## **UC Berkeley**

**UC Berkeley Previously Published Works** 

### Title

SiX2 (X = S, Se) Single Chains and (Si-Ge)X2 Quaternary Alloys

### Permalink

https://escholarship.org/uc/item/8t13b78k

### Journal ACS Nano, 18(27)

ISSN

1936-0851

### Authors

Lee, Yangjin Choi, Young Woo Li, Linxuan <u>et al.</u>

Publication Date 2024-07-09

### DOI

10.1021/acsnano.4c04184

Peer reviewed



# SiX<sub>2</sub> (X = S, Se) Single Chains and $(Si-Ge)X_2$ Quaternary Alloys

Yangjin Lee,<sup>\*, $\nabla$ </sup> Young Woo Choi,<sup> $\nabla$ </sup> Linxuan Li, Wu Zhou, Marvin L. Cohen, Kwanpyo Kim,<sup>\*</sup> and Alex Zettl<sup>\*</sup>



together by van der Waals forces. Although this structural configuration has the potential to reveal interesting physical phenomena within the 1D limit, obtaining SiX<sub>2</sub> single chains has been challenging. We here examine experimentally and theoretically SiX<sub>2</sub> materials in the low chain number limit. Carbon nanotubes serve as growth templates and stabilize and protect the structures, and atomic-resolution scanning transmission electron microscopy directly identifies the atomic structure. Two distinct chain structures are observed for SiX<sub>2</sub>. Si<sub>x</sub>Ge<sub>1-x</sub>S<sub>2(1-y)</sub>Se<sub>2y</sub> quaternary alloy chains are also synthesized and characterized, demonstrating tunable semiconducting properties at the atomic-chain level. Density functional theory calculations reveal that the band gap of these alloy chains can be widely tuned through composition engineering. This work offers the possibilities for synthesizing and controlling semiconductor compositions at the single-chain limit to tailor material properties.

**KEYWORDS:** one-dimensional materials, silicon dichalcogenides, nanotubes, atomic chain, transmission electron microscopy, density functional theory

#### INTRODUCTION

The investigation of reduced dimensionality materials has aroused intensive experimental and theoretical interest owing to their extraordinary physical characteristics, such as optical, electrical, thermal, and magnetic properties, which differ significantly from those of bulk forms.<sup>1-6</sup> In particular, onedimensional (1D) materials, including nanowires, nanorods, and nanotubes, have garnered considerable attention owing to their potential applications in nanoelectronics, nanodevices, nanocomposite materials, Li-ion batteries, and nanophotonics.<sup>7–11</sup> Recent advances in the study of van der Waals (vdW) two-dimensional (2D) materials have led researchers to investigate the less-explored area of vdW 1D materials.<sup>12-14</sup> vdW 1D materials are composed of molecular/atomic chains with strong intrachain covalent or ionic bonds and relatively weak interchain vdW interactions. This structural configuration, particularly the presence of vdW gaps in 1D materials, offers enhanced flexibility for structural manipulation and modification, and it is completely free from the limitations imposed by the strong covalent bonds in nominally threedimensional (3D) materials.<sup>12</sup>

Silicon or germanium dichalcogenides (AX<sub>2</sub>, A = Si or Ge and X = S or Se) are examples of vdW 1D chain structures with semiconducting properties. The bulk crystal structure of SiS<sub>2</sub> and SiSe<sub>2</sub> consists of edge-shared SiS<sub>4</sub> and SiSe<sub>4</sub> tetrahedral chains interconnected via vdW forces (Figure 1a).<sup>15–17</sup> This atomic arrangement can lead to interesting physical phenomena as the thickness (number of chains) decreases. However, investigations of these materials at the single-chain level have been limited because of their poor environmental stability. Moreover, the formation of a ternary alloy structure (SiSSe) via the combination of SiS<sub>2</sub> and SiSe<sub>2</sub> illustrates the possibility of tailoring physical properties such as band gap by adjusting the alloy composition ratio.<sup>18</sup> Although considerable research has focused on manipulating these properties via changes in

 Received:
 March 28, 2024

 Revised:
 June 8, 2024

 Accepted:
 June 13, 2024

 Published:
 June 26, 2024





© 2024 The Authors. Published by American Chemical Society



Figure 1. Bulk SiX<sub>2</sub> synthesis and characterization. (a) Crystal structure of Bulk SiX<sub>2</sub>. The single chain consists of the edge-shared SiX<sub>4</sub> tetrahedrons (silicon atoms blue, chalcogen atoms yellow). (b, c) Photos of the synthesized (b) SiS<sub>2</sub> and (c) SiSe<sub>2</sub> inside ampules. (d, e) Optical image of (d) SiS<sub>2</sub> and (e) SiSe<sub>2</sub> micro wires on SiO<sub>2</sub>/Si substrate. Scale bar: 20 and 5  $\mu$ m, respectively. (f, g) Raman spectra of synthesized (f) SiS<sub>2</sub> and (g) SiSe<sub>2</sub>.

the alloy composition, research on the single-chain limit is still lacking. Alloying in the single-chain limit may also be extended by incorporating analogous tetrahedral systems such as germanium chalcogenide tetrahedrons (GeS<sub>4</sub> and GeSe<sub>4</sub>) to create quaternary alloy structures with diverse compositions. The realization and in-depth characterization of these alloy compositions can reveal their interesting material properties and application ranges by broadening the utility spectrum of vdW 1D materials.

