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ABSTRACT OF THE DISSERTATION

On the Quasiperiodic Structure of the Complex Dimensions of Self-Similar Fractal Strings

by

Edward Voskanian

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2019

Dr. Michel L. Lapidus, Chairperson

In crystallography, it was an axiom that any material with a diffraction pattern

consisting of bright spots must have an atomic structure that is a repetition of a unit

cell consisting of finitely many atoms, i.e., having translational symmetry in three linearly

independent spacial directions. The discovery of quasicrystals in 1982 by Dan Shechtman,

started an investigation into the question of exactly which atomic structure is necessary

to produce a pure point diffraction pattern. In this thesis, we give a special case of the

Poisson summation formula, and use it to address a question (in the simpler lattice case) by

Lapidus and van Frankenhuijsen on whether or not the complex dimensions of a nonlattice

self-similar fractal string can be understood as a mathematical analog for a quasicrystal,

in the context of a mathematical idealization of diffraction developed by A. Hof. Also, we

provide an implementation of the LLL algorithm to give a numerical exploration of the

quasiperiodic structure in the nonlattice case.
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Chapter 1

Introduction

1.1 Overview

In crystallography, without any evidence to the contrary, it was an axiom that only

those materials with an atomic structure having periodic translations in all three spacial

dimensions could produce a pure point diffraction pattern. In 1982 however, a material

scientist by the name of Dan Shechtman, while on sabbatical at the National Institute

of Standards and Technology (now called the National Bureau of Standards and Publica-

tions), made a startling discovery that changed the world of crystallography forever. Using

a rapid cooling technique, Shechtman processed an alloy of aluminum and manganese with

an atomic structure that produced a pure point diffraction pattern, but whose symmetry

was exactly that of an icosahedron, which includes rotational symmetries other than one,

two, three, four, or six. By a mathematical law called the crystallographic restriction, trans-

lational symmetry and rotational symmetry of order 5 or greater than 6 are incompatible.

So, while this material was scattering x-rays like periodic crystals, it could not have a peri-
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odic atomic structure. These materials, which have been produced in other labs since their

discovery, and are now known to exist in nature, are called quasicrystals. (See [SBGC84]).

The existence of these materials means that there is still a question as to exactly what inter-

atomic arrangements are necessary and sufficient to produce discrete diffraction patterns,

and so it has given rise to the theory of ‘mathematical quasicrystals’. One might say that

this theory has existed since the early 17th century with Kepler, where he discussed a tiling

built with pentagons, pentagrams, decagons. He also called them “monsters”. (See [Sen96]).

According to Moody in [Moo00], pure point diffractivity and aperiodicity are among the

properties considered representative of the concept of quasiperiodicity in general. There is

not a unifying definition for mathematical quasicrystal, and we do not attempt to establish

one in this thesis. However there are many examples that are widely considered to be work-

ing models. According to Lagarias in [Lag00], the basic mathematical model is an infinite

discrete subset of n-dimensional Euclidean space that is highly ordered such that, under a

certain mathematical analog of diffraction, it has a pure point diffraction pattern. These are

called Model sets, and they are widely considered to be mathematical quasicrystals. In this

thesis, the condition of having a pure point diffraction pattern is relaxed, and we consider a

more general candidate, which is a slight extension of a much larger class of models named

after the Soviet/Russian mathematician Boris Delone.

Definition 1.1.1 A Delone set Λ in Rn is a set with the properties:

(1) Uniformly Discreteness. There exists r > 0 such that each ball of radius r contains at

most one element of Λ.

(2) Relatively Denseness. There exists R > 0 such that each ball of radius R contains at
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least one element of Λ.

Intuitively, a Delone set is an extensive discrete subset of Rn with a global minimum

and maximum distance between all points. Lapidus and van Frankenhuijsen give a candidate

for a more general model.

Problem 1 Is there a natural way in which the quasiperiodic pattern of the set of com-

plex dimensions of a nonlattice self-similar string can be understood in terms of suitable

(generalized) quasicrystal, or of an associated quasiperiodic tiling?

In short, a self-similar fractal string is a bounded open subset of the real line with

fractal boundary. The set of complex dimensions of a self-similar fractal string is defined as

a discrete subset of the complex plane which in some sense, describes the geometry of the

boundary. These structures were developed and studied extensively by Lapidus and van

Frankenhuijsen in their book [LvF06]. The theory of complex dimensions is motivated from

earlier publications by Lapidus, Pomerance, and Maier. From 1991 to 1993, Lapidus and

Pomerance produced works which established connections between complex dimensions and

the theory of Riemann zeta functions (see [Lap91], [Lap93], and [LP93]). In [LM95], Lapidus

and Maier use the intuition coming from the notion of complex dimensions to reformulate

the Riemann hypothesis. The notion of complex dimensions was precisely defined and the

corresponding rigorous theory of complex dimensions was fully developed by Lapidus and

van Frankenhuijsen in the books [LvF00] and [LvF06].

There is an important dichotomy in the set of all self-similar fractal strings, in

which any self-similar fractal string is either lattice or nonlattice, depending on the scaling

ratios with which a self-similar fractal string is constructed. In the lattice case, the complex
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dimensions lie periodically on finitely many vertical lines, and on each line they are separated

by a positive real number p called the oscillatory period of the string. In the nonlattice

case, the structure is nonperiodic. The complex dimensions in this case cannot be obtained

explicitly, but are instead approximated via an explicit procedure developed by Lapidus

and van Frankenhuijsen, by the complex dimensions of lattice self-similar fractal strings.

Such approximating lattice self-similar fractal strings are called lattice approximations.

According to Theorem 2.2.3, computing many lattice approximations for a given

nonlattice Dirichlet polynomial requires a practical method for obtaining simultaneous Dio-

phantine approximations. The LLL algorithm, which is a lattice basis reduction algorithm,

was introduced in [LLL82] as the first polynomial time algorithm to compute the roots

of polynomials with rational coefficients. In their paper, the authors also described how

the algorithm can be used to compute simultaneous Diophantine approximations. In this

chapter, we describe, citing the original paper [LLL82], and [Bre11], exactly how the LLL

algorithm can be used to obtain simultaneous Diophantine approximations. We refer the

reader to the appendix for a general overview of the treatment of lattice theory and basis

reduction from both [LLL82] and [Bre11]. Including, a complete description of the LLL

algorithm, and some important facts about its complexity. Also in the appendix, we give

an implementation of the LLL algorithm to compute simultaneous Diophantine approxima-

tions.

Through the approximation procedure developed Lapidus and van Frankenhuijsen,

which we call lattice approximation, one sees that the complex dimensions lack translational

symmetry, and that they posses a structure which Lapidus and van Frankenhuijsen have
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called quasiperiodic. This is described further in Chapter 3. For a complete description

of the structure of complex dimensions for self-similar fractal strings, we refer to Chapters

two and three in [LvF06]. In Chapter 2, we describe some of the structure which is most

relevant to this thesis.

To address Problem 1, we work towards computing the diffraction pattern of the

complex dimensions in the nonlattice case. The recipe for the mathematical diffraction

pattern of an infinite discrete subset X ⊂ Rn mentioned above, which was developed by A.

Hof in [Hof95], and in his Ph.D. thesis, begins with writing an analytical representation of

X called the Dirac comb of X:

µ =
∑
x∈X

δx,

where δx is the Dirac delta distribution. The next step is to compute the autocorrelation

measure γ from µ, which is a distribution that quantifies the frequency of interpoint distance

vectors per unit volume. Finally, the diffraction measure is defined as the Fourier transform

γ̂ of the autocorrelation measure. This is a standard way to compute diffraction patterns

of infinite discrete subsets of Rn, and it will be used in this thesis. In [Lag00], Lagarias

computes the diffraction pattern of an infinite discrete subset whose structure is similar to

the structure of the complex dimensions in the lattice case.

Definition 1.1.2 (Lagarias, [Lag00]) An ideal crystal (or perfect crystal) in Rn is any

set Λ that consists of a finite number of translates of a full rank lattice L in Rn. That is,

Λ = L+ F , where F is a finite set.

Theorem 1.1.3 (Lagarias [Lag00]) An ideal crystal Λ = L + F , in which L is a full

rank lattice in Rn and F is a finite set, has a unique autocorrelation measure given by the
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tempered distribution

γ =
1

|det(L)|
∑
a∈F

∑
b∈F

(∑
x∈L

δx+(a−b)

)
.

Its Fourier transform γ̂ is given by the tempered distribution

γ̂ =
1

|det(L)|2
∑
y∈L∗

(∑
a∈F

∑
b∈F

e2πi(a−b)y

)
δy.

Like an ideal crystal in the plane, the complex dimensions in the lattice case

resemble an ideal crystal. This is because they are composed of finitely many translations

in the plane of a lattice L, except that L is not of full rank, i.e.,

L = span{b},

where {b} is a basis for R2. In Chapter 4, following the work of Lagarias on diffraction by

ideal crystals, but using a slightly modified recipe for Hof’s formulation of mathematical

diffraction, the diffraction measure of the complex dimensions of a lattice self-similar fractal

string is computed. Via lattice approximation, this is a step forward in the direction of

obtaining a diffraction measure in the nonlattice case, which is planned work to be addressed

in Chapter 5.

1.2 Main results

In this thesis, Problem 1 is addressed using a measure theoretic idealization of

kinematic diffraction. The formula for both the autocorrelation measure, and the diffraction

measure for any lattice self-similar fractal string is given. We note that the complex roots

in the lattice case may be realized as a degenerate analog of ideal crystals in the plane,

which have a pure point diffraction pattern as shown by Lagarias. The degeneracy of the
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complex roots in the lattice case manifests itself in the diffraction measure as an integral

over R. In [BMP00], the authors present an infinite discrete subset of Euclidean space,

that is uniformly discrete, but not relatively dense, and that has a pure point diffraction

pattern. The complex roots in the lattice case, while ‘close’ to a Delone set like the structure

presented in the latter paper, the diffraction pattern is not purely discrete. Therefore,

our results support the need to relax the diffractivity condition in the work of developing

mathematical models for quasicrystals. I am also interested in exploring the quasiperiodic

pattern of the set of complex dimensions in the nonlattice case. The work done in this thesis

to investigate this structure is based on lattice approximation. However, the procedure

required a practical way of obtaining simultaneous Diophantine approximations. Lapidus

and van Frankenhuijsen have suggested to use a lattice basis reduction algorithm, called

LLL, developed by Lenstra, Lenstra Jr., and Lovász in [LLL82], which can be used to

compute simultaneous Diophantine approximations.

Through lattice approximation, the complex dimensions in the nonlattice case

are approximated by infinite discrete subsets of the plane, that are slightly more general

than ideal crystals, but only because of a degeneracy in one component: The complex

dimensions in the lattice case lie on finitely many vertical lines, where on each line they

are separated by a positive number, they can be expressed as finitely many translations

of a 1-dimensional lattice in the plane, which is not of full rank. In Theorem 4.2.3, the

autocorrelation measure for any ideal crystal is given, and then the diffraction measure is

obtained by applying the classical Poisson summation formula for full rank lattices. By

exploiting the existing periodic structure of the complex dimensions in the lattice case, and
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by considering a more suitable average shape, the autocorrelation measure for any lattice

self-similar fractal string is computed. Then, by developing an extension of the Poisson

summation formula to the setting of locally compact abelian groups, we get the diffraction

measure too.

It was briefly mentioned above that the set of complex dimensions of a lattice

self-similar fractal string lie on finitely many vertical lines, separated by a positive number

p (see [LvF00] or [LvF06]). To be more precise, for a given self-similar fractal string with

oscillatory period p, there exist complex numbers

ω1, . . . , ωu

such that its set of complex dimensions are given by the set

X = {ωj + inp : n ∈ Z, j = 1, . . . , u}. (1.1)

For 1 ≤ j, k ≤ u, define ωj,k := ωj − ωk, and let

Hj,k = {ωj,k + inp : n ∈ Z}. (1.2)

As a convention, we use H to denote Hj,k when j = k.

Lemma 1.2.1 (Lapidus, van Frankenhuijsen, Voskanian) Let L be a lattice self-similar

fractal string with oscillatory period p. If u is the number of vertical lines describing the set

of complex dimensions of L, 1 ≤ j, k ≤ u and φ ∈ S (R2), where S (R2) denotes the set of

all Schwartz functions on R2, then

∑
a∈Hj,k

φ(a) =
1

p

∫
R

∑
n∈Z

φ̂
(
ξ, np−1

)
e2πi(ξRe(ωj,k)+np

−1 Im(ωj,k)) dξ.
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Consequently, ∑
a∈H

φ(a) =
1

p

∫
R

∑
n∈Z

φ
(
ξ, np−1

)
dξ.

Corollary 1.2.2 (Lapidus, van Frankenhuijsen, Voskanian)

∑
a∈Hj,k

φ̂(a) =
1

p

∫
R

∑
n∈Z

φ
(
ξ, np−1

)
e2πi(ξ(Re(ωj,k))+np

−1(Im(ωj,k))) dξ.

Theorem 1.2.3 (Lapidus, van Frankenhuijsen, Voskanian) Let L be a lattice self-

similar fractal string with oscillatory period p, and let X be its set of complex dimensions,

as given in (1.2), so that the difference set X −X is given by

X −X =
⋃

1≤j,k≤u
Hj,k,

where the sets Hj,k are given by (1.2).

