradiol and 
progesterone conditions eliciting similar mean expression levels (boxed regions in a). 
Error bars represent standard deviation across the 3 experiments in Supplementary Fig 
21. 
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Figure 2.27: SIC1 noise correlation with growth is independent of the mean 
(a-b) Normalized cell count as a function of coefficient of variation for estradiol and 
progesterone combinations eliciting mean YFP expression levels between 1000 and 
10000 a.u. (boxes i-iii in Fig. 2.26 together) in a strain harboring a SIC1 copy driven by 
the noise rheostat (a) and a control containing the noise rheostat without SIC1 construct 
(b). (c) Normalized cell count as a function of mean expression levels in a SIC1 
construct-harboring strain. A linear fit (red dots) models the effect of the mean on cell 
density. (d-e) Residuals (calculated as distance of each data point to linear fit) as a 
function of coefficient of variation shows positive correlation between fitness and noise 
independent of the mean in SIC1 construct harboring strain (d) but not a control strain 
(e). Data for SIC1 noise rheostat experiment represent mean of three replicates. Error 
bars represent standard deviation. 
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Figure 2.28: Qualitative noise features of the 2D-series noise rheostat to noise 
decomposition method 
(a) Correlated (extrinsic) and uncorrelated (intrinsic) components of the noise in the 
output of the 2D-series circuit computed using the decomposition formalism of Elowitz 
et al54. The plot shows the squared CV as a function of fluorescence. (b) Intrinsic and 
(c) extrinsic components of the output noise at steady-state for doses of estradiol and 
progesterone. 
 
2.11 TABLES 

Table 2.1: Growth rates 
Mean growth rates for each strain measured during the first 4 hours after induction. a: ± 
standard deviations (n=6 for each condition). b: p-value on a 2 sample t-test against the 
respective control. c: Strains used in main Figure 1. 
Strain Control P 25nM E 125 nM P 25nM +  

E 125nM 

 Mean  

(h-1)a 

Mean  

(h-1)a  

p-

valueb 

Mean 

(h-1)a  

p-

valueb 

Mean 

(h-1)a 

p-

valueb 

pGal-YFPc 0.40±0.05 0.40±0.04 0.91 0.39±0.03 0.74 0.40±0.03 0.86 

pZ-YFPc 0.41±0.05 0.42±0.03 0.71 0.40±0.04 0.60 0.41±0.05 0.98 

  



 
64 

Table 2.2: Plasmids used in this study 
Plasmid ID Backbone (Marker) Contents 

pHES839 pNH605 (leu2) pADH1(cr)->GAL4DBD-hERLBD-MSN2AD (GEM) 

pHES941 pNH606 (ura3) pADH1(cr)->GAL4DBD-hPRLBD-MSN2AD (GPM) 

pHES795 pAAD606 (ura3) pADH1(cr)->Zif268DBD-hERLBD-MSN2AD (ZEM) 

pHES830 pAAD606 (ura3) pADH1(cr)->Zif268DBD-hPRLBD-MSN2AD (ZPM) 

pHES873 pAAD606 (ura3) pGAL1->Zif268DBD-hPRLBD-MSN2AD (ZPM) 

pHES820 pNH604 (trp1) pGAL1->YFP 

pHES840 pNH605 (leu2) pGAL1->YFP 

pHES834 pNH603 (his3) pGAL1->mKate2 

pHES875 pNH604 (trp1) pGAL1-mCherry 

pHES835 pNH603 (his3) pZ->YFP 

pHES822 pNH604 (trp1) pZ->YFP 

pHES841 pNH605 (leu2) pZ->YFP 

pHES836 pNH603 (his3) pZ-mKate2 

pHES874 pNH604 (trp1) pZ-mCherry 

pHES854 pNH603 (his3) pTDH3-mKate2 

pHES941 pNH605 modified 

(leu2/G418) 

pAGA1-YFP-terminator-KanR 

pHES936 pNH604 (trp1) pGAL1-DIG1 

pHES938 pNH604 (trp1) pGAL1-MSG5 

pHES939 pNH604 (trp1) pGAL1-GPA1 

pHES940 pNH603 (his3) pZ-STE4 

pHES942 pNH604 (trp1) pZ-SIC1 
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Table 2.3 Strains used in this study 
All strains background was w303a (leu2, his3, trp1, ura3, can1, ade2::ADE2) 
Strain ID Genotype 

yHES1021 ura3::pADH1(cr)->ZPM, leu2::pADH1(cr)->GEM, trp1::pZ-YFP 

yHES1022 ura3::pADH1(cr)->ZPM, leu2::pADH1(cr)->GEM, trp1::pGal1-YFP, 

his3::pTdh3-mKate2 

yHES1063 leu2::pADH1(cr)->GEM, trp3::pGAL1-YFP, his3::pTDH3-mKate2 

yHES914 ura3::pADH1(cr)->ZEM, leu2::pZ-YFP 

yHES857 ura3::pADH1(cr)->GPM, leu2::pGAL1-YFP 

yHES910 ura3::pADH1(cr)->ZPM, leu2::pADH1(cr)->GEM, his3::pGal1-mKate2, 

trp3::pZ-YFP 

yHES1070 ura3::pADH1(cr)->ZPM, leu2::pADH1(cr)->GEM, his3::pZ-mKate2, 

trp3::pGal1-YFP 

yHES1072 ura3::pADH1(cr)->ZPM, leu2::pADH1(cr)->GEM,  

can1::pAGA1-YFP-KanR, his3::pZ-Ste4, trp1::pGAL1-Gpa1 

yHES1073 ura3::pADH1(cr)->ZPM, leu2::pADH1(cr)->GEM,  

can1::pAGA1-YFP-KanR, his3::pZ-Ste4, trp1::pGAL1-Msg5 

yHES1074 ura3::pADH1(cr)->ZPM, leu2::pADH1(cr)->GEM,  

can1::pAGA1-YFP-KanR, his3::pZ-Ste4, trp1::pGAL1-Dig1 

yHES1075 ura3::pADH1(cr)->ZPM, leu2::pADH1(cr)->GEM,  

can1::pAGA1-YFP-KanR, his3::pZ-Ste4, trp1::pGAL1-Dig2 

yHES980 leu2::pADH1(cr)->GEM, ura3::pGAL1->ZPM, his3::pZ-YFP 

yHES981 leu2::pADH1(cr)->GEM, ura3::pGAL1->ZPM, his3::pZ-YFP,  

trp1::pZ-mCherry 

yHES982 leu2::pADH1(cr)->GEM, ura3::pGAL1->ZPM, his3::pZ-YFP, trp1::pGAL1-

mCherry 
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Strain ID Genotype 

yHESXXX leu2::pADH1(cr)->GEM, ura3::pGAL1->ZPM, his3::pZ-YFP,  

trp1::pZ-SIC1 
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Table 2.4: Species used in noise model 
Species Shorthand Description 

1 ZPM ZPM protein (cytosol) 

2 ZPM* ZPM protein (nuclear) 

3 GEM GEM protein (cytosol) 

4 GEM* GEM protein (nuclear) 

5 YFP Yellow Fluorescent Protein 

6 mZPM ZPM mRNA 

7 mGEM GEM mRNA 

8 mYFP Yellow Fluorescent Protein mRNA 
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Table 2.5 Rate parameters for noise model 
 -k1-k11 k2 0 0 0 K7 0 0  0 

 k1 -k2-k12 0 0 0 0 0 0  0 

 0 0 -k3-k13 k4 0 0 k8 0  0 

 0 0 k3 - k4-k14 0 0 0 0  0 

A= 0 0 0 0 -k15 0 0 k9 B= 0 

 0 0 0 k5 0 -k16 0 0  0 

 0 0 0 0 0 0 -k17 0  k10 

 0 k6 0 0 0 0 0 -k18  0 

 

 

Table 2.6: Noise model reactions 
Reaction Propensity Parameters  Description 
ZPM → ZPM* υ1=k1x1  k1=Pon

ZPM λ ZPM activation 

ZPM* → ZPM υ2=k2x2 k2=(1-Pon
ZPM) λ ZPM inactivation 

GEM → GEM* υ3=k3x3 k3=Pon
GEM λ  GEM activation 

GEM* → GEM υ4=k4x4  k4=(1-Pon
GEM) λ  GEM inactivation 

GEM* → GEM* + mZPM υ5=k5x4  k5=2 ZPM transcription 

ZPM* → ZPM* + mYFP υ6=k6x2  k6=2 YFP transcription 

mZPM → mZPM + ZPM υ7=k7x6  k7=1 ZPM translation 

mGEM → mGEM + GEM υ8=k8x7  k8=1 GEM translation 

mYFP → mYFP + YFP υ9=k9x8  k9=1 YFP translation 

ᴓ → mGEM υ10=k10 k10=1 GEM transcription 

ZPM → ᴓ υ11=k11x1 k11=0.01 degradation/dilution 
ZPM* → ᴓ υ12=k12x2 k12=0.01 degradation/dilution 
GEM → ᴓ υ13=k13x3 k13=0.01 degradation/dilution 

GEM* → ᴓ υ14=k14x4 k14=0.01 degradation/dilution 

YFP → ᴓ υ15=k15x5 k15=0.01 degradation/dilution 

mZPM → ᴓ υ16=k16x6 k16=1 degradation/dilution 

mGEM → ᴓ υ17=k17x7 k17=1 degradation/dilution 
mYFP → ᴓ υ18=k18x8 k18=1 degradation/dilution 
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Table 2.7: Stoichiometry matrix for reactions 
 -1 1 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 

 1 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 

 0 0 -1 1 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 

 0 0 1 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 

S= 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 

 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 

 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 

 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 
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Chapter 3 

 

Multi-kinase control of environmental stress responsive 

transcription 

 