The use of carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs) as reaction templates for encapsulation has proven highly effective for synthesizing various nanostructures.<sup>19–23</sup> This innovative method enables the creation of a diverse array of vdW 1D materials by introducing various substances such as monoelements, perovskites, metal halides, carbides, and chalcogenides into the confined spaces of nanotubes.<sup>24-36</sup> In particular, the small inner diameter of the nanotubes is advantageous for synthesizing 1D chain structures because it limits the radial growth of the encapsulated material. This geometric confinement effect of nanotubes has provided the opportunity for the emergence of crystal structures and properties not found in their bulk form.<sup>37-40</sup> Furthermore, the protective sheaths formed by the nanotubes play a crucial role in shielding the encapsulated materials from degradation, thereby facilitating the investigation of various nanostructures. Consequently, the nanotube encapsulation method serves as a powerful and effective technique for the production of vdW 1D nanostructures and offers the potential for utilizing these materials in various technological areas.

Here, we demonstrate the stabilization of individual  $SiX_2$  chains in CNTs, including Ge-containing alloy compositions. Encapsulation in nanotubes significantly enhances the environmental stability of single chains, thereby enabling their comprehensive characterization. Atomic-resolution scanning transmission electron microscopy (STEM) reveals the detailed

atomic structure, and we observe two distinct types of SiX<sub>2</sub> chains. Moreover, we synthesize and characterize the Si<sub>x</sub>Ge<sub>1-x</sub>S<sub>2(1-y)</sub>Se<sub>2y</sub> quaternary alloy chains, demonstrating their tunable semiconducting properties at the atomic-chain level. Density functional theory (DFT) calculations identify the electronic structures of these alloy chains and reveal their widely tunable electrical properties. This work provides possibilities for synthesizing and controlling the composition at the single-chain limit to tailor material properties.

#### **RESULTS AND DISCUSSION**

Bulk SiS<sub>2</sub> and SiSe<sub>2</sub> are directly synthesized using the meltgrowth methods (see Methods section). Figure 1b,c shows the as-synthesized SiS<sub>2</sub> and SiSe<sub>2</sub> samples inside quartz ampules, respectively. The SiS<sub>2</sub> samples exhibit small, thin, white powder-type crystals, whereas SiSe<sub>2</sub> samples exhibit redbrown, needle-shaped crystals. The morphologies of the samples are characterized by optical microscopy (Figure 1d,e). SiS<sub>2</sub> displays individual wires of a few micrometers, whereas SiSe<sub>2</sub> shows a bundle of millimeter-sized crystals. Raman spectroscopy measurement is performed to identify the phase of SiS<sub>2</sub> and SiSe<sub>2</sub>. Figure 1f,g shows the Raman spectra of the crystalline SiS<sub>2</sub> and SiSe<sub>2</sub>, respectively. The Raman peaks (144, 180, 187, 355, 436, and 630 cm<sup>-1</sup>) from SiS<sub>2</sub> and (83, 114, 120, 206, 245, 346, 357, and 515  $\text{cm}^{-1}$ ) from SiSe<sub>2</sub> are obtained. The observed highly intensive and narrow peak at 437.4  $\mbox{cm}^{-1}$  for  $SiS_2$  and 244  $\mbox{cm}^{-1}$  for  $SiSe_2$  corresponds to the  $A_{\sigma}$  symmetric stretching mode of SiX<sub>4</sub>, which suggests that the synthesized product is highly crystalline.<sup>16,17</sup> All of the observed Raman peaks of SiS<sub>2</sub> and SiSe<sub>2</sub> are assigned and matched well with previously reported Raman results.<sup>1</sup>

The  $SiS_2$  and  $SiSe_2$  samples exhibit high reactivity to ambient exposure, particularly to air and moisture, which triggers the formation of toxic gases such as  $H_2S$  and  $H_2Se$ .<sup>18</sup> The surface of these materials degrades upon exposure,



Figure 2. Isolation type-1 1D SiX<sub>2</sub> single chain inside nanotube. (a) Schematic of isolation of the 1D SiX<sub>2</sub> vdW chains via nanotube encapsulation. (b) Atomic model of type-1 SiX<sub>2</sub> single chain inside nanotube. (c) Low-magnification image of SiSe<sub>2</sub> encapsulated nanotube. Scale bar: 20 nm. (d) EDS spectra of SiS<sub>2</sub>, SiSe<sub>2</sub>, and SiS<sub>2(1-y)</sub>Se<sub>2y</sub> alloy chains inside nanotubes. (e-g) Atomic-resolution STEM images of type-1 (e) SiS<sub>2</sub>, (f) SiSe<sub>2</sub>, and (g) SiS<sub>2(1-y)</sub>Se<sub>2y</sub> alloy chain. Simulated STEM images of SiSe<sub>2</sub> are shown on the right. Scale bar: 0.5 nm. (h) ADF intensity line profile of SiS<sub>2(1-y)</sub>Se<sub>2y</sub> alloy chain inside the yellow square in panel (f). (i) Experimentally measured lattice constant versus Se fraction in the SiS<sub>2(1-y)</sub>Se<sub>2y</sub> alloy sample.

resulting in the formation of bubbles, as shown in Figure S1. Additionally, the Raman spectrum of bulk  $SiX_2$  distinctly shows a decrease in intensity following exposure to air. This high reactivity poses significant challenges in extending the production of  $SiS_2$  and  $SiSe_2$  to the single-chain limit and in further characterization.