Then, X has a unique autocorrelation measure γ, given by the tempered distribution

γ =
∑
a∈H

u

2bp
δa +

∑
distinct Hj,k

j 6=k

f(j, k)

 ∑
a∈Hj,k

1

2bp
δa

 ,

where f(j, k) is the multiplicity of the set Hj,k. Moreover, its Fourier transform is the

tempered distribution

γ̂ =
1

2bp2

∫
R

∑
n∈Z

ω
(
ξ, np−1

)
δ(ξ,np−1) dξ,

where

ω
(
ξ, np−1

)
:= u+

∑
distinct Hj,k

j 6=k

fj,ke
2πi(ξ(Re(ωj,k))−np−1(Im(ωj,k))).
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Chapter 2

Background and Motivations

The discovery of quasicrystals in the early 1980s, by Dan Shechtman led to the

development of mathematical models for these materials so that we may better understand

this new metallic phase. For a given atomic structure, each individual atom serves as

an obstacle for incoming electromagnetic waves, e.g., x-rays. The net effect is that each

atom becomes a point source of radiation. The outgoing waves interfere with one another,

resulting in an image called a diffraction pattern. Quasicrystals have an atomic structure

with enough ‘order’ to scatter waves in such a way that the diffraction pattern consists of

bright spots, but at the same time, the pattern lacks translational symmetry. The question

still remains: exactly how much order in the atomic makeup of a physical structure is

necessary to produce a diffraction pattern consisting of bright spots. My contribution

to this effort is through addressing (only in the lattice case) Problem 1 by Lapidus and

van Frankenhuijsen, which asks if the quasiperiodic pattern of the complex dimensions

of a nonlattice self-similar fractal string can be understood in terms of a mathematical
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quasicrystal. In this chapter, we tell the story of the discovery of quasicrystals, which is

the main motivation for the work done in this thesis, and then give a complete overview of

Problem 1 in the context of a mathematical idealization of diffraction.

2.1 Quasicrystals and mathematical diffraction

We begin with an introduction to the phenomenon of diffraction, and then give a

brief recount of Shechtman’s discovery. Then, we give a brief introduction to the theory of

mathematical quasicrystals, and describe a certain mathematical idealization of diffraction,

developed by A. Hof in [Hof95].

2.1.1 The discovery of quasicrystals and forbidden symmetry

The discovery in 1982 of a nonperiodic material with a pure point diffraction

pattern by Dan Shechtman changed crystallography in a significant way, fueling an inves-

tigation into what long range order actually means. That is, exactly how much order in

the atomic structure of a material is necessary to produce a pure point diffraction pattern.

Not everyone in the crystallographic community was immediately happy to dispense with

the definition of a crystal. From the day Shechtman published [SBGC84] on his findings on

quasicrystals in 1984, he experienced hostility. Crystals are modeled as discrete structures,

generated by a list of linearly independent finite translations. Because discreteness requires

that spacing between lattice points have a lower bound, there can only be finitely many

rotational symmetries. The crystallographic restriction says that not all finite groups are

compatible with a discrete lattice; in the plane or space. Because of the rotational sym-
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metries present in the diffraction pattern observed by Shechtman, he knew that the atomic

structure of the material he had processed could not be generated by independent finite

translations. The following lemma and theorem are from [BG13]. We refer to the reference

for the proof of Lemma 2.1.1, but provide part of the proof for Theorem 2.1.2.

Lemma 2.1.1 Consider a lattice Γ ⊂ Rd. If R ∈ O(d) satisfies RΓ ⊂ Γ, one has RΓ = Γ.

Then the corresponding characteristic polynomial P (λ) = det(R−λI) has integer coefficients

only, so that P (λ) ∈ Z[λ].

Theorem 2.1.2 (The crystallographic restriction) A lattice Γ ⊂ Rd with d = 2 or

d = 3 can have n-fold rotational symmetry at most for n = {1, 2, 3, 4, 6}.

Proof. For d = 2, a rotation by an angle θ is given by the matrix

Rθ =

cos(θ) − sin(θ)

sin(θ) cos(θ)


with characteristic polynomial

f(t) = detRθ − tI) = t2 − 2 cos(θ)t+ 1,

where I is the identity map. By Lemma 2.1.1, RθΓ = Γ, which means that 2 cos(θ) ∈ Z.

Then, |cos(θ)| ∈ {0, 1/2, 1}, which gives the claim for n = 2. See [BG13] for a proof of the

claim when n = 3. �

Scientists around the world had quickly replicated the discovery and, in 1992,

the International Union of Crystallography accepted that quasicrystals exist, and altered

their definition of crystal: ”a substance in which the constituent atoms, molecules or ions
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are packed in a regularly ordered, repeating three-dimensional pattern”. In 2011, Dan

Shechtman was awarded the Nobel Prize in Chemistry for the discovery of quasicrystals.

Not only have quasicrystals introduced a new extension of solid state physics,

but there has been an immense amount of theoretical and experimental research effort to

determine the atomic structure of such materials, and to find mechanisms that explain

how they form. They have given rise to a mathematical theory motivated by the desire to

model these new structures, which are somewhere in between periodic and amorphous. The

basic model is an infinite discrete subset of n-dimensional Euclidean space, which, when

under a certain mathematical analog of diffraction which is described in the next section,

has a pure point diffraction pattern. A well known construction of such a structure is

via the cut and project method. These are called cut-and-project sets, or model sets, and

under mild conditions every cut-and-project set is a Delone set. Even though there does

not yet exist a unifying definition for mathematical quasicrystals, cut-and-project sets are

widely considered to be representative. Cut and project sets are defined as follows. Let

1 ≤ d < k be integers, and let E be a d-dimensional subspace of Rk, and F ⊂ Rk a subspace

complementary to E. The subspace E is called the physical space, the subspace F is called

the internal space, and Rk is called the total space. Write π for the projection onto E with

respect to the decomposition

Rk = E + F.

Choose a set W ⊂ F , and define

S = W + E.

The set W is called the window, and S is called the strip. For each s ∈ Tk, we define the

13



cut-and-project set Ys ⊂ E by

Ys = π(S ∩ Zk + s).

A more general construction involves replacing Zk with any full rank lattice in Rk, which is

defined as the integer span of a basis for Rk. See the appendix for an introduction to basic

lattice theory. Typically, a cut-and-project set Y in Rn will be aperiodic, meaning that there

does not exists a ball B centered at the origin for which Y B has translational symmetry in

n linearly independent directions. Under slightly mild conditions, any cut-and-project set is

a Delone set. We refer to Lemma 3.2.2 from [Hay16] for the specifics, and for a proof that,

under these assumptions, any cut-and-project has a pure point mathematical diffraction

pattern. This is why a cut-and-project set is a good model for a mathematical quasicrystal.

There are more general models for quasicrystals, which do not require the presence of a

pure point diffraction pattern.

As will be shown in chapters 3 and 4, the set of complex dimensions of any lattice

self-similar fractal string consists of an aperiodic infinite discrete subset of the complex

plane, in the sense described above, and, posses an interesting diffraction pattern. Moreover,

the set of complex dimensions do not form a Delone set, but actually a more general ideal

crystal, in which the lattice Λ in 1.1.2 is not of full rank, that is, a subset of Rn that is the

integer span of k < d linearly independent vectors of Rd.

2.1.2 Mathematical diffraction

Since its discovery in the early 1900s, x-ray diffraction has been used to determine

the atomic structure of solid materials. Diffraction is the scattering that takes place when
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waves meet an obstacle. In 1912, Max von Laue showed that for a solid material, its atomic

structure acts as a large finite collection of obstacles for x-rays. Each atom becomes a

point source of radiation. The interference pattern from the reflected x-rays is called the

x-ray diffraction pattern of the material. By studying this pattern, we can determine its

atomic structure. Today, x-ray diffraction is a well understood technique for studying the

atomic structures of solid materials. In this section, we present a mathematical idealization

of diffraction developed by A. Hof in [Hof95]. In Chapter 4, we use this formalization to

compute the diffraction pattern of the complex dimensions of a lattice self-similar fractal

string. In Chapter 5, I give some ideas for future work, including our strategy for obtaining

the diffraction pattern in the nonlattice case, which addresses Problem 1.

We begin by deriving an important diagram, which may be regarded as a descrip-

tion of kinematic diffraction. For any potential function ρ ∈ L1(Rn), we define ρ̃ as the

mapping x→ ρ̃(x) := ρ(−x). Then,

ˆ̃ρ(ξ) =

∫
ρ̃(x)e−2πiξx dx

=

∫
ρ(−x)e2πiξx dx

=

∫
ρ(x)e−2πiξx dx

= ρ̂(ξ).

As a result of the Fourier convolution theorem, see Theorem IX.3 in [RS81], and from the

relation ˆ̃ρ(ξ) = ρ̂(ξ) established above, we get

ρ̂ ∗ ρ̃ = ρ̂ρ̂

= |ρ̂|2.
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And so for any integrable function ρ, there is an associated commutative diagram

ρ
∗ //

F

��

ρ ∗ ρ̃

F

��
ρ̂

|·| // |ρ̂|2

(2.1)

which is commonly referred to as a Wiener diagram. Kinematic diffraction is the diagonal

map ρ 7→ |ρ̂|2 in (2.1). That is, the intensities of the diffraction pattern are described by the

modulus squared of the Fourier coefficients of the potential ρ associated to the solid material.

The theory of mathematical diffraction presented in this section requires formulating the

analog of (2.1) for translation bounded measures. The following derivation from [Hof95]

describes a recipe for mathematical diffraction, which is used in Chapter 4 to compute the

diffraction of the complex dimensions of a lattice self-similar fractal string.

The basic mathematical object is a discrete set X ⊂ Rn, which is interpreted as an

infinite limit of the atomic configuration of some hypothetical physical structure. Assume

that X is a countable subset of n-dimensional Euclidean space that is uniformly locally

finite, i.e., for every compact set K ⊂ Rn there exists a constant aK such that the number

of points of X in the set K + x, given by

{y ∈ Rd : y − x ∈ K},

is bounded by aK , uniformly in x. The following definition provides an analytic represen-

tation for the set X.

Definition 2.1.3 A continuous linear functional µ on the space Cc(Rn) of compactly sup-

ported complex valued functions on Rn is called a measure. By continuity, we mean that for
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any compact subset K ⊂ Rn, there is a constant cK such that

|µ(f)| ≤ cK sup
x∈Rn
|f(x)|,

for all complex bounded functions with support in K.

Definition 2.1.4 A positive measure is a measure µ such that if f ∈ Cc(Rn) with f ≥ 0,

then µ(f) ≥ 0.

Theorem 2.1.5 (Riesz-Markov representation theorem) There is a one-to-one cor-

respondence between positive measures and positive Radon measures; for each positive mea-

sure ψ, there is a unique Borel measure µ such that ψ(f) =
∫
f dµ, for all f ∈ Cc(Rn).

The starting point for obtaining the mathematical diffraction of the set X is to

replace it by a measure called the Dirac comb of X given by

µ :=
∑
x∈X

δx,

where δx ∈ D ′(Rd) is the Dirac distribution at x, defined by the property

〈δx, φ〉 = φ(x)

for all test functions φ ∈ D(Rn). Following the Wiener diagram (2.1), we proceed by

computing the autocorrelation measure: for every positive number L, let CL denote the

closed cube of side L centered around the origin. The restriction of a measure µ to CL is

denoted by µL. Since µL has compact support,

γL := L−nµL ∗ µ̃L

is well-defined. The space of measures is given a topology in which a sequence of measure

{µn} converges to µ if µn(f)→ µ(f) for all f ∈ Cc(Rn).
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Definition 2 Every limit point of γL as L→∞ is called an autocorrelation of µ, and any

autocorrelation is a measure.

In our setting, computing the autocorrelation measure is much simpler. Let A be

the set {x− y : x, y ∈ X} of “interatomic vectors”. We will assume that A is locally finite.

Note that if a ∈ A, then −a ∈ A too. For a ∈ A and positive L, let NL(a) be the number

of occurrences of a in the cube CL:

NL(a) := {x ∈ X : x ∈ CL and x− a ∈ X ∩ CL}.

Assume that for all a ∈ A the limit

na := lim
L→∞

L−dNL(a) (2.2)

exists and is positive. Now, we have

µL ∗ µ̃L =
∑

x,y∈X∩CL

=
∑
a∈A

NL(a)δa.

Next, choose N > 0 and a complex valued continuous function f on Rn with support in

CN , so that f(a) = 0 if a ∈ CN . Then

γL(f) = L−n
∑

a∈Aa∈CN

NL(a)δa(f).

Since the above sum is finite, (2.2) gives

lim
L→∞

γL(f) =
∑
a∈A

naδa(f).

Since N and f were chosen arbitrarily, we get that µ has a unique autocorrelation measure

γ given by

γ :=
∑
a∈A

naδa.
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In Chapter 4, working in the setting described above, we compute the autocor-

relation measure of the complex dimensions of a lattice self-similar fractal string. From

standard references on diffraction [Cow75], diffraction by an infinite system is described by

the Fourier transform of the autocorrelation measure, γ̂, which is also consistent with the

Wiener diagram. We also develop an extended version of the Poisson summation formula

to compute the Fourier transform to describe the diffraction pattern.

2.2 Fractal strings and complex dimensions

Lapidus and van Frankenhuijsen present a way to study the Minkowski measurabil-

ity, and more generally, the oscillations in the geometry and the spectrum of fractal strings,

through the notion of complex dimensions (see [LvF06] and [LRZ̆17] in particular.) This

dissertation concerns the structure of the complex dimensions of a nonlattice self-similar

fractal string, defined in Section 2.2.1. Lapidus and van Frankenhuijsen have shown that

the complex dimensions of self-similar fractal strings arise as the complex roots of a class

of exponential polynomials called Dirichlet polynomials, which is defined in Section 2.2.2.

In Section 2.2.3, we state a theorem by Lapidus and van Frankenhuijsen that provides a

method to approximate the complex dimensions of a nonlattice self-similar fractal string; in

Chapter 3, we explain how this approximation procedure shows that the complex dimensions

have a quasiperiodic structure, as is discussed in detail in Chapter 3 of [LvF06]. Problem 1

from [LvF06], stated by Lapidus and van Frankenhuijsen, asks if the quasiperiodic pattern

of the complex dimensions of a nonlattice self-similar fractal string can be regarded as a

mathematical quasicrystal.
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2.2.1 Self-similar fractal strings and complex dimensions

Definition 2.2.1 A fractal string L is a bounded open subset Ω of the real line.