3.1 ABSTRACT 

Cells respond to changes in environmental conditions by activating signal transduction 

pathways and gene expression programs. Here we present a dataset to explore the 

relationship between environmental stresses, kinases, and global gene expression in 

yeast. We subjected 28 drug-sensitive kinase mutants to 10 environmental conditions in 

the presence of inhibitor and performed mRNA deep sequencing. With these data, we 

reconstructed canonical stress pathways and identified examples of crosstalk among 

pathways. The data also implicated numerous kinases in novel environment-specific 

roles. However, rather than regulating dedicated sets of target genes, individual kinases 

tuned the magnitude of induction of the environmental stress response (ESR) – a gene 

expression signature shared across the set of perturbations – in environment-specific 

ways. This suggests that the ESR integrates inputs from multiple sensory kinases to 

modulate gene expression and growth control. As an example, we provide experimental 

evidence that the high osmolarity glycerol pathway is an upstream negative regulator of 

protein kinase A, a known inhibitor of the ESR. These results elaborate the central axis 

of cellular stress response signaling. 
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3.2 INTRODUCTION 

 

Natural selection confers fitness to organisms that are able to adapt to environmental 

fluctuations. Changes in temperature, osmolarity and nutrient availability are recurrent 

stresses, and cells have evolved mechanisms to specifically sense and react to these 

and a variety of other environmental and internal perturbations. Such adaptive 

processes, collectively known as stress responses, have been extensively 

characterized at the transcriptional level in the model eukaryote Saccharomyces 

cerevisiae (budding yeast) 57–61. Classical genetic and biochemical studies defined 

dedicated signaling pathways that sense and transmit several stress cues, including 

hyperosmotic shock, glucose starvation, and endoplasmic reticulum (ER) stress 62,63. 

More recently, genome-wide genetic interaction studies have comprehensively 

quantified the effects of gene deletions on several stress response pathways including 

the ER unfolded protein response (UPR) and cytosolic heat shock response – not only 

identifying core signaling components but also modifiers of the responses 64,65. Most 

stress signaling pathways contain kinases that relay extracellular and subcellular 

information to transcription factors that control gene expression in the nucleus. 

However, stresses such as heat shock and oxidative damage – well characterized 

transcriptionally – have no kinase networks associated exclusively with them. 

 

There are 129 kinases encoded in the S. cerevisiae genome, and high-throughput 

investigations have defined the protein-protein and genetic interactions among the 

members of the yeast “kinome” 66. These analyses established the functional 

organization of the global kinase network and revealed mechanisms of redundancy and 
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crosstalk in cell cycle regulation and developmental pathways 66–68. However, the wiring 

of the kinome is not static. Under hyperosmotic stress conditions, genetic interactions 

among kinases are reconfigured, suggesting a plasticity to the underlying biochemical 

interactions 69. Thus, two motivations – to identify kinases involved in transmitting stress 

signals and to explore roles for kinases that are contingent on the environment – 

prompted us to generate a dataset in which we measured global gene expression in a 

panel of kinase mutant yeast strains across a battery of environmental conditions. 

 

3.3 RESULTS 

3.3.1 Measurement of global gene expression in 28 kinase mutants in ten 

environmental conditions 

With the goal of understanding how environmental stress signals propagate through 

kinase pathways to alter gene expression, we constructed a set of 28 yeast strains 

harboring mutations in kinases implicated in stress response signaling (Fig 3.1A, B). In 

each strain, an endogenous kinase gene was replaced with an analog sensitive (AS) 

allele. The AS alleles encode a key “gatekeeper” mutation designed to preserve 

catalytic function while enabling the kinase to be inhibited by addition of a cell-

permeable ATP analog 70. For eight of the kinases, the gatekeeper mutant had not been 

previously generated or validated (Ksp1, Mrk1, Rim11, Rim15, Ssn3, Ste11, Yak1 and 

Ygk3). We did not develop assays to validate these conditional mutations in this study, 

so it is possible that the bioinformatically-defined gatekeeper mutations may not confer 

analog sensitivity to these kinases.  
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We grew the panel of mutant kinase strains along with four wild type replicates to 

exponential phase in rich media, added a cocktail of three ATP analogs to ensure 

efficient inhibition of the various kinases, and subjected this set of 32 strains to 10 

different environments: rich media (YPD), synthetic media (SDC), heat shock (39ºC), 

hyperosmotic shock (0.5 M NaCl), glucose depletion (YP osmo-balanced with sorbitol), 

endoplasmic reticulum (ER) stress (5 µg/ml tunicamycin), oxidative stress (250 µM 

menadione), proteotoxic stress (10 mM azetidine 2-carboxylic acid (AZC)), target of 

rapamycin (TOR) inhibition (1 µg/ml rapamycin), and antifungal drug exposure (250 

µg/ml fluconazole). We harvested cells following 20 minutes in each environment, 

purified total RNA, and performed polyA+ RNA sequencing, generating a total of 301 

deeply sequenced transcriptome-wide datasets (> 25X genome coverage for all 

samples). Since stress responses are inherently transient, we chose the 20-minute 

timepoint to allow for enough time for the stress to be perceived and lead to 

transcriptional changes, but before the responses were attenuated. Due to sequencing 

constraints, we did not perform experiments in the absence of inhibitor cocktail nor were 

we able to perform biological replicates for the mutant strains in each condition, limiting 

our statistical power for any one gene in any mutant in a given condition. However, the 

four replicates of wild type in each condition provided us with high statistical power for 

the expression of each gene in the genome in all conditions in the reference strain. 

While we sequenced RNA from each mutant strain 10 times across the conditions, our 

choice to sacrifice biological replicates for the mutants in each environment enabled us 

to broadly survey conditions. 
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We aligned reads, quantified read counts per gene 71 and used DESeq2 to generate 

normalized expression values (see methods) 72. With this processed data, we calculated 

the log2 fold change of each gene in each sample with respect to wild type cells in YPD 

plus inhibitor cocktail. Hierarchical clustering revealed a structured matrix ordered with 

respect to environmental perturbations in the horizontal direction (Fig 3.1C). The genes 

formed ten clusters in the vertical direction, with the top two clusters enriched for stress 

response genes and ribosome biogenesis genes, respectively (see Table S1 for gene 

ontology terms associated with each cluster). Inhibition of certain kinases also induced 

structured patterns in certain environments. For example, zooming into the top cluster 

enriched for stress response genes, it is evident that inhibition of Pbs2-as, Sch9-as, 

Tpk1/2/3-as, and Ypk1-as altered expression of many genes in the absence of any 

environmental perturbation (Fig 3.1D-i). In the cluster enriched for ribosome biogenesis 

genes, inhibition of Cdc15-as, Pbs2-as, and Tpk1/2/3-as followed by treatment with 

rapamycin resulted in dysregulation of many genes (Fig 3.1D-ii). Another example is 

Ire1-as, inhibition of which had an effect on genes involved in ER stress specifically in 

tunicamycin (Fig 3.1D-iii).  

 

To visualize similarity among the samples across the full dataset, we performed 

principal component analysis and t-distributed stochastic neighbor embedding (t-SNE) 

(Fig 3.1E) 73. In this low dimensional representation of the data, samples that are 

correlated across the transcriptome should group together. In general, we observe that 

clusters form among samples exposed to the same environmental perturbations. 

However, additional clusters formed among several groups of samples in which a 

common kinase was inhibited – irrespective of environment – such as Tpk1/2/3-as 
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(homologs of protein kinase A) and the TOR pathway kinases Sch9-as and Ypk1-as. 

The t-SNE analysis serves to underscore the above observation that environmental 

perturbations have a dominant effect on gene expression. Notably, however, inhibition 

of Tpk1/2/3 and TOR pathway kinases resulted in transcriptome-wide effects with 

comparable magnitude to environmental perturbations.   

 

3.3.2 Identification of kinase mutants that alter environment-specific gene 

expression 

We next interrogated the dataset to determine which kinases contribute to gene 

expression in each environmental condition. Specifically, we asked which AS kinase 

strains displayed gene expression patterns that differed from wild type in each 

environment. To this end, we used the wild type replicates to define sets of differentially 

expressed genes in each environment compared to YPD (Table S2, see methods). For 

these sets of differentially expressed genes, we determined the fold change of each 

gene in the AS kinase strains relative to the average wild type value under the same 

environmental perturbation. 

 

First, we plotted these two quantities against each other for every AS mutant in ER 

stress (tunicamycin) (Fig 3.2A). We then used linear regression to apply a line of best fit 

to indicate trends in the levels of the differentially expressed genes. For the set of >1000 

genes differentially expressed in tunicamycin, many AS kinases such as Cdc7-as, Ctk1-

as and Fus3-as produce a response that is indistinguishable from that of wild type (flat 

regression line, few outliers). However, mutants such as Cdc15-as and Ire1-as show an 

attenuated response compared to that of the wild-type (regression lines with negative 
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slopes), while Cdc5-as, Kin1-as and Ksp1-as show enhanced differential expression 

(regression lines with positive slopes). The attenuated tunicamycin response in the Ire1-

as cells is consistent with a known role for Ire1 in the unfolded protein response 74, but 

the other implicated kinases have not been previously associated with ER stress. An 

additional group of AS kinases including Tpk1/2/3-as and Ypk1-as have flat slopes but 

large numbers of outliers, indicating low correlation with wild type across the set of 

differentially expressed genes. This apparent global dysregulation suggests that 

inhibition of these kinases may impair the ability of the cell to sense or respond to 

tunicamycin.  

 

Similar analysis for hyperosmotic stress (NaCl) revealed that Pbs2-as, Hog1-as, Ste11-

as and Cdc15-as have negative slopes, while Cdc7-as and Tpk1/2/3-as have positive 

slopes (Fig 3.2B). Ste11, Pbs2 and Hog1 form a linear mitogen activated protein kinase 

(MAPK) cascade that is activated by hyperosmotic stress, while Tpk1/2/3 is known to be 

inactivated under a variety of stress conditions including hyperosmotic shock 57. The 

mitotic cell cycle regulators Cdc15 and Cdc7 have not been previously studied in the 

context of osmo-signaling.  