We utilized a nanotube reaction vessel to isolate SiX<sub>2</sub> single chains and protect them from degradation (Figure 2a).  $SiX_2$ chains in nanotube samples are synthesized by directly sublimating the SiX<sub>2</sub> precursors with open-ended nanotubes in sealed ampules, as described in the Methods section. Encapsulating  $SiX_2$  in the nanotubes enables isolation of the material at the single-chain level and provides a high degree of environmental stability, thereby facilitating detailed characterization. Figure 2b illustrates the overall structure of the 1D  $SiX_2$  single chain within the nanotube. The synthesized  $SiX_2$ encapsulated nanotubes exhibit high filling fractions (approximately 90%) with chain lengths extending to hundreds of nanometers, as shown in Figures 2c and S2. The atomic composition ratio of SiS<sub>2</sub> and SiSe<sub>2</sub> is confirmed by energydispersive spectroscopy (EDS), which reveals a 1:2 atomic percentage ratio of Si to S or Se (Figure 2d). We also

synthesize a  $SiS_{2(1-y)}Se_{2y}$  alloy chain inside the nanotubes, and EDS characterization confirms the coexistence of the S and Se from the sample. The average composition ratio of the alloy sample is  $SiS_{0.8}Se_{1.2}$ , as determined by EDS quantification.

The detailed atomic structure of the synthesized SiX<sub>2</sub> encapsulated nanotube samples is investigated using annular dark-field (ADF) aberration-corrected STEM. Figure 2e,f shows the atomic-resolution ADF-STEM image of SiS<sub>2</sub> and SiSe<sub>2</sub> single chain encapsulated in a nanotube with an inner diameter of 1 nm. The image contrast of ADF-STEM strongly depends on the atomic number (Z); thus, S ( $Z_s = 16$ ) and Se  $(Z_{se} = 34)$  exhibit a higher intensity than Si  $(Z_{si} = 14)$ . The simulated STEM images (right side in Figure 2e,f) are generated using the identified atomic structure, which matches well with the experimentally observed result. The observed 1D single-chain structure of SiS<sub>2</sub> and SiSe<sub>2</sub> in the nanotubes exhibits 1D chain structures with edge-shared tetrahedrons, which are identical to the single chains present in the bulk material, which we refer to as type-1 structure.<sup>40</sup> The atomicresolution images of the  $45^{\circ}$  rotated SiS<sub>2</sub> and SiSe<sub>2</sub> chain structures within nanotubes also well match with our expected structure (Figure S3). The measured lattice constants of  $SiX_2$ 



Figure 3. Calculated band structures and projected density of states (PDOS) of type-1 single chain. (a, b)  $SiX_2$  (X = S and Se) and (c, d)  $GeX_2$  for comparison. The valence bands mostly consist of chalcogen atomic orbitals, whereas the conduction bands states are distributed over all atoms.

chains along the chain directions are 5.6 Å for  $SiS_2$  and 6.0 Å for  $SiSe_2$ , which are in good agreement with the previously reported chain distance from the bulk  $SiX_2$  crystal structure.<sup>15</sup>

The SiS<sub>2(1-y)</sub>Se<sub>2y</sub> ternary alloy sample maintains an identical chain structure within the nanotubes. Figure 2g shows an atomic-resolution ADF-STEM image of the type-1 SiS<sub>2(1-y)</sub>Se<sub>2y</sub> alloy chain in a nanotube. Because of the higher atomic number of Se ( $Z_{se} = 34$ ), the Se atomic positions are brighter than the S or Si atomic positions. Figure 2h shows the intensity line profile from the regions marked in Figure 2g, which clearly shows the intensity variation between Se and S. The larger atomic radius of Se compared to that of S leads to a modification in the lattice constant; for instance, the original lattice constant of SiS<sub>2</sub>, 5.6 Å, increases to 5.8 Å with the substitution of one S atom for Se. As the mole fraction of Se increased, the lattice constant increased linearly and reached 6.0 Å, which is the lattice constant of  $SiSe_2$ . Figure 2i shows the experimentally measured lattice constant as a function of the Se fraction in SiSSe, showing linear behavior following Vegard's law. The substitution of S and Se in the SiSSe lattice may induce distortion and residual strain owing to the size mismatch between S and Se atoms. Despite the random distribution of chalcogenide atoms (S or Se) along the chains, they continue to preserve the edge-shared tetrahedral chain structure within the 1 nm diameter of the nanotubes. All of the experimentally observed STEM images are in good agreement with the simulated STEM images, as shown in Figures S4–S6.

The internal diameter of the nanotube plays a crucial role in determining the confined structure. In a prior investigation, we discovered an alternative chain structure of  $GeX_2$  in nanotubes with diameters ranging from 1.0 to 1.2 nm, called type-2.<sup>40</sup> This type-2 chain structure, featuring tetrahedral sharing edges and corners, deviates from the bulk  $GeX_2$  structure. Similarly, we observed an identical type-2 SiX<sub>2</sub> chain structure in nanotubes with diameters ranging from 1.0 to 1.2 nm. Figure S7 shows the experimentally observed type-2 SiX<sub>2</sub> single chains inside the nanotubes, with atomic structures identical to those previously observed in the  $GeX_2$  system.<sup>40</sup> Both the experimental and simulated STEM images of type-2 SiX<sub>2</sub> along various projection directions exhibit excellent agreement (Figures S8 and S9).