Any open subset Ω of the real line is a union of at most countably many disjoint

open intervals, which we will call the intervals of L. See Theorem 1.3 in [SS09]. To any

fractal string L, we will associate a sequence of positive numbers

`1, `2, `3, . . .

corresponding to the lengths of the intervals of L, listed according to multiplicity. Since Ω

has finite volume, we know that
∞∑
j=1

`j <∞,

so that the lengths can be ordered nonincreasingly, i.e.,

`1 ≥ `2 ≥ `3 ≥ · · · ≥ 0.

Definition 2.2.2 For a fractal string L with bounded open set Ω, we define the volume of

the inner tubular neighborhood of ∂Ω with radius ε, denoted by V (ε), as

V (ε) = vol1{x ∈ Ω : d(x, ∂Ω) < ε}.

Example 2.2.3 The complement in [0, 1] of the usual Cantor set is a fractal string with

lengths,

1

3
,
1

9
,
1

9
,

1

27
,

1

27
,

1

27
,

1

27
, . . .
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The volume of the inner tubular neighborhood of ∂Ω with radius 0 < ε ≤ 1/2 is given by

V (ε) = 2ε · (2n − 1) +

∞∑
k=n

2k3−(k+1)

= 2ε · (2n − 1) +
1

3
·
(

2

3

)n ∞∑
k=0

(
2

3

)k
= 2ε · 2n +

(
2

3

)n
− 2ε,

where n is such that 3−n ≥ 2ε > 3−(n+1).

Definition 2.2.4 The dimension of a fractal string L with associated bounded open set Ω,

denoted D = DL, is defined as the inner Minkowski dimension of Ω, i.e.,

D = DL = inf{α ≥ 0 : V (ε) = O(ε1−α) as ε→ 0+}.

Let L be a fractal string with dimension D. Because the infinite sum
∑∞

j=1 `
σ
j

converges when σ = 1, it follows from standard references that the (generalized) Dirichlet

series

ζL(s) =
∞∑
j=1

`sj

defines a holomorphic function for Re(s) > 1 (see [Ser73]).

Definition 2.2.5 The abscissa of convergence of the series

∞∑
j=1

`sj

is defined by

σ = inf{α ∈ R :

∞∑
j=1

`αj <∞}.

Theorem 2.2.6 by Lapidus and van Frankenhuijsen in [LvF06], stated below, es-

tablishes an important connection between σ and D, and leads to the following definition.
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Theorem 2.2.6 (Lapidus, van Frankenhuijsen, [LvF06]) Suppose that L has infinitely

many lengths. Then the abscissa of convergence of the geometric zeta function of L coincides

with D, the Minkowski dimension of ∂L.

Definition 2.2.7 Let L be a fractal string. If the geometric zeta function ζL has a mero-

morphic extension to all of C, we call

D = {ω ∈ C : ζ has a pole at ω}

the set of complex dimensions of L.

We are now in a position to define the central object from Problem 1. Let I = [a, b].

We construct a self-similar fractal string L as follows. Let

Φ1,Φ2, . . . ,ΦN

be N contraction similitudes mapping I into I, i.e.,

|Φj(x)− Φj(y)| = rj |x− y|,

for all x, y ∈ I, with respective scaling ratios

1 > r1 ≥ r2 ≥ · · · ≥ rN > 0.

Assume that the images of I under the contraction similitudes do not overlap, except

possibly at the endpoints, and that
N∑
j=1

rj < 1.

Subdivide I into the pieces Φj(I). See Figure 2.1. The remaining pieces in between are

called the first intervals of length `k = gkL, for k = 1, . . . ,K, where the scaling factors
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L

r1L g1L r2L

...

Figure 2.1: The construction of a self-similar string with two scaling ratios r1, r2 and one

gap g1.

g1, . . . , gK satisfy

1 > g1 ≥ · · · ≥ gK > 0,

and
N∑
j=1

rj +

K∑
k=1

gk = 1.

We refer to the quantities g1, . . . , gK as the gaps of the self-similar fractal string. Now,

repeat this process with each of the remaining intervals Φj(I). The limiting object will be

the self-similar fractal string L, consisting of intervals of length `n given by

rν1 · · · rνqgkL,

for k = 1, . . . ,K and all choices of q ∈ N and ν1, . . . , νq ∈ {1, . . . , N}.

Theorem 2.2.8 (Lapidus, van Frankenhuijsen, [LvF06]) Let L be a self-similar frac-

tal string. Then the geometric zeta function of L has a meromorphic continuation to the
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whole complex plane, given by

ζL(s) =
Ls
∑K

k=1 g
s
k

1−
∑N

j=1 r
s
j

.

Here, L = ζL(1) is the total length of L, which is also the length of I, the initial interval

from which L is constructed.

Corollary 2.2.9 Let L be a self-similar fractal string constructed with a single gap size

g1 = · · · = gK . Then the complex dimensions is the set of solutions of the equation

N∑
j=1

rωj = 1, ω ∈ C, (2.3)

with the same multiplicity.

In general, when the gaps have different sizes, the complex dimensions are among

the set of solutions of (2.3), and each complex dimension has a multiplicity of at most that

of the corresponding solutions.

Remark 2.2.10 The length L of the initial interval I of a self-similar fractal string may

be normalized so that the first length equals 1 by choosing

L = g−11 ,

where g1 is the largest gap. This does not affect the complex dimensions.

In the following well-known example from [LvF06], we show that the Cantor string

in 2.2.3 is actually a self-similar fractal string, defined by two contraction similitudes.

Example 2.2.11

Φ1(x) =
1

3
x, and Φ2(x) =

1

3
x+

2

3
.
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These are two contraction similitudes mapping [0, 1] to [0, 1], with scaling ratios

r1 = r2 =
1

3
,

and first interval g1 = 1/3. The self-similar string with total length 1 and these scaling

ratios is called the Cantor string. It consists of lengths 3−n with multiplicity 2n, n ≥ 0. The

geometric zeta function of this fractal string is

ζ(s) =
3−s

1− 2 · 3−s
.

By Corollary 2.2.9, the complex dimensions are exactly the roots of the equation

3x · eiy log 3 = 2.

We get that

x = log3 2, y =
2π

log 3
n (n ∈ Z)

and the complex dimensions are given by the set

{log3 2 + inp : n ∈ Z},

where p = 2π
log 3 . See Figure 2.2.

2.2.2 An introduction to Dirichlet polynomials

Problem 1 by Lapidus and van Frankenhuijsen concerns the quasiperiodic structure

of the complex dimensions of a nonlattice self-similar fractal string. In the previous section,

we saw that the complex dimensions of a self-similar fractal string are among the roots of an

associated exponential polynomial. These polynomials, defined below, are called Dirichlet
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Figure 2.2: The complex dimensions of the Cantor string.

polynomials. There is a dichotomy in the set of all Dirichlet polynomials, in which every

one is either lattice or nonlattice. This induces the same dichotomy in the set of all self-

similar fractal strings, i.e., a self-similar fractal string is lattice if its corresponding Dirichlet

polynomial is lattice, and nonlattice otherwise. Therefore, we focus on a more general

problem:

Problem 3 Can the quasiperiodic pattern of the set of complex roots of a nonlattice Dirich-

let polynomial with integer multiplicities be understood in terms of a suitable (generalized)

quasicrystal, or quasiperoidic tiling?

Definition 4 For N + 1 scaling ratios r0 > r1 > · · · > rN > 0 and multiplicities mj ∈ C

for 1 ≤ j ≤ N , an exponential polynomial in the complex variable s of the form

f(s) =

N∑
j=0

mjr
s
j (2.4)

is called a Dirichlet polynomial.
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For the purposes of studying the complex roots of a Dirichlet polynomial, it is

assumed without any loss of generality that r0 = 1 and m0 = −1 so that (2.4) reduces to

f(s) = 1−
N∑
j=1

mjr
s
j , (2.5)

and that 1 > r1 > · · · > rN > 0.

Definition 5 Let f(s) be a Dirichlet polynomial. If the rank of the additive group

G =
N∑
j=1

log(rj)Z

is equal to 1, f(s) is said to be lattice. Otherwise, it is called nonlattice

Remark 2.2.12 It is straightforward to check that a Dirichlet polynomial f(s) is lattice

if and only if there exists a positive real number r, which we call the generator of f , and

integers k1, . . . , kN such that rj = rkj for j = 1, . . . , N . Furthermore, if for a Dirichlet

polynomial f(s), we define wj = − log rj for 1 ≤ j ≤ N , then f(s) is nonlattice if and only

if wj/w1 is irrational for some 1 < j ≤ N .

The structure of the complex roots of a given Dirichlet polynomial is completely

described by Theorem 3.6 in [LvF06]. For instance, the set of complex roots of any Dirichlet

polynomial is contained in the strip

R := {z ∈ C : D` ≤ Re s ≤ D},

where D` and D are the unique real numbers satisfying the equations

1 +
N−1∑
j=1

|mj |rD`j = |mN |rD`N and
N∑
j=1

|mj |rDj = 1,
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respectively, and the inequality −∞ < D` ≤ D ≤ 1. If the multiplicities are positive

integers, and N ≥ 2 or m1 > 1, as is the case with the Dirichlet polynomial associated to

any lattice self-similar fractal string, then the complex roots are symmetric about the real

axis, the number D defined above is positive, and it is the only real root. We also note that

D is simple.

In the lattice case, the complex roots of f(s) lie periodically on finitely many

vertical lines, and on each line they are separated by the positive number

p =
2π

log r

called the oscillatory period of f(s). More precisely, as described by Lapidus and van

Frankenhuijsen in [LvF06], given a lattice Dirichlet polynomial f(s) of the form (2.5) with

oscillatory period p, there exist complex numbers

ω1, . . . , ωu

such that the complex roots of f(s) are given by the set

X = {ωj + inp : n ∈ Z, j = 1, . . . , u}.

For each 1 ≤ j ≤ u, the set {ωj + inp : n ∈ Z} will be denoted by Hj . The following

example illustrates the relatively simple task of computing the complex roots of a lattice

Dirichlet polynomial.

Example 2.2.13 Consider the lattice Dirichlet polynomial

f(s) = 1− 2−s − 4−s
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Figure 2.3: Ten positive and negative periods of the set of complex roots of f(s) = 1 −

2−s − 4−s, with p ≈ 9.064.

with scaling ratios r1 = 1/2 and r2 = 1/4, and multiplicities m1 = m2 = 1, which is

associated to a lattice self-similar fractal string known as the Fibonacci string. Because

f(s) is lattice with generator r = 1/2, we can express it as the polynomial

f(z) = 1− z − z2

in the complex variable z = 2−s. Then, by a direct computation, the complex roots of f(s)

are given by the set

X = {D + inp : n ∈ Z} ∪ {−D + i (n+ 1/2) p : n ∈ Z} ,

where D = log2 φ and φ = (1 +
√

5)/2. See Fig. 2.3 for a plot consisting of several periods.
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2.2.3 Lattice approximation

The process for computing the complex roots of a lattice Dirichlet polynomial, as

described in Example 2.2.13 cannot be applied in the nonlattice case. While this is not

ideal, there is an upshot to this discussion that connects fractal geometry and aperiodic or-

der. Lapidus and van Frankenhuijsen in [LvF06] have established a theorem which gives a

procedure to approximate the set of complex roots in the nonlattice case by the sets of com-

plex roots of lattice Dirichlet polynomials. In Chapter 3, we show how this approximation

procedure, which we refer to as the lattice approximation procedure (or lattice approxima-

tion), reveals the quasiperiodic pattern in the set of complex roots for a nonlattice Dirichlet

polynomial.

Suppose that we are given the nonlattice Dirichlet polynomial

f(s) = 1−
N∑
j=1

rsj (2.6)

with positive weights 0 < w1 < · · · < wN , where

wj
w1

= logr1 rj

for j = 1, . . . , N . Then, for at least one j = 2, . . . , N , we know that wj/w1 is irrational. See

Remark 2.2.12. The lattice approximation procedure is based on Dirichlet’s Theorem on

simultaneous Diophantine approximation, and has a very natural implementation. Before

stating the theorem which provides this method of approximation, we give a short pre-

liminary description with f(s) above, which will help to understand the statement of the
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theorem. To begin, we attempt to rewrite (2.6) as if it were a lattice Dirichlet polynomial:

f(s) = 1− rs1 − rs2 − · · · − rsN

= 1− (rs1)
1 − (rs1)

logr1 r2 − · · · − (rs1)
logr1 rN

Note that unlike 2.2.13, the powers of the complex variable rs1 are not all rational. By replac-

ing the numbers logr1 r1 = 1, and logr1 r2 . . . , logr1 rN with specific rational approximations

q/q, and k2/q, . . . , kN/q, respectively, we obtain the lattice Dirichlet polynomial

f̃(s) = 1− (rs1)
q/q − (rs1)

k2/q − · · · − (rs1)
kN/q

= 1− (z)q − (z)k2 − · · · − (z)kN ,

where z = r
s/q
1 . Note that f̃(s) has scaling ratios

(r
1/q
1 )q, (r

1/q
1 )k2 , . . . , (r

1/q
1 )kN ,

generator r̃ = r
1/q
1 , and oscillatory period p̃ = −q 2π

log r1
. Theorem 2.2.18 on lattice approxi-

mation, stated below, says that for any order of accuracy desired, the set of complex roots

of f̃(s) approximate the set of complex roots of f(s) in an open ball centered at the origin.

This is essentially how lattice approximation works.

We conclude this section by stating Dirichlet’s theorem on simultaneous Diophan-

tine approximation, which drives the lattice approximation procedure, and then finally stat-

ing the theorem on lattice approximation. Theorems 2.2.14, 2.2.15, and Corollary 2.2.16

stated below, which are from [Sch80], provide some of the basics in the theoretical foun-

dations behind approximating real numbers by rational numbers. We give the proof of

Theorem 2.2.14, which uses the pigeon hole principle stating that if n items are put into m
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containers with n > m, then at least one container must contain more than one item. The

proof of Theorem 2.2.15 theorem is omitted.

