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ABSTRACT OF THE DISSERTATION

A Measurement of νe Appearance and νµ Disappearance Using 10 Years of Data from the
NOvA Experiment

By

Benjamin Jargowsky

Doctor of Philosophy in Physics
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Professor Jianming Bian, Chair

NOvA is a long baseline neutrino experiment with an 810 km baseline, using the NuMI

beam at Fermilab, and a functionally identical near and far detector operating at an angle

14 mrad off axis from the beam. NOvA jointly measures muon neutrino (and antineutrino)

disappearance and electron neutrino (and antineutrino) appearance to make a measurement

of sin2θ23, δCP , and ∆m2
32, including its sign, the mass ordering.

This dissertation reports a new measurement from NOvA, using 10 years of data, with a total

exposure of 26.6 ×1020 POT of neutrino beam and 12.5 ×1020 POT of antineutrino beam.

This represents 95.6% more neutrino beam exposure since the last NOvA analysis. Aspects of

the analysis are discussed in detail, including neutrino energy estimation, analysis systematic

uncertainties, including the implementation of systematics new to the NOvA analysis, and

the Bayesian fit infrastructure using Markov Chain Monte Carlo (MCMC).

The analysis yields the following credible intervals for the oscillation parameters assuming

the normal ordering: δCP = 0.930+0.210
−0.290 π ∪ 0.150+0.150

−0.110 π, ∆m2
32 = 2.424+0.035

−0.040 × 10−3eV2,

and sin2θ23 = 0.55+0.02
−0.06, with a 76% preference for normal ordering using a prior for sin2(2θ13)

using Daya Bay’s measurement. If the Daya Bay sin2(2θ13) vs ∆m2
32 constraint is used as a

prior instead, an 87% preference for normal ordering emerges.

xv



Chapter 1

Introduction to Neutrinos

1.1 The Standard Model of Particle Physics

The Standard Model of Particle Physics is the most complete theory of fundamental inter-

actions. The Standard Model is a gauge quantum field theory, which includes six quarks

and six leptons, as well as four gauge bosons which give rise to the strong, electromagnetic,

and weak forces, and a Higgs boson, arising from the mechanism which gives some of these

particles mass [121].

Quarks and leptons come in three “generations”. Each generation has two members, with

subsequent generations being identical in terms of interactions, only different in mass. For

the quarks, the first generation has an up quark, with 2
3
elementary electric charge, and a

down quark, carrying −1
3
elementary charge. This electromagnetic interaction is brokered

by the photon field. In addition to quarks being charged under this field, they also interact

via the strong force, mediated by the gluon field, and the weak force, mediated by the W and

Z fields. It’s the strong force which leads quarks to form bound states: baryons, consisting

of 3 quarks, such as protons and neutrons, and mesons, consisting of a quark and antiquark,
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such as pions.

For the leptons, the first generation consists of the electron, with electric charge -1, and an

electron neutrino, with electric charge 0. The electron neutrino is coupled only to the weak

force, and through the weak force, couples directly to the electron. The electron’s higher

generation versions are called the muon and the tau, and they couple to their own flavors of

neutrino.

The Higgs mechanism gives the Higgs field a vacuum expectation value, which through

spontaneous symmetry breaking, gives the quarks, the charged leptons, the W and Z bosons,

and the Higgs boson mass. At the time the Standard Model was created, neutrinos were

assumed massless, so the model did not include any terms to give neutrinos mass. Mass

terms can be added, however, which in general allow the possibility of oscillations from one

flavor state to another, which was the first experimental indication of neutrino mass [63].

A full treatment of the Standard model is beyond the scope of this dissertation; see one of

the many references on this topic for more information [108, 98, 121].

1.2 Neutrino Masses

Though neutrinos are massless in the original Standard Model, mass terms can be added,

which in general can mix the flavor states with mass eigenstates as a general linear combi-

nation. Any non-trivial mixing between flavor eigenstates and mass eigenstates will lead to

neutrino flavor eigenstates changing from one to another over time. This can be seen looking

at the rest frame of the neutrino, where the phases of the respective mass eigenstates will

rotate in time as e−imic
2t/h̄, becoming out of phase with one another. The various possible

constructions of neutrino mass terms is discussed in the next section.
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1.2.1 Neutrino Masses

In the following section, we’ll follow the notation of Srednicki [108].

Dirac Masses

Any mass term which respects the gauge invariance of the standard model must include

another field, in addition to the left handed Weyl fields of the Standard Model, νI , where I

is the index for flavors, of which there are 3 (e, µ, τ). We will call this new field ν̄J , which

is a separate field, and not a charge conjugate of the field νI . We will for now assume there

are also 3 of these new fields. We can add the trivial kinetic term for ν̄I as there is for νI .

From there, we can then add a mass term by added a Yukawa coupling to the Higgs:

L′ = −ϕ†iℓiIyIJ ν̄J + h.c. (1.1)

where repeated indices are summed over, and ℓiI is the SU(2) doublet



νI

eI


 , eI is a left

handed Weyl field in the SU(2) doublet (becoming the left chiral part of the electron Dirac

field), and ϕ†i is the Higgs doublet before spontaneous symmetry breaking.

After spontaneous symmetry breaking, the term becomes

L′ = − 1√
2
(v +H)νIyIJ ν̄J + h.c. (1.2)

where 1√
2
vyIJ is identified as the mass matrix of a Dirac field for the neutrino,



νI

ν̄†
I


 which

in general is expected to mix the flavor and mass eigenstates. This term will break individual

lepton number conservation, but conserve total lepton number.
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Majorana Masses

Besides the Dirac mass term discussed in the last section, we can add a Majorana mass term

for the new field of the form

L′′ = −1

2
MIJ ν̄I ν̄J + h.c. (1.3)

. With this Majorana term in addition to the Dirac term, the behavior of the resultant

eigenstates depends on the scale of the MIJ matrix.

If the masses of the Majorana term are much larger than the mass eigenvalues of 1√
2
vyIJ ,

than we can integrate out the heavier ν̄I fields, and we get an effective theory with Majorana

neutrinos with mass matrix 1
2
v2(yTM−1y)IJ . Note the masses of the neutrinos than scale

as the inverse of the M matrix, which could explain the tiny masses of neutrinos compared

to other masses in the Standard Model. This is called the see-saw mechanism. This leaves

us with very heavy “sterile” neutrino states, made of mostly the ν̄I states, which therefore

barely interact with the charged leptons, and will be extremely difficult to detect directly.

If all or some of the Majorana term eigenstates of ν̄I are not much heavier than the Dirac

masses, say n of them, then diagonalizing will give 3 + n light neutrinos, being various

proportions of νI and ν̄I . n of these will be mostly ν̄I , therefore mostly sterile, and difficult

to detect directly, yet of comparable mass scale to the active neutrinos. These are usually

called light sterile neutrinos.

Note there’s nothing guaranteeing that ν̄J has exactly 3 states, so in the situations outlined

above, we can also have any arbitrary number of states ν̄J , and therefore any number of

sterile neutrino states.
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1.3 Neutrino Oscillations

1.3.1 Neutrino Mixing

Assuming we have 3 mass eigenstates, we can generally parameterize the mixing matrix

between mass and interaction eigenstates, which we’ll call U . In the case of Majorana

neutrinos, we have

U =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e
−iδCP

0 1 0

−s13e
−iδCP 0 c13







c12 s12 0

−s12 c12 0

0 0 1







eiη1 0 0

0 eiη2 0

0 0 1




(1.4)

where cij ≡ cosθij and sij ≡ sinθij. The angles θij, without loss of generality, can be defined

to be in the first quadrant, with δCP and ηi being in the range [0, 2π].

Dirac neutrinos can be parameterized the same way, but the phases ηi, called the Majorana

phases, can then be absorbed into the neutrino states. The matrix then becomes

U =




c12s13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23




(1.5)

. This is called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.

Neutrino Oscillations

For a neutrino created in one flavor eigenstate, each mass eigenstate, j, has a time dependent

phase e−iEjt/h̄, where Ej =
√
p2j +m2

j , where the masses mj are different between different
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mass eigenstates. Over a distance, L, we can work out

Pαβ = δαβ − 4
n∑

i<j

Re[UαiU
∗
βiU

∗
αjUβj]sin

2Xij + 2
n∑

i<j

Im[UαiU
∗
βiU

∗
αjUβj]sin2Xij (1.6)

where n is the number of neutrinos, and

Xij =
∆m2

ijL

4E
(1.7)

, with ∆m2
ij ≡ m2

i −m2
j [121].

It should be noted that the oscillations aren’t dependent on the absolute masses of the

neutrinos themselves, but only the differences between the squares of the mass states. The

oscillation scale, in terms of energy and oscillation length, becomes a function of L
E
, with

a scale factor |∆m2
ij|/4. The mass mixing parameters are amplitudes for these oscillation

terms.

1.3.2 Neutrino Interactions

To detect neutrinos, they must first interact in our detectors. Neutrinos are neutral, and do

not have color charge, so they only interact through the weak interaction, through the W

and Z boson fields.

There are various ways which neutrinos can interact with the particles in matter. First,

neutrinos can interact with the electrons. Tree level diagrams of these interactions are

shown in figure 1.1.

First, on the left, we see the interaction through the W field, which we call a charged current

(CC) interaction, as there is an exchange of charge. Note this can only happen for νe since

there are no heavier charged leptons in matter. The right side interacts through the Z field,
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Figure 1.1: Tree level Feynman diagrams showing neutrino CC and NC interactions with
matter particles, specifically electrons for the CC interaction. Image taken from reference
[100].

and is called a neutral current (NC) interaction. This can happen for any flavor of neutrinos,

and also for other target particles besides electrons.

For both of these interaction channels, we see that there is an outgoing neutrino. The

probability of the neutrino interacting again in the detector is tiny, so effectively this is energy

leaving the interaction that we cannot estimate. This will make energy estimation difficult.

Also, for the NC events, we cannot tell which flavor of neutrino made this interaction. Lastly,

the cross section for neutrino-electron interactions is very small, ∼ 1/2000 of the total CC

cross section. For these reasons, neutrino-electron scattering is not used directly in oscillation

analyses, but can be used for other purposes, such as constraining the beam flux [119].

Besides interactions on the electrons, we can also consider the interactions on particles in

the nuclei, such as in figure 1.2. Here, we also have CC and NC interactions, on the left and

right respectively. Again, NC interactions have an outgoing neutrino, so we will not be able

to identify the flavor, and it will be difficult to estimate energy. For CC interactions though,

we go from a neutrino to a charged lepton, and specifically to the lepton that corresponds

to the flavor of neutrino. For these, all the leptonic energy can then be deposited by the
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Figure 1.2: Tree level Feynman diagrams for CC and NC interactions for neutrinos with
hadronic parts of matter. Image taken from reference [100].

charged lepton in our detector. The other part will be a hadronic component, where again

most of the energy will be deposited in our detector. Also, if we can identify the lepton, we

can identify the flavor of the neutrino that interacted.