Other structures are also observed in the nanotubes with different diameters, as shown in Figure S10. Nanotubes with diameters less than 0.9 nm exhibit S or Se (even mixed case) single atomic-chain structures inside, whereas those with inner diameters larger than 1.2 nm result in the formation of multiple chains of SiX<sub>2</sub>. These findings align with the previously studied diverse structures inside nanotubes of various diameters.<sup>21,22,24,37,41–43</sup> Our observations lead to the conclusion that the type-1 chain structure is stabilized in nanotubes with diameters ranging from 0.9 to 1.0 nm, whereas the type-2 chain



Figure 4. 1D Si<sub>x</sub>Ge<sub>1-x</sub>S<sub>2(1-y)</sub>Se<sub>2y</sub> alloy chain inside nanotube. (a) EDS spectra of Si<sub>x</sub>Ge<sub>1-x</sub>S<sub>2</sub>, Si<sub>x</sub>Ge<sub>1-x</sub>Se<sub>2</sub>, and Si<sub>x</sub>Ge<sub>1-x</sub>S<sub>2(1-y)</sub>Se<sub>2y</sub> alloy chains inside nanotubes. (b) Atomic model of (left) type-1 and (right) type-2 Si<sub>x</sub>Ge<sub>1-x</sub>S<sub>2(1-y)</sub>Se<sub>2y</sub> alloy chain structure. (c-e) Atomic-resolution STEM images of the (c) Si<sub>x</sub>Ge<sub>1-x</sub>S<sub>2</sub>, (d) Si<sub>x</sub>Ge<sub>1-x</sub>Se<sub>2</sub>, and (e) Si<sub>x</sub>Ge<sub>1-x</sub>S<sub>2(1-y)</sub>Se<sub>2y</sub> alloy single chain inside nanotube. Scale bar: 0.5 nm. White arrows indicate the atomic position of Ge.

structure is stabilized in nanotubes with diameters ranging from 1.0 to 1.2 nm (Figure S11).

We theoretically investigate the atomic structural and electronic properties of SiX<sub>2</sub> single chains using first-principles DFT calculations. The calculated lattice parameter along the axial direction is 5.68 and 6.00 Å for type-1 SiS<sub>2</sub> and SiSe<sub>2</sub>, respectively, which are in good agreement with the experimental measurements. Figures 3 and S12 show the calculated electronic structures of SiX<sub>2</sub> chains as well as GeX<sub>2</sub> chains for comparison. All of the type-1 chains are indirect-gap semiconductors with the band gap of 3.31 and 2.53 eV for SiS<sub>2</sub> and SiSe<sub>2</sub>, respectively. Conversely, the type-2 chains are identified as direct-gap semiconductors, with band gaps of 1.85 eV for SiS<sub>2</sub> and 1.22 eV for SiSe<sub>2</sub>. In a single chain of SiX<sub>2</sub>, the elimination of interactions between different chains leads to the absence of band dispersion in the plane perpendicular to the chains, resulting in a larger band gap than that of bulk SiX<sub>2</sub>.<sup>44</sup> The valence bands predominantly consist of chalcogen atomic orbitals, while the conduction bands are spread across all atomic types. In our previous study, we found that CNT encapsulation did not markedly modify the atomic and electronic structures of GeX<sub>2</sub> chains, provided that there was no significant charge transfer between the GeX<sub>2</sub> chains and the CNTs.<sup>40</sup> Based on these observations, we assumed that the SiX<sub>2</sub> chains would exhibit similar behavior when encapsulated in CNTs. Therefore, all encapsulated chains, both SiX<sub>2</sub> and GeX<sub>2</sub>, retain their semiconducting states.

Extending the aforementioned findings for SiX<sub>2</sub> and the previously studied GeX<sub>2</sub>, we study the 1D Si<sub>x</sub>Ge<sub>1-x</sub>S<sub>2(1-y)</sub>Se<sub>2y</sub> quaternary single chains inside nanotubes with a different alloy composition, as shown in Figure 4. We synthesized various combinations of Si<sub>x</sub>Ge<sub>1-x</sub>S<sub>2(1-y)</sub>Se<sub>2y</sub> alloy chains inside nanotubes using mixed SiX<sub>2</sub> and GeX<sub>2</sub> precursors. The synthesized alloy samples are confirmed by EDS in STEM from a bundle of nanotubes. The EDS spectra exhibit well-defined peaks for each element (Si, Ge, S, and Se) in the Si<sub>x</sub>Ge<sub>1-x</sub>S<sub>2</sub>, Si<sub>x</sub>Ge<sub>1-x</sub>Se<sub>2</sub>, and Si<sub>x</sub>Ge<sub>1-x</sub>S<sub>2(1-y</sub>)Se<sub>2y</sub> alloy samples (Figure 4a). From the EDS quantitative analysis, the exemplary synthesized alloy samples are confirmed to be Si<sub>0.7</sub>Ge<sub>0.3</sub>S<sub>2</sub>, Si<sub>0.8</sub>Ge<sub>0.2</sub>Se<sub>2</sub>, and Si<sub>0.9</sub>Ge<sub>0.1</sub>S<sub>0.4</sub>Se<sub>1.6</sub>. Additionally, electron energy loss spectroscopy (EELS) is utilized to reveal the presence of Si, S, and Se

in the  $Si_xGe_{1-x}S_{2(1-y)}Se_{2y}$  alloy within a single isolated nanotube (Figure S13). The Ge core-loss peak was not detected in the isolated nanotube sample because of the low Ge concentration in the quaternary alloy sample.

Given that both  $SiX_2$  and  $GeX_2$  form the same type of chain structure inside the nanotube, we expect the formation of type-1 (left side) and type-2 (right side)  $Si_xGe_{1-x}S_{2(1-y)}Se_{2y}$  alloy chains, as shown in Figure 4b. Via successful synthesis and atomic-resolution STEM imaging, we observe both type-1 and type-2 chain structures in the  $Si_xGe_{1-x}S_2$ ,  $Si_xGe_{1-x}Se_2$ , and  $Si_xGe_{1-x}S_{2(1-y)}Se_{2y}$  samples (Figure 4c-e). In the ADF-STEM imaging, the Ge atomic positions exhibit a brighter contrast compared to those of Si and S, enabling the clear identification of Ge atoms in the Si<sub>x</sub>Ge<sub>1-x</sub>S<sub>2</sub> alloy sample. In Si<sub>x</sub>Ge<sub>1-x</sub>Se<sub>2</sub> and  $Si_xGe_{1-x}S_{2(1-v)}Se_{2v}$  Se appears to be the brightest element. Contrast variations may occur based on the rotation of the chain structure and overlapping elements. For example, in 30° rotated type-2  $Si_xGe_{1-x}S_{2(1-y)}Se_{2y}$  (Figure 4e), the brightest atomic position corresponds to Ge + Se, and the darkest atomic position corresponds to Si + S. The STEM image simulations of both type-1 and type-2 are in good agreement with the experimentally observed image contrast variations (Figures S14-S17). Our study successfully demonstrates the synthesis of quaternary alloy chains at the single-chain limit via nanotube encapsulation.