 

We plotted the slopes for relationships as above for all inhibited kinases in each of the 

environmental perturbations as a heat map (Fig 3.2C). The set of kinases included in 

this study was enriched for those likely to be involved in the heat shock response. 

Indeed, while several AS mutants altered expression in many of the environments, 

14/28 AS mutants attenuated the response to heat shock. However, only two mutants, 

Cdc15-as and Snf1-as, displayed significantly altered expression of the set of 42 genes 
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controlled by the heat shock transcription factor Hsf1 (Fig 3.2D)75. Cdc15 has no known 

link to Hsf1, but Snf1 has been previously reported to phosphorylate and activate Hsf1 

76. This relative dearth of interactions between Hsf1 targets and kinases is consistent 

with the observation that a mutant of Hsf1 lacking all phosphorylation sites can still be 

induced by heat shock 77. Thus, rather than influencing Hsf1 activity, the other 12 

kinases that modulate the heat shock transcriptome do so by affecting the levels of the 

>400 mRNAs that are differentially expressed during heat shock in an Hsf1-independent 

manner 75.  

 

3.3.3 Kinase mutants alter environmental responses by affecting 

overlapping and distinct sets of genes 

The above analysis revealed that multiple kinase mutants alter differential gene 

expression in most environments (Fig 3.2C). However, it is unclear if these kinases are 

acting on the same sets of target genes. To ascertain this for the case of tunicamycin, 

we performed hierarchical clustering of the differentially expressed genes defined in Fig 

3.2A and identified seven clusters (Fig 3.3A). Gene ontology analysis revealed enriched 

categories in five clusters. We examined Cdc15-as and Ire1-as since they both 

attenuated the response to tunicamycin (Fig 3.2A). While both mutants showed reduced 

expression of the “regulatory processes” and increased expression of the “ribosome 

biogenesis” clusters, only Ire1-as showed reduced expression of the “response to ER 

stress” cluster. In contrast to Ire1-as, inhibition of Cdc15-as did not exclusively alter any 

set of genes. However, while not unique to Cdc15-as, inhibition of Cdc15 showed strong 

repression of the amino acid metabolism genes in both tunicamycin and heat shock (Fig 

3.3A). With respect to the genes differentially expressed in tunicamycin, when 



 
78 

compared to each other across the set of environmental conditions, Cdc15-as and Ire1-

as closely mirrored each other except for the “response to ER stress” cluster in 

response to tunicamycin (Fig 3.3A, right). This suggests that Cdc15 and Ire1 may 

impinge on a common generic pathway, but that only Ire1 plays a specific role in 

response to tunicamycin. 

 

In the hyperosmotic stress environment, we found that the Pbs2-as, Hog1-as, Ste11-as 

and Cdc15-as, display a common pattern of altered expression across the genes 

differentially expressed in NaCl (Fig 3.3B). With the exception of Cdc15-as, these 

kinases are known to form a linear MAPK cascade 78–81. In addition, Cdc7-as uniquely 

shows altered expression of cell wall biogenesis genes (Fig 3.3B). When compared to 

each other across all the environments using the genes differentially expressed in NaCl, 

Hog1-as and Pbs2-as were similar but not identical, with the magnitude of the effect 

stronger for Pbs2-as (Fig 3.3B, right). This could be due to Hog1-independent roles for 

Pbs2 or to differential penetrance of the AS alleles.  

 

3.3.4 Nonlinear interactions between environmental perturbations and 

inhibited kinases 

To systematically identify interactions between particular environments and inhibition of 

specific kinases that affect the expression of individual genes, we constructed a 

mathematical model for the expression of each gene in the genome. In the model, the 

expression level of a gene is determined by the sum of two effects assumed to be 

independent: the environmental perturbation and the kinase inhibition (∆e = ci + kj, 

where e is the expression of a given gene, c is the contribution of the environmental 
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condition (indexed i) to the expression of the gene, and k is contribution of the inhibited 

kinase (indexed j) to the expression of a gene. When a predicted ∆e from this model – 

i.e., a value for the log2 fold change for a given gene in a specific environmental 

condition with a particular kinase inhibited – is significantly different from the measured 

log2 fold change, this indicates a nonlinear interaction between the perturbation and the 

inhibition. This nonlinearity implies that the activity of the kinase may be somehow 

involved in the environmental response in a manner analogous to genetic interaction 

epistasis analysis 82,83. 

 

To apply the model to the data, we decomposed the full gene expression dataset using 

ordinary least squares regression (Fig 3.4A, left, see methods). To compute the 

contribution of an environmental condition (ci) to expression, we determined the fold 

change for each gene for the wild type strain in this environment relative to expression 

in YPD for the wild type strain (Fig 3.4A, middle). To compute the contribution of a 

kinase (kj), we determined the fold change in every gene in the corresponding AS 

kinase strain in YPD relative to wild type in YPD (Fig 3.4A, right). For every gene, we 

correlated the sum of these two terms to the experimentally measured fold change 

value for each of the >300 measurements made for that gene across the dataset, 

estimating the R2 value of this correlation. This analysis generated R2 values for >6000 

genes, whose distribution can be examined to assess the extent to which such a linear 

model broadly applies. (Fig 3.4B). The mean of this distribution is 0.74, indicating that, 

on average, the linear model can explain 74% of the variance for a given gene (see 

Residual and Model performance tab on online applet for all gene models: 

https://mace.shinyapps.io/kinase-app/).  
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Gene expression measurements that the model predicts well require no further 

explanation. However, large error between a model prediction and an experimental 

measurement suggests that the environmental perturbation is not independent of the 

inhibited kinase. We compared the distribution of the model errors to a normal 

distribution using a quantile-quantile plot, which demonstrated that the error was 

approximated well by normal distribution until the error in the model exceeded 2 

standard deviations of the mean (Fig 3.4C). This error – the difference between 

predicted and measured expression values – is termed the “residual” and will be 

quantified in units of standard deviation from the mean (s). We calculated the residual 

for all >2 x 106 data points and plotted the distribution as a density contour plot to 

demonstrate that the vast majority of the data points (>98%) are within 2.5s and that the 

residuals are not correlated to average gene expression (Fig 3.4D). We set a threshold 

for residuals > 2.5s to identify candidate transcripts regulated by a particular kinase in a 

given environment (Table S3). 

 

3.3.5 Instances of residuals with putative biological significance 

One of the genes that was among those best fit by the model across the full dataset 

was HSP12 (R2 > 0.9), a stress-induced gene predominately activated by the 

paralogous general stress transcription factors Msn2 and Msn4 (Msn2/4) 57,58,84,85. 

However, one data point was an outlier that was poorly explained by the model and had 

a residual > 2.5s: Tpk1/2/3-as cells treated with NaCl (Fig 3.4E). In this case, the model 

predicted higher HSP12 expression than what we measured. This indicates that 
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Tpk1/2/3-as inhibition and NaCl do not exert independent effects on HSP12 expression 

and suggests that NaCl may induce HSP12 in wild type cells via inactivation of 

Tpk1/2/3, as has been previously shown experimentally86. We would expect the same 

result for glucose depletion in Tpk1/2/3-as cells, but this sample was not in our dataset. 

 

We next extracted all genes with residual of > 2.5s and performed gene ontology 

analysis (go slim terms) (Table S4). One of the top categories produced by this analysis 

was “response to pheromone”. We averaged expression for all genes with this 

designation and plotted the predicted versus measured expression for all data points 

(Fig 3.4F). Two points were poorly predicted by the model: Hog1-as and Pbs2-as in 

NaCl. In both cases, the measured expression of the pheromone response regulon was 

greater than predicted by the model. This result recapitulates a classical finding of 

crosstalk between MAPK signaling pathways. The pheromone and high osmolarity 

glycerol (HOG) pathways share a common upstream regulator (Ste11) 78,79,81,87; in the 

presence of hyperosmotic shock, Hog1 is required to prevent spurious activation of the 

mating program 79.  

 

A second enriched gene set contained genes encoding proteasome subunits in cells 

exposed to menadione (oxidative stress). As we did for the pheromone response genes, 

we averaged expression of all genes with a “proteasome” GO term and plotted the 

predicted expression in each of the samples as a function of experimentally measured 

expression (Fig 3.4G). This plot reveals that the proteasome is highly induced by 

menadione across all samples, consistent with prior studies88. Moreover, proteasome 

gene expression was very poorly predicted in response to menadione for two AS 
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kinases: Sch9-as and Ypk1-as. When these kinases are inhibited, the proteasome 

genes are even more highly induced by menadione than predicted. This suggests that 

Sch9 and Ypk1 may serve to dampen proteasome gene induction in response to 

menadione in wild type cells. 

 

3.3.6 Prediction of links between kinases and transcription factors 

To implicate transcription factors in responding to specific kinases in particular 

environments, we determined all genes with significant residuals in each sample and 

used MEME 89 to search for transcription factor (TF) binding motifs that are enriched 

upstream of these genes (Table S5). Across this gene set – which contains the outliers 

from the linear model – we identified enriched binding motifs associated with 33 

different TFs using the JASPAR database 90. For 21/28 mutant kinases in our dataset, 

this analysis identified a putative connection to at least one TF in at least one condition. 

Kinases such as Ypk1, Ypk3 and Rim11 connect to multiple TFs under heat shock 

conditions, while Snf1 connects only to a single TF during heat shock (Fig 3.5A). 

Similarly, Sch9 and Ssn3 connect to many TFs under oxidative stress, while Ctk1 and 

Ire1 have a single TF link (Fig 3.5B). It remains to be determined how many of these 

links represent direct kinase-substrate interactions. 

 

While most of the conditions had sparse connections between kinases and TFs, heat 

shock and menadione had complex interaction networks consistent with the pleiotropic 

nature of temperature and oxidative stresses (Fig 3.5A, B). Heat shock had six kinases 

interacting with ten TFs, while menadione had nine kinases interacting with 15 TFs. 