Theorem 2.2.14 Let α ∈ R, and let Q > 1. Then, there exist integers p and q with

1 ≤ q < Q such that

|qα− p| ≤ 1

Q
.

Proof. First we assume that Q is an integer. The Q+ 1 numbers

0, 1, {α}, {2α}, . . . , {(Q− 1)α} (2.7)

lie in the interval [0, 1], and we divide this interval into the Q subintervals

[
0,

1

Q

)
,

[
1

Q
,

2

Q

)
, . . . ,

[
Q− 2

Q
,
Q− 1

Q

)
,

[
Q− 1

Q
, 1

]
.

At least one of these intervals contains two or more of the Q+1 numbers (2.7). Then, there

exist integers r1, r2, s1, s2 with 0 ≤ r1, r2 < Q and r1 6= r2 such that

|(r1α− s1)− (r2α− s2)| = |(r1 − r2)α− (s1 − s2)| ≤
1

Q
.

If r1 > r2, then we put q = r1 − r2, and p = s1 − s2. Then, 1 ≤ q < Q and

|qα− p| ≤ 1

Q
.

This proves the theorem when Q is an integer. If Q is not an integer, the statement is true

for Q′ = [Q] + 1. That is, there exist integers p, q such that 1 ≤ q < Q and

|qα− p| ≤ 1

Q′
≤ 1

Q
.

Therefore the statement is true for Q. �
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Theorem 2.2.15 Suppose that α1, . . . , αn are n real numbers and that Q > 1 is an integer.

Then there exist integers q, p1, . . . , pn with 1 ≤ q < Qn and

|αiq − pi| ≤
1

Q

for 1 ≤ i ≤ n. In particular, when n = 2, we get the statement in 2.2.14.

The following corollary guarantees the existence of infinitely many lattice approx-

imations for a given nonlattice Dirichlet polynomials. However, there is still the question

of which method is best for obtaining them. When there is only one irrational number to

approximate, the method of continued fractions works well. Generally however, we will need

to obtain simultaneous Diophantine approximations. Since there is not a perfect analog of

the method of continued fractions for obtaining simultaneous Diophantine approximations,

we rely on another tool. In [LvF06], the authors suggest using a lattice basis reduction algo-

rithm, known as the LLL algorithm, to compute simultaneous Diophantine approximations.

In Chapter 3, we show exactly how this can be done.

Corollary 2.2.16 Suppose that at least one of the numbers α1, . . . , αn is irrational. Then

there are infinitely many n-tuples p1/q, . . . , pn/q with

∣∣∣∣αi − pi
q

∣∣∣∣ < 1

q1+1/n

for 1 ≤ i ≤ n.

The following lemma from [LvF06] is just a restatement of Theorem 2.2.15, which

is better suited for Theorem 2.2.18 below.
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Lemma 2.2.17 Let f(s) be a Dirichlet polynomial with real numbers w1, . . . , wN , and N ≥

2. Then for every integer Q > 1, there exist integers q and k1, . . . , kN such that

1 ≤ q < QN−1 and |qwj − kjw1| ≤ w1Q
−1

for all j = 1, . . . , N .

Theorem 2.2.18 (Lapidus, van Frankenhuijsen, [LvF06]) Let f(s) be a nonlattice Dirich-

let polynomial of the form (2.5) with scaling ratios 1 > r1 > · · · > rN > 0 and multiplicities

m1, . . . ,mN . Let Q > 1, and let q and kj be as in Lemma 2.2.17. Then, the Dirichlet

polynomial

f̃(s) = 1−
N∑
j=1

mj

(
r
kj/q
1

)s
is lattice with generator r

1/q
1 and oscillatory period p = −q 2π

log r1
. And for every ε > 0,

|f̃(s)− f(s)| < ε

whenever |s| < εCQp, where

C =

∑N
j=1 |mj |

2π

( ∑N
j=0 |mj |

min{1, |mN |}

) −2wN
min{w1,wN−wN−1}

.

The next chapter is devoted to the exploration of the quasiperiodic structure of

the complex dimensions of a nonlattice self-similar fractal string. In Section 2.2.1, we saw

that it is enough to study the set of complex roots of a nonlattice Dirichlet polynomial with

integer multiplicities. This is because the complex dimensions of any self-similar fractal

string are among the set of complex roots of an associated Dirichlet polynomial with integer

multiplicities; the Dirichlet polynomial appears in the denominator of the geometric zeta

function of the string (see Theorem 2.2.8). The set of complex roots of a lattice Dirichlet
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polynomial have a periodic structure. We refer the reader to [LvF06] for more information

on the general structure of the set of complex dimensions of a Dirichlet polynomial. In the

lattice case, the set of complex roots are computed by rewriting the Dirichlet polynomial

as a traditional polynomial in a complex variable. The roots can then be computed using

software to approximate the roots, and then by taking logarithms, the desired set of complex

roots are obtained.

In the nonlattice case, the set of complex roots cannot be computed explicitly.

Rather, they are approximated by the sets of complex roots of lattice Dirichlet polynomials,

via an approximation procedure developed by Lapidus and van Frankenhuijsen in [LvF06].
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Chapter 3

Exploring the Quasiperiodic

Structure Through Diophantine

Approximation and Lattice Basis

Reduction

In this chapter, we will follow the suggestion from Lapidus and van Frankenhuijsen,

and use the LLL algorithm to describe the quasiperiodic structure of the set of complex

roots of a nonlattice Dirichlet polynomial. In Chapter 4, using a suitably modified version

of the recipe for mathematical diffraction developed by Hof in [Hof95], we compute the

diffraction for any lattice self-similar fractal string. In the future, I intend to continue

working on Problem 1. Specifically, I would like to compute the diffraction for a nonlattice

self-similar fractal string. In Chapter 5, we give some ideas on this work.
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3.1 Obtaining simultaneous Diophantine approximations

with the LLL algorithm

The lattice approximation procedure is a tool for exploring the quasiperiodic struc-

ture of a nonlattice Dirichlet polynomial, but it does require a practical method for obtaining

many good simultaneous Diophantine approximations. In [LLL82], the authors present the

LLL algorithm, which is a lattice basis reduction algorithm. The following two theorems

from [LLL82] make the LLL algorithm a tool for computing simultaneous Diophantine ap-

proximations. An implementation using C++ is given in Section A.2.

Theorem 3.1.1 Let x1, x2, . . . , xn be a reduced basis for a lattice L, x∗1, x
∗
2, . . . , x

∗
n be its

Gram-Schmidt orthogonalization, and let d(L) denote the determinant of L. Then,

|xj |2 ≤ 2i−1 · |x∗i |2 for 1 ≤ j ≤ i ≤ n,

d(L) ≤
n∏
i=1

|xi| ≤ 2n(n−1)/4 · d(L),

and

|x1| ≤ 2(n−1)/4 · d(L)1/n.

Theorem 3.1.2 There exists a polynomial-time algorithm that, given a positive integer

n and rational numbers x1, x2, . . . , xn, and ε satisfying 0 < ε < 1, which finds integers

p1, p2, . . . , pn, q for which

∣∣∣∣piq − αi
∣∣∣∣ ≤ ε

q
for 1 ≤ i ≤ n,

1 ≤ q ≤ 2
n(n+1)

4 ε−n.
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Proof. Let L be the lattice or rank n+ 1 spanned by the columns of the (n+ 1)× (n+ 1)

matrix 

−1 0 · · · 0 −x1

0 −1 · · · 0 −x2
...

...
. . .

...
...

0 0 · · · −1 −xn

0 0 · · · 0 2
−n(n+1)

4 εn+1


By Theorem A.1.12, we obtain, in polynomial time, a reduced basis y1, y2, . . . , yn+1. Then

by Theorem 3.1.1,

|y1| ≤ 2
n
4 d(L)

1
n+1 = ε.

Since y1 ∈ L, there exist integers q, p1, p2, . . . , pn such that

y1 =
(
p1 − qx1, . . . , pn − qxn, q2

−n(n+1)
4 εn+1

)T
.

If q = 0, at least one of the pi must be nonzero. So, y1 = (p1, p2, . . . , pn, 0) satisfies

|y1| ≥ 1, which is a contradiction. Hence, q 6= 0. If q < 0, replace y1 with −y1. Since

q2
−n(n+1)

4 εn+1 ≤ |y1| < ε, we have that

q < 2
n(n+1)

4 ε−n.

And from the other components of y1, we obtain∣∣∣∣xi − pi
q

∣∣∣∣ < ε

q
, 0 ≤ q < 2

n(n+1)
4 ε−n

as required. �

Let us suppose that we want to obtain a simultaneous Diophantine approximation

for the set of irrational numbers

S = {log 2, log 3, log 5}.
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One can use Theorem A.1.12 to do this. First, we use the continued fraction algorithm to

generate a convergent for each of the numbers in S:

log 2 1504/1369 error : −1.62e− 07

log 3 1143/1649 error : 1.81e− 07

log 5 1603/996 error : −1.61e− 07

Let ε = 1/10, and write the matrix

−1 0 · · · 0 1504/1369

0 −1 · · · 0 1143/1649

0 0 · · · −1 1603/996

0 0 · · · 0 2−3ε4


We then process this matrix with the LLL algorithm, and upon termination, obtain three

rational approximations, with common denominator 466 < 8000:

323/466 error : 1.41e− 05 < 1/4660

512/466 error : 1.00e− 04 < 1/4660

750/466 error : 4.14e− 06 < 1/4660

3.2 The quasiperiodic pattern in the nonlattice case

We now have the tools to apply the lattice approximation procedure. In this

section, through lattice approximation, we describe the quasiperiodic pattern of the complex

dimensions of a nonlattice self-similar fractal string. Let us begin with a relatively simple
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example. Consider the nonlattice Dirichlet polynomial

f(s) = 1− 2−s − 3−s

from Section 2.2.3, with scaling ratios r1 = 1/2, r2 = 1/3, multiplicities m1 = m2 = 1,

and period p = 2π/ log 2. In [LvF06], Lapidus and van Frankenhuijsen call this the 2-3-

polynomial. We apply lattice approximation, and begin by writing

f(s) = 1− (2−s)1 − (2−s)log2 3. (3.1)

By Lemma 2.2.17 with N = 2, and since log2 3 is irrational, there exists infinitely many

pairs of integers k and 1 ≤ q < Q, such that

|log2 3− k/q| ≤ (qQ)−1.

In this case, we can use the continued fraction algorithm to obtain many approximations

that satisfy Lemma 2.2.17. See Figure 3.1. Also, see Section A.2 for an implementation of

the continued fraction algorithm in C.

We proceed by choosing a convergent to replace log2 3 in (3.1), which gives a lattice

approximation. Say for example we chose the convergent k/q. Then, we have the lattice

approximation

f̃(s) = 1− zk − zq,

where z = 2−s/q. To understand the quality of this approximation, we work backwards and

calculate a value of Q such that 1 ≤ q < Q, and

∣∣∣∣log2 3− k

q

∣∣∣∣ ≤ (qQ)−1.
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≈ log2 3 Error

1/1 5.84963e-01

2/1 4.15037e-01

3/2 8.49625e-02

8/5 1.50375e-02

19/12 1.62917e-03

65/41 4.03353e-04

84/53 5.68403e-05

485/306 4.81954e-06

1054/665 9.47061e-08

24727/15601 1.68254e-09

50508/31867 3.28901e-10

125743/79335 6.66425e-11

176251/111202 4.67077e-11

301994/190537 4.88498e-13

Table 3.1: Several convergents to log2 3, with errors.

Then, according to Theorem 2.2.18, for any ε > 0, the set of complex roots of f̃(s) approx-

imate the set of complex roots of f(s), in the open ball

{z ∈ C : |z| < εCQp}.

In Figure 3.1, we plot several periods of the set of complex roots for lattice approx-

imations corresponding to the convergents 2/1, 8/5, 65/41, and 1054/665 to the irrational

number log2 3, with ε = 1/10. The plot in Figure 3.1(a) corresponding to 2/1 and Q = 2,

is not considered to be a very good approximation. In fact, the radius of the ball for which

this approximation is valid, up to order ε, is roughly 0.0008. What this means is that the

unique complex root of f̃ on the real axis is the only one guaranteed by Theorem 2.2.3

to approximates a root of f . To obtain a lattice approximation that is valid for a ball

centered at the origin with bigger radius, one chooses a larger value for Q in Lemma 2.2.17.
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The plot in Figure 3.1(b) corresponding to 8/5 and Q = 12, is valid in a ball of radius

approximately equal to 0.043. The plots in Figures 3.1(b) and (c) correspond to 65/41 and

1054/665, and have radii of approximations roughly equal to 1.78 and 7233.63, respectively.

In Figures 3.2(a) and (b), plots of the set of complex roots for two lattice approximations

corresponding to 65/41 and 84/53 are given, respectively. In the shaded region, there is

very little difference in the location of the roots. This is consistent with the fact that the

lattice approximation corresponding to 84/53 is valid in the ball centered at the origin of

radius approximately 12.29.

A given lattice approximation f̃ , with common denominator q from the simulta-

neous Diophantine approximation from which f̃ is determined, has its oscillatory period

p directly proportional to q. Also, the radius of the ball for which f̃ is valid is directly

proportional to qQ. It follows that the number of periods for which a lattice approxima-

tion in Theorem 2.2.18 remains valid tends to infinity as the value of Q in Lemma 2.2.17

tends to infinity. The set of complex roots in the nonlattice case are therefore periodic like

in the lattice case, for many periods, except that eventually a new pattern emerges from

the next lattice approximation valid for an even larger region. What is interesting is that

the set of complex roots of each lattice approximation must incorporate the structure from

lattice approximations valid in smaller regions. Lapidus and van Frankenhuijsen call this

the quasiperiodic structure of the complex roots in the nonlattice case. We refer to Chapter

3 of [LvF06] for more on the structure of the set of complex roots of nonlattice Dirichlet

polynomials and the quasiperiodic structure.