Finally, we discuss the composition-dependent electronic structures of quaternary alloy chains. Figure 5 shows the calculated band gaps of type-1  $Si_xGe_{1-x}S_{2(1-y)}Se_{2y}$  alloy chains with different compositions. For a given composition, the atomic structures are linearly interpolated from the pure compositions of the chains:  $GeS_2$  at (x = 0, y = 0),  $GeSe_2$  at (xx = 0, y = 1), SiS<sub>2</sub> at (x = 1, y = 0), and SiSe<sub>2</sub> at (x = 1, y = 1). We then calculate the electronic structure of the alloy chains using the virtual crystal approximation (VCA). The lower band gap regions, which are the blue regions in the figure, correspond to Ge-rich and Se-rich alloys, whereas the higher band gap regions in red correspond to Si-rich and S-rich alloys. This suggests that widely tunable band gaps, which are critical for atomic-scale optoelectronic applications, can be achieved by altering the ratios of Si, Ge, S, and Se in the single-chain limit.



Figure 5. Band gap variation of the type-1  $Si_xGe_{1-x}S_{2(1-y)}Se_{2y}$  alloy chain as a function of composition. For a given composition, atomic structures and lattice parameters are linearly interpolated, and electronic structures are calculated by using the virtual crystal approximation.

#### **CONCLUSIONS**

In conclusion, we report the stabilization of 1D SiX<sub>2</sub> single chains via nanotube encapsulation. Our findings reveal that nanotube encapsulation stabilizes the materials and induces modifications in the chain structure of the confined material. Furthermore, we successfully demonstrate the synthesis and control of the composition of  $Si_xGe_{1-x}S_{2(1-y)}Se_{2y}$  quaternary alloys at the single-chain level. Electronic structure calculations reveal that the band gap of these semiconducting alloy chains is highly adjustable and dependent on both the structural and the compositional ratio. These findings provide further groundwork for the study of low-dimensional and confinement-stabilized materials in nanotubes and offer opportunities for future research and applications in various fields.

#### **METHODS**

**Materials.** To synthesize SiS<sub>2</sub> and SiSe<sub>2</sub> precursors, we mixed silicon (99.999% Alfa Aesar) with sulfur (99.999% Alfa Aesar) or selenium (99.999% Alfa Aesar) in an atomic ratio of 1:2. The mixture (1g) was then sealed in a 10 mm diameter and 15 cm long ampule under high vacuum ( $\sim 10^{-6}$  Torr) and placed in a horizontal one-zone furnace with the hot end at 850 °C for 5 days. After synthesis, the materials were extracted inside an Ar-filled glovebox to minimize oxidation. The GeS<sub>2</sub> and GeSe<sub>2</sub> powders were purchased from Ossila.

**Growing SiX<sub>2</sub> and Alloy Chains** @ **Nanotube.** CNTs were purchased from Sigma-Aldrich (single-walled: 704113) and Cheap Tubes (90% Single Walled-Double Walled (SW-DW) CNTs) and were annealed in air at 510 °C for 15 min to open the end caps. The open-ended CNTs (approximately 3 mg) were mixed with 20 mg of the precursor material and sealed in a 6 mm diameter and 15 cm long quartz ampule under a high vacuum (~10<sup>-6</sup> Torr). The sealed ampule was then heated to 1000 °C in a single zone box furnace and kept there for 5 days before being cooled to room temperature for over 1 day. The synthesized materials (SiX<sub>2</sub>@nanotube) were dispersed in isopropanol using a bath sonicator for 15 min and drop-cast onto lacey carbon Transmission Electron Microscopy (TEM) grids for STEM characterization. The alloy samples were also synthesized according to the procedure described above.

**Optical Characterizations.** Optical microscopy images were obtained using a Leica-DM750M inside an  $N_2$ -filled glovebox. Raman measurements were performed by using a Renishaw inVia confocal Raman microscope with a 514 nm laser under ambient conditions.

**TEM/STEM Imaging and Simulations.** TEM and STEM images were acquired using a double spherical (Cs) aberration-corrected

JEOL ARM-200F operated at 80 kV. For atomic-resolution STEM imaging, a microscope was used with a 23 or 30 mrad convergence angle and collection semiangles ranging from 40-160 mrad.

Atomic-resolution STEM image simulations were performed by using MacTempas software based on multislice calculations. The simulation parameters were similar to the experimental parameters (e.g., a probe semiangle of 23 or 30 mrad, 0.05 Å/pixel sampling, and 20 frozen phonon calculations) for each simulation. Image analysis and processing were performed by using ImageJ software. Poisson noise was added to the simulated STEM images to match the experimental results.

**EELS Characterizations.** The STEM-EELS experiments were performed in a Nion HERMES microscope equipped with a C3/C5 corrector at an accelerating voltage of 60 kV. The beam convergence semiangle was 32 mrad, and the collection semiangle for EELS was 75 mrad, with the EELS aperture out.