Notably, while both heat shock and menadione led to enrichment of TFs known to be 
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involved in environmental stress responses (Msn2/4, Dot6/Tod6, Stb3, Sfp1) 57,84,91, the 

kinases that connect to these TFs are largely non-overlapping (with the exception of 

Ypk1-as and Cdc15-as). This analysis also recapitulated known interactions, such as 

that between Ire1 and the UPR TF Hac1 in tunicamycin 62,74, and predicted novel 

regulatory connections, such as that between Cdc15 and Msn2 in response to 

tunicamycin. Taken together, these results demonstrate that residual analysis can be 

used to suggest previously unknown pathways that connect environmental conditions to 

gene expression through kinases and their responsive TFs. 

 

3.3.7 The HOG pathway is an upstream negative regulator of Tpk1/2/3 

under all conditions 

In contrast to the instances of environment-specific interactions between kinase 

inhibition and gene expression described above, we observed that across all conditions, 

Tpk1/2/3-as and Pbs2-as affect the same genes across the dataset, but do so in 

opposite directions for many genes (Fig 3.6A). Tpk1/2/3 is the master kinase of the 

environmental stress response (ESR) 57. The ESR is comprised of two branches: the 

pan-stress induced (iESR) and pan-stress repressed (rESR) gene modules 57. 

Mechanistically, Tpk1/2/3 has been shown to directly control phosphorylation of two 

sets of paralogous TFs – Msn2/4 and Dot6/Tod6 – that induce the iESR and repress the 

rESR, respectively 57,92–94. Phosphorylation by Tpk1/2/3 inactivates all four of these TFs 

by preventing their nuclear localization84,91. To compare the effects of inhibition of 

Tpk1/2/3 to inhibition of Pbs2 with respect to the ESR, we extracted the log2 fold change 

of the iESR and rESR genes for all experiments where Tpk1/2/3-as was inhibited; we 

did the same for the values of the iESR and rESR genes when Pbs2-as was inhibited. 
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For reference, we extracted the log2 fold change for the iESR and rESR genes when all 

other kinases in dataset were inhibited. An overlay of the distributions of the Tpk1/2/3-

as, Pbs2-as, and reference sets shows that: 1) inhibition of Tpk1/2/3-as led to induction 

of the iESR and repression of the rESR; 2) inhibition of Pbs2-as had the opposite effect: 

repression of the iESR and induction of the rESR; 3) inhibition of other kinases 

minimally affected the iESR and rESR genes (Fig 3.6B, C). This suggests that Tpk1/2/3 

and Pbs2 regulate the same pathway but in an antagonistic way.   

 

To experimentally test this prediction and to order the pathway, we utilized flow 

cytometry to measure a canonical fluorescent reporter of the iESR, HSP12pr-GFP 95–97. 

We first validated that addition of 0.5 M NaCl and inhibition of Tpk1/2/3-as with 5 µM 

1NM-PP1 induced the HSP12pr-GFP reporter (Fig 3.6D). If Pbs2 is involved in 

regulation of HSP12pr-GFP, then its deletion should alter HSP12pr-GFP levels. Indeed, 

we observed that in pbs2∆ cells, the basal level of HSP12pr-GFP was reduced 4-fold. 

Moreover, pbs2∆ obviated the ability of NaCl to induce the reporter, indicating that Pbs2 

plays positive role in both setting the basal level of HSP12pr-GFP and inducing it in 

response to NaCl (Fig 3.6D). If Pbs2 is acting downstream of Tpk1/2/3, then direct 

inhibition of Tpk1/2/3-as with 1NM-PP1 should not be able to rescue induction of 

HSP12pr-GFP in pbs2∆ cells. However, we observed that addition of 1NM-PP1 led to 

full induction of the reporter, suggesting that Pbs2 must be acting upstream of Tpk1/2/3. 

To verify this, we expressed a constitutively active version of Ras2 (Ras2-G19V), a 

known upstream activator of Tpk1/2/3. Activation of Pbs2 by NaCl failed to induce 

HSP12pr-GFP in the presence of Ras2-G19V, while direct inhibition of Tpk1/2/3-as with 
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1NM-PP1 rescued induction of the reporter in the presence of Ras2-G19V. Thus, Pbs2 

must be acting to inhibit Tpk1/2/3 at or above the level of Ras activation. 

 

Tpk1/2/3 regulation is implemented by tuning the ratio of free kinase to repressor-bound 

kinase via the second messenger cAMP 98. Since Pbs2 is acting at or above the level of 

Ras2, we hypothesized that in the absence of Pbs2, the ratio of free Tpk1/2/3 to 

repressed Tpk1/2/3 would be higher, and it would therefore take a higher concentration 

of inhibitor to inactivate Tpk1/2/3-as in pbs2∆ cells compared to otherwise wild-type 

cells. To test this, we performed a 1NM-PP1 dose response assay and measured the 

HSP12pr-GFP reporter in Tpk1/2/3-as/pbs2∆ cells (Fig 3.6E). Consistent with our 

hypothesis, Tpk1/2/3-as/pbs2∆ cells were desensitized to 1NM-PP1 relative to 

Tpk1/2/3-as cells (otherwise wild type). Moreover, Tpk1/2/3-as/hog1∆ cells phenocopied 

the Tpk1/2/3-as/pbs2∆ cells and were equally desensitized to 1NM-PP1. Taken 

together, these data indicate that the HOG pathway is a general upstream negative 

regulator of Tpk1/2/3 (Fig 3.6F). 

 

3.4 CONCLUSIONS 

 

The kinase domain evolved a highly plastic structure that enables it to maintain its core 

catalytic function (transferring a phosphate group from ATP onto a substrate protein) 

while radiating into a family that includes > 500 members encoded in human cells, each 

receiving a specific set of inputs and relaying information to a distinct set of substrates 

99,100. Like wires in electronic devices, kinases transmit information using a common 

currency – phosphorylation – that enables them form serial and parallel relays. But 
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unlike static wires, kinases form dynamic networks that rearrange their spatial 

localization and interaction partners in complex patterns that are contingent on the 

environment. To gain insight into the plasticity of a subset of the cellular “kinome”, we 

generated transcriptomic data from yeast cells exposed to 10 different environments in 

the context of mutations in 28 different kinases (21% of total kinases in yeast). We 

chose this set of kinases to be enriched for those with known or putative functions in 

stress pathways. 

Transcriptional responses to a large number of environmental perturbations have been 

measured in yeast cells. A major conclusion from these studies is that across nearly all 

environmental stress conditions, cells display a common gene expression signature 

known as the environmental stress response (ESR) 57,92,93,101. The ESR is comprised of 

two sets of genes that cells coordinately regulate across stresses: one that gets 

repressed (enriched for ribosomal protein and biogenesis genes), and one that gets 

induced (enriched for genes involved in alternative carbon and nitrogen metabolism) 

57,101. Subsequent studies have traced the regulation of the ESR to two major signaling 

axes: Ras/PKA and TOR. Key regulatory kinases in these pathways (Tpk1/2/3 and 

Tor1/2, respectively) phosphorylate and directly regulate the activity of transcription 

factors that control the ESR genes 102,103. Consistent with this body of work, we 

observed both the induced and repressed ESR signatures in our environmental 

perturbation data (Fig 3.1C). Moreover, unlike most kinases, we observed that inhibition 

of Tpk1/2/3-as and the TOR-pathway kinases Sch9-as and Ypk1-as had strong 

transcriptional signatures in the absence of any environmental perturbation and tended 

to cluster together regardless of environment (Fig 3.1D, E). This result underscores the 

centrality of these kinases in the stress signaling network. 
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With the exceptions of the UPR target genes in tunicamycin in Ire1-as cells, and the 

pheromone responsive genes in NaCl in Hog1-AS and Pbs2-AS cells, we did not 

identify dedicated sets of target genes regulated by a particular kinase in a specific 

condition. This is not unexpected, as these connections would have likely already been 

made in genetic studies. However, as in the case of heat shock, we identified many 

kinases whose inhibition altered the gene expression response compared to wild type. 

But rather than modulating the targets of the specific heat shock transcription factor 

Hsf1 (Fig 3.2D), these kinase mutants changed the amplitude of the ESR. This is the 

rule rather than the exception: across the different conditions, different subsets of 

kinases modulate the ESR. This suggests that the inputs received by Ras/PKA and 

TOR are diverse and contingent. 

The statistical model we employed to analyze the dataset – linear regression – is based 

on an assumption that the environmental perturbations and kinases each affect the 

expression of a given gene independently (Fig 3.4A). When this model fails to explain 

an experimental measurement, there is a “residual” amount of gene expression that is 

unaccounted for. In this case, we can infer that the kinase is involved in regulating the 

gene in the particular environment. By applying this residual analysis globally, we 

recapitulated known examples of signaling crosstalk and identified putative novel 

connections (Fig 3.4). Based on dysregulated genes, we mapped kinases to putative 

transcription factors (Fig 3.5). Identifying interactions in this manner was inspired by 

high-throughput genetic interaction studies 67,69,95,104,105. Like these previous works, 

there are many putative connections that we have not validated. The dataset can be 

parsed to find these interactions on the accompanying internet application 

(https://mace.shinyapps.io/kinase-app/). 
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Finally, we focused on a global antagonistic relationship – previously proposed – that 

we observed in the data between Tpk1/2/3 and Pbs2, a canonical member of the high 

osmolarity glycerol (HOG) MAPK pathway 95. Across all experiments, we found that 

Pbs2-as cells had reduced ESR output in both directions (Fig 3.6B, C). Explaining this, 

we found experimentally that the HOG pathway is a constitutive negative regulator 

acting upstream of Tpk1/2/3. While we did not reveal the precise molecular mechanism, 

we traced it to operating at or upstream of Ras-GTP (Fig 3.6F). These results reveal a 

new organization to the global stress response signaling network and elaborate the 

pathway at the center of the ESR.  