Typically, a lattice approximation that is valid for many periods will be sparse
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(a) Lattice approximation correspond-

ing to 2/1, Q = 2, and oscillatory period

p ≈ 9.06.

(b) Lattice approximation correspond-

ing to 8/5, Q = 12, and oscillatory pe-

riod p ≈ 45.32.

(c) Lattice approximation correspond-

ing to 65/41, Q = 2470, and oscillatory

period p ≈ 371.65.

(d) Lattice approximation corresponding

to 1054/665, Q = 15000, and oscillatory

period p ≈ 6028.03.

Figure 3.1: Four lattice approximations, with ε = 1/10, to the 2-3-polynomial, with radii

of approximations roughly 0.0008, 0.043, 1.78, and 7233.63. The dotted horizontal lines

intersect the imaginary axis at one period.

43



(a) A plot of the set of complex roots of the lattice approximation to

the 2-3-polynomial corresponding to 65/41, with Q = 60, p ≈ 371.65,

and εCQp ≈ 1.78

(b) A plot of the set of complex roots of the lattice approximation to

the 2-3-polynomial corresponding to 84/53, with Q = 320, p ≈ 480.43,

and εCQp ≈ 12.29.

Figure 3.2: Lattice approximations from 65/41 (left) and 84/53 (right).
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Figure 3.3: A plot of the set of complex roots of the lattice approximation to the 2-3-

polynomial corresponding to 125743/79335, with Q = 100000, p ≈ 719149.58, and εCQp ≈

5753196.64.

with very large degree. Previously, programming languages like Matlab and Mathemat-

ica had enough functionality to compute, and plot, the roots of reasonably modest lattice

approximations (modest meaning having degree up to 1000). However, plotting better and

better approximations required more practical tools. Software developed by NUMPI called

mpslove, which can take advantage of sparsity (see [BR14]), has been very useful. One of the

goals for the future is to develop practical methods for obtaining better numerical approxi-

mations, which will also help to address a conjecture of Lapidus and van Frankenhuijsen on

the structure of the closure of the projection of the complex dimensions in the nonlattice

case onto the real axis. For the main purpose of this thesis, it is enough to know that the

set of complex dimensions of any nonlattice self-similar fractal string are quasiperiodic in

the sense of Lapidus and van Frankenhuijsen. In the next chapter, for a given nonlattice
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self-similar fractal string, we give a formula for the diffraction pattern of the set of complex

dimensions for any lattice approximation.
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Chapter 4

Diffraction by the set of complex

dimensions of a lattice self-similar

fractal string

This chapter is devoted to new results on diffraction concerning Problem 1 by

Lapidus and van Frankenhuijsen, stated in [LvF06]. We saw in Chapter 2 that the complex

dimensions of a nonlattice self-similar fractal string are approximated by the complex roots

of lattice self-similar fractal strings. By exploiting the periodic structure in the lattice case,

and by using a slight modification in the recipe for mathematical diffraction described in

Chapter 2, it is possible to compute the diffraction of the complex dimensions of a lattice

self-similar fractal string.
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4.1 The autocorrelation measure of a lattice self-similar frac-

tal string

Calculating the mathematical diffraction pattern in the lattice case begins with an

object which serves as an analytical expression for the complex dimensions. This object is

given by

µ =
∑
x∈X

δx,

where δx is the Dirac distribution at x. We will generally regard µ as a tempered dis-

tribution. Note that in Chapter 2, µ is regarded as a continuous linear function on the

space Cc(Rn). The recipe for the autocorrelation is still valid when extending to Schwartz

functions. The next step is to compute the autocorrelation of µ, which in our case will

be another tempered distribution. In the next section, we give the Fourier transform of

the autocorrelation, which ultimately describes the diffraction pattern. In the theory of

kinematic diffraction, the intensities of the diffraction pattern of an object are given by the

Fourier transform of that object.

Let f(s) be a lattice Dirichlet polynomial with integer multiplicities, and denote

its set of complex roots by X. Then there exists a positive integer u and complex numbers

ω1, . . . , ωu ∈ C such that

X =
u⋃
j=1

Hj , Hj = {(Re(ωj), Im(ωj) + np) : n ∈ Z} .

The first step in obtaining the diffraction pattern is to compute the autocorrelation, which

is governed by the set of all interactions in X, i.e. the set of all difference vectors

X −X =
⋃

1≤j,k≤u
Hj,k,
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where

Hj,k = {(Re(ωj,k), Im(ωj,k) + pn) : n ∈ Z},

and ωj,k := ωj −ωk. We use H to denote Hj,k when j = k, and note that H is the same set

for all 1 ≤ j ≤ u. For a positive number L, let RL denote the rectangle given by

RL = {z ∈ C : |Re(z)| ≤ b, |Im(z)| ≤ L},

and b = max {|D|, |Dl|}. For each a ∈ X −X, let

NL(a) = # {(x, y) : x, y ∈ X ∩RL, a = x− y} ,

that is, the number of occurrences of the interaction a in the rectangle RL. If for all a ∈ A,

the limit

na := lim
L→∞

NL(a)

2bL

exists and na > 0, then X has a unique autocorrelation

γX :=
∑

a∈X−X
naδa. (4.1)

Therefore, to actually compute the autocorrelation, we are left with computing na

for all a ∈ A. This is done in the following theorem:

Theorem 4.1.1 (Lapidus, van Frankenhuijsen, Voskanian) The set of complex roots

X of a lattice Dirichlet polynomial f(s) with oscillatory period p, and positive integer mul-

tiplicities, has the autocorrelation measure

γX =
∑
a∈H

u

2bp
δa +

∑
distinct Hj,k

j 6=k

f(j, k)

 ∑
a∈Hj,k

1

2bp
δa

 , (4.2)

where H = H f(j, k) denotes the multiplicity of the set Hj,k.
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Figure 4.1: A plot of the set of complex dimensions of the lattice approximation to the

2-3-polynomial corresponding to 8/5. The dotted lines tile the plot into repeating cells,

which help to count the number of any interaction per unit volume.

Proof. If a ∈ H, then a = (0, pn) for some n ∈ Z. We exploit the periodic structure of X

and count interactions in rectangles that have height equal to copies of 2L. That is, given

L > 0, we divide by 2p and then round up. The advantage of dividing by 2p is that it makes

it easier to count frequencies (see Figure 4.1). This way, we get

lim sup
L→∞

NL(ipn)

2bL
≤ lim sup

L→∞

2u
⌈
L
2p

⌉
− (nu− 1)

4
⌈
L
2p

⌉
pb

=
u

2pb
.

And then by taking a lower estimate, we get

lim inf
L→∞

NL(ipn)

2bL
≥ lim inf

L→∞

2u
⌊
L
2p

⌋
− (nu− 1)

4
⌊
L
2p

⌋
pb

=
u

2pb
.

Hence,

na =
u

2pb
.
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By a similar argument, for all a ∈ Hj,k with j 6= k, we get

na =
f(j, k)

2pb
.

We get the autocorrelation measure by substituting na into (4.1). �

Now having obtained the autocorrelation measure for the complex dimensions of

a lattice self-similar fractal string, the next step is to compute its Fourier transform. The

key tool for doing this is an extension of the classical Poisson summation formula to the

setting of locally compact abelian groups. To conclude this section, we state and prove the

classical version.

Theorem 4.1.2 (Poisson summation formula) Let φ : Rd → C be a Schwartz func-

tion. Then ∑
x∈Zd

φ̂(x) =
∑
x∈Zd

φ(x). (4.3)

Proof. For all x ∈ Rd,

|φ(x)| ≤ C

(1 + |x|)d+1
.

By comparison, ∑
x∈Zd

|φ(x)| <∞.

Since φ̂ ∈ S(Rd), we have shown that both sums converge absolutely, and thus converge.

Now define the function F : Td → C by

F (x) =
∑
n∈Zd

φ(x+ n).
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Since F ∈ C(Rd), Zd-periodic, and (d+1)-times continuously differentiable, F has a uni-

formly converging series of the form

F (x) =
∑
m∈Zd

cme
2πim·x,

where

cm =

∫
Td
F (τ)e−2πim·τ dτ.

Then,

F (x) =
∑
m∈Zd

(∫
Td

∑
n∈Zd

φ(τ + n)e−2πim·τ dτ

)
e2πim·x

=
∑
m∈Zd

( ∑
n∈Zd

∫
Td
φ(τ + n)e−2πim·τ dτ

)
e2πim·x

=
∑
m∈Zd

(∫
Rd
φ(τ)e−2πim·τ dτ

)
e2πim·x

=
∑
m∈Zd

φ̂(m)e2πim·x.

By picking x = 0 in the above formula, we get

F (0) =
∑
n∈Zd

φ(n) =
∑
n∈Zd

φ̂(n)

as required. �

4.2 The diffraction measure of a lattice self-similar fractal

string

The following lemma and corollary give a suitable extension of the classical Poisson

summation formula (4.3) from Theorem 4.1.2. This extension is used to compute the Fourier
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transform of the autocorrelation (4.2) of the set of complex dimensions of any lattice self-

similar fractal string. In the following theorem, H again denotes Hj,k when j = k.

Lemma 4.2.1 (Lapidus, van Frankenhuijsen, Voskanian) Let L be a lattice self-similar

fractal string with oscillatory period p. If u is the number of vertical lines describing the set

of complex dimensions of L, 1 ≤ j, k ≤ u and φ ∈ S (R2), where S (R2) denotes the set of

all Schwartz functions on R2, then

∑
a∈Hj,k

φ(a) =
1

p

∫
R

∑
n∈Z

φ̂
(
ξ, np−1

)
e2πi(ξRe(ωj,k)+np

−1 Im(ωj,k)) dξ.

Consequently, ∑
a∈H

φ(a) =
1

p

∫
R

∑
n∈Z

φ
(
ξ, np−1

)
dξ.

Proof. Let 1 ≤ j, k ≤ u. For each a ∈ Hj,k, there exists an integer n such that

a = (Re(ωj,k), Im(ωj,k) + np).

Then, ∑
a∈Hj,k

φ(a) =
∑
n∈Z

φ(Re(ωj,k), Im(ωj,k) + np). (4.4)

Since φ ∈ S (R2), it follows that both sides of equation (4.4) converge absolutely, and that

the function F : R2/H → C defined by

F (x, t) =
∑
n∈Z

φ(x+ Re(ωj,k), Im(ωj,k) + t+ np)

is an element of S (R2/H). Note that F is periodic modulo pZ in the second coordinate.

Applying Fourier inversion in the setting of locally compact abelian groups, the Fourier

series expansion of F is given by

F (x, t) =

∫
R

∑
m∈Z

F̂ (ξ,m)e
2πi(xξ+m

p
t)
dξ,
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where

F̂ (ξ,m) =

∫
R

[
1

p

∫ p

0
F (τ, s)e

− 2πims
p ds

]
e−2πiξτ dτ.

Then,

F (x, t)

=

∫
R

∑
m∈Z

(∫
R

1

p

∫ p

0

∑
n∈Z

φ(Re(ωj,k) + τ, Im(ωj,k) + s+ np)e
−2πims

p ds e−2πiξτ dτ

)

e
2πi(xξ+m

p
t)
dξ

=

∫
R

∑
m∈Z

(∫
R

1

p

∑
n∈Z

∫ p

0
φ(Re(ωj,k) + τ, Im(ωj,k) + s+ np)e

−2πim(s+np)
p e−2πiξτ ds dτ

)

e
2πi(xξ+m

p
t)
dξ

=

∫
R

∑
m∈Z

(
1

p

∫
R

∫
R
φ(Re(ωj,k) + τ, Im(ωj,k) + s)e

−2πi(ξτ+m
p
s)
ds dτ

)
e
2πi(xξ+m

p
t)
dξ

=

∫
R

∑
m∈Z

(
1

p

∫
R

∫
R
φ(Re(ωj,k) + τ, Im(ωj,k) + s)e

−2πi(ξτ+m
p
s)
dτ ds

)
e
2πi(xξ+m

p
t)
dξ.

Because φ is a Schwartz function, all of the sums and integrals in the above calculation

are absolutely convergent, which justifies the interchanges between them. Now, using the

identity

e
−2πi(ξ(Re(ωj,k)+τ)+

m
p
(Im(ωj,k)+s)) = e

−2πi(ξτ+m
p
s)
e
−2πi(ξRe(ωj,k)+

m
p
Im(ωj,k)),

we get

F (x, t) =
1

p

∫
R

∑
m∈Z

(∫
R2

φ(Re(ωj,k) + τ, Im(ωj,k) + s)e
−2πi(ξ(Re(ωj,k)+τ)+

m
p
(Im(ωj,k)+s)) dτ ds

)

· e2πi(ξRe(ωj,k)+
m
p
Im(ωj,k))e

2πi(xξ+m
p
t)
dξ

=
1

p

∫
R

∑
m∈Z

(∫
R2

φ(τ, s)e
−2πi(ξτ+m

p
s)
dτ ds

)
e
2πi(ξRe(ωj,k)+

m
p
Im(ωj,k))e

2πi(xξ+m
p
t)
dξ

=
1

p

∫
R

∑
m∈Z

φ̂(ξ,
m

p
)e

2πi(ξ(Re(ωj,k)+x)+
m
p
(Im(ωj,k)+t)) dξ.
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By picking x = 0 and t = 0 in the formula above, we get

∑
a∈Hj,k

φ(a) =
1

p

∫
R

∑
n∈Z

φ̂(ξ,
n

p
)e

2πi(ξ(Re(ωj,k))+
n
p
(Im(ωj,k))) dξ.

�

Corollary 4.2.2 (Lapidus, van Frankenhuijsen, Voskanian)

∑
a∈Hj,k

φ̂(a) =
1

p

∫
R

∑
n∈Z

φ
(
ξ, np−1

)
e2πi(ξ(Re(ωj,k))+np

−1(Im(ωj,k))) dξ.

Proof. If φ ∈ S (R2) then
ˆ̂
φ(x) = φ(−x), and

∑
n∈Z

φ(−n) =
∑
n∈Z

φ(n).