Figure 1.3: Illustrations for various neutrino – nuclei interactions: QE, Res, DIS, and MEC.
Image taken from reference [106].

Therefore, these CC interactions in the nuclei are those we are interested in for our oscil-

lation analysis, where the others are backgrounds. Neutrino-nucleus scattering is a very

complicated process, however, and there are several different interaction types. A schematic

of the common types we see at the energies relevant for NOvA is shown in figure 1.3. These

are commonly abbreviated, from left to right, as QE, Res, DIS, and MEC. The simulated

spectrum of true neutrino energies for NOvA is shown in figure 1.4, broken up in terms of
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these interaction types.

Figure 1.4: Simulated neutrino true energy spectrum of NOvA broken down by true inter-
action types.

1.3.3 Matter Effects

We have seen neutrino oscillation probabilities for oscillations in a vacuum, but in practice

we have another complication to deal with, which is that neutrinos have some interaction

with matter along the way. For coherent CC interactions with matter, only νe’s have a

non-zero term, as electrons are present in matter, but µ and τ ’s are not [87]. For νe’s, we get

a potential term for this interaction of
√
2GFne, and for ν̄e’s, we have an interaction of the

opposite sign, −
√
2GFne, where ne is the electron density, and GF is the Fermi constant. For

coherent NC interactions, we can have an interactions with any flavor of neutrinos equally,

which effectively can be taken to be an overall phase, so the effect will not be observable in

oscillations. For a complete derivation, see reference [84].

The oscillations relevant for the NOvA experiment (the topic of this dissertation) are those

from νµ to νµ or νe. The νµ → νµ oscillation probability becomes to first order [121]:

Pνµ→νµ ≈ 1− cos2θ13sin
2(2θ23)

∆m2
32L

4Eν

+O(α, s213) (1.8)
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For νµ → νe, now including the matter effects

Pνµ→νe(ν̄µ→ν̄e) ≈ 4sin2θ13sin
2θ23

sin2∆(1− A)

(1− A)2
+ α2sin2θ12cos

2θ23
sin2A∆

A2
(1.9)

+8αJmax
CP cos(∆± δCP )

sin∆A

A

sin∆(1− A)

1− A
(1.10)

with

∆ ≡ ∆m2
31L

4E
; A ≡ 2EV

∆m2
31

; Jmax
CP = c12 s12 c23 s23 c

2
13 s13

and the ± is + for neutrinos, and − for antineutrinos. Note that, as expected, we get terms

with different signs for electron neutrinos and antineutrinos.

Figure 1.5 shows an illustration of this matter effect on the oscillation from νµ → νe for a

scale of length and energy relevant for the NOvA experiment. Note the opposing directions

of the matter effects for neutrinos and antineutrinos. Also notice these swap between the

“normal hierarchy” and “inverted hierarchy”, which is the sign of ∆m2
32. Positive is normal,

and negative is inverted. This is called the “mass hierarchy”, or “mass ordering”, and in

this dissertation, the two will be used interchangeably.

See figure 1.6 for an illustration of the different mass ordering scenarios. The sign of ∆m2
12 is

already well established to be positive (see section 1.4 for a discussion). So differing signs of

∆m2
32 also mean a different sign of ∆m2

31. Therefore, different mass orderings give different

signs of A, ∆, and α, which explains the differences shown in figure 1.5 for the different mass

orderings.
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Figure 1.5: The matter effects on the νµ → νe oscillation probability for neutrinos and
antineutrinos, and for normal and inverted mass ordering. Image taken from reference [87].

1.4 Neutrino Physics Experiments

In the following section, a very brief outline of the history of different neutrino experiments

will be laid out. Then, the status of measurements for various neutrino parameters will be

discussed, as well as a discussion of what remains to be measured.

See the Particle Data Groups review [121] for a more thorough review of the history.

1.4.1 Solar Neutrinos

Energy is generated in the Sun’s core through nuclear interactions. There are two main

chains of reactions: the pp chain, and the CNO cycle. These reactions provide a natural

source of pure νe events. The rates for these reactions, as well as their energy spectra, are

given precisely by the model of nuclear reactions in the Sun, called the Standard Solar Model

(SSM).

The first experiment to detect solar neutrinos was at Homestake starting in the late 1960s
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Figure 1.6: Illustration showing the two possible mass orderings between the 3 mass eigen-
states: normal and inverted ordering. The ordering between 1 and 2 is known, but between
3 and the other two are not. Image taken from reference [39].

[53]. The detector utilized a radiochemical technique based on inverse beta decay:

νe + 37Cl → 37Ar + e−

The experiment measured a rate significantly smaller than was predicted from SSM, which

was called the solar neutrino problem [50].

Other solar neutrino experiments later probed other solar neutrino energies in an attempt to

better understand the solar neutrino problem. Gallium based detectors could measure solar

neutrino rates with a much lower energy threshold using the reaction

νe + 71Ga → 71Ge + e−

. Several experiments using gallium based detectors were created, particularly SAGE [2] and

GALLEX [71]. These gallium based detectors confirmed the measured rate of solar neutrinos
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was far lower than the expected rate. Other types of experiments that confirmed the lower

rate were Kamiokande [62] and Super-Kamiokande [65] using water based detectors.

The problem was finally understood when the Canadian experiment SNO, which is a heavy

water based detector experiment, made precise measurements of both the CC and NC rates,

which showed part of the solar neutrino flux was composed of other neutrino flavors besides

electron neutrinos [23]. This showed the observed νe solar rate was consistent with the

presence of neutrino oscillations combined with matter effects from inside the sun.

1.4.2 Atmospheric Neutrinos

Another natural source of neutrinos comes from interactions of high energy cosmic rays from

space with nucleons in Earth’s atmosphere. The neutrinos are made when pions and kaons

made in these interactions decay. The energy spectrum of these is particularly wide, ranging

from around 100 MeV all the way to the TeV scale and beyond [121]. The first detection of

atmospheric neutrinos was done by the Kolar Gold Field experiment [15] in India.

Some experiments measuring the ratio of fluxes between νµ and νe reported a ratio lower

than predicted [74]. This was later explained by Super-K, which confirmed the deficit, and

reported results consistent with neutrino oscillations [64]. A later analysis would rule out

other proposed solutions, and measure the L/E dependence directly to be consistent with

oscillations [28].

1.4.3 Accelerator Neutrinos

Besides the natural sources of neutrinos described in past sections, there are also human

made sources of neutrinos. A neutrino beam for neutrino experiments can be made, using a

proton beam on a target, creating mesons which later decay into neutrinos and other decay
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products. After the other decay products are stopped by matter, only the neutrinos remain.

Magnetic horns are used to focus and sort the parent mesons, focusing the beam and choosing

mesons with a specific charge, effectively choosing a neutrino or antineutrino beam. These

experiments choose a particular distance for the far detector from the beam, as to probe the

specific region of L/E of interest. In general, accelerator neutrino experiments can be broken

up into long baseline and short baseline. Long baseline experiments are designed to probe

the oscillations predicted from the 3 neutrino flavor oscillations. Short baseline experiments

probe neutrino oscillations that could be visible at shorter baselines from sterile neutrinos.

Long Baseline Experiments

The first long baseline neutrino experiment was K2K, which used the KEK 12 GeV proton

beam to aim neutrinos at the Super-K detector at a 250 km baseline [24]. K2K also used

a set of near detectors close to the beamline to constrain the beam flux, as is common for

long baseline experiments. K2K confirmed the muon neutrino disappearance first observed

by atmospheric experiments.

The MINOS experiment used the NuMI beam at Fermilab, using a 120 GeV proton beam,

with a 735 km baseline from the far detector [16]. The MINOS near and far detectors were

iron scintillator based detectors with tracking and calorimetry capabilities.

The CNGS neutrino beamline at CERN has a 17 GeV beam. OPERA used this beam for a

search of tau neutrino appearance [19], the first to measure this oscillation channel. OPERA

didn’t use a near detector, as the beam should have no significant tau neutrino background.

ICARUS also used the CNGS beam, with a liquid argon time projection chamber (LArTPC)

[104].

T2K uses the J-PARC synchrotron facility, off axis from the Super-K detector [3]. T2K

made the first measurement of νµ → νe oscillation.
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NOvA (the topic of this dissertation) uses the NuMI beam in an off axis configuration from

a far detector 810 km away. NOvA’s near and far detectors use segmented liquid scintillator

technology. NOvA also measures the νµ → νe oscillation channel in additional to the muon

neutrino disappearance channel. For more background on NOvA, see chapter 2.

Future long baseline accelerator experiments are DUNE [8], which will use LArTPC technol-

ogy and an upgraded beam at Fermilab, and Hyper-Kamiokande [4], which will be a large

water Cherenkov detector, and use the J-PARC beam.

Short Baseline Experiments

There are also several short baseline experiments that have looked for oscillations from sterile

neutrino states. The LSND experiment at Los Alamos found an excess of ν̄e events [21]. The

KARMEN experiment at Rutherford Appleton Laboratory was unable verify this excess [27].

The MiniBooNE experiment at Fermilab searched for ν̄e appearance in the same parameter

spaces as LSND using the BSB beam using an 8 GeV proton beam. MiniBooNE’s detector

used mineral oil and had a 541 m baseline. MiniBooNE reported excesses in νe and ν̄e event

counts [22].

A program of short baseline experiments at Fermilab have been created to probe this excess

further, using several detectors at different baselines, unlike MiniBooNE and LSDN, which

had only one detector. One of these experiments, MicroBooNE, has failed to verify the

MiniBooNE excess [9].
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1.4.4 Reactor Neutrinos

Another man made source of neutrinos is from nuclear reactors, which are high power sources

of ν̄e’s. Calculating the expected energy dependent flux of neutrinos from reactors is inher-

ently difficult, with contributions from several isotopes.

KamLAND is a liquid scintillator detector in the Kamiokande cavern in Japan, with an

180 km baseline from the reactor being measured. KamLAND was the first experiment to

measure ν̄e disappearance from a nuclear reactor [60].

Since then, several experiments were devised to make precision measurements of oscillations

from reactor sources at shorter baselines: Double Chooz in France, Daya Bay in China, and

RENO in Korea. Double Chooz uses a gadolinium-doped liquid scintillator detector about

1050 m from two reactors, and a near detector [7]. Daya Bay has four far detectors and four

near detectors, with the near detectors broken up into two different near detector halls [25].

Daya Bay’s far detector is 1648m from six reactors. RENO has an identical near and far

detector, with the far detector 1383 m from six reactors [33]. These experiments all released

their first results in 2012, all reporting measurements of ν̄e disappearance.

1.4.5 Measurements of Oscillation Parameters

With the broad range of neutrino physics experiments discussed previously, many parame-

ters of the PMNS matrix, equation 1.5, are well constrained. The Majorana phases of the

Majorana mixing parameterization, equation 1.4, are also in theory measurable in the case

of neutrinos being Majorana, but in oscillation probabilities, the terms including those are

highly suppressed, so they are extremely difficult to measure.