 

3.5 MATERIALS AND METHODS 

 

3.5.1 Yeast strain construction 

The 28 kinases genes, including ≥800 bp of promoter/5’UTR sequence were cloned 

from yeast genomic DNA into single integration vectors and sequence verified. Kinases 

were rendered analog sensitive (AS) by site-directed mutagenesis by introducing 

”gatekeeper” mutations as previously described 70,106. Yeast strains deleted for the 

nonessential kinases were transformed with the corresponding AS kinase mutant vector 

and genomic integration was verified by PCR. Essential kinases were replaced by by 

first being transformed with an episomal plasmid harboring a URA3-marked second 

copy of the essential kinase, then the genomic copy was deleted, then the AS allele was 

transformed and verified, and finally the episomal plasmid was counter-selected by 5-

FOA resistance. HSP12pr-GFP was built by amplifying 800 bp upstream of the HSP12 

ORF from genomic DNA and cloned upstream of the GFP. All strains are in the W303 
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genetic background. Gene deletions were performed by one-step PCR as described 107. 

Site-directed mutagenesis was performed with QuickChange according to the 

manufacturer’s direction (Agilent). Strains used in this work are described in Table S6. 

 

3.5.2 Inhibitor cocktail 

AS kinase mutants and wild type controls were treated with a cocktail of cell-permeable 

ATP analogs consisting of 2 µM 1NM-PP1, 2 µM 3MB-PP1 and 2 µM BEZ235 to enable 

inhibition of kinases with diverse structural features near the ATP binding pocket. 

 

3.5.3 Cell culture and treatment 

Cells were inoculated from single colonies into liquid media (YPD or SDC) and grown 

for at least 20 hours phase at 30°C arriving in exponential phase at OD600 ≈ 0.5 at the 

start of the experiment. Cell growth and treatment were done in deep well 96 well 

plates. YPD consists of 10 g/L yeast extract, 20 g/L Bactopeptone (Becton Dickinson) 

and 0.2 g/L dextrose (Sigma-Aldrich). Complete synthetic media (SDC) consists of 6.7 

g/L nitrogen base without amino acids, 2 g/L dextrose (Sigma-Aldrich) and 0.79 g/L 

complete supplement mixture (MP Biomedicals). Cells were then treated with inhibitor 

cocktail for 5 min, followed by the given environmental perturbation for 20 min. Heat 

shock was performed by mixing 1 ml of cells at 30ºC with 1 ml of media pre-heated to 

50ºC followed by incubation at 39ºC. Glucose depletion was performed by two 

consecutive whole-plate centrifugation steps (4000g for 3 minutes), decanting off media 

and replacing with osmo-balanced, glucose-free media (YPSorbitol). All other 

treatments were applied as 10x stocks made in YPD. Following treatment, cells were 
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then spun (4000g for 3 minutes) in the deep well plates, media decanted and plates 

were snap frozen in liquid nitrogen. Samples were kept in storage at -80 ̊C.  

 

3.5.4 Total RNA extraction 

Frozen cell pellets were thawed on ice, resuspended in 1 ml water, transferred to fresh 

1.5 ml tubes and harvested by spinning as above. Washed cell pellets were 

resuspended in 200 μl AE (50 mM NaOAc, pH 5.2, 10 mM EDTA) and vortexed. 20 μl of 

10% SDS was added, followed by 250 μl acid phenol, and samples were incubated at 

65 ̊C with shaking for 10 minutes. After an additional 5 minutes on ice, samples were 

spun at 15,000 rpm for 5 minutes at 4 ̊C. Supernatants were transferred to pre-spun 

heavy phase lock tubes (5 Prime) and 250 μl chloroform was added. Tubes were spun 

at full speed for 5 minutes at 15,000 rpm and aqueous layers (above the wax) were 

transferred to fresh 1.5 ml tubes. 30 μl of 3M NaOAc, pH 5.2 was added followed by 

750 μL ice cold 100% ethanol. RNA was precipitated at -80 ̊C for 30 minutes and 

samples were spun at 15,000 rpm for 30 minutes at 4 ̊C. Pellets were washed with 1 ml 

70% ethanol, spun at 15,000 rpm for 10 minutes at 4 ̊C. The supernatant was removed 

and pellets were air dried. Pellets were resuspended in 30 μl DEPC water and the RNA 

concentrations of the resulting solutions measured by Nano Drop.   

 

3.5.5 Library preparation and deep sequencing 

Sequencing libraries were prepared and sequenced on an Illumina HighSeq 2500 with 

single end sequencing at 40 base reads. Total RNA samples were submitted to the 

Whitehead Institute Genome Technology Core where polyA + RNA was purified, 



 
91 

fragmented and sequencing libraries barcoded to enable multiplexing in an Illumina Hi-

Seq 2500. Reads were assigned by the barcode to the appropriate sample.  

 

3.5.6 Read alignment and normalization 

Genomic alignment was performed using STAR 71, using the UCSC S. cerevisiae 

annotation file. Log counts were calculated using the variance stabilizing transform from 

DESeq2 72. See Computational Pipeline section for more information. 

 

3.5.7 Differential Gene expression analysis 

Differential gene expression calling for each stress-environment were defined using 

DESeq2 and using an adjusted p-value cutoff of 0.05 using wild type cells with YPD as 

the baseline condition 72. 

 

3.5.8 GO Enrichment 

GO term enrichment was assessed using the Yeastmine API 108 

 

3.5.9 Motif enrichment and TF association 

Gene’s promotor regions were defined as 500bp upstream of the canonical start 

sequence of the gene. Motif enrichment analysis was conducted with MEME 89, and TF 

motifs were defined using all the motifs in the JASPAR 2016 Yeast database 90. 

 



 
92 

3.5.10 Flow cytometry 

Flow cytometry was performed on a BD Fortessa with a high throughput sampler. For 

each sample, 10000 cells were collected and GFP fluorescence was quantified. The 

median of the distribution of the GFP signal was determined for three biological 

replicates, the average and standard deviation of the replicates are presented. 

 

3.5.11 Strain and Data availability 

The strains are available to the research community upon request, the raw sequencing 

data is publicly available for download, and the processed data is presented in several 

interactive forms included as “applets” on the accompanying website [GSE115556, 

https://mace.shinyapps.io/kinase-app/]. 

 

3.5.12 Computational Pipeline 

All data analysis code and figure generation steps are available at: 

github.com/kmace/kinase. 

 

3.6 FIGURES  
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Figure 3.1: Measurement of global gene expression in 28 kinase mutants in ten 
environmental conditions 
 

A) Schematic of experimental protocol. Four replicates of a wild type yeast strain and 28 
isogenic strains harboring point mutations in genes encoding kinases that render the 
kinases “analog sensitive” (AS, see methods) were grown to exponential phase, treated 
with inhibitor cocktail for 5 min, and subjugated to one of 10 environmental conditions 
for 20 minutes. 
B) Color key indicating AS kinase strains in (c), (d) and (e). 
C) Expression heatmap of all genes across all samples in the dataset relative to the 
level of each gene in wild type cells in YPD. Gene rows are clustered hierarchically, 
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samples are ordered by environmental condition and by AS kinase within each condition 
alphabetically. 
D) Expanded expression heatmaps for three regions: i) inhibition of Pbs2, Sch9, 
Tpk1/2/3, and Ypk1 resulted in altered expression of genes enriched for ribosome 
biogenesis factors in YPD; ii) inhibition of Cdc15, Pbs2 and Tpk1/2/3 altered levels of a 
set of genes induced by rapamycin enriched for alternative metabolic enzymes; iii) 
inhibition of Ire1 attenuated induction of genes enriched for ERAD components and 
UPR targets in tunicamycin. 
E) Clustering of RNA-seq samples following dimensionality reduction by PCA followed 
by t-SNE plotted on a two-dimensional projection. Environments are color-coded.   
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Figure 3.2: Identification of kinase mutants that alter environment-specific gene 
expression 



 
96 

A) Genes differentially expressed in tunicamycin relative to YPD in wild type cells 
plotted for each inhibited kinase. The x-axis is the log2 fold change for the wild type in 
tunicamycin; the y-axis is the log2 fold change for the inhibited kinase strain relative to 
wild type. B) the same as (A), but for the NaCl. 
C) Slopes of regression lines fitted to plots like those in (A) and (B) for all inhibited 
kinases in all environments (missing samples in gray).  
D) Expression level following heat shock of the 42 genes controlled by Hsf1. Violin plots 
show the log2 fold change of the 42 genes in heat shock relative to wild type in heat 
shock for the set of inhibited kinases. Distributions of expression levels were analyzed 
pairwise by two-way ANOVA, revealing that Cdc15-as and Snf1-as show statistically 
significant attenuation of the Hsf1 operon in heat shock.  
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Figure 3.3 Kinase mutants that alter common environmental responses do so by 
affecting overlapping and distinct sets of genes 
 