�

Applying Corollary 4.2.2 to the autocorrelation associated to a lattice self-similar

fractal string, we obtain the following main theoretical result of this thesis.

Theorem 4.2.3 (Lapidus, van Frankenhuijsen, Voskanian) Let L be a lattice self-

similar fractal string with oscillatory period p, and let X be its set of complex dimensions,

as given in (1.2), so that the difference set X −X is given by

X −X =
⋃

1≤j,k≤u
Hj,k,

where the sets Hj,k are given by (1.2).

Then the autocorrelation measure γ is the tempered distribution

γ =
∑
a∈H

u

2bp
δa +

∑
distinct Hj,k

j 6=k

f(j, k)

 ∑
a∈Hj,k

1

2bp
δa

 ,
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where f(j, k) is the multiplicity of the set Hj,k. Moreover, its Fourier transform is the

tempered distribution

γ̂ =
1

2bp2

∫
R

∑
n∈Z

ω
(
ξ, np−1

)
δ(ξ,np−1) dξ,

where

ω
(
ξ, np−1

)
:= u+

∑
distinct Hj,k

j 6=k

fj,ke
2πi(ξ(Re(ωj,k))−np−1(Im(ωj,k))).
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Chapter 5

Conclusion and Future Plans

In summary, having computed a diffraction measure for the set of complex di-

mensions of any lattice self-similar fractal string, we can now obtain an infinite sequence

of diffraction measures corresponding to infinitely many lattice approximations to the set

of complex dimensions of a given nonlattice self-similar fractal string. This is a half step

forward in addressing Problem 1, which is the central focus of this thesis. That being said,

the full step will be to write down a formula for the diffraction measure of the final product.

That is, to compute a diffraction measure in the nonlattice case. This will be the topic of

a future paper. In addition to having addressed Problem 1, we note that Theorem 4.2.3

extends Theorem 1.1.3 by Lagarias on diffraction by ideal crystals. This is because the set

of complex dimensions in the lattice case consist of finitely many translations in the plane

of the group H, which may also be regarded as a degenerate lattice of rank 1 in R2 (see

A.1.1).
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All of the work leading up to this point has naturally led to explorations in other

existing, and possibly new extensions of the classical Poisson summation formula. For ex-

ample, in [Lin11], the author gives an extension of the Poisson summation formula to a

semi-direct product. Another idea is to extend the Poisson summation formula to the set-

ting of degenerate lattices in Rn. Using such an extension, it could be possible to compute

a diffraction pattern for any infinite discrete subset of Rn consisting of finitely many trans-

lations in Rn of a degenerate lattice. One might call such a structure a degenerate ideal

crystal in Rn.

In Chapter 3, we saw that to obtain many increasingly good lattice approximations

numerically, one requires practical tools for obtaining good simultaneous Diophantine ap-

proximations with relatively small denominators, and for approximating the roots of sparse

polynomials of very large degree. By harnessing enough resources to do computations on a

very large scale, and by being careful about precision, I will explore more of the quasiperi-

odic structure in the nonlattice case. In particular, I will address conjectures concerning

the notion of dimension of fractality for nonlattice Dirichlet polynomials.

5.1 Diffraction in the nonlattice case

The next step we are taking in addressing problem 1 on quasicrystals and complex

dimensions, stated by Lapidus and van Frankenhuijsen, is to compute the diffraction pattern

for the complex dimensions of a nonlattice self-similar fractal string. We briefly recall the

setting:

Let f(s) be a nonlattice Dirichlet polynomial, and let ε > 0 be given. By Theorem
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2.2.18, and by Dirichlet’s theorem on simultaneous Diophantine approximation, we can

obtain a sequence of lattice approximations {fj}∞j=1, such that for each j, the set of complex

roots of fj approximate, up to order ε, the roots of f in the ball of radius εCQpj centered

at the origin, where pj is the oscillatory period of fj . The sequence {fj}∞j=1 can be chosen

so that εCQpj+1 > εCQpj+1 for all j. By Theorem 4.2.3, we can write down a formula for

the diffraction measure of the set of complex dimensions of each lattice approximation fj :

γ̂(φ) =
1

2bp2j

∫
R

∑
n∈Z

ω
(
ξ, np−1j

)
δ(ξ,np−1

j ) dξ,

where

ω

(
ξ,
n

pj

)
:= u+

∑
distinct Hj,k

j 6=k

f(j, k)e2πi(ξ(Re(ωj,k))−np−1
j (Im(ωj,k))).

It is not immediately clear what this formula will look like in the limit. However, there is

something we can do to better understand what is going on. Let us break down the work

of computing the Fourier transform of the tempered distribution

γ =
∑
a∈H

u

2bp
δa +

∑
distinct Hj,k

j 6=k

f(j, k)

 ∑
a∈Hj,k

1

2bp
δa

 .

Since the Fourier transform is a linear operator, we apply it to both

∑
a∈H

u

2bp
δa

and ∑
distinct Hj,k

j 6=k

f(j, k)

 ∑
a∈Hj,k

1

2bp
δa


separately, and then add the results. Consider the Fourier transform of the summation over
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the group H, which is given by

u

2bp

∑
a∈H

φ̂(a) =
u

2bp

[
1

p

∫
R

∑
n∈Z

φ(ξ, np−1) dξ

]

=
u

2bp

[∫
R

lim
N→∞

N∑
n=1

φ(ξ, (n− 1)p−1) + φ(ξ,−np−1) dξ

]
,

for all φ ∈ S (R2). For a function φ ∈ S (R2), a real number ξ, and an integer N ≥ 1, we

define the function

fξ : [−Np−1, (N − 1)p−1]→ R,

given by

fξ(τ) = φ(ξ, (τ − 1)p−1) + φ(ξ,−τp−1).

Note that this function is continuous. Let

P =
{

[−Np−1, (−N + 1)p−1], . . . , [(N − 2)p−1, (N − 1)p−1]
}

be a partition of the interval [−Np−1, (N − 1)p−1], where

a = −Np−1 < (−N + 1)p−1 < · · · < (N − 2)p−1 < (N − 1)p−1 = b.

Then,

u

2bp

∑
a∈H

φ̂(a) =
u

2bp

[∫
R

lim
N→∞

N∑
n=1

φ(ξ, (n− 1)p−1) + φ(ξ,−np−1) dξ

]

=
u

2bp

[∫
R

lim
N→∞

N∑
n=1

fξ(n)
1

p
dξ

]
,

and for each fixed N and ξ, the term

N∑
n=1

fξ(n)
1

p

is a Riemann sum of fξ over the interval [−Np−1, (N − 1)p−1] with partition P .
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5.2 Generic nonlattice self-similar fractal strings, and

the dimensions of fractality.

In Chapter 2, the lattice nonlattice dichotomy in the set of all Dirichlet polyno-

mials was defined. In Remark 2.2.12, an equivalent definition was given. There is another

characterization from [LvF06] of this dichotomy, stated in the language of groups: Let f be

a Dirichlet polynomial with scaling ratios r1, . . . , rN . Then, f(s) is lattice if and only if the

associated additive group

G :=

N∑
j=1

log rjZ

has rank 1. If f is a nonlattice Dirichlet polynomial whose associated additive group G

has full rank, i.e., if the numbers log r1, . . . , log rN are all rationally independent, we call

f generic. Otherwise, it is called nongeneric. A nonlattice self-similar fractal string is

nongeneric if the associated Dirichlet polynomial is nongeneric, and generic otherwise. The

following definition from Remark 3.54 in [LvF06], [DS14], and [LvF03] is the basis for a

planned project on the complex dimensions in the nongeneric case.

Definition 5.2.1 Let f be a Dirichlet polynomial with positive integer multiplicities. The

set of dimensions of fractality is given by

Rf := {Re z : f(z) = 0}.

The dimensions of fractality of a self-similar fractal string L is defined to be the set

of dimensions of fractality of the associated Dirichlet polynomial, which has positive integer

multiplicities. In the first edition of [LvF06], Lapidus and van Frankenhuijsen conjecture

that the dimensions of fractality of a nonlattice self-similar fractal string is a bounded
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connected interval [σ`, D], where σ` is some real number, and D is the Minkowski dimension

of the fractal string. Moreover, they conjecture that in the generic nonlattice case, σ` = D`,

which was eventually proved in [PSV13]. As future work, I will investigate the set of

dimensions of fractality in the nongeneric case. Specifically, Lapidus and van Frankenhuijsen

have also conjectured in [LvF06] that the set of dimensions of fractality in the nongeneric

case is equal to a finite number of closed intervals, and certain cases are proved by Dubon

and Sepulcre in [DS14].

To demonstrate this observation in the nongeneric nonlattice case, we give the

following example, were a lattice approximation for a nongeneric Dirichlet polynomial is

computed. A plot is given in Figure 5.1.

Example 5.2.2 Consider the nongeneric Dirichlet polynomial

f(s) = 1− 2−s − 3−s − 4−s − 5−s − 6−s − 7−s,

which is re expressed as

f(s) = 1− (2−s)1 − (2−s)log2 3 − (2−s)2 − (2−s)log2 5 − (2−s)log2 6 − (2−s)log2 7.

Now, we obtain a simultaneous Diophantine approximation for the numbers

log2 3, log2 5, log2 6, log2 7.

Using the method of continued fractions, we compute convergents, and then process the basis

matrix for the lattice determined by those convergents with the LLL algorithm, as in Section

3.2. This process gives us the simultaneous Diophantine approximation

29092/18355, 42619/18355, 47447/18355, 51529/18355
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Figure 5.1: Lattice approximation to the nongeneric Dirichlet polynomial in Example 5.2.2,

with ε = 1/10, and period p ≈ 166382.94. The dotted horizontal line intersects the imagi-

nary axis at p.

for the real numbers log2 3, log2 5, log2 6, log2 7, respectively, with Q = 70, and common

denominator q = 18355 satisfying 1 ≤ q < (70)5. By Theorem 2.2.18, for ε = 1/10, the set

of complex roots of the lattice Dirichlet polynomial

f̃(s) = 1− (2−s/18355)18355 − (2−s/18355)29092 − (2−s/18355)36710

− (2−s/18355)42619 − (2−s/18355)47447 − (2−s/18355)51529,

with period q 2π
log 2 , approximate the set of complex roots of f(s) in the ball {z ∈ C : |z| < ρ},

where ρ = (1/10)C(70)(p)(q).

In Figure 5.1, we give a plot of the set of complex roots of the lattice approximation in

Example 5.2.2. Notice the two rectangular regions where the complex roots seem to be

concentrated. Compare this approximation to the one for the generic 2-3-polynomial in

Figure 3.3.
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Chapter A

Appendix

A.1 The implementation of LLL for lattice approximation

To conduct numerical experiments in exploring the quasiperiodic structure of the

complex dimensions of a nonlattice Dirichlet polynomial, we require a practical method

for obtaining many good simultaneous Diophantine approximations for a finite list of real

numbers. Lapidus and Van Frankenhuijsen in [LvF06] have suggested to use a lattice ba-

sis reduction algorithm known as the LLL algorithm, which was originally introduced in

[LLL82] as the first polynomial time algorithm to factor polynomials with rational coeffi-

cients. In this Appendix, we give some preliminaries on lattice theory and basis reduction

from the book [Bre11], which is a self contained treatment of Lattice basis reduction, the

LLL algorithm, and much more. Then, we relay the exposition of LLL, along with its com-

plexity from [Bre11] and [LLL82]. To conclude, an implementation of the LLL algorithm

(in C++) to compute simultaneous Diophantine approximations is given.
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A.1.1 The basics of lattice theory

Lattices in n-dimensional Euclidean space

A set L ⊂ Rn is called a lattice if it is a discrete subgroup of Rn, such that the

factor group Rn/L is compact. The following definition from [Bre11] is equivalent, and

includes the notion of the determinant of a lattice.

Definition A.1.1 ([Bre11]) Let n be a positive integer, and let x1, x2, . . . , xn be a basis

of Rn. The lattice with dimension n and basis x1, x2, . . . , xn is the set L of all linear

combinations of the basis vectors with integer coefficients:

L =

n∑
i=1

xiZ =

{
n∑
i=1

aixi : a1, a2, . . . , an ∈ Z

}
.

The basis vectors x1, x2, . . . , xn are said to generate or span the lattice. For i = 1, 2, . . . , n

we write the row vector

xi = (xi1, xi2, . . . , xin)

and form the n × n matrix X given by (X)ij = xij. The determinant of the lattice L with

basis x1, x2, . . . , xn is given by

det(L) = |det(X)|.

Let n be a positive integer. If k < n and x1, . . . , xk is a linearly independent set

of vectors in Rn, then

L =
k∑
i=1

xiZ

will be called a degenerate lattice of rank k in Rn. A lattice as defined in Definition A.1.1 is

sometimes called a lattice of full rank. The concept of lattice basis and lattice determinant
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is generalized to any set of k linearly independent vectors in Rn (see Definition 1.15 in

[Bre11]).

Theorem A.1.2 ([Bre11]) Let x1, x2, . . . , xn and y1, y2, . . . , yn, be two bases for the same

lattice L ⊂ Rn. Let X (respectively Y ) be the n× n matrix with xi (respectively yi) in row

i for i = 1, 2, . . . , n. Then

Y = CX

for some n× n matrix C with integer entries and determinant ±1.

Proof. Every yi belongs to the lattice with basis x1, . . . , xn, and every xi belongs to the

lattice with basis y1, . . . , yn. It follows that

xi =
n∑
j=1

bijyj , yi =
n∑
j=1

cijxj (i = 1, . . . , n),

where B and C are n×n matrices with integer entries given by (B)ij = bij and (C)ij = cij ,

respectively. Writing these two equations in matrix form gives X = BY and Y = CX, and

hence X = B(CX) and Y = C(BY ). Since the matrices X and Y are invertible, we get

BC = CB = I

by cancellation. Then,

det(BC) = det(B) det(C)

= 1

so that because the matrices B and C have integer entries, det(B) = det(C) = ±1. �

Corollary A.1.3 ([Bre11]) The determinant of a lattice does not depend on the basis.
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Proof. Let L ⊂ Rn be a lattice with bases x1, . . . , xn and y1, . . . , yn. Then,

|det(Y )| = |det(CX)|

= |det(C) det(X)|

= |±det(X)|

= |det(X)|.