Different classes of experiments measure different oscillation channels, at different baselines,

and are therefore sensitive to different sets of parameters. Solar neutrino experiments cur-
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rently have made the best measurements of θ12, although they also have sensitivity to ∆m2
21

and θ13.

Reactor experiments with longer baselines, specifically KamLAND, have the most precise

measurement of ∆m2
21, but also have sensitivity to θ12 and θ13. The reactor experiments

with shorter baseline, specifically Double Chooz, Daya Bay, and RENO, have the best mea-

surement of the angle θ13, and also have sensitivity to |∆m2
32|.

Long baseline accelerator experiments looking at νµ → νµ (and ν̄µ → ν̄µ) are most sensitive

to |∆m2
32|, and θ23. Measuring the channel νe → νe (and ν̄e → ν̄e) gives the best sensitivity

to δCP , as well as some sensitivity to θ13 and θ23.

Lastly, atmospheric neutrino experiments see a mix of different flavors, originating as νµ

and νe (and ν̄µ and ν̄e), as well as different oscillation lengths. For this reason, atmospheric

neutrino experiments have sensitivity to a range of oscillation parameters: θ23, |∆m2
32|, θ13,

and δCP .

Of these oscillation parameters, the parameters with the least precise measurements are

δCP and θ23, as well as the mass ordering, which is the sign of ∆m2
32. δCP is of particular

importance for theoretical reasons, as it’s the CP violating phase and significant CP violation

in the lepton sector is a possible explanation of the matter-antimatter asymmetry in the

universe [66]. The θ23 octant isn’t yet known decidedly, i.e. whether sin2θ23 is greater than

or equal to 0.5. The mass ordering is one of the basic parameters of the oscillations, yet

difficult to measure, but long baseline accelerator experiments can resolve it by making use

of differences that it causes to matter effects, see figure 1.5. Reactor experiments also have

sensitivity to the mass ordering. JUNO, for example, will have good sensitivity to the mass

ordering by measuring fine interference patterns in the reactor oscillation spectrum [10].
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Chapter 2

The NOvA Experiment

NOvA (NuMI Off-axis νe Appearance) is a currently running long baseline neutrino experi-

ment. It uses the NuMI neutrino beam at Fermilab, a near detector (ND) at Fermilab, and

a far detector (FD) 810 km away in Ash River, Minnesota [31]. The main goal of NOvA is

to make measurements of oscillation parameters, specifically sinθ23, ∆m2
32, and δCP . The

NuMI beam is off axis from the NOvA detectors, to concentrate the beam flux around 2

GeV, the region NOvA is most sensitive to the oscillation parameters, see figure 2.1.

A central aspect of NOvA’s design is a functionally identical near and far detector. NOvA

uses the near detector data / Monte Carlo ratio as a data-driven correction to the FD

spectrum. This helps constrain systematic uncertainties, such as beam flux and neutrino

interaction models.

2.1 The NuMI Beam

NOvA’s neutrino source is the Neutrinos at the Main Injector (NuMI) beam at Fermilab.

NuMI uses the Fermilab Main Injector proton accelerator, which was previously used as part
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Figure 2.1: The neutrino energy flux NOvA would see at various angles to the beam, taken
from the NOvA TDR [31]

of the Tevatron proton collider [17]. This 120 GeV proton beam is the basis of the neutrino

beam.

A schematic of the NuMI beam is shown in figure 2.2. This proton beam is first directed

at a graphite target. The protons collide with the graphite nuclei to create charged mesons,

primarily charged pions and kaons.

Figure 2.2: An illustration on the components of the NuMI beam. Image taken from reference
[17].
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Next, magnetic horns focus the charged mesons which will be the parent particles of the

neutrinos. The focusing horns also can choose between keeping positive or negative mesons.

The configuration that keeps the π+’s, is called Forward Horn Current (FHC). The π+’s

decay primarily through the decay π+ → µ+ + νµ. Therefore, the FHC configuration will

give a mostly muon neutrino beam. The horn configuration that keeps the negative pions

will therefore give us a mostly muon antineutrino beam, called Reverse Horn Current (RHC).

The beam isn’t 100% pure, either in flavor or neutrino/antineutrino makeup. In either beam

mode, there are decay modes that create neutrinos of the wrong sign, which will be called

wrong sign background in the analysis. There are also some νe’s besides the mostly νµ’s,

called the intrinsic Beam Electron Neutrinos (BEN), which will be a background to the νe’s

appearing through oscillations at the far detector.

Next, the selected and focused mesons are sent through the decay pipe, which is a length

where the muons are allowed to decay in a vacuum. The decays create the neutrinos that

are NOvA’s signal neutrinos. Antimuons (and muons for RHC) are created in the decay

pipe as well. A large absorber block, made of aluminum, steel and concrete, is just after

the decay pipe, meant to absorb any hadrons that remain. From there, the muons will lose

energy when traveling into the rock underground.

We have no way to know the exact number of neutrinos being creating at NuMI, but what we

can measure is the number of protons in our beam being sent to the target. We will therefore

measure our exposure with Protons on Target (POT), which should be proportional to the

amount of neutrinos created.
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2.2 NOvA’s Detectors

2.2.1 Detector Technology

NOvA’s detectors are composed of stacked PVC cells filled with liquid scintillator [31]. The

liquid scintillator is made up of 4.1 % pseudocumene which is the active scintillant, with the

rest being mostly mineral oil. Charged particles will created scintillation light peaked at 360

- 390 nm in the pseudocumene. PPO and bis-MSB are added to shift the peak to 400-450

nm. A wavelength shifting fiber optic cable in the cell then absorbs light in the 400-450 nm

range (blue), and shifts it to 490 - 550 nm (green).

The signal from the wavelength shifting fiber is read out by avalanche photodiodes (APDs)

[86]. The signals from the APDs are amplified by a low noise pre-amp on the MASDA

chip [120] made by Fermilab. The amplified signals are then multiplexed by a custom ASIC

designed for NOvA. The front end electronics trigger continuously, without an external

trigger. The time stamps are compared to the NuMI beam spill times in the Data Acquisition

System (DAQ) to determine if they’re in the beam spill.

Figure 2.3: An illustration of the two views of an event seen inside NOvA’s detectors.
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2.2.2 Near Detector (ND)

The length of the cells alternate between horizontal and vertical, giving two different views

of each event in the detector, see figure 2.3. The Near Detector (ND) at Fermilab, and the

Far Detector (FD) in Ash River, Minnesota are functionally identical, but different sizes.

The ND is 64 cells wide and 96 cells high, with 186 of these planes. There are 10 additional

planes on the end, with planes of steel in between, to help tag muons exiting the active

region of the detector, called the muon catcher. In total, the ND is 2.9 m wide, 4.2 m tall,

and 14.3 m long, with a 222 ton active volume.

The ND is located in the MINOS shaft, under the MINOS hall at Fermilab. A new cavern

was added to the shaft for the ND, 14 mrad off axis from the NuMI beamline.

2.2.3 Far Detector (FD)

The FD has a 15 kton active volume. It is a larger, structured arrangement of the cell

construction used for the ND, in all being 15.6 m wide, 15.6 m high, and 78 m long, with

385,000 cells in total. The FD is located in Ash River, Minnesota, at an 810 baseline, above

ground.

Like the ND, it is 14 mrad off axis from the NuMI beam. The off axis detector shifts the

energy spectrum of the neutrinos from the beam, as shown in figure 2.1. The breakdown

of the flux and neutrino energy of neutrinos coming from parent charged pions at various

angles is shown in figure 2.4.

Unlike the ND, the FD is above ground, so it will be constantly showered with the spectrum

of cosmic rays, mostly secondary cosmic muons. The FD timing resolution therefore is

required to be large enough to reject cosmics with great efficiency to be able to pick out

beam neutrinos.
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Figure 2.4: The flux and neutrino energy at various angles from the NuMI beam given the
energy of the parent pion. Taken from the NOvA TDR [31].

2.2.4 Calibration

Cosmic muons are used for calibration in NOvA’s detectors. Photons produced along the

length of NOvA’s detector cells are attenuated by different factors at different lengths along

the cell by the wavelength shifting fiber. The first step of the calibration is to correct for

this attenuation using through going muons, as shown in figure 2.5 for the FD. “W” is the

length along the given cell. This is called “attenuation calibration”.

Figure 2.5: The attenuation calibration factors for different cells in the FD at different
distances from the middle of the cell, W.
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Figure 2.6 shows the reconstructed energy by true energy using simulation at different dis-

tances along the cell to evaluate the performance of the “attenuation calibration”.

Figure 2.6: The hit reconstructed energy, calibrated and uncalibrated, by the true hit energy
at different distances alone the cell, W, for simulated muons.

Now with the effects of the calibration along the length of the cell corrected, absolute cal-

ibration is done to translate the measured charge read out into a calibration measurement

of energy. This step is called “absolute” calibration. Stopping muons are used to correct for

this energy scale. Figure 2.7 shows the dE/dx of hits for these stopping muons as a function

of the distance from the end of the track. Hits from the distance of 100-200 from the track

end are selected to use for the absolute calibration. This is a flat region which follows the

Bethe-Block distribution well.

Figure 2.8 shows distribution of the hits in the above selected region for the stopping muons.

Figure 2.8a shows the true dE/dx from simulation. Figure 2.8b shows the measured uncor-

rected hit dE/dx for data and simulation. And figure 2.8c shows using the ideal distribution

(a) and uncorrected values (b) to correct the hit dE/dx, showing a more aligned distribution

between data and simulation.
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Figure 2.7: The dE/dx of each hit for stopping muons plotted against the distance of the
hit from the end of the track.

2.3 Simulation

Simulating particles in the detector is a basic part of any physics analysis. To know which

physics parameters the data is consistent with, you must know what the data should look

like for the a set of parameters in range of allowable parameters. For this reason, we simulate

neutrino events in our detectors, and send them through the whole reconstruction chain to

see what these look like after going through the same process the data will. The process of

simulating individual samples to get the expected output is called Monte Carlo (MC).

The first stage of simulation is simulating the NuMI beam [29]. The beam is fully simulated

from the target to the magnetic horns, to downstream production with Geant4 [20]. The

spectra for different neutrino flavors come directly from these Geant4 simulations.

From there, with our neutrino spectra transported to the positions of the near and far

detectors, we simulate the neutrino interactions in the detector with GENIE neutrino event

generator [26]. We don’t simulate cosmic rays for usual samples used for the analysis,
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(a) (b) (c)

Figure 2.8: Distributions of hits from 100 - 200 cm from the end of the stopping muon
track. (a) shows simulated muon true dE/dx for these hits. (b) Shows the data and MC
reconstructed dE/dx per hit. (c) shows the calibrated dE/dx for data and MC, showing
better consistency.

as we have a large sample from cosmic only periods, so these cosmics are overlaid over the

simulation [52]. For samples we need simulated cosmic rays, such as calibration, we use CRY

[70]. From there, the charged particles created from the interaction generator are passed to

Geant4, which propagates the particles through the detector geometry, and simulates their

energy deposits.