A) Heatmaps showing the set of genes differentially expressed in tunicamycin in wild 
type cells, clustered into seven groups labeled by the most significant gene ontology 
term enriched in the group. Left panel: log2 fold change relative to wild type in 
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tunicamycin for the set of kinase mutants treated with tunicamycin. Middle and right 
panels: For Ire1-as and Cdc15-as, log2 fold change of the same set of genes across all 
environments, shown relative to wild type in each environment.  
B) As in (A) but for set of genes differentially expressed in in NaCl. 
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Figure 3.4 . Identification of nonlinear interactions between environmental 
perturbations and inhibited kinases 
A) Linear decomposition of the gene expression matrix. Left panel: Measured gene 
expression matrix (log2 fold change of each gene in each environment relative to the 
expression in wild type in YPD; same data as Fig 3.1C). Middle: A linear model was fit 
to each gene to estimate the contribution of each environment on expression in the wild 
type. The heat map shows the estimated log2 fold change for each gene relative to 
expression in wild type in YPD. Right: A linear model was fit to each gene to estimate 
the contribution of inhibiting each kinase in YPD. The heat map shows the estimated 
log2 fold change for each gene relative to expression in wild type in YPD. Kinases and 
environments are color-coded as depicted in the key at the bottom. 
B) Frequency distribution of the set of individual gene models, binned by the quality of 
the fit across the full set of measurements – i.e., how well each model matches the 
measured expression of the given gene across the set of >300 samples – quantified as 
the R2. 
C) Quantile-quantile plot comparing the distribution of the residuals (the differences 
between the model predictions and measured values) against a theoretical normal 
distribution. 98% of the data points lie on the x=y line, suggesting that these residuals 
are normally distributed and therefore unlikely to be meaningful (just modeling and 
measurement error). The residuals of the remaining 2% of samples are no longer 
normally distributed, suggesting the linear model is insufficient in these cases.  
D) Density contour plot of all two million model residuals as a function of absolute gene 
expression, demonstrating low correlation between residuals and expression level.  
E) Scatter plot of all measurements of the expression of HSP12. For each sample, 
measured HSP12 expression is plotted versus the predicted expression value. For a 
single sample, Tpk1/2/3-as under NaCl, the absolute value of the difference between 
the predicted and measured expression values exceeded 2.5 standard deviations. Note: 
HSP12 was not measured in Tpk1/2/3-as following glucose depletion. 
F) Scatter plot of all measurements of the mating pheromone response genes versus 
model predictions. For each sample, the expression of all genes with the gene ontology 
term “pheromone response” was averaged. For Hog1-as and Pbs2-as under NaCl, the 
measured expression of the pheromone response genes exceeded the model 
predictions by greater than 2.5 standard deviations. 
G) As in (F), but for genes with the gene ontology term “proteasome”. For Ypk1-as and 
Sch9-as under menadione, the residuals exceeded 2.5 standard deviations. 
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Figure 3.5 Prediction of links between kinases and transcription factors 
 
A) The set of all genes with expression measurements with model residuals greater 
than an absolute value of 2.5 standard in any sample was analyzed for enriched TF 
binding sites in their promoter regions. The edges on the graph connect peripheral AS 
kinases with interior TFs. Connections indicate that when the given kinase is inhibited 
during heat shock, the genes with significant residuals are enriched for binding sites for 
the given TF. 
B) As in (A), but for menadione. 
C) As in (A), but for all environments except heat shock and menadione. 
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Figure 3.6: The HOG pathway is an upstream negative regulator of Tpk1/2/3 under 
all conditions 
A) Heatmaps showing the genome-wide effects of inhibition of Tpk1/2/3-as and Pbs2-as 
relative to wild type across the set of environments. 
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B) Distribution of fold changes for all genes in the iESR in Pbs2-as cells, Tpk1/2/3-as 
cells and all other strains.  
C) As in (B), but for the rESR. 
D) A GFP reporter driven by the HSP12 promoter was measured by flow cytometry 
under basal conditions, following 0.8 M NaCl for 1 hour and following addition of 5 µM 
1NM-PP1 for 1 hour in Tpk1/2/3-as cells, Tpk1/2/3-as/pbs2∆ cells and Tpk1/2/3-
as/Ras2-G19V cells. The median of 104 cells was measured in triplicate for each 
condition, and the error bar represents the standard deviation of the replicates.  
E) Tpk1/2/3-as, Tpk1/2/3-as/pbs2∆ and Tpk1/2/3-as/hog1∆ cells were subjected to a 
1NM-PP1 dose response assay, using the HSP12pr-GFP as a readout. Each 
concentration of inhibitor was incubated with cells for 1 hour. Measurements performed 
analyzed as in (D).  
F) Proposed architecture of the upstream signaling pathway controlling the ESR. 
 

3.7 TABLES 

Table 3.1 Strains used in this study 
DPY 
number 

Description Genotype 

1 WT W303 MATa ADE2 
716 Atg1-as W303 MATa ADE2 atg1∆::HYG atg1-as::HIS3 

1119 Cdc5-as W303 MATa ADE2 cdc5∆::HYG cdc5-as::HIS3 
1120 Cdc7-as W303 MATa ADE2 cdc7∆::HYG cdc7-as::HIS3 
1121 Cdc15-as W303 MATa ADE2 cdc15∆::HYG cdc1-as::HIS3 
1122 Ctk1-as W303 MATa ADE2 ctk1∆::HYG ctk1-as::HIS3 

719 Fus3-as W303 MATa ADE2 fus3∆::HYG fus3-as::HIS3 
727 Hog1-as W303 MATa ADE2 hog1∆::HYG hog1-as::HIS3 
718 Ire1-as W303 MATa ADE2 ire1∆::HYG ire1-as::HIS3 

1078 Kin1-as W303 MATa ADE2 kin1∆::HYG kin1-as::HIS3 
1079 Ksp1-as W303 MATa ADE2 ksp1∆::HYG ksp1-as::HIS3 

720 Kss1-as W303 MATa ADE2 kss1∆::HYG kss1-as::HIS3 
1088 Mrk1-as W303 MATa ADE2 mrk1∆::HYG mrk1-as::HIS3 
1089 Pbs2-as W303 MATa ADE2 pbs2∆::HYG pbs2-as::HIS3 
1213 Pho85-as W303 MATa ADE2 pho85∆::HYG pho85-as::HIS3 

723 Pkc1-as W303 MATa ADE2 pkc1∆::HYG pkc1-as::HIS3 
1214 Rim11-as W303 MATa ADE2 rim11∆::HYG rim11-as::HIS3 

722 Rim15-as W303 MATa ADE2 rim15∆::HYG rim15-as::HIS3 
724 Sch9-as W303 MATa ADE2 sch9∆::HYG sch9-as::HIS3 

1198 Slt2-as W303 MATa ADE2 slt2∆::HYG slt2-as::HIS3 
726 Snf1-as W303 MATa ADE2 snf1∆::HYG snf1-as::HIS3 

1090 Ssn3-as W303 MATa ADE2 ssn3∆::HYG ssn3-as::HIS3 
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DPY 
number 

Description Genotype 

1091 Ste11-as W303 MATa ADE2 ste11∆::HYG ste11-as::HIS3 
1069 Tor2-as W303 MATa ADE2 tor2∆::HYG tor2-as::HIS3 

312 Tpk1/2/3-as W303 MATa ADE2 tpk1/2/3-as 
1066 Yak1-as W303 MATa ADE2 yak1∆::HYG yak1-as::HIS3 
1067 Ygk3-as W303 MATa ADE2 ygk3∆::HYG ygk3-as::HIS3 
1068 Ypk1-as W303 MATa ADE2 ypk1∆::HYG ypk1-as::HIS3 
1101 Ypk3-as W303 MATa ADE2 ypk3∆::HYG ypk3-as::HIS3 
1378 Tpk1/2/3-as HSP12pr-GFP W303 MATa ADE2 tpk1/2/3-as HSP12pr-GFP::LEU2 
1396 Tpk1/2/3-as hog1∆ HSP12pr-GFP W303 MATa ADE2 tpk1/2/3-as hog1∆::HYG HSP12pr-

GFP::LEU2 
1379 Tpk1/2/3-as pbs2∆ HSP12pr-GFP W303 MATa ADE2 tpk1/2/3-as pbs2∆::HYG HSP12pr-

GFP::LEU2 
 

  



 
106 

REFERENCES 

 

1. Beltrao, P., Cagney, G. & Krogan, N. J. Quantitative genetic interactions reveal 

biological modularity. Cell 141, 739–45 (2010). 

2. Schuldiner, M. et al. Exploration of the function and organization of the yeast early 

secretory pathway through an epistatic miniarray profile. Cell 123, 507–19 (2005). 

3. Setty, Y., Mayo,  a E., Surette, M. G. & Alon, U. Detailed map of a cis-regulatory 

input function. Proc. Natl. Acad. Sci. U. S. A. 100, 7702–7 (2003). 

4. Anderson, J. C., Voigt, C. a & Arkin, A. P. Environmental signal integration by a 

modular AND gate. Mol. Syst. Biol. 3, 133 (2007). 

5. Louvion, J. F., Havaux-Copf, B. & Picard, D. Fusion of GAL4-VP16 to a steroid-

binding domain provides a tool for gratuitous induction of galactose-responsive 

genes in yeast. Gene 131, 129–134 (1993). 

6. McIsaac, R. S. et al. Fast-acting and nearly gratuitous induction of gene 

expression and protein depletion in Saccharomyces cerevisiae. Mol. Biol. Cell 22, 

4447–59 (2011). 

7. Stewart-Ornstein, J., Weissman, J. S. & El-Samad, H. Cellular noise regulons 

underlie fluctuations in Saccharomyces cerevisiae. Mol. Cell 45, 483–93 (2012). 

8. Ottoz, D. S. M., Rudolf, F. & Stelling, J. Inducible, tightly regulated and growth 

condition-independent transcription factor in Saccharomyces cerevisiae. Nucleic 

Acids Res. 1–11 (2014). 

9. Labow, M. A., Baim, S. B., Shenk, T. & Levine, A. J. Conversion of the lac 

repressor into an allosterically regulated transcriptional activator for mammalian 



 
107 

cells. Mol. Cell. Biol. 10, 3343–56 (1990). 

10. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by 

tetracycline-responsive promoters. Proc. Natl. Acad. Sci. U. S. A. 89, 5547–51 

(1992). 

11. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. 

Science 268, 1766–9 (1995). 

12. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-

specific control of gene expression. Cell 152, 1173–83 (2013). 

13. Hovland, P., Flick, J., Johnston, M. & Sclafani, R. A. Galactose as a gratuitous 

inducer of GAL gene expression in yeasts growing on glucose. Gene 83, 57–64 

(1989). 