�

The LLL algorithm takes as input a basis matrix for a lattice, and then return a

reduced basis (see Definition A.1.8). Specifically, the LLL algorithm performs finitely many

row operations to the input matrix. After each operation, the result is another basis for the

lattice. These are called unimodular row operations, and they form the basis of the LLL

algorithm.

Definition A.1.4 ([Bre11]) A unimodular row operation on a matrix is one of the fol-

lowing elementary row operations:

(i) multiply any row by 1;

(ii) interchange any two rows;

(iii) add an integral multiple of any row to any other row.

Definition A.1.5 ([Bre11]) An n × n matrix with integer entries and determinant ±1

will be called unimodular.

Let L ⊂ Rn be a lattice with basis x1, . . . , xn with basis matrix X, and let and let

C be an n× n unimodular matrix. Since the rows of X are linearly independent, we know
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that det(X) 6= 0. Then, denoting Y = CX,

|det(Y )| = |det(CX)| = |det(X)| 6= 0,

which means that the rows of Y are linearly independent. And since there are n of them,

they form a basis for Rn. The rows of Y are given by

y1 =

(
n∑
k=1

c1,kxk,1,

n∑
k=1

c1,kxk,2, . . . ,

n∑
k=1

c1,kxk,n

)

y2 =

(
n∑
k=1

c2,kxk,1,

n∑
k=1

c2,kxk,2, . . . ,

n∑
k=1

c2,kxk,n

)
...

yn =

(
n∑
k=1

cn,kxk,1,
n∑
k=1

cn,kxk,2, . . . ,
n∑
k=1

cn,kxk,n

)
.

It follows that the integer span of the vectors x1, . . . , xn includes the integer span of the

vectors y1, . . . , yn. Because C is a unimodular matrix with nonzero determinant, its inverse

C−1 exists, and it has integer entries. Therefore, we can write the equation X = C−1Y ,

and use the same reasoning to conclude that the bases x1, . . . , xn and y1, . . . , yn generate

the same lattice.

It is easy to produce a basis with longer vectors, as one can easily determine

unimodular matrices, with large integer entries, by performing finitely many unimodular

row operations to the identity matrix In. The difficulty is getting shorter vectors. In

general, a basis x1, . . . , xn for a lattice L ⊂ Rn might consist of vectors that are large in

magnitude. The problem of lattice basis reduction is finding another basis for the same

lattice with shorter vectors. The LLL algorithm takes as input a basis matrix X for a

lattice L, and then multiplies it by a unimodular matrix, several times, until a basis with

shorter vectors is achieved.
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α-reduced bases for a lattice

Given a lattice L ⊂ Rn, we would like to determine what is called an α-reduced

basis for the lattice L. Lattice basis reduction algorithms are usually used in modern

number theoretical applications, but as we have already mentioned, they can be used to

obtain simultaneous Diophantine approximations. We now define the notion of an α-reduced

basis, and then state an important fact about a lattice with such a basis.

Before we can define an α-reduced basis, we must first recall the Gram-Schmidt

orthogonalization process, which takes a basis x1, . . . , xn for Rn and constructs an orthogonal

basis.

Definition A.1.6 Let x1, x2, . . . , xn be an ordered basis for Rn, and let x∗1 = x1. For

1 < i ≤ n, define

x∗i = xi −
i−1∑
j=1

µi,jx
∗
j ,

where for 1 ≤ j < i ≤ n,

µi,j =
xi · x∗j
x∗j · x∗j

=
xi · x∗j
|x∗j |2

.

The vectors x∗1, . . . , x
∗
n are called the Gram-Schmidt orthogonalization, and the numbers µi,j

are called the Gram-Schmidt coefficients.

The following theorem stated in [LLL82] gives some fundamental properties needed

to understand the analysis of the LLL algorithm. For a proof, see [LLL82] or [Bre11].

Theorem A.1.7 ([LLL82]) Let x1, . . . , xn be a basis of Rn and let x∗1, . . . , x
∗
n be its Gram-

Schmidt orthogonalization. Let X (respectively X∗) be the n × n matrix in which row i is

the vector xi (respectively x∗i ) for 1 ≤ i ≤ n. We have:
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(a) x∗i · x∗j = 0 for 1 ≤ i < j ≤ n.

(b) span{x∗1, . . . , x∗k)} = span{x1, . . . , xk)} for 1 ≤ k ≤ n.

(c) For 1 ≤ k ≤ n, the vector x∗k is the projection of xk onto the orthogonal complement

of span{x1, . . . , xk}.

(d) |x∗k| ≤ |xk| for 1 ≤ k ≤ n.

(e) det(X∗) = det(X).

In the previous section, we said that the difficulty is finding a suitable finite se-

quence of unimodular row operations to obtain a basis of short vectors for a given lattice.

We now define the notion of such a desirable basis, which is called an α-reduced basis with

reduction parameter 1/4 < α < 1. The standard value of the parameter is α = 3/4.

Definition A.1.8 ([Bre11]) Let x1, x2, . . . , xn be an ordered basis for the lattice L ⊂ Rn,

and let x∗1, x
∗
2, . . . , x

∗
n be its Gram-Schmidt orthogonalization (GSO), with Gram-Schmidt

coefficients µi,j for 1 ≤ j < i ≤ n.

Write X = MX∗ where X (respectively X∗) is the matrix with xi (respectively x∗i )

as row i, and M , called the matrix of Gram-Schmidt coefficients, is defined by (M)i,j = µi,j.

The basis x1, x2, . . . , xn is called α-reduced if it satisfies

(i) |µi,j | ≤ 1/2, for 1 ≤ j < i ≤ n,

(ii) |x∗i + µi,i−1x
∗
i−1|2 ≥ α|x∗i−1|2, for 1 < i ≤ n.

70



Using part (b) of Theorem A.1.7 we have

|x∗i + µi,i−1x
∗
i−1|2 = 〈x∗i + µi,i−1x

∗
i−1, x

∗
i + µi,i−1x

∗
i−1〉

= 〈x∗i , x∗i 〉+ 2〈x∗i , µi,i−1x∗i−1〉+ µ2i,i−1〈x∗i−1, x∗i−1〉

= |x∗i |2 + µ2i,i−1|x∗i−1|2.

It follows that the inequality in condition (i) in Definition A.1.8 becomes

|x∗i |2 ≥ (α− µ2i,i−1)|x∗i,i−1|2. (A.1)

The following theorem is key to understanding how the LLL algorithm can be used

to find short vectors in a lattice. See [Bre11] for a proof.

Theorem A.1.9 (The LLL Theorem, [Bre11]) If x1, . . . , xn is an α-reduced basis of

the lattice L ⊂ Rn, and y ∈ L is any nonzero lattice vector, then

|x1| ≤ β(n−1)/2|y|.

In particular, the first vector in the α-reduced basis is no longer than β(n−1)/2 times the

shortest nonzero vector in L, where β = 4
4α−1 .

A.1.2 The analysis of the LLL algorithm

Let L ⊂ Rn be a lattice with ordered basis given by X = {x1, . . . , xn}. We now

describe the LLL algorithm, which transforms X into an α-reduced basis with reduction

parameter 1/4 < α < 1. This exposition follows the one from [Bre11], and the original

paper [LLL82]. We refer to [Bre11] for an extensive treatment of LLL, including examples,

applications, projects, and references to further developments of the LLL algorithm.
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The first step of the algorithm is to compute the GSO vectors

x∗1, x
∗
2, . . . , x

∗
n,

and coefficients

µi,j =
xi · x∗j
|x∗j |2

for 1 ≤ j < i ≤ n. Say that the input basis X is not α-reduced for a given reduction

parameter 1/4 < α < 1. Then, several changes are made to X in such a way that the

resulting set of vectors after each change form another basis for the lattice L. This process

continues until a reduced basis is achieved. Each change to the basis comes from calling

one of two subroutines that make up the LLL algorithm. In [Bre11], one of these is called

reduce, and the other is called exchange.

For k = 2, 3, . . . , n, the reduce procedure checks whether or not the Gram-Schmidt

coefficient µk,k−1 satisfies condition (i) in Definition A.1.8. If if does, then the reduce

procedure does nothing. Otherwise, xk is replaced with xk − rxk−1, where r = bµk,k−1e,

µk,k−1 is replaced with µk,k−1 − r, and for j = 1, 2, . . . , k − 2, and µk,k−1 − rµk,j . After

these changes, a new basis and GSO is obtained with µk, k − 1 ≤ 1/2. For k = 2, 3, . . . , n,

the exchange procedure checks if the Gram-Schmidt vector x∗k satisfies condition (ii) in

Definition A.1.8. If it does, exchange does nothing. Otherwise, the basis vectors xk and

xk−1 are swapped. Then, the Gram-Schmidt vectors and coefficients are modified so that a

new basis and Gram-Schmidt orthogonalization is obtained with the length of x∗k−1 being

less than 3/4 times its old length.

The pseudocode for the subroutines reduce and exchange from [Bre11] and [LLL82]

are given below, along with an implementation at the end of this appendix.
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REDUCE SUBROUTINE

Input: µk,k−1

if |µk,k−1| > 1/2

r ← bµk,k−1e

µk,k−1 ← µk,k−1 − r

bk ← bk − rbk−1

for j = 1, 2, . . . , k − 2

µk,j ← µk,j − rµk−1,j

end if

EXCHANGE SUBROUTINE

Input: bk

bk ↔ bk−1 (exchange bk−1 and bk)

µk,k−1, µk−1,j for j = 1, 2, . . . , k − 2. for i = 1 to n do

Set bi ← xi

end for

Compute the Gram-Schmidt orthogonalization of b1, b2, . . . , bn.

Set k ← 2

while k ≤ n

Call reduce(k, k − 1)

if |b∗k + µk,k−1b
∗
k−1|2 < 3

4 |b
∗
k−1|2

Call exchange(k)

Set k ← k − 1

else

for ` = k − 2, . . . , 2, 1
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Call reduce(k, `)

end for

Set k ← k + 1

end if

end while

We now describe the LLL algorithm: Starting with k = 2, the first step is to call

reduce and ensure that |µk,k−1| ≤ 1/2. Then, before the remaining coefficients are checked,

exchange is called and the algorithm enters one of two cases: In the first case,

|b∗k + µk,k−1b
∗
k−1|2 <

3

4
|b∗k−1|2,

and the current basis and Gram-Schmidt orthogonalization are updated as described above.

After this change, k is replaced by k − 1, and the algorithm returns to the first step. The

other case is when

|b∗k + µk,k−1b
∗
k−1|2 ≥

3

4
|b∗k−1|2,

or k = 1. In this case, for j = 1, 2, . . . , k− 2, reduced is called so that the remaining Gram-

Schmidt coefficients µk,1, µk,2, . . . , µk,k−2 satisfy condition (i) in Definition A.1.8. Then,

k is replaced with k + 1, and the algorithm returns to step 1. The number of times the

algorithm passes through case 1 is bounded above. Also, the number of times the algorithm

can pass through case 2 is at most n−1 more times than the number of times the algorithm

passes through case 1. Therefore, the LLL algorithm terminates, and upon termination,

ensures a reduced basis for the lattice L. See [LLL82] for a more complete explanation.

The pseudocode for the entire LLL algorithm is given below.

Input: A basis x1, x2, . . . , xn for the lattice L ⊂ Rn.
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Output: A reduced basis for L.

for i = 1 to n do

Set bi ← xi

end for

Compute the Gram-Schmidt orthogonalization of b1, b2, . . . , bn.

Set k ← 2

while k ≤ n

Call reduce(k, k − 1)

if |b∗k + µk,k−1b
∗
k−1|2 < 3

4 |b
∗
k−1|2

Call exchange(k)

Set k ← k − 1

else

for ` = k − 2, . . . , 2, 1

Call reduce(k, `)

end for

Set k ← k + 1

end if

end while

The complexity of LLL

To study the complexity of the LLL algorithm, it is important to keep track of

how the Gram-Schmidt orthogonalization (GSO) changes during the course of the algorithm.

Specifically, we need to determine how the basis and coefficients change during the reduction

in step (4)(b)(i), and during the exchange in step (4)(b)(iii).
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Suppose that we process a lattice with basis y1, . . . , yn with the LLL algorithm, and

that we are at the beginning of some iteration with 2 ≤ k < n. We continue on to Step 4(a),

which performs the reduction reduce(k, k − 1). After this call, the GSO coefficient µk,k−1

satisfies condition (i) in Definition A.1.8. Next, we check that γ∗k satisfies inequality (A.1).

If it does, we enter Step 4(b)(i), which updates the remaining Gram-Schmidt coefficients

µk,1, µk,2, . . . , µk,k−2. Consider one call to reduce in this step, and suppose that a reduction

is actually performed, i.e., suppose that |µk,`| > 1/2. After the call, we have

yk = yk − dµk,`cy`, µk,j = µk,j − dµk,`cµ`,j (1 ≤ j ≤ `− 1),

and

µk,` = µk,` − dµk,`c.

Then, k is incremented in Step(4)(b)(ii), we repeat. The following lemma says that after one

call to reduce in Step(4)(b)(i), the Gram-Schmidt orthogonalization does not change. This

is good news, as the Gram-Schmidt process is not only costly, but also unstable. Lemma

A.1.11 that follows, which concerns the exchange step, partly ensures that the algorithm

will terminate after a finite number of steps.