Geant4 could simulate the light transport through the cell and wavelength shifting fiber,

but this is extremely computations expense. Instead, a deterministic parameterized model

is developed to translate the energy deposited by Geant4 into readouts by the APD.

2.4 Reconstruction

NOvA has a chain of reconstruction software which algorithmically identifies features of

events that occur in NOvA’s detectors, separated in time, which can be used in downstream

analyses. The reconstruction is done in NOvA’s software framework, NOvASoft, and written

on top of the ART framework. [88]. The raw data is saved in files, grouped by the detector,

“run” and “subrun” of data taking. The simulated MC events are identical in format to the

actual data files at this stage, as to be as identical as possible when treated by reconstruction
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algorithms.

(a) (b)

Figure 2.9: Event display for candidate νµ event (left) and νe event (right), with two views
for each from the two detector views.

The following objects are reconstructed from the data and MC in reconstruction:

• Raw Hits – The raw detector readout indicating light seen in a cell. These simply

including the ADC counts of the detector, the plane and cell, and the time.

• “CalHits” – First reconstructed object created by ART, an object representing a hit

in NOvA’s reconstruction framework.

• Slices – Collection of hits which should represent a single physics event, such as a

cosmic muon or a neutrino event, including all the charged daughter particles. Our

current slicer algorithm is called “TDSlicer”, which has been fine tuned to avoid issues

seen with previous slicers, such as issues caused by ND event pileup [97]. Slices are the

basic reconstruction objects used for all other downstream reconstruction algorithms.

From here, hits located in slices are considered signal, when all others are considered

noise.

• Kalman tracks – Charged particles that don’t produce showers will create long tracks

in out detector. This is particularly true for muons created from νµ CC events, see

the νµ CC candidate event display with the long muon track in figure 2.9a. We have a
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Kalman filter based tracking algorithm [83] that works well for these long tracks. This

is done separately for each view at first, then combined later. This algorithm will play

a large role in the identification and energy reconstruction of the νµ CC events to be

used in the oscillation analysis

• Vertex – A reconstructed vertex is needed for further reconstruction steps for more

sophisticated feature identification needed for analysis of νe CC events. The first step

is to map the hits into a Hough space with a Hough transform [77], which identifies

associated pairs of hits possibly coming from the same particle. Then, the elastic arms

algorithm [95] identifies vertex candidates given the output from the Hough transform.

Vertex candidates are ranked to find the optimal vertex, with a number of edge cases

corrected for.

• Prongs – With the vertex, the next step is to identify “prongs”, which should cor-

respond to a single daughter particle of a neutrino event, such as a pion, electron,

or proton. These are used to help identify features of the νe CC events, such as the

electron and individual hadronic daughter prongs. See the fuzzy electron shower and

hadronic component in the νe CC candidate event display shown in figure 2.9b. Prong

reconstruction uses the Fuzzy K means algorithm [57]. This is done first individually

in each plane, and then the 2D prongs are combined to 3D prongs. A flow chart and

illustration of each step is shown in figure 2.10

The MC production of simulation and reconstruction used for the 2024 analysis was pro-

duction 5.1, which has only a few simulation and reconstruction changes from production 5,

used for the 2020 analysis [42].
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Figure 2.10: NOvA reconstruction flowchart for the prong reconstruction chain, showing an
example event for each. The last step is the higher level event CVN, discussed in section
4.1.3. Image taken from reference [32].

2.5 NOvA’s Physics Goals

NOvA’s main physics goals are measuring θ23, δCP , and ∆m2
32, including its sign, the mass

ordering. It measures two oscillation modes to measure this, muon neutrino disappearance,

νµ → νµ (and ν̄µ → ν̄µ), as well as electron neutrino appearance, νµ → νe (and ν̄µ → ν̄e).

Muon neutrino disappearance is most sensitive to |∆m2
32|, as well θ23. See figure 2.11 for an

illustration of the qualitative effects of these parameters. Electron neutrino appearance is

most sensitive to δCP , but also θ23, the mass ordering, and θ13 (which will be much better

constrained by reactor experiments, though). Figure 2.12 shows the expected rates for νe

vs ν̄e event counts for different values of δCP (the ellipses), θ23 with example upper octant

(UO) and lower octant (LO) values, and the mass orderings. This also illustrates the need

to have data for both neutrinos and antineutrinos, which NOvA gets from running in FHC

and RHC beam modes. See figure 1.5 for how the matter effects increase the sensitivity to

the mass ordering.
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(a) (b)

Figure 2.11: (a) νµ → νµ oscillation probability by energy for normal and inverted ordering,
illustrating the width and amplitude related to the oscillation parameters. (b) The resulting
νµ energy spectrum with and without oscillations in the FD

2.5.1 Outline of Oscillation Analysis

The rough outline of how NOvA’s oscillation analysis works is as follows:

• Run experiment to get data, both with FHC and RHC beam.

• Simulate MC for νµ and νe events, for the FHC and RHC beam.

• Run reconstruction on data and MC.

• Estimate energy of events, as neutrino oscillations are a function of energy (see chapter

3).

• Send events through selection for νµ and νe samples, choosing the events that look like

νµ or νe events (see section 4.1).
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Figure 2.12: νe – ν̄e event count rates against varying values of δCP in the normal and
inverted ordering, and upper and lower octant

• Use the selected MC events to make “predictions”, which are the expected values of

νµ and νe energy spectra at the FD, given a set of oscillation parameters.

• Include in these the systematic uncertainties of our detectors and analysis, and leave

them as constrained free parameters in the predictions (see section 4.3).

• Fit the oscillation parameters and systematics to the data, using the predictions as

expected rates for a set of oscillation parameters, finding the oscillation parameters

most consistent with the data (see chapter 5).

31



Chapter 3

Neutrino Energy Estimation

3.1 Energy Estimation

Neutrino oscillations are inherently dependent on the neutrino energy. Therefore, neutrino

energy estimation is central to the inference of neutrino oscillation parameters. For NOvA’s

oscillation analysis, we are most interested in resolving the region between 1 – 3 GeV.

After selecting νe CC and νµ CC event samples, energy estimation is performed individually,

with two different methods used for each sample. In this analysis, NOvA used energy

estimation methods similar to those used in recent analyses, but significant consideration

was given to switching to a method based on deep learning algorithms, as outlined in section

3.3. These traditional and deep learning methods considered are discussed in section 3.2.

When discussing energy estimation performance, we will frequently discuss “energy resolu-

tion”, is (recoE − trueE)/trueE, which in general should be a sharp peak around 0. The

narrower the peak, the better the performance, and a shift off of 0 indicates a bias.
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Figure 3.1: The mean and standard deviations of the resolution of the calorimetric νe energy
estimation.

3.2 Developed Techniques

3.2.1 νe Energy

The Calorimetric Method

The traditionally used νe energy estimation uses calorimetric energy of the electromagnetic

and hadronic components, and corrects them individually. To identify particle clusters as

electromagnetic or hadronic in nature, NOvA has a particle CNN-based identification method

[101].

NOvA uses quadratic correction factors to then estimate the overall νe energy:

Eν = AEEM +BEhad + CE2
EM +DE2

had

The quadratic correction factors help keep the performance stable in the energy region from 1

– 3 GeV, see figure 3.1. This figure shows the mean and standard deviation of the resolution,

broken up into regions of true neutrino energy. In general, this distribution should be narrow
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Figure 3.2: An illustration of the energy regression CNN which takes the two images of the
event from each view as input, and output an estimate of neutrino energy.

and centered around 0, so the mean should be close to 0, and the standard deviation as low

as possible. Notice how in the figure, the mean and standard deviation have good and flat

performance from 1 – 3 GeV.

The CNN-Based Method

In addition to the traditional calorimetric based method, a method using a convolutional

neural network (CNN) was also developed, which is a neural network specialized at tak-

ing images as inputs (see section A.2) [37]. This CNN takes two images of each neutrino

event, one for each detector view, then spits out an estimate of electron neutrino energy, as

illustrated in figure 3.2. We use a ResNet CNN architecture [72].
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3.2.2 νµ Energy

The Spline-Based Method

The traditionally used method for νµ uses linear splines to estimate energy [111]. This

method used separate spline fits for muon and hadronic parts individually, then added them

together to get an estimate for the total neutrino energy. See figure 3.3 for an example.

Muon energy is estimated from a fit to Kalman track length. Hadronic energy is estimated

from a fit to visible deposited hadronic energy. Note that the ND has two different spline

fits for the muon: one for the active region, and one from the muon catcher.

(a) Spline Fit to Muon Kalman Track Length (b) Spline Fit to Deposited Hadronic Energy

Figure 3.3: Muon and hadronic energy spline fits, to the muon Kalman track length and the
visible hadronic energy respectively.

In this analysis, it was found using splines for energy estimation can result in some jagged

features of the hadronic energy spectrum in particularly, which happen in places where the

slope of the line changes suddenly, when going from one line to the next in the spline. For

this analysis, it was decided to use a single line instead of a series of lines (a trivial spline),

the resulting fits shown in figure 3.4.
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(a) (b)

Figure 3.4: Linear fits to the muon and hadronic energy, without multiple splines as shown
into Figure 3.3, which was the set used for the final analysis

The LSTM Energy Estimator

An energy estimator that uses both slice level and prong level inputs in an LSTM neural

network [75] was originally proposed in 2017 [103]. Extensive development and studies have

been done since the 2020 NOvA analysis. One key feature of this new energy estimator is

that it was trained to predict both the muon and the muon neutrino energy.

One of the challenges of working with prong-level variables is that the number of prongs per

slice is not fixed. This means that the energy estimator needs to accept a variable number

of inputs, this is why the LSTM (Long Short-Term Memory) neural network architecture

was chosen as it can naturally work with varying input lengths. The final LSTM energy

estimator architecture is shown in figure 3.5.

The LSTM energy estimator takes a list of reconstructed quantities as input, both event-

level quantities, and information about individual reconstructed 2D and 3D prongs. The

complete list of input variables is shown in Table 3.1.

36



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
(Reco - True) / True Neutrino

0

1000

2000

3000

4000

5000

Ev
en

ts

Base

Stats:
Mean -1.613e-02
RMS 9.058e-02
Std 8.914e-02

Gauss:
Mu 6.677e-03
Sigma 6.431e-02
Peak 4.625e+03

Model

Stats:
Mean -1.243e-02

RMS 8.179e-02
Std 8.084e-02

Gauss:
Mu 4.341e-04

Sigma 5.771e-02
Peak 5.039e+03

Figure 2: Comparison of the FD FHC ⌫µ energy resolution histograms (Reco - True) / True
between Spline EE (Base, blue) and LSTM EE (Model, orange). In terms of RMS LSTM EE
has better energy resolution than the Spline EE: 8.2% vs 9.1%.