**Calculations.** We performed first-principles DFT calculations as implemented in SIESTA.<sup>45</sup> We used the Perdew–Burke–Ernzerhof (PBE) functional,<sup>46</sup> norm-conserving pseudopotentials,<sup>47</sup> and a localized pseudoatomic orbital basis. van der Waals interactions were included within the Grimme-D2 scheme.<sup>48</sup> A real-space mesh cutoff of 500 Ry was used. We used a 25 Å thick cell along the transverse vacuum direction. The primitive Brillouin zone of the isolated chains was sampled by 12 *k* points. The atomic positions were optimized with a force threshold of 0.01 eV/Å. In the alloy calculations, we used the virtual crystal approximation by mixing the pseudopotentials of Si with Ge and S with Se, respectively.

#### ASSOCIATED CONTENT

#### Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.4c04184.

Optical images of the  $SiS_2$  under ambient exposure; extra STEM characterizations of samples; including experimental atomic-resolution images and EELS characterizations; simulated STEM images; and DFT calculations for the electronic structure of type-2  $SiX_2$  and  $GeX_2$  (PDF)

#### **AUTHOR INFORMATION**

#### **Corresponding Authors**

- Yangjin Lee Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States; Department of Physics, Yonsei University, Seoul 03722, Korea; Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Korea; orcid.org/0000-0001-7336-1198; Email: yangjinlee@yonsei.ac.kr
- Kwanpyo Kim Department of Physics, Yonsei University, Seoul 03722, Korea; Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Korea; orcid.org/0000-0001-8497-2330; Email: kpkim@yonsei.ac.kr
- Alex Zettl Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States; Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, California 94720, United States; Email: azettl@berkeley.edu

#### Authors

Young Woo Choi – Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States; o orcid.org/0000-0003-4725-1299

- Linxuan Li School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Wu Zhou School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Marvin L. Cohen Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acsnano.4c04184

#### Author Contributions

<sup>V</sup>Y.L. and Y.W.C. contributed equally to this work. Y.L. and A.Z. conceived the idea; Y.L. synthesized the materials and performed optical characterizations, transmission electron microscopy data acquisition, image simulation, and analysis. Y.W.C. and M.L.C. carried out density functional calculations. L.L. and W.Z. performed the EELS characterizations. Y.L., Y.W.C., M.L.C., K.K., and A.Z. wrote the manuscript. All authors discussed the results and commented on the paper.

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05-CH11231, primarily within the van der Waals Bonded Materials Program (KCWF16) which provided for sample fabrication; within the Nanomachines Program (KC1203) which provided for TEM characterization; and within the Theory of Materials Program (KC2301) which provided theoretical methods and analyses. Computational resources were provided by the DOE at Lawrence Berkeley National Laboratory's NERSC facility and through the Frontera at TACC under Award No. OAC-1818253. K.K. acknowledges support from the Basic Science Research Program at the National Research Foundation of Korea (NRF-2022R1A2C4002559), Korea Research Institute of Standards and Science (KRISS-2023-GP2023-0007), and the Institute for Basic Science (IBS-R026-D1). Y.L. acknowledges support from the Basic Science Research Program at the National Research Foundation of Korea (NRF-2021R1C1C2006785) and Yonsei University Research Fund (Post Doc. Researcher Supporting Program) of 2024 (Project No.: 2024-12-0018). Y.W.C. acknowledges support from the Basic Science Research Program at the National Research Foundation of Korea, funded by the Ministry of Education (RS-2023-00250971). This research benefited from resources and support from the Electron Microscopy Center at the University of Chinese Academy of Sciences.

#### REFERENCES

(1) Geim, A. K. Graphene: Status and Prospects. *Science* 2009, *324*, 1530–1534.

(2) Semonin, O. E.; Luther, J. M.; Beard, M. C. Quantum dots for next-generation photovoltaics. *Mater. Today* **2012**, *15*, 508–515.

(3) Kovalenko, M. V.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D. V.; Kagan, C. R.; Klimov, V. I.; Rogach, A. L.; Reiss, P.; Milliron, D. J.; Guyot-Sionnnest, P.; Konstantatos, G.; Parak, W. J.; Hyeon, T.; Korgel, B. A.; Murray, C. B.; Heiss, W. Prospects of Nanoscience with Nanocrystals. *ACS Nano* **2015**, *9*, 1012–1057.

(4) García de Arquer, F. P.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. *Science* **2021**, *373*, eaaz8541.

(5) Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. *Nat. Nanotechnol.* **2019**, *14*, 408–419.

(6) Kim, S. E.; Mujid, F.; Rai, A.; Eriksson, F.; Suh, J.; Poddar, P.; Ray, A.; Park, C.; Fransson, E.; Zhong, Y.; Muller, D. A.; Erhart, P.; Cahill, D. G.; Park, J. Extremely anisotropic van der Waals thermal conductors. *Nature* **2021**, *597*, 660–665.

(7) Jia, C.; Lin, Z.; Huang, Y.; Duan, X. Nanowire Electronics: From Nanoscale to Macroscale. *Chem. Rev.* **2019**, *119*, 9074–9135.

(8) Barrigón, E.; Heurlin, M.; Bi, Z.; Monemar, B.; Samuelson, L. Synthesis and Applications of III–V Nanowires. *Chem. Rev.* 2019, 119, 9170–9220.

(9) Quan, L. N.; Kang, J.; Ning, C.-Z.; Yang, P. Nanowires for Photonics. Chem. Rev. 2019, 119, 9153-9169.

(10) Zhu, Y.-H.; Yang, X.-Y.; Liu, T.; Zhang, X.-B. Flexible 1D Batteries: Recent Progress and Prospects. *Adv. Mater.* **2020**, *32*, 1901961.