14. Shimizu-Sato, S., Huq, E., Tepperman, J. M. & Quail, P. H. A light-switchable 

gene promoter system. Nat. Biotechnol. 20, 1041–4 (2002). 

15. Konermann, S. et al. Optical control of mammalian endogenous transcription and 

epigenetic states. Nature 500, 472–6 (2013). 

16. Rao, C. V, Wolf, D. M. & Arkin, A. P. Control, exploitation and tolerance of 

intracellular noise. Nature 420, 231–7 (2002). 

17. Samoilov, M. S., Price, G. & Arkin, A. P. From fluctuations to phenotypes: the 

physiology of noise. Sci. STKE 2006, re17 (2006). 

18. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial 

persistence as a phenotypic switch. Science 305, 1622–5 (2004). 

19. Sourjik, V. & Wingreen, N. S. Responding to chemical gradients: bacterial 

chemotaxis. Curr. Opin. Cell Biol. 24, 262–8 (2012). 

20. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-



 
108 

genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 

428–32 (2009). 

21. Delbrück, M. The Burst Size Distribution in the Growth of Bacterial Viruses 

(Bacteriophages). J. Bacteriol. 50, 131–5 (1945). 

22. Burnett, J. C., Miller-Jensen, K., Shah, P. S., Arkin, A. P. & Schaffer, D. V. Control 

of stochastic gene expression by host factors at the HIV promoter. PLoS Pathog. 

5, e1000260 (2009). 

23. Tanouchi, Y. et al. A noisy linear map underlies oscillations in cell size and gene 

expression in bacteria. Nature 523, 357–60 (2015). 

24. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. 

Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73 

(2002). 

25. Murphy, K. F., Balázsi, G. & Collins, J. J. Combinatorial promoter design for 

engineering noisy gene expression. Proc. Natl. Acad. Sci. U. S. A. 104, 12726–

12731 (2007). 

26. Tabor, J. J., Bayer, T. S., Simpson, Z. B., Levy, M. & Ellington, A. D. Engineering 

stochasticity in gene expression. Mol. Biosyst. 4, 754–61 (2008). 

27. Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in 

a synthetic transcriptional cascade. Proc. Natl. Acad. Sci. U. S. A. 102, 3581–6 

(2005). 

28. Murphy, K. F., Adams, R. M., Wang, X., Balázsi, G. & Collins, J. J. Tuning and 

controlling gene expression noise in synthetic gene networks. Nucleic Acids Res. 

38, 2712–26 (2010). 

29. Hung, M. et al. Modulating the frequency and bias of stochastic switching to 



 
109 

control phenotypic variation. Nat. Commun. 5, 4574 (2014). 

30. Braselmann, S., Graninger, P. & Busslinger, M. A selective transcriptional 

induction system for mammalian cells based on Gal4-estrogen receptor fusion 

proteins. Proc. Natl. Acad. Sci. U. S. A. 90, 1657–61 (1993). 

31. Wang, Y., O’Malley, B. W. & Tsai, S. Y. A regulatory system for use in gene 

transfer. Proc. Natl. Acad. Sci. U. S. A. 91, 8180–4 (1994). 

32. Wang, Y., Xu, J., Pierson, T., O’Malley, B. W. & Tsai, S. Y. Positive and negative 

regulation of gene expression in eukaryotic cells with an inducible transcriptional 

regulator. Gene Ther. 4, 432–41 (1997). 

33. Pratt, W. B. The hsp90-based chaperone system: involvement in signal 

transduction from a variety of hormone and growth factor receptors. Proc. Soc. 

Exp. Biol. Med. 217, 420–434 (1998). 

34. Smith, D. F. & Toft, D. O. Minireview: the intersection of steroid receptors with 

molecular chaperones: observations and questions. Mol. Endocrinol. 22, 2229–

2240 (2008). 

35. McIsaac, R. S. et al. Synthetic gene expression perturbation systems with rapid, 

tunable, single-gene specificity in yeast. Nucleic Acids Res. 41, e57 (2013). 

36. Bram, R. J. & Kornberg, R. D. Specific protein binding to far upstream activating 

sequences in polymerase II promoters. Proc. Natl. Acad. Sci. U. S. A. 82, 43–47 

(1985). 

37. Giniger, E., Varnum, S. M. & Ptashne, M. Specific DNA binding of GAL4, a 

positive regulatory protein of yeast. Cell 40, 767–774 (1985). 

38. Zuleta, I., Aranda-Díaz, A., Li, H. & El-Samad, H. Dynamic characterization of 

growth and gene expression using high-throughput automated flow cytometry. 



 
110 

Nat. Methods 11, 443–8 (2014). 

39. Pichon, M. F. & Milgrom, E. Characterization and Assay of Progesterone 

Receptor in Human Mammary Carcinoma Characterization and Assay of 

Progesterone Receptor in Human Mammary Carcinoma1. 464–471 (1977). 

40. Bardwell, L. A walk-through of the yeast mating pheromone response pathway. 

Peptides 25, 1465–76 (2004). 

41. Kim, J., Couve, A. & Hirsch, J. P. Receptor inhibition of pheromone signaling is 

mediated by the Ste4p Gbeta subunit. Mol. Cell. Biol. 19, 441–9 (1999). 

42. Tedford, K., Kim, S., Sa, D., Stevens, K. & Tyers, M. Regulation of the mating 

pheromone and invasive growth responses in yeast by two MAP kinase 

substrates. Curr. Biol. 7, 228–38 (1997). 

43. Doi, K. et al. MSG5, a novel protein phosphatase promotes adaptation to 

pheromone response in S. cerevisiae. EMBO J. 13, 61–70 (1994). 

44. Nomoto, S., Nakayama, N., Arai, K. & Matsumoto, K. Regulation of the yeast 

pheromone response pathway by G protein subunits. EMBO J. 9, 691–6 (1990). 

45. McCullagh, E., Seshan, A., El-Samad, H. & Madhani, H. D. Coordinate control of 

gene expression noise and interchromosomal interactions in a MAP kinase 

pathway. Nat. Cell Biol. 12, 954–62 (2010). 

46. Takahashi, S. & Pryciak, P. M. Membrane Localization of Scaffold Proteins 

Promotes Graded Signaling in the Yeast MAP Kinase Cascade. Curr. Biol. 18, 

1184–1191 (2008). 

47. Peter, M., Gartner, A., Horecka, J., Ammerer, G. & Herskowitz, I. FAR1 links the 

signal transduction pathway to the cell cycle machinery in yeast. Cell 73, 747–60 

(1993). 



 
111 

48. Blake, W. J., Kaern, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene 

expression. Nature 422, 633–7 (2003). 

49. Raser, J. M. & O’Shea, E. K. Control of stochasticity in eukaryotic gene 

expression. Science 304, 1811–4 (2004). 

50. Schwob, E., Böhm, T., Mendenhall, M. D. & Nasmyth, K. The B-type cyclin kinase 

inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79, 233–44 

(1994). 

51. Nugroho, T. T. & Mendenhall, M. D. An inhibitor of yeast cyclin-dependent protein 

kinase plays an important role in ensuring the genomic integrity of daughter cells. 

Mol. Cell. Biol. 14, 3320–8 (1994). 

52. García-Rodríguez, L. J., Valle, R., Durán, A. & Roncero, C. Cell integrity signaling 

activation in response to hyperosmotic shock in yeast. FEBS Lett. 579, 6186–90 

(2005). 

53. Pincus, D., Aranda-Díaz, A., Zuleta, I. A., Walter, P. & El-Samad, H. Delayed 

Ras/PKA signaling augments the unfolded protein response. Proc. Natl. Acad. 

Sci. U. S. A. 111, 14800–5 (2014). 

54. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene 

expression in a single cell. Science 297, 1183–6 (2002). 

55. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–8 (2004). 

56. Paulsson, J. Models of stochastic gene expression. Phys. Life Rev. 2, 157–175 

(2005). 

57. Gasch, A. P. et al. Genomic Expression Programs in the Response of Yeast Cells 

to Environmental Changes. Mol. Biol. Cell (2000). doi:10.1091/mbc.11.12.4241 

58. Berry, D. B. & Gasch, A. P. Stress-activated Genomic Expression Changes Serve 



 
112 

a Preparative Role for Impending Stress in Yeast. Mol. Biol. Cell (2008). 

doi:10.1091/mbc.E07-07-0680 

59. Loewith, R. & Hall, M. N. Target of rapamycin (TOR) in nutrient signaling and 

growth control. Genetics (2011). doi:10.1534/genetics.111.133363 

60. Morano, K. A., Grant, C. M. & Moye-Rowley, W. S. The response to heat shock 

and oxidative stress in saccharomyces cerevisiae. Genetics (2012). 

doi:10.1534/genetics.111.128033 

61. Saito, H. & Posas, F. Response to hyperosmotic stress. Genetics (2012). 

doi:10.1534/genetics.112.140863 

62. Shamu, C. E. & Walter, P. Oligomerization and phosphorylation of the Ire1p 

kinase during intracellular signaling from the endoplasmic reticulum to the 

nucleus. EMBO J. (1996). doi:10.1002/j.1460-2075.1996.tb00666.x 

63. Kobayashi, N. & McEntee, K. Identification of cis and trans components of a novel 

heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol. Cell. 