M
er

ge

Inputs Outputs

LSTM
(32)

B
at

ch
 N

or
m

FC
(128)

B
at

ch
 N

or
m

FC
(128)

B
at

ch
 N

or
m

FC
(128)

B
at

ch
 N

or
m

B
at

ch
 N

or
m

Lepton
Energy

Neutrino
Energy

FC
(128)

B
at

ch
 N

or
m

FC
(128)

B
at

ch
 N

or
m

FC
(128)

B
at

ch
 N

or
m

sl
ic

e
pn

g3
d

P
1

P
N

P
3

P
2

pn
g2

d

P
1

P
N

P
3

P
2

LSTM
(32)

B
at

ch
 N

or
m

FC
(128)

B
at

ch
 N

or
m

FC
(128)

B
at

ch
 N

or
m

FC
(128)

B
at

ch
 N

or
m

Figure 3: Optimized architecture

3.2 Sample Selection

Our original LSTM energy estimator was trained on the sample with the standard ⌫µ pres-
election and true energies up to 5 GeV. However, one of the requirements on the ⌫µ energy
estimator was its ability to predict energies up to 7 GeV and work reasonably well for events
passing only very loose preselection.

We have found [5] that if take an LSTM energy estimator trained on the standard sample
with energies up to 5 GeV and evaluate it on the sample with loose preselection and energies
up to 7 GeV then the performance of this energy estimator will be poor for the high energy
events Figure 5.

To address poor performance of the LSTM EE for high energy events we tried retraining it

4

Figure 3.5: A schematic of the LSTM architecture, showing the slice and prong level inputs.

3D Prong Variables 2D Prong Variables Slice Variables
reco energy cal energy cal energy
momentum (x,y,z) direction (x,y,z) timing info
overlapping energy length gain info
cal energy # hits total and per plane # hits
particle CVN # planes cal energy not from prongs
direction (x,y,z) start (x,y,z)
length weighted cal energy
# hits total and per plane
# planes
start (x,y,z)
weighted cal energy

Table 3.1: The input variables of the LSTM energy estimator. The estimator takes 2D and
3D prong variables in addition to slice-level variables and flags for specific modes of detector
operation (e.g. low gain and coarse timing).
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A number of considerations had to be made to make sure what the LSTM learned could

generalize from the training sample well:

• Applying preselection only to avoid sharp features in the reconstructed-true energy

mapping at the 5 GeV cutoff.

• Weighting the energy spectrum, so it looks flat during training, and the LSTM doesn’t

become biased toward the most probable value

• To reduce sensitivity to calibration systematic uncertainties, noise was added to the

calorimetric energies during the training process, where the noise for each event was

uniformly picked from {−20%, 0,+20%}.

There are many more details about the development and training of the LSTM energy

estimator in the technical note, reference [112].

There have been a number of robustness studies on the performance and susceptibility to

systematic uncertainties of the LSTM energy estimator [118]. Since prong length is one of

the key inputs it was studied directly by scaling the individual prong lengths up or down

by 5% and seeing how the output energy changed. From this study, it was found that the

LSTM is only directly sensitive to the muon prong length, where the ±5% shifts in muon

prong length resulted in ±0.8% shifts in neutrino energy, all of the other prong length shifts

resulted in negligible changes in the neutrino energy.

The CNN-based method

There is also a CNN based energy estimation method adapted for νµ energy as there is in

the νe case. The hadronic energy is traditionally the bottleneck of νµ energy estimation, and

the long muon track can sometimes leave the pixelmap, so this CNN estimates the hadronic
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(a) True Hadronic Energy (GeV) (b) True Hadronic Energy (GeV)

Figure 3.6: Unweighted and weighted true hadronic energy spectrum for FHC (left) and
RHC (right) samples used for CNN training

energy component instead of the neutrino energy. This hadronic energy estimate can then

be added to the spline-based muon energy EE described above to be an estimate of the

neutrino energy.

The architecture used is based on GoogLeNet [110], adapted to take 2 input images, one

for each view, each 80 planes by 100 cells [79], same inputs as the νe CNN [37]. A ResNet

based architecture was also trained with nearly identical results, but the GoogLetNet based

architecture was chosen for a speedup in evaluation speed. FHC and RHC models were

trained separately. The CNNs are trained using Keras with Tensorflow version 1.12 [1]. The

models were trained using GPU resources at the Wilson Cluster at Fermilab. The training

optimizer used was Adam [85]. The loss function used is mean loss error, intended to give

less weight to outliers.

The datasets used for training were nonswap miniproduction 5 FD FHC and RHC HDF5

files, available on the Wilson Cluster. For cuts, true νµ CC events were selected, and analysis

νµ selection was applied. After cuts, there were ∼800,000 events for training, and ∼90,000

for evaluation. The performance was tested on ∼280,000 events. A weighting scheme was

devised to make the network focus less on the peak in the energy spectrum. Trying to make

the spectrum totally flat proved unsuccessful, with the network’s performance becoming
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worst in the most populated region from 0-2 GeV. A less aggressive scheme that was settled

on is shown in figure 3.6. Weights were implemented in training using the sample weights

functionality in Keras.

The LSTM showed the strength of training with calibration robustness augmentation, so for

future NOvA analyses, the CNN is being retrained with a similar calibration augmentation

scheme. For this CNN training, the scale of the pixelmap is scaled by a value sampled

from a normal distribution with mean 1 and standard deviation 0.1 (10 %). Another future

improvement for the CNN is that the target will be the neutrino energy itself, instead of

the hadronic energy, as biases can arise from differences in the muon and hadronic energy.

The CNN is then given the muon track length as an extra input to make up for the scenario

where the muon track is long enough to leave the pixelmap. The CNN is then weighted to

make the neutrino energy spectrum flat. Early results show these updates have promising

effects on performance [80].

3.3 Energy Estimator Studies for 2024 Analysis

3.3.1 νe Energy

For 2024, there were two methods considered for use in the analysis for νe energy reconstruc-

tion: the traditionally used calorimetric method, as well as the CNN. The systematics are

expected to be comparable, but the performance of the CNN is better overall on the nominal

MC, as shown in figure 3.7 for FHC.

It is unclear how much an overall improvement in performance will translate into better

sensitivity for the νe sample, however, as the binning of the νe is fairly low, see section 4.1.4.

To see the improvements we can get from this CNN based method, we studied the effects
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Figure 3.7: The νe energy resolution for the calorimetric and CNN method, for FHC

on the final analysis sensitivities using fake data. Figures 3.8 and 3.9 show the effects of

using the CNN over the calorimetric method traditionally used with statistics only, where

every other part of the analysis is the same as the 2020 analysis [12]. The figures show an

improvement with the CNN, but only a very marginal one.

Given how little the improvements in performance help our overall sensitivity to the os-

cillation parameters, it was chosen to stay with the calorimetric method for this analysis.

The calorimetric method is a conservative choice, as its performance and dependence on

systematic uncertainties is well understood.

3.3.2 νµ Energy

Comparing νµ EE performance - energy resolution

In the following section, we’ll review the many studies performed to choose the νµ EE method

to use for this analysis, specifically of overall performance on nominal MC, the robustness
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Figure 3.8: Statistics only contours for δCP vs sin2θ23 comparing the sensitivity of the
calorimetric and CNN based methods, NO

Figure 3.9: Statistics only contours for δCP vs sin2θ23 comparing the sensitivity of the
calorimetric and CNN based methods, IO
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to systematic uncertainties, and the corresponding analysis sensitivities [82].

Figure 3.10 and figure 3.13 show the energy spectrum and overall resolution ( (recoE −

trueE)/trueE ) of the EEs on the nominal FD samples, for FHC and RHC, respectively.

Figure 3.11 and figure 3.14 show the mean and standard deviation of the resolution broken

up by 5 bins of true neutrino energy. The overall mean and standard deviation for each are

listed in table 3.2.

The cut applied for the following performance plots is 2020 analysis cut, with the cuts on

energy removed, which is the same cut used for the spline training. The weights used are

the production 5.1 cross-section weights, and the standard flux weights.

In terms of overall performance, both deep-learning methods see an improvement over the

traditional, spline-based method. From best to worst for resolution the order is the CNN,

the LSTM, and then the spline, for both FHC and RHC. For bias, the CNN is the best for

FHC and the LSTM for RHC.

Looking at this performance broken up into bins of true neutrino energy for FHC (figure

3.11a), we can see the energy dependence of the mean follows a similar trend for all three

EEs, starting positive and becoming negative at higher energies. RHC (figure 3.14a) follows

a similar trend, except for the first bin of the CNN which is near 0.

For the standard deviation, we also see similar trends for FHC and RHC (figures 3.11b and

3.14b). For the lowest bin, the LSTM has the lowest, then the spline, then CNN. From the

two bins from 1-3 GeV, the CNN has the lowest, followed by the LSTM, then spline. From

3-4 GeV, the LSTM does the best, followed by the CNN, then spline. For the highest bin,

the CNN and LSTM are roughly comparable.

Energy resolutions are also shown for the muon and hadronic energy individually (figures

3.12 and 3.15). The spline-based method has spline EEs for both muon and hadronic energy
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(a) Energy Spectrum (b) Energy Resolution

Figure 3.10: FHC νµ energy Spectra and Resolution

FHC Total Performance

Spline LSTM CNN
Mean -0.0198 0.0051 -0.0071
Std 0.0948 0.0901 0.0875

RHC Total Performance

Spline LSTM CNN
Mean -0.0115 0.0097 -0.0086
Std 0.0802 0.0784 0.0747

Table 3.2: νµ Energy Estimation Performance Statistics

individually, while the CNN has an output only for the hadronic energy, and uses the muon

spline EE. Note that’s why there’s no “CNN” for the muon energy resolutions. The LSTM

outputs estimates for the muon and neutrino energy, individually. The hadronic energy for

the LSTM is defined as the neutrino energy minus the muon energy.

The energy spectra for the 3 methods are show in figures 3.16 - 3.21 broken up by hadronic

energy fraction quartile. Data and MC are shown together. Noteworthy features are the

weird distributions for the LSTM, particularly in the first quartiles. The most worrisome of

these is figure 3.20a. Note the jagged V shape right at the peak around 2 GeV.

The CNN also has nonphysical features, particularly in the fourth quartile. Figure 3.21d

shows a much narrower distribution in the fourth quartile than the other three. These

features are also present for FHC. The narrowing of energy at higher hadronic energy fraction

is not the expected behavior from calorimetric considerations and may be a bias from the
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(a) Mean of resolution by true energy (b) Std of resolution by true energy

Figure 3.11: FHC νµ energy performance binned by true Energy

(a) FHC νµ Muon Energy Resolution (b) FHC νµ Hadronic Energy Resolution

Figure 3.12: FHC νµ Muon and Hadronic Energy Resolution
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(a) Energy Spectrum (b) Energy Resolution

Figure 3.13: RHC νµ energy Spectra and Resolution

(a) Mean of resolution by true energy (b) Std of Resolution By True Energy

Figure 3.14: RHC νµ energy performance binned by true energy
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(a) RHC νµ Muon Energy Resolution (b) RHC νµ Hadronic Energy Resolution

Figure 3.15: RHC νµ Muon and Hadronic Energy Resolution

training of the algorithm.