Lemma A.1.10 ([Bre11]) Consider one call to reduce in Step (4 )(b)(i) with given k and

`. Let Y = MY ∗ and Z = NZ∗ be the matrix equations for the Gram-Schmidt orthogo-

nalization before and after the call to reduce(k, `), respectively. Write ν = dµk,`c, and let

E = In − νEk,` be the elementary matrix which represents subtracting ν times row ` from

row k (thus (E)i,i = 1 for 1 ≤ i ≤ n, (E)k,` = ν, and (E)i,j = 0 otherwise). Then,

Z = EY, N = EM, Z∗ = Y ∗.
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In particular, the Gram-Schmidt orthogonal basis does not change. Before the call to

reduce(k, `) we have

|µk,j | ≤ 1/2 (` < j < k).

After the execution of the loop on ` in Step (4)(b)(i) we have

|µk,j | ≤ 1/2 (1 ≤ j < k).

Lemma A.1.11 ([Bre11]) Consider the call to exchange with a given value of k in Step

(4)(b)(iii). Let Y = MY ∗ and Z = NZ∗ be the matrix equations for the GSO before and

after the exchange. We have

z∗i = y∗i (i 6= k − 1, k), |z∗k−1|2 < α|y∗k−1|2, |z∗k| ≤ |y∗k−1|.

Theorem A.1.12 ([Bre11]) Let L ⊂ Z be a lattice with basis b1, b2, . . . , bn, and let B ∈ R,

B ≥ 2, be such that |bi|2 ≤ B for 1 ≤ i ≤ n. Then the number of arithmetic operations

needed by the basis reduction algorithm is O(n4 logB), and the integers on which these

operations are performed each have binary length O(n logB).

Remark (1.37) in [LLL82] states that, apart from some minor changes, the analysis

of the algorithm remains valid if bi · bj ∈ Z for 1 ≤ i, j ≤ n.

The following example shows just how the algorithm works in a relatively small

application. Notice that k is increased and decreased several times until it is equal to 4,

which is when the algorithm terminates.

Example 6 Let L be an n-dimensional lattice spanned by the basis given by the vectors

x1 = (1, 1, 1), x2 = (−1, 0, 2), x3 = (3, 5, 6).
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The basis is processed by the LLL algorithm after 5 updates:

k = 2

|µ2,1| ≤ 1/2

γ∗2 ≥ (3/4− µ22,1)γ∗1

k = 3

|µ3,2| > 1/2

reduce(3, 2)

X =


1 −1 4

1 0 5

1 2 4

 , M =


1 1/3 13/3

0 1 −1/14

0 0 1

 , γ∗ =


3

14/3

9/14


γ∗3 < (3/4− µ23,2)γ∗2

exchange(3)

B =


1 4 −1

1 5 0

1 4 2

 , M =


1 13/3 1/3

0 1 −1/2

0 0 1

 , γ∗ =


3

2/3

9/2


k = 2

|µ2,1| > 1/2

reduce(2, 1)

B =


1 0 −1

1 1 0

1 0 2

 , M =


1 1/3 1/3

0 1 −1/2

0 0 1

 , γ∗ =


3

2/3

9/2
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γ∗2 < (3/4− µ22,1)γ∗1

exchange(2)

B =


0 1 −1

1 1 0

0 1 2

 , M =


1 1 0

0 1 1/3

0 0 1

 , γ∗ =


1

2

41/9


k = 2

|µ2,1| > 1/2

reduce(2, 1)

B =


0 1 −1

1 0 0

0 1 2

 , M =


1 0 0

0 1 1/3

0 0 1

 , γ∗ =


1

2

41/9


γ∗2 ≥ (3/4− µ22,1)γ∗1

k = 3

|µ3,2| ≤ 1/2

γ∗3 ≥ (3/4− µ23,2)γ∗2

|µ3,1| ≤
1

2

k = 4

Algorithm terminates
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A.2 Source code

The following programs were written to generate lattice approximations. The

first is an implementation of the continued fraction algorithm on C, and the second is

an implementation of the LLL algorithm on C++ to compute simultaneous Diophantine

approximations.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <math.h>
4 /* Declares sin(), cos(), etc. */
5

6 /*
7 Continued fraction algorithm: Edward Voskanian
8 To compile: cc -o CF continuedFraction.c -lm
9 To execute: ./CF [enter a real number] [enter the convergent you want]

10

11 Note: If you want better convergent, you must enter a better approximation.
12 For example: To obtain the 3rd convergent for Pi, 3.14 is not enough
13 decimal places.
14 */
15

16 int main(int argc,char* argv[]) {
17

18 // Variable definitions and declarations.
19 double alpha = atof(argv[1]);
20 double a = floor(alpha);
21 int n = atoi(argv[2]);
22 int hold_p,hold_q;
23 int p_1 = 1,p_2 = 0,q_1 = 0,q_2 = 1;
24 int p,q;
25 int i;
26

27 // Main for loop that generates the nth convergent.
28 for (i = 0;i < n;i++) {
29 hold_p = p_1;
30 hold_q = q_1;
31 p = a*p_1 + p_2;
32 q = a*q_1 + q_2;
33 p_1 = p;
34 q_1 = q;
35 p_2 = hold_p;
36 q_2 = hold_q;
37 alpha = 1.0 / (alpha - a);
38 a = floor(alpha);
39 printf("Convergent %d: %d / %d\n",i + 1,p,q);
40 }
41

42 return 0;
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43 }
44

45 /*
46

47 Edwards-MBP:Coding edwardvoskanian$ cc -o CF continuedFraction.c -lm
48 Edwards-MBP:Coding edwardvoskanian$ ./CF 3.141592653589793238462643 7
49 Convergent 1: 3 / 1
50 Convergent 2: 22 / 7
51 Convergent 3: 333 / 106
52 Convergent 4: 355 / 113
53 Convergent 5: 103993 / 33102
54 Convergent 6: 104348 / 33215
55 Convergent 7: 208341 / 66317
56 Edwards-MBP:Coding edwardvoskanian$
57

58 */

1 #include <iostream>
2 #include <math.h>
3 using namespace std;
4

5 void gramSchmidt(double ** Y,double ** Y_star,double ** M,double
6 * gamma_star);
7 void reduce(int,int,double ** Y,double ** M,double ** C);
8 void exchange(int,double ** Y,double ** M,double * gamma_star,double ** C);
9

10 //GLOBAL VARIABLES
11 int n = 5;
12 double epsilon = 1.0;
13 const double ALPHA = 0.75;
14

15 int main() {
16 int i, j, l = 0;
17 double ** X = new double * [n];
18 for (i = 0; i < n; i++) {
19 X[i] = new double[n];
20 for (j = 0; j < n; j++) {
21 X[i][j] = 0.0;
22 }
23 }
24 for (i = 1; i < n; i++) {
25 X[i][i] = -1.0;
26 }
27 double ** Y = new double * [n];
28 for (i = 0; i < n; i++) {
29 Y[i] = new double[n];
30 for (j = 0; j < n; j++) {
31 Y[i][j] = 0.0;
32 }
33 }
34 double ** Y_star = new double * [n];
35 for (i = 0; i < n; i++) {
36 Y_star[i] = new double[n];
37 for (j = 0; j < n; j++) {
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38 Y[i][j] = 0.0;
39 }
40 }
41 double ** M = new double * [n];
42 for (i = 0; i < n; i++) {
43 M[i] = new double[n];
44 for (j = 0; j < n; j++) {
45 M[i][j] = 0.0;
46 }
47 }
48 for (i = 0; i < n; i++) {
49 M[i][i] = 1.0;
50 }
51 double * gamma_star = new double[n];
52 double ** C = new double * [n];
53 for (i = 0; i < n; i++) {
54 C[i] = new double[n];
55 for (j = 0; j < n; j++) {
56 C[i][j] = 0.0;
57 }
58 }
59 for (i = 0; i < n; i++) {
60 C[i][i] = 1.0;
61 }
62

63 // FIRST, WE FILL THE MATRIX TO BE PROCESSED BY THE LLL ALGORITHM
64

65 // MATRIX INPUT
66 cout << "Input epsilon" << endl;
67 cin >> epsilon;
68 X[0][0] = pow(2.0,-(n - 1.0) * n / 4.0) * pow(epsilon,n);
69 for (i = 1; i < n; i++) {
70 cin >> X[0][i];
71 }
72

73 // NOW WE PROCESS X
74

75 // STEP 1:MAKE A COPY OF X
76 for (i = 0;i < n;i++) {
77 Y[i] = new double[n];
78 for (j = 0;j < n;j++) {
79 Y[i][j] = X[i][j];
80 }
81 }
82 // STEP 2: COMPUTE THE GRAM-SCHMIDT ORTHOGONALIZATION
83 gramSchmidt(Y,Y_star,M,gamma_star);
84 // STEP 3: START BY PROCESSING Y_2
85 int k = 1;
86 // STEP 4: PERFORM THE BASIS REDUCTION
87 while (k < n) {
88 reduce(k,k - 1,Y,M,C);
89 if (gamma_star[k] >= ( ALPHA - ( M[k][k - 1] * M[k][k - 1] ) )
90 * gamma_star[k - 1]) {
91 for (l = k - 2;l >= 0;l--) {
92 reduce(k,l,Y,M,C);
93 }
94 k = k + 1;

82



95 }
96 else {
97 exchange(k,Y,M,gamma_star,C);
98 if (k > 1) {
99 k = k - 1;

100 }
101 }
102 }
103

104 // DISPLAY THE RESULTS WITH ERRORS
105

106 // DISPLAY RESULTS
107 cout << endl;
108 cout << endl;
109 for (i = 0; i < n; i++) {
110 for (j = 0; j < n; j++) {
111 cout << C[i][j] << " ";
112 }
113 cout << endl;
114 }
115 cout << endl;
116 cout << endl;
117

118 double denominator = C[0][0];
119 for (i = 1; i < n; i++) {
120 double numerator = C[0][i];
121 cout << numerator << "/" << C[0][0] << "

error: " << fabs(numerator/denominator - X[0][i]) << endl;
122 }
123 cout << endl;
124 cout << endl;
125

126 return 0;
127 }
128

129 // HERE WE DEFINE THE GRAM-SCHMIDT, REDUCE, AND EXCHANGE FUNCTIONS
130

131 void gramSchmidt(double ** Y,double ** Y_star,double ** M,double
132 * gamma_star) {
133

134 // Local variables
135 int i,j,k = 0;
136 double sum = 0.0;
137

138 for (i = 0; i < n; i++) {
139 for (j = 0; j < n; j++) {
140 Y_star[i][j] = Y[i][j];
141 }
142 for (j = 0; j < i; j++) {
143 sum = 0.0;
144 for (k = 0; k < n; k++) {
145 sum = sum + Y[i][k] * Y_star[j][k];
146 }
147 M[i][j] = sum / gamma_star[j];
148 for (k = 0; k < n; k++) {
149 Y_star[i][k] = Y_star[i][k] - M[i][j] * Y_star[j][k];
150 }
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151 }
152 for (j = 0;j < n;j++) {
153 gamma_star[i] = gamma_star[i] + Y_star[i][j] * Y_star[i][j];
154 }
155 }
156

157 return;
158 }
159

160 void reduce(int k,int l,double ** Y,double ** M,double ** C) {
161

162 /* Local variables */
163 int i,j = 0;
164

165 if (fabs(M[k][l]) >= 0.5) {
166 for (i = 0;i < n;i++) {
167 Y[k][i] = Y[k][i] - ( round(M[k][l]) * Y[l][i] );
168 C[k][i] = C[k][i] - ( round(M[k][l]) * C[l][i] );
169 }
170 for (j = 0;j < l;j++) {
171 M[k][j] = M[k][j] - ( round(M[k][l]) * M[l][j] );
172 }
173 M[k][l] = M[k][l] - round(M[k][l]);
174 }
175

176 return;
177 }
178

179 void exchange(int k,double ** Y,double ** M,double * gamma_star,double ** C) {
180

181 /* Local variables */
182 int i = 0;
183 double temp = 0.0;
184 double temp_1 = 0.0;
185 double temp_2 = 0.0;
186 double nu, delta, xsi = 0.0;
187

188 /* exchange y_k-1 and y_k */
189 for (i = 0;i < n;i++) {
190 temp_1 = Y[k - 1][i];
191 temp_2 = C[k - 1][i];
192 Y[k - 1][i] = Y[k][i];
193 C[k - 1][i] = C[k][i];
194 Y[k][i] = temp_1;
195 C[k][i] = temp_2;
196 }
197

198 nu = M[k][k - 1];
199 delta = gamma_star[k] + (nu * nu) * gamma_star[k - 1];
200

201 M[k][k - 1] = nu * gamma_star[k - 1] / delta;
202 gamma_star[k] = gamma_star[k] * gamma_star[k - 1] / delta;
203 gamma_star[k - 1] = delta;
204

205 /* exchange mu(k-1,t) and mu(k,t) */
206 for (i = 0;i < k - 1;i++) {
207 temp = M[k - 1][i];
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208 M[k - 1][i] = M[k][i];
209 M[k][i] = temp;
210 }
211

212 for (i = k + 1;i < n;i++) {
213 xsi = M[i][k];
214 M[i][k] = M[i][k - 1] - ( nu * M[i][k] );
215 M[i][k - 1] = ( M[k][k - 1] * M[i][k] ) + xsi;
216 }
217

218 return;
219 }
220

221 // USAGE EXAMPLE
222

223 //(base) Edwards-MacBook-Pro:LLL edwardvoskanian$ g++ -o main main.cpp
224 //(base) Edwards-MacBook-Pro:LLL edwardvoskanian$ ./main
225 //Input epsilon
226 //.1
227 //0.69314718055994530
228 //1.098612288668
229 //1.6094379124341003
230 //
231 //
232 //466 323 512 750
233 //-2819 -1954 -3097 -4537
234 //-2079 -1441 -2284 -3346
235 //-2809 -1947 -3086 -4521
236 //
237 //
238 //323/466 error: 1.41333e-05
239 //512/466 error: 0.000100158
240 //750/466 error: 4.14765e-06
241 //
242 //
243 //(base) Edwards-MacBook-Pro:LLL edwardvoskanian$
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