Biol. (1993). doi:10.1128/MCB.13.1.248.Updated 

64. Jonikas, M. C. et al. Comprehensive characterization of genes required for protein 

folding in the endoplasmic reticulum. Science (80-. ). (2009). 

doi:10.1126/science.1167983 

65. Brandman, O. et al. A Ribosome-Bound Quality Control Complex Triggers 

Degradation of Nascent Peptides and Signals Translation Stress. Cell (2012). 

doi:10.1016/j.cell.2012.10.044 

66. Breitkreutz, A. et al. A global protein kinase and phosphatase interaction network 

in yeast. Science (80-. ). (2010). doi:10.1126/science.1176495 

67. Van Wageningen, S. et al. Functional overlap and regulatory links shape genetic 



 
113 

interactions between signaling pathways. Cell (2010). 

doi:10.1016/j.cell.2010.11.021 

68. Fiedler, D. et al. Functional Organization of the S. cerevisiae Phosphorylation 

Network. Cell (2009). doi:10.1016/j.cell.2008.12.039 

69. Martin, H. et al. Differential genetic interactions of yeast stress response MAPK 

pathways. Mol. Syst. Biol. (2015). doi:10.15252/msb.20145606 

70. Bishop, A. C. et al. A chemical switch for inhibitor-sensitive alleles of any protein 

kinase. Nature (2000). doi:10.1038/35030148 

71. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics (2013). 

doi:10.1093/bioinformatics/bts635 

72. Love, M. I., Anders, S. & Huber, W. Differential analysis of count data - the 

DESeq2 package. Genome Biology (2014). doi:110.1186/s13059-014-0550-8 

73. Van Der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. 

Res. (2008). doi:10.1007/s10479-011-0841-3 

74. Cox, J. S., Shamu, C. E. & Walter, P. Transcriptional induction of genes encoding 

endoplasmic reticulum resident proteins requires a transmembrane protein 

kinase. Cell (1993). doi:10.1016/0092-8674(93)90648-A 

75. Solís, E. J. et al. Defining the Essential Function of Yeast Hsf1 Reveals a 

Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis. Mol. 

Cell (2016). doi:10.1016/j.molcel.2016.05.014 

76. Hahn, J. S. & Thiele, D. J. Activation of the Saccharomyces cerevisiae Heat 

Shock Transcription Factor under Glucose Starvation Conditions by Snf1 Protein 

Kinase. J. Biol. Chem. (2004). doi:10.1074/jbc.M311005200 

77. Zheng, X. et al. Dynamic control of Hsf1 during heat shock by a chaperone switch 



 
114 

and phosphorylation. Elife (2016). doi:10.7554/eLife.18638 

78. Westfall, P. J., Ballon, D. R. & Thorner, J. When the stress of your environment 

makes you go HOG wild. Science (2004). doi:10.1126/science.1104879 

79. O’Rourke, S. M. & Herskowitz, I. The Hog1 MAPK prevents cross talk between 

the HOG and pheromone response MAPK pathways in Saccharomyces 

cerevisiae. Genes Dev. (1998). doi:10.1101/gad.12.18.2874 

80. Capaldi, A. P. et al. Structure and function of a transcriptional network activated 

by the MAPK Hog1. Nat. Genet. (2008). doi:10.1038/ng.235 

81. Hersen, P., McClean, M. N., Mahadevan, L. & Ramanathan, S. Signal processing 

by the HOG MAP kinase pathway. Proc. Natl. Acad. Sci. 105, 7165–7170 (2008). 

82. Tong, A. H. Y. et al. Global Mapping of the Yeast Genetic Interaction Network. 

Science (80-. ). (2004). doi:10.1126/science.1091317 

83. Schuldiner, M. et al. Exploration of the function and organization of the yeast early 

secretory pathway through an epistatic miniarray profile. Cell (2005). 

doi:10.1016/j.cell.2005.08.031 

84. Görner, W. et al. Nuclear localization of the C2H2zinc finger protein Msn2p is 

regulated by stress and protein kinase A activity. Genes Dev. (1998). 

doi:10.1101/gad.12.4.586 

85. Sadeh, A., Movshovich, N., Volokh, M., Gheber, L. & Aharoni, A. Fine-tuning of 

the Msn2/4-mediated yeast stress responses as revealed by systematic deletion 

of Msn2/4 partners. Mol. Biol. Cell (2011). doi:10.1091/mbc.E10-12-1007 

86. Hao, N. & O’Shea, E. K. Signal-dependent dynamics of transcription factor 

translocation controls gene expression. Nat. Struct. Mol. Biol. (2012). 

doi:10.1038/nsmb.2192 



 
115 

87. Lee, B. N. & Elion, E. A. The MAPKKK Ste11 regulates vegetative growth through 

a kinase cascade of shared signaling components. Proc. Natl. Acad. Sci. U. S. A. 

(1999). doi:10.1073/PNAS.96.22.12679 

88. Aiken, C. T., Kaake, R. M., Wang, X. & Huang, L. Oxidative Stress-Mediated 

Regulation of Proteasome Complexes. Mol. Cell. Proteomics (2011). 

doi:10.1074/mcp.M110.006924 

89. McLeay, R. C. & Bailey, T. L. Motif Enrichment Analysis: A unified framework and 

an evaluation on ChIP data. BMC Bioinformatics (2010). doi:10.1186/1471-2105-

11-165 

90. Mathelier, A. et al. JASPAR 2016: A major expansion and update of the open-

access database of transcription factor binding profiles. Nucleic Acids Res. 

(2016). doi:10.1093/nar/gkv1176 

91. Huber, A. et al. Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and 

the histone deacetylase complex RPD3L. EMBO J. (2011). 

doi:10.1038/emboj.2011.221 

92. Martínez-Pastor, M. T. et al. The Saccharomyces cerevisiae zinc finger proteins 

Msn2p and Msn4p are required for transcriptional induction through the stress 

response element (STRE). EMBO J. (1996). doi:10.1002/j.1460-

2075.1996.tb00576.x 

93. Schmitt, A. P. & McEntee, K. Msn2p, a zinc finger DNA-binding protein, is the 

transcriptional activator of the multistress response in Saccharomyces cerevisiae. 

Proc. Natl. Acad. Sci. U. S. A. (1996). doi:10.1073/pnas.93.12.5777 

94. Lippman, S. I. & Broach, J. R. Protein kinase A and TORC1 activate genes for 

ribosomal biogenesis by inactivating repressors encoded by Dot6 and its homolog 



 
116 

Tod6. Proc. Natl. Acad. Sci. U. S. A. (2009). doi:10.1073/pnas.0907027106 

95. Gutin, J., Sadeh, A., Rahat, A., Aharoni, A. & Friedman, N. Condition-specific 

genetic interaction maps reveal crosstalk between the cAMP/PKA and the HOG 

MAPK pathways in the activation of the general stress response. Mol Syst Biol 

(2015). doi:10.15252/msb.20156451 

96. Pincus, D., Aranda-Diaz, A., Zuleta, I. A., Walter, P. & El-Samad, H. Delayed 

Ras/PKA signaling augments the unfolded protein response. Proc. Natl. Acad. 

Sci. (2014). doi:10.1073/pnas.1409588111 

97. Zuleta, I. a, Aranda-Díaz, A., Li, H. & El-Samad, H. Dynamic characterization of 

growth and gene expression using high-throughput automated flow cytometry. 

Nat. Methods (2014). doi:10.1038/nmeth.2879 

98. Thevelein, J. M. & De Winde, J. H. Novel sensing mechanisms and targets for the 

cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. 

Molecular Microbiology (1999). doi:10.1046/j.1365-2958.1999.01538.x 

99. Creixell, P. et al. Hierarchical Organization Endows the Kinase Domain with 

Regulatory Plasticity. Cell Syst. (2018). doi:10.1016/j.cels.2018.08.008 

100. Raser, J. M. & O’Shea, E. K. Control of stochasticity in eukaryotic gene 

expression. Science 304, 1811–1814 (2004). 

101. Causton, H. C. et al. Remodeling of Yeast Genome Expression in Response to 

Environmental Changes. Mol. Biol. Cell (2001). doi:10.1091/mbc.12.2.323 

102. Hansen, A. S. & O’Shea, E. K. Promoter decoding of transcription factor dynamics 

involves a trade-off between noise and control of gene expression. Mol. Syst. Biol. 

9, (2013). 

103. Smith, A., Ward, M. P. & Garrett, S. Yeast PKA represses Msn2p/Msn4p-



 
117 

dependent gene expression to regulate growth, stress response and glycogen 

accumulation. EMBO J. (1998). doi:10.1093/emboj/17.13.3556 

104. Kemmeren, P. et al. Large-scale genetic perturbations reveal regulatory networks 

and an abundance of gene-specific repressors. Cell 157, 740–752 (2014). 

105. Collins, S. R., Schuldiner, M., Krogan, N. J. & Weissman, J. S. A strategy for 

extracting and analyzing large-scale quantitative epistatic interaction data. 

Genome Biol. (2006). doi:10.1186/gb-2006-7-7-r63 

106. Lopez, M. S., Kliegman, J. I. & Shokat, K. M. The logic and design of analog-

sensitive kinases and their small molecule inhibitors. Methods Enzymol. (2014). 

doi:10.1016/B978-0-12-397918-6.00008-2 

107. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based 

gene deletion and modification in Saccharomyces cerevisiae. Yeast (1998). 

doi:10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U 

108. Cherry, J. M. et al. SGD: Saccharomyces genome database. Nucleic Acids Res. 

(1998). doi:10.1093/nar/26.1.73 

 

 



 
Publishing Agreement 
 
It is the policy of the University to encourage open access and broad distribution of all 
theses, dissertations, and manuscripts. The Graduate Division will facilitate the 
distribution of UCSF theses, dissertations, and manuscripts to the UCSF Library for 
open access and distribution.  UCSF will make such theses, dissertations, and 
manuscripts accessible to the public and will take reasonable steps to preserve these 
works in perpetuity. 
  
I hereby grant the non-exclusive, perpetual right to The Regents of the University of 
California to reproduce, publicly display, distribute, preserve, and publish copies of my 
thesis, dissertation, or manuscript in any form or media, now existing or later derived, 
including access online for teaching, research, and public service purposes.  
  
 
__________________________       ________________ 

   Author Signature               Date 
 

  118

9/1/2021


		2021-08-31T16:53:05-0700
	Digitally verifiable PDF exported from www.docusign.com


		2021-09-01T16:24:46-0700
	Digitally verifiable PDF exported from www.docusign.com