Comparing νµ EE performance - systematics

The effects of systematics were also explored for the three EEs. The shifts in resolution from

detector systematics for calibration (figures 3.22 and 3.23), Cherenkov (figures 3.28 and

3.29), and light levels (figures 3.26 and 3.27) are shown. For the largest of these, calibration,

shifts in resolution statistics, shown as error bars, are broken up by ranges of true energy for

mean and standard deviation (figures 3.24 and 3.25 for FHC and RHC, respectively).

In addition to these detector systematic uncertainties, cross-section systematic uncertainties

were tested together using a multiverse with 1000 universes. The corresponding shifts from

these are shown in figure 3.30 for FHC and figure 3.31 for RHC.

The shifts in statistics from these detector systematic uncertainties as well as the shifts from

the cross-section systematic uncertainties are summarized in Table 3.3 for FHC and Table

3.4 for RHC. In general, the LSTM sees the smallest shift in bias for calibration for both

FHC and RHC. It also has a smaller shift in bias for light levels in FHC, where the size of
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Figure 3.16: Spline ND FHC νµ Energy Spectra Broken Up By Hadronic Energy Fraction
Quartiles
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Figure 3.17: LSTM ND FHC νµ Energy Spectra Broken Up By Hadronic Energy Fraction
Quartiles
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Figure 3.18: CNN ND FHC νµ Energy Spectra Broken Up By Hadronic Energy Fraction
Quartiles
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Figure 3.19: Spline ND RHC νµ Energy Spectra Broken Up By Hadronic Energy Fraction
Quartiles
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Figure 3.20: LSTM ND RHC νµ Energy Spectra Broken Up By Hadronic Energy Fraction
Quartiles
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Figure 3.21: CNN ND RHC νµ Energy Spectra Broken Up By Hadronic Energy Fraction
Quartiles
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FHC Mean Sensitivities

Spline LSTM CNN
Calibration 0.0336 0.0080 0.0302
Light Levels 0.0338 0.0082 0.0304
Cherenkov 0.0014 0.0006 0.0017
XSec Systs 0.0031 0.0020 0.0002

FHC Std Sensitivities

Spline LSTM CNN
Calibration 0.0013 0.0023 0.0036
Light Levels 0.0015 0.0019 0.0038
Cherenkov 0.0001 0.0001 0.0002
XSec Systs 0.0022 0.0022 0.0024

Table 3.3: νµ Energy Estimation Sensitivity for mean and standard deviation to systematic
uncertainties for FHC

shifts is comparable to the calibration systematic.

Also, considered is the performance of these on the MENATE samples, which is an alternative

neutron model [59]. The shifts in overall resolution distributions, comparing the nominal

and MENATE samples, are shown for FHC in figure 3.32 and for RHC in figure 3.33. The

shifts in the overall statistics, MENATE - nominal, are tabulated in 3.5. In general, there is

an improvement in standard deviation for the MENATE sample compared to the nominal

sample for FHC, and a small degradation in standard deviation for RHC. As for mean, the

LSTM has the largest shift in mean (by magnitude), followed by the CNN, then spline. This

is true for both FHC and RHC.

Lastly, the Geant4Reweight reweighting was checked for the 3 EEs. The technical note for

this method is available as reference [109], which implements the Geant4Reweight [40] scheme

to NOvA. The FHC and RHC shifts are available in figures 3.34 and 3.35, respectively. Com-

pared to the other systematics considered, these have very small effects. Overall, the sizes

are roughly comparable among the 3, with the spline having the largest for kProtonTotSyst,

which is the largest of the list available. Also, the π− shifts are larger for FHC, and π+ for

RHC, which serves as a sanity check that the Geant4Reweight method is giving physical

results.

More about these systematic uncertainties themselves, as well as the others not discussed

here, can be found in section 4.3.
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(a) Spline (b) LSTM (c) CNN

Figure 3.22: FHC νµ energy performance with calibration systematic shifts

(a) Spline (b) LSTM (c) CNN

Figure 3.23: RHC νµ energy performance with calibration systematic shifts

(a) Mean of Resolution By True Energy (b) Std of Resolution By True Energy

Figure 3.24: FHC νµ energy performance Binned By true energy, where error bars are
calibration systematics
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(a) Mean of Resolution By True Energy (b) Std of Resolution By True Energy

Figure 3.25: RHC νµ energy performance binned by true energy, where error bars are cali-
bration systematics

(a) Spline (b) LSTM (c) CNN

Figure 3.26: FHC νµ energy performance with light level systematic shifts

(a) Spline (b) LSTM (c) CNN

Figure 3.27: RHC νµ energy performance with light level systematic shifts
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(a) Spline (b) LSTM (c) CNN

Figure 3.28: FHC νµ energy performance with cherenkov systematic shifts

(a) Spline (b) LSTM (c) CNN

Figure 3.29: RHC νµ energy performance with cherenkov systematic shifts

(a) Spline (b) LSTM (c) CNN

Figure 3.30: FHC νµ energy performance with cherenkov systematic shifts

(a) Spline (b) LSTM (c) CNN

Figure 3.31: RHC νµ energy performance with XSec systematic shifts
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(a) Spline (b) LSTM (c) CNN

Figure 3.32: FHC νµ energy MENATE samples compared to nominal samples

(a) Spline (b) LSTM (c) CNN

Figure 3.33: RHC νµ energy MENATE samples compared to nominal samples

Figure 3.34: FHC νµ energy G4Rwgt shifts
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Figure 3.35: RHC νµ energy G4Rwgt shifts

RHC Mean Sensitivities

Spline LSTM CNN
Calibration 0.0236 0.0150 0.0211
Light Levels 0.0004 0.0056 0.0008
Cherenkov 0.0013 0.0019 0.0013
XSec Systs 0.0028 0.0015 0.0010

RHC Std Sensitivities

Spline LSTM CNN
Calibration 0.0008 0.0026 0.0023
Light Levels 0.0002 0.0000 0.0001
Cherenkov 0.0002 0.0002 0.0002
XSec Systs 0.0025 0.0024 0.0022

Table 3.4: νµ Energy Estimation Sensitivity for mean and standard deviation to systematic
uncertainties for RHC

FHC MENATE Shifts (MENATE - Nominal)

Spline LSTM CNN
Mean 0.0064 -0.0099 -0.0097
Std -0.0144 -0.0095 -0.0127

RHC MENATE Shifts (MENATE - Nominal)

Spline LSTM CNN
Mean -0.0018 -0.0145 -0.0083
Std 0.0002 0.0023 0.0001

Table 3.5: νµ Energy Estimation Sensitivity for mean and standard deviation to neutron
model
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Comparing νµ EE performance - sensitivities

Lastly, the sensitivities for sin2θ23 vs ∆m2
32 are made with fake data using the 2020 best

fit point, shown in figure 3.36 for 3 σ. They are made using the same analysis features as

the 2020 NOvA analysis, with the modifications made where necessary to use these new

EEs, as well as the new production 5.1 MC. The predictions were made with all the 2020

systematics, except a few that are difficult to run with time constraints or implement to the

deep learning methods, such as flux, small GENIE knob PCA, muon energy scale, and angle

acceptance systematics.

The 3 EEs are well ordered by figure 3.36, so that from best to worst, they are LSTM, CNN,

Spline. The dotted lines show the stats-only contours for comparisons (the LSTM and CNN

dotted are practically overlapping). This makes it clear that the main improvements from

the LSTM come from its robustness to the systematics.

Another Asimov point tested is what’s called point C in the list of Asimov points to test for

the 2024 analysis[46], contours shown in figure 3.37. This point is

∆m2
32 = −2.45× 10−3eV 2

sin2θ23 = 0.50

δCP = 1.5π

chosen as the point preferred by global fitters.

Conclusion

The three νµ energy estimators (EEs) available in Production 5.1 were compared, and consid-

ered for use in the 2024 3-Flavor analysis. The two deep-learning methods have an improved
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Figure 3.36: Comparison of contours using 2020 best fit point for each of the 3 νµ EEs, at 3
sigma. Solid lines are with systematics, dotted lines are stats-only
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Figure 3.37: Comparison of contours using Asimov point C for each of the 3 νµ EEs, at 3
sigma. Solid lines are with systematics, dotted lines are stats-only
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performance over the traditional spline-based method which has been used in all prior anal-

yses. The LSTM was trained very specifically for robustness to the calibration systematic

and thus has a very small shift in bias when considering the up and down calibration sys-

tematic, which is the largest of the systematic uncertainties. This overall good performance

and learned robustness to the calibration scale give the LSTM the best sensitivities when

looking at the 2020 best-fit point.

Based on the sensitivities, it would have seemed like the LSTM is the best choice for the 2024

analysis. It was trained to have a good balance of overall performance, as well as robustness

to calibration uncertainty, which is the largest systematic for the EEs. This gives it good

overall stats-only performance, as well as leading to the smallest pull from the systematic

uncertainties for the final contours.

However, after looking at the ND energy spectra broken up by hadronic energy quartiles, the

nonphysical jaggedness of the first quartile for the LSTM is quite worrying. Furthermore, the

extremely narrow fourth quartiles of CNN do not seem to follow the principles of calorimetry.

For this reason, it seems the spline is the most conservative choice, given the unexplained

features of the deep learning based methods. The Spline with one line only, shown in figure

3.4, was the νµ energy estimator decided on for the 2024 analysis.
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Chapter 4

NOvA Oscillation Analysis Elements

The 2024 NOvA oscillation analysis was the first NOvA analysis since 2020 [12] with new

data. Figure 4.1 shows the beam exposure accumulation of NOvA. The data included in this

analysis has 26.6 ×1020 POT of neutrino beam exposure and 12.5 ×1020 POT of antineutrino

beam [58]. This POT was the result of 10 years of NOvA data taking, and 95.6% more

neutrino beam exposure since the last NOvA analysis.

Figure 4.1: POT accumulation of NOvA over the running of the experiment

Many of the elements of the analysis remain the same as the 2020 analysis, with a few signif-
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icant improvements [47]. First, besides more beam exposure, we had several improvements

in simulation and reconstruction.

Three new processes have been added in the simulation: diffractive scattering, NC meson

exchange current, and CC quasi-elastic lambda [42]. There was also significant changes in

the light modeling, with an 80% increase in the amount of simulated Cherenkov light, and

changes to attenuation parameters. In the ND, there was a 15% decrease in the light level

scale in both views, where in the FD, there was a 20% increase in the X view and no change

in the Y. Reconstruction didn’t change as much, but still saw several improvements in track

reconstruction. The GENIE cross section tuning saw several improvements as well [36].