(11) Wu, Y.; Zhao, X.; Shang, Y.; Chang, S.; Dai, L.; Cao, A. Application-Driven Carbon Nanotube Functional Materials. *ACS Nano* **2021**, *15*, 7946–7974.

(12) Balandin, A. A.; Kargar, F.; Salguero, T. T.; Lake, R. K. Onedimensional van der Waals quantum materials. *Mater. Today* **2022**, *55*, 74–91.

(13) Chen, M.; Li, L.; Xu, M.; Li, W.; Zheng, L.; Wang, X. Quasi-One-Dimensional van der Waals Transition Metal Trichalcogenides. *Research* **2023**, *6*, 0066.

(14) Zhu, Y.; Antoniuk, E. R.; Wright, D.; Kargar, F.; Sesing, N.; Sendek, A. D.; Salguero, T. T.; Bartels, L.; Balandin, A. A.; Reed, E. J.; da Jornada, F. H. Machine-Learning-Driven Expansion of the 1D van der Waals Materials Space. *J. Phys. Chem. C* **2023**, *127*, 21675–21683.

(15) Peters, J.; Krebs, B. Silicon disulphide and silicon diselenide: a reinvestigation. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1982, 38, 1270–1272.

(16) Tenhover, M.; Hazle, M. A.; Grasselli, R. K. Atomic Structure of SiS<sub>2</sub> and SiSe<sub>2</sub> Glasses. *Phys. Rev. Lett.* **1983**, *51*, 404–406.

(17) Griffiths, J. E.; Malyj, M.; Espinosa, G. P.; Remeika, J. P. Crystalline  $SiSe_2$  and  $Si_xSe_{1-x}$  glasses: Syntheses, glass formation, structure, phase separation, and Raman spectra. *Phys. Rev. B* **1984**, *30*, 6978–6990.

(18) Chen, C.; Zhang, X.; Krishna, L.; Kendrick, C.; Shang, S.-L.; Toberer, E.; Liu, Z.-K.; Tamboli, A.; Redwing, J. M. Synthesis, characterization and chemical stability of silicon dichalcogenides,  $Si(Se_xS_{1-x})_2$ . J. Cryst. Growth **2016**, 452, 151–157.

(19) Smith, B. W.; Monthioux, M.; Luzzi, D. E. Encapsulated  $C_{60}$  in carbon nanotubes. *Nature* **1998**, *396*, 323–324.

(20) Mickelson, W.; Aloni, S.; Han, W.-Q.; Cumings, J.; Zettl, A. Packing  $C_{60}$  in Boron Nitride Nanotubes. *Science* **2003**, 300, 467–469.

(21) Sloan, J.; Kirkland, A. I.; Hutchison, J. L.; Green, M. L. H. Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. *Chem. Commun.* **2002**, 1319–1332.

(22) Senga, R.; Komsa, H.-P.; Liu, Z.; Hirose-Takai, K.; Krasheninnikov, A. V.; Suenaga, K. Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes. *Nat. Mater.* **2014**, *13*, 1050–1054.

(23) Pham, T.; Oh, S.; Stetz, P.; Onishi, S.; Kisielowski, C.; Cohen, M. L.; Zettl, A. Torsional instability in the single-chain limit of a transition metal trichalcogenide. *Science* **2018**, *361*, 263–266.

(25) Hart, M.; Chen, J.; Michaelides, A.; Sella, A.; Shaffer, M. S.; Salzmann, C. G. One-Dimensional Arsenic Allotropes: Polymerization of Yellow Arsenic Inside Single-Wall Carbon Nanotubes. Angew. Chem. 2018, 130, 11823-11827.

(26) Qin, J.-K.; Liao, P.-Y.; Si, M.; Gao, S.; Qiu, G.; Jian, J.; Wang, Q.; Zhang, S.-Q.; Huang, S.; Charnas, A.; Wang, Y.; Kim, M. J.; Wu, W.; Xu, X.; Wang, H.-Y.; Yang, L.; Khin Yap, Y.; Ye, P. D. Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes. Nat. Electron. 2020, 3, 141-147.

(27) Gao, M.; Park, Y.; Jin, J.; Chen, P.-C.; Devyldere, H.; Yang, Y.; Song, C.; Lin, Z.; Zhao, Q.; Siron, M.; Scott, M. C.; Limmer, D. T.; Yang, P. Direct Observation of Transient Structural Dynamics of Atomically Thin Halide Perovskite Nanowires. J. Am. Chem. Soc. 2023, 145, 4800-4807.

(28) Kashtiban, R. J.; Patrick, C. E.; Ramasse, Q.; Walton, R. I.; Sloan, J. Picoperovskites: The Smallest Conceivable Isolated Halide Perovskite Structures Formed within Carbon Nanotubes. Adv. Mater. 2023, 35, 2208575.

(29) Kashtiban, R. J.; Burdanova, M. G.; Vasylenko, A.; Wynn, J.; Medeiros, P. V. C.; Ramasse, Q.; Morris, A. J.; Quigley, D.; Lloyd-Hughes, J.; Sloan, J. Linear and Helical Cesium Iodide Atomic Chains in Ultranarrow Single-Walled Carbon Nanotubes: Impact on Optical Properties. ACS Nano 2021, 15, 13389-13398.

(30) Lee, Y.; Choi, Y. W.; Lee, K.; Song, C.; Ercius, P.; Cohen, M. L.; Kim, K.; Zettl, A. One-Dimensional Magnetic MX3 Single-Chains (M = Cr, V and X = Cl, Br, I). Adv. Mater. 2023, 35 (49), 2307942. (31) Teng, Y.; Zhang, Y.; Xie, X.; Yao, J.; Zhang, Z.; Geng, L.; Zhao, P.; Yang, C.; Gong, W.; Wang, X.; Hu, Z.; Kang, L.; Fang, X.; Li, Q. Interfacial Electron Transfer in PbI2@Single-Walled Carbon Nanotube van der Waals Heterostructures for High-Stability Self-Powered Photodetectors. J. Am. Chem. Soc. 2024, 146, 6231-6239.

(32) Wang, K.; Xia, G.-J.; Liu, T.; Yun, Y.; Wang, W.; Cao, K.; Yao, F.; Zhao, X.; Yu, B.; Wang, Y.-G.; Jin, C.; He, J.; Li, Y.; Yang, F. Anisotropic Growth of One-Dimensional Carbides in Single-Walled Carbon Nanotubes with Strong Interaction for Catalysis. J. Am. Chem. Soc. 2023, 145, 12760-12770.

(33) Nagata, M.; Shukla, S.; Nakanishi, Y.; Liu, Z.; Lin, Y.-C.; Shiga, T.; Nakamura, Y.; Koyama, T.; Kishida, H.; Inoue, T.; Kanda, N.; Ohno, S.; Sakagawa, Y.; Suenaga, K.; Shinohara, H. Isolation of Single-Wired Transition-Metal Monochalcogenides by Carbon Nanotubes. Nano Lett. 2019, 19, 4845-4851.

(34) Stonemeyer, S.; Dogan, M.; Cain, J. D.; Azizi, A.; Popple, D. C.; Culp, A.; Song, C.; Ercius, P.; Cohen, M. L.; Zettl, A. Targeting Oneand Two-Dimensional Ta-Te Structures via Nanotube Encapsulation. Nano Lett. 2022, 22, 2285-2292.

(35) Cain, J. D.; Oh, S.; Azizi, A.; Stonemeyer, S.; Dogan, M.; Thiel, M.; Ercius, P.; Cohen, M. L.; Zettl, A. Ultranarrow TaS<sub>2</sub> Nanoribbons. Nano Lett. 2021, 21, 3211-3217.

(36) Meyer, S.; Pham, T.; Oh, S.; Ercius, P.; Kisielowski, C.; Cohen, M. L.; Zettl, A. Metal-insulator transition in quasi-one-dimensional HfTe3 in the few-chain limit. Phys. Rev. B 2019, 100, 041403.

(37) Slade, C. A.; Sanchez, A. M.; Sloan, J. Unprecedented New Crystalline Forms of SnSe in Narrow to Medium Diameter Carbon Nanotubes. Nano Lett. 2019, 19, 2979-2984.

(38) Pham, T.; Oh, S.; Stonemeyer, S.; Shevitski, B.; Cain, J. D.; Song, C.; Ercius, P.; Cohen, M. L.; Zettl, A. Emergence of Topologically Nontrivial Spin-Polarized States in a Segmented Linear Chain. Phys. Rev. Lett. 2020, 124, 206403.

(39) Stonemeyer, S.; Cain, J. D.; Oh, S.; Azizi, A.; Elasha, M.; Thiel, M.; Song, C.; Ercius, P.; Cohen, M. L.; Zettl, A. Stabilization of NbTe<sub>3</sub>, VTe<sub>3</sub>, and TiTe<sub>3</sub> via Nanotube Encapsulation. J. Am. Chem. Soc. 2021, 143, 4563-4568.

(40) Lee, Y.; Choi, Y. W.; Lee, K.; Song, C.; Ercius, P.; Cohen, M. L.; Kim, K.; Zettl, A. Tuning the Sharing Modes and Composition in a Tetrahedral  $GeX_2$  (X = S, Se) System via One-Dimensional Confinement. ACS Nano 2023, 17, 8734-8742.

(41) Eliseev, A. A.; Falaleev, N. S.; Verbitskiy, N. I.; Volykhov, A. A.; Yashina, L. V.; Kumskov, A. S.; Zhigalina, V. G.; Vasiliev, A. L.; Lukashin, A. V.; Sloan, J.; Kiselev, N. A. Size-Dependent Structure Relations between Nanotubes and Encapsulated Nanocrystals. Nano Lett. 2017, 17, 805-810.

(42) Fujimori, T.; Morelos-Gómez, A.; Zhu, Z.; Muramatsu, H.; Futamura, R.; Urita, K.; Terrones, M.; Hayashi, T.; Endo, M.; Hong, S. Y.; Choi, Y. C.; Tománek, D.; Kaneko, K. Conducting linear chains of sulphur inside carbon nanotubes. Nat. Commun. 2013, 4, 2162.

(43) Fujimori, T.; dos Santos, R. B.; Hayashi, T.; Endo, M.; Kaneko, K.; Tománek, D. Formation and Properties of Selenium Double-Helices inside Double-Wall Carbon Nanotubes: Experiment and Theory. ACS Nano 2013, 7, 5607-5613.

(44) Cui, J.; Yang, W.; Cheng, Y.; Dong, H.; Liu, H.; Zuo, X.; Wang, W.-H.; Lu, F. Electronic states, mechanical properties and doping effects of one-dimensional atomic wires of SiX<sub>2</sub> (X = S, Se). Appl. Surf. Sci. 2021, 559, 149894.

(45) Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order- N materials simulation. J. Phys.: Condens. Matter 2002, 14, 2745-2779.

(46) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

(47) Oroya, J.; M, A.; Callejo, M.; Garcia-Mota, M.; Marchesin, F. Pseudopotential and Numerical Atomic Orbitals Basis Dataset, www. simuneatomistics.com. (accessed January 14, 2022).

(48) Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.