4.1 Selection and Binning

4.1.1 Quality and Containment Cuts

Quality

The basic quality cuts provide a sanity check that the slice is something we would want to

include in an analysis, with some basic reconstruction having had been completed success-

fully. In short, these cuts remove slices with too many or too few hits, too much energy,

or slices where no tracks or prongs were reconstructed. The cuts are different for νµ and νe

events, and they have been retuned for this analysis [44].

For νµ event reconstruction quality cuts, we require a reconstructed muon track with non-

zero energy, a successful reconstruction of a 3D Kalman track, more than 20 hits overall in

the slice, hits in more than 4 detector planes, and basic cosmic cut. For νµ selection quality,

the only cut applied is that the reconstructed energy is below 5 GeV.
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For νe event reconstruction quality cuts, we have a cut to remove slices that go through too

many planes, a requirement that a vertex was reconstructed, and that at least one prong was

reconstructed. And for selection quality, the cuts are slightly different between the ND and

FD, but for the ND and FD core samples, there is high and low threshold on number hits in

the slice, the reconstructed energy, and the longest prong. For the FD peripheral, we have a

looser lower bound on the energy than in the Core, and a max threshold on electromagnetic

energy. For a new low energy νe sample we included in this analysis, we have similar quality

cuts than in the core sample, but with lower energy bounds.

Containment

The containment cuts check that all the charged particles from a slice are completely con-

tained in the detector. This is needed to perform decent energy reconstruction, so except

for special samples, we will want everything to be contained. The values of the cuts were

retuned for the 2024 analysis [43]. The cuts are different for νµ and νe events, and for ND

and FD. In short, there is a threshold for distances of vertex, showers, and tracks to be from

the edge of the detector, both in terms of 3D coordinates and in number of detector planes.

4.1.2 Cosmic Rejection

NOvA’s FD is above ground, without any significant shielding from cosmics, so good cosmic

rejection is a basic requirement to do an oscillation analysis. NOvA uses two different cosmic

rejection mechanisms: a traditionally used method, the “Cosmic Rejection Veto” which uses

tuned cuts on direction and position information of tracks to remove cosmic rays, and a CNN

based method, the “Cosmic CNN” which removes chunks of time that contain only cosmics

early on in the reconstruction process.
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The Cosmic CNN is a method to remove the bulk of cosmics early in the reconstruction pro-

cess, to avoid the disk space required to save reconstruction information about the extreme

amount of slices that are clearly cosmics [73]. This mechanism breaks up the full trigger

window into 32 windows of time, where the beam spills by design are included entirely in

one of these windows. The CNN then looks at the raw pixelmap of the entire detector for

each of these 32 windows, where each pixel is made binary to 0 for no energy deposition,

and 1 for a deposition, to remove dependence on calibration. The CNN makes a decision

for each window to decide if it is only cosmics, or includes a neutrino. For each slice in the

analysis, we then put a cut on its corresponding window’s cosmic score, in addition to the

slice level Cosmic Rejection Veto based on direction and position information.

In addition to these cosmic rejection mechanisms, each analysis sample have a separately

tuned boosted decision tree (BDT) tuned to remove any remaining cosmics from the specific

analysis sample.

4.1.3 Particle Identification

For particle identification (PID) in our selection, besides the BDTs for cosmic rejection

mentioned in 4.1.2, NOvA also uses a CNN trained to identify neutrinos, called EventCVN

[30]. This CNN is trained to take slices as input, and output different “scores” to indicate

the belief that it is in one of several categories of neutrino, or a cosmic.

Besides EventCVN, there is another method called ReMId, which is used to identify Kalman

tracks as muon like by using a k-Nearest-Neighbor (kNN) algorithm and dE/dx, scattering,

track length, and non-hadronic plane fraction [99].
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4.1.4 Analysis Samples

νµ Samples

The νµ event samples to measure νµ disappearance remain mostly unchanged since the 2020

analysis, predictions for this sample shown with and without oscillations in figure 4.2. The

binning has been re-optimized, now having 22 bins from 0 to 5 GeV, which is a ∼25% increase

in bins from the 2020 analysis [105].
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Figure 4.2: Extrapolated νµ predicted sample broken up by hadronic energy fraction, FHC

As in the 2020 analysis, the sample is broken up into 4 quartiles of hadronic energy fraction,

EReco
had /EReco

ν . The breakup is done on a bin-by-bin level, shown in figure 4.3.

The selection for the νµ was re-optimized for the 2024 analysis [43]. The νµ sample applies

the standard quality and containment cuts, discussed in 4.1.1, the the cosmic rejection veto
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Figure 4.3: Hadronic energy fraction quantiles for νµ events, for FHC and RHC, taken from
[43].

and CNN, a νµ cosmic rejection BDT, a cut on EventCVN νµ score, and on ReMId.

νe Samples

The νe event samples to measure νe appearance include the same samples as the 2020 analysis,

with a somewhat modified definition of the “peripheral” sample, and a new low energy

sample. Predictions for these samples are shown with this analysis best fit point in figure 4.4.

The binning for the “Core” sample shown in the center, with high and low PID subsamples,

are kept the same as the 2020 analysis, with 6 bins from 1 to 4 GeV, each 0.5 GeV wide.

There is then one additional bin, the “Peripheral” bin, shown right in the figure, which

includes some events that failed containment. Lastly, there is the new low energy sample

shown left in the figure, with two bins from 0.5 to 1.5 GeV, which was only included for the

FHC sample in this analysis.

A rough overview of the νe sample cutflow is shown in figure 4.5. All νe events go through

some basic quality cuts. When events fail the containment cut, they have a chance to go

into the peripheral sample. This is different than the definition from 2020 analysis, where

the peripheral sample was composed of events that fail any number of core selection cuts,

not just the containment.
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Figure 4.4: Extrapolated νe predicted sample, FHC

From here, events are selected for the peripheral bin that pass a set of EventCVN νe and

cosmic score cuts, as well as the peripheral BDT. An electromagnetic energy cut is also

applied, which was shown to be effective in removing intrinsic beam νe events. They are all

put into the one peripheral bin, since without containment, energy estimation is not reliable,

but there is still information in the event count.

For the events that do pass the containment cuts, the Core sample cuts are applied, applying

a cut on EventCVN score as well as the Core BDT for cosmic rejection. If they fail this

Core selection cut, they again have a chance to survive in an alternative sample, the low

energy sample (in the FHC sample only). For this case, there is a cut on another specially

tuned BDT for the low energy sample, as well as different quality cuts, which include a cut

to choose events in this low energy region. Through this BDT, we again regain events not

clean enough to end up in the Core sample.
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Figure 4.5: νe cutflow

The events that do pass the core cut are split into samples of high and low PID based on

their EventCVN score. These cuts, as well as all the other νe selection cuts, have been

re-tuned for the 2024 analysis.

4.2 Near to Far Extrapolation

A distinct feature of the NOvA oscillation analysis, as in recent analyses, is the near detector

to far detector extrapolation technique which uses the near detector data to apply a data-

driven correction to the predicted far detector energy spectrum. The extrapolation for this

analysis remains mostly unchanged from the 2020 analysis [92]. The technique uses the

data / MC energy bin ratios with ND data and MC, and uses the relationship of the true

and reconstructed energy in MC to transfer these ratios as corrections to the FD spectrum

by using the predicted oscillation probabilities for a proposed set of oscillation parameters.
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Different signal and background samples are treated individually.

4.2.1 νµ → νµ

An illustration of extrapolation for νµ → νµ is shown in figure 4.6. For this sample, the

predicted νµ signal in the FD can be extrapolated directory from the ND νµ sample. During

extrapolation, we further divide each of the hadronic energy fraction samples into a sub-

sample of 3 |p⃗µT | quantiles for each bin of hadronic energy fraction, i.e. the magnitude of

the muon momentum transverse to the beam direction. These |p⃗µT | sub-bins are recombined

immediately after extrapolation, before fitting the samples. The pµT extrapolation was found

to reduce the effects of most systematic uncertainties, especially cross section systematics.
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Figure 4.6: Illustration of near to far extrapolation for the νµ → νµ oscillation signal

4.2.2 νµ Background

Backgrounds from neutrinos for νµ sample will be small, and these numbers are taken directly

from MC predictions. For the cosmic background, for both the νµ and νe background, we

use the dedicated cosmic sample, and scale the integral to be the same as the NuMI beam

window sideband.
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4.2.3 νµ → νe

There is no appeared νe signal in the ND, by definition, so all the νe signal in the FD come

from νµ in the ND. So, we use the same method as νµ → νµ method, where we use the

νµ → νe oscillation probability to correct the predicted νe FD sample with the data / MC

ratios from the νµ ND sample. The pµT samples are also used for this νµ → νe extrapolation.

4.2.4 νe Background

To constrain the FD νe background, we use the ND νe sample, which are all backgrounds

by definition in the FD. We break up the MC into true components of beam νe CC, νµ CC

and NC. We use different methods to correct the ratios of these component for the FHC and

RHC samples. In FHC, we use “Combo” decomposition, where we constrain each of these

components from different samples. For the intrinsic beam νe’s, we use details about the

parent mesons from the NuMI, and the νµ sample.

Most of the intrinsic beam νe’s come from the following decays:

π+ → νµ + µ+

µ+ → ν̄µ + e+ + νe

and

K+ → π0 + e+ + νe

K0
L → π− + e+ + νe

. The pion decays dominate the νµ energy events from 0 - 5 GeV, so we can use the ND

νµ sample to constrain the expected intrinsic νe beam background, which is dominated by
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the pion production at lower energies, then use the uncontained νµ sample candidates to

constrain the rate of the kaon decays. From there, the νµ CC to NC ratio is constrained

using the Michel electrons in bins where the Michel rates are significant.

For RHC, we use “proportional” decomposition, where rely more on the MC for the ratios

of the true backgrounds, and scale them to the observed ND νe sample.

4.3 Systematic Uncertainties

Overall, the systematics are mostly the same as those in the 2020 NOvA analysis, being

retuned in some parameters, with a few newly implemented systematics.

4.3.1 Detector Systematics

We have several systematics that describe uncertainties in detector response and calibration

that have been retuned with the new simulation [45].

The largest of these is the calibration energy scale, which we assume to be an uncertainty of

5% overall on the calibration scale. We include both an absolute calibration scale uncertainty,

where the FD and ND are assumed to be calibrated identically, and a relative calibration

uncertainty, where the FD and ND are assumed to be anticorrelated in calibration. We

also have an uncertainty on the calibration shape, which takes into accounts differences in

calibration in different parts of the detector. This was modeled assuming a linear difference

in shape over the detector, and then constrained by using data/MC differences.

We also have uncertainties on the Cherenkov light collection efficiency. The Cherenkov

collection efficiency is derived from light level tuning, and was estimated to be on the scale

of 6.2% with the current simulation. In addition to Cherenkov, we have a systematic on the
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light level, tuned in a similar way as Cherenkov, and determined to be 5%.

We include a detector aging systematic, which allows for a simple linear drift downward in

light level over time.

Lastly, we have a muon energy scale systematic, essentially constraining the expected length

for a track of a muon of known energy. There are separate overall uncertainties for the ND

and FD, as well as correlated and uncorrelated, and a separate factor for the muon catcher.

4.3.2 Cross Section Systematics

GENIE is the model we use for the generation of neutrino interactions [26]. GENIE has tun-

able parameters, which represent cross section parameters for the many different interaction

processes. We tune the central value of these knobs to be consistent with the data in our

ND. We then have systematic uncertainties in terms of these GENIE knobs, of which there

are 78 in total. By judging the size of the effects of each of the individual knobs on our final

sensitivities, we break up this list into “large” and “small”, where we leave the large knobs as

their own parameters in the fit, and throw the remaining into a principal component analysis

(PCA), described in the next section.

GENIE Principal Component Analysis (PCA)

The small GENIE knob PCA is repeated with the 2024 small GENIE knobs, in a analogous

fashion to the version done for the 2020 analysis [94], with similar results, but slightly faster

convergence [81].

Principle component analysis (PCA) is a way of linearizing the correlated effects of a list of

many variables. We use PCAs for NOvA systematic uncertainties with a large number of
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Figure 4.7: Illustration of principal component analysis (PCA), for a 2D Gaussian correlated
in the two directions. Image taken from reference [115].

correlated, small model parameters. PCAs can pick out the largest emergent effects of all of

the small knobs together, allowing us to reduce the dimensionality of the parameter space

and still retain most of the effects of the full model. The recipe to make a PCA is to find the

covariance matrix of all of the model parameters, then find the eigenvectors and eigenvalues

of the covariance matrix. The eigenvectors are the principal components (PCs), where the

eigenvalues are the effective sizes for each PC. An illustration of a PCA for a 2D correlated

Gaussian is shown in figure 4.7.

For our purpose, we make a “multiverse” of the systematic parameters for the analysis energy

spectra samples, i.e. we make many different possible spectra with random throws of all the

systematics in the list. We then find the bin by bin covariance matrix, and use this to find

the eigenvectors (the PCs) and eigenvectors. We rank the PCs by their eigenvalue, choosing

as few as are needed to capture the effects of the original multiverse. We scale up the chosen
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Coverage 2020 # 2024 #

90% 13 10
95% 19 16
99% 34 31
99.9% 66 60
99.99% 97 93

Table 4.1: Coverage of GENIE PCA by number of PCs

PCs by some amount to account for the full effect of the underlying systematic.

For the GENIE PCA, 1000 genie universes are generated using the “small” genie knobs, i.e.

the knobs not treated specifically in the fit. This list was the same as last analysis, with

updated knobs changed to their new version. The full list is 48 long. This list is made

by judging from the size of the shifts on the predictions from each of the GENIE knobs.

Roughly, a threshold of around χ2 ≥ 0.005 chooses the “large” knobs. However, the final

list was chosen to be mostly consistent with the 2020 analysis list, since there was no large

changes between Production 5 and 5.1. So, the newly added knobs were kept in the “large”

list, regardless of size, to have their impacts on the analysis more apparent.

The effects on the true energy spectrum on samples of true neutrino flavors are quantified,

and the bin by bin covariance matrix is found. The eigenvectors of this covariance matrix

are the principal components (PCs), and can be ranked in size by their eigenvalue.

The 1000 universe samples, along with their central value, and the ratio of the universes to

their central value, are shown in figure 4.8. Their bin by bin covariance matrix is shown in

figure 4.9. As with the 2020 analysis, the ND samples are suppressed so convergence focuses

on the FD samples, but the ND components are still carried through to the end. The first

4 principle components of this covariance matrix, ranked by eigenvalue, are shown in figure

4.12. The eigenvalue by PC number is shown in figure 4.10.

The coverage of the total variance by number of PCs is shown in figure 4.11, and numbers
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Figure 4.8: Effects of small GENIE knobs on PCA samples

Figure 4.9: Bin by bin covariance of GENIE PCA samples
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Figure 4.11: Coverage of total variance by largest GENIE PCs

required for certain thresholds listed in Table 4.1. The 2024 PCA in general seems to converge

slightly faster than in 2020. The PCs look roughly comparable to the corresponding 2020

PCs, seemingly capturing the same effects. The choice of number of PCs and amount of

upscaling is motivated by looking at the effect on sensitivities, in the next section.

As a standard check to see if the PCA correctly captures the effects of the underlying multi-

verse distribution, we compare the effects of the PCA and multiverse shifts on sensitivities.

To do this, we first choose fake data at some oscillation point, here the 2020 best fit point.
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(a) PC0 (b) PC1

(c) PC2 (d) PC3

Figure 4.12: First 4 GENIE PCs
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Figure 4.13: Sensitivity comparisons for GENIE PCA and the underlying multiverse, for 4
oscillation points

Then we look at the predictions at another oscillation point. We fluctuate the systematics at

this second point, either running a multiverse, or by fluctuating the PCA knobs by drawing

values from a normal distribution. We can scale up and down the PCA effects by multiplying

a number by the number drawn from the normal distribution. This is often needed to match

the PCA effects to the multiverse. We then take the χ2 between the fake data and this

second, systematically shifted point. We compare the distribution of the square root of χ2.

Figure 4.13 shows sensitivity comparisons with 8 PCs and 35% shift up. Adding more PCs

doesn’t further improve agreement, and reducing them degrades it, so this is the number of

PCs and scaling used for the analysis.
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4.3.3 Beam Flux and Focusing Systematics

Other systematic uncertainties with a large number of small parameters are the beam flux

and the beam focusing systematics, capturing effects of the NuMI beam modeling. These

systematics were implemented as one combined PCA in 2018 [93], and this scheme was again

used in 2020.

The flux and beam focusing PCA was also re-done for the production 5.1 samples used for

this 2024 analysis [81]. The results work out similarly, and we use the same 5 PCs and 25%

upscaling.

The procedure is unchanged from the 2018 analysis. The 100 flux universes are used with

20 beam focusing universes for each, creating 2000 flux and beam focusing universes. The

effects on the true energy spectrum on samples of true neutrino flavors are quantified, and

the bin by bin covariance matrix is found. The eigenvectors of this covariance matrix are

the principal components (PCs), and can be ranked in size by their eigenvalue.

The 2000 universe samples, along with their central value, and the ratio of the universes to

their central value, are shown in figure 4.14. Their bin by bin covariance matrix is shown in

figure 4.15. The ND samples are suppressed so convergence focuses on the FD samples, but

the ND components are still carried through to the end. The first 3 principle components of

this covariance matrix, ranked by eigenvalue, are shown in figures 4.17 - 4.19. The eigenvalue

by PC number is shown in figure 4.16.

As a standard check to see if the PCA correctly captures the effects of the underlying multi-

verse distribution, we compare the effects of the PCA and multiverse shifts on sensitivities,

just as was done for the GENIE PCA in the last section. This procedure showed the same

choice of PCs and scaling used in 2018 and 2020 are still reasonable.
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(a) (b)

Figure 4.14: Flux PCA samples along with the multiverse for flux and beam focusing in red
and the central value in black (a), and the ratio of the universes with their central value

(a) Bin by bin covariance of all PCA samples (b) Bin by bin covariance of F/N block

Figure 4.15: Bin by bin covariance of flux PCA samples
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Figure 4.16: Eigenvalue by number of Flux PC

Figure 4.17: Flux PC 0
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Figure 4.18: Flux PC 1

Figure 4.19: Flux PC 2
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4.3.4 Geant4Reweight Systematic

Geant4Reweight [40] is a powerful event reweighting framework which allows one to quantify

changes to Geant4 hadron modeling without the need to fully re-simulate. It assigns a weight

to an event after modifying the cross section for a given interaction type. For the interaction

steps, i, of a particle, each of length, Li, the weight will be

w =
σ′
N

σN

(
e−

∑N−1
i=1 σ′

iLi

e−
∑N−1

i=1 σiLi

)

where the cross sections σ′ indicate the new chosen cross section, and σN is the cross section

of the last step of the process, either survival or interaction. It treats inelastic interaction

types separately: absorption, quasi-elastic, charge exchange, double charge exchange, and

production.

Geant4Reweight was implemented into NOvA after the 2020 analysis [109]. Practically

speaking, it introduces 11 systematic knobs. There are 5 knobs for π−, 5 for π+, 1 for

protons, and one neutron knob, the effects of which weren’t fully understood, so it was

excluded.

The effects of these are implemented into the 3 flavor analysis as a PCA, following the usual

procedure, such as for the GENIE PCA. The main difference between this and the others

is that Geant4Reweight shouldn’t affect true energy. So instead of the PCA samples being

samples of true energy as for the flux and Genie PCAs, we here use the analysis samples of

reconstructed energy.

The Geant4Reweight universe samples, along with their central value, and the ratio of the

universes to their central value, are shown in figure 4.20. Their bin by bin covariance matrix

is shown in figure 4.21. A number of different multiverse sizes were tried. The first 3 principle

components of this covariance matrix, ranked by eigenvalue, are shown in figures 4.24 - 4.26.
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Figure 4.20: Geant4Reweight PCA Samples

Figure 4.21: Bin by bin Geant4Reweight PCA Sample covariance
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Figure 4.22: Ranked eigenvalues of Geant4Reweight PCA

The eigenvalue by PC number is shown in figure 4.22.

The coverage of the total variance by number of PCs is shown in figure 4.23, and numbers

required for certain thresholds listed in Table 4.2. The choice of final number of PCs and

upscaling factor required is chosen looking at sensitivities, see the next section.

As for the other two systematics implemented as a PCA, we check the number of required

PCAs and the scaling we need by looking at the effects of the PCA on the sensitivities,

Coverage #

90% 3
95% 4
99% 6
99.9% 9
99.99% 15

Table 4.2: Coverage of Geant4Reweight PCA by number of PCs
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Figure 4.23: Coverage of covariance by largest PCs of Geant4Reweight PCA

and compared that to the underlying multiverse. This procedure showed we need to use 3

PCs. 100% upscaling seems to be needed to appropriately match the underlying multiverse

distributions.

4.3.5 Other Systematics

NOvA also has a systematic on the cosmic scale, coming from the statistical uncertainty of

the cosmic sample used to make predictions. The cosmic statistics used were significantly

increased for the 2024 analysis, so the effect of the cosmic scale systematic has decreased.

A new systematic on neutron modeling was added, specifically implemented as an alternative

neutron carbon interaction model, MENTATE [59, 102]. Geant4 is normally used for neu-

tron simulation in NOvA, and this systematic quantifies the effect of using the alternative

MENATE model in its place.
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Figure 4.24: Geant4Reweight PCA PC 0

Figure 4.25: Geant4Reweight PCA PC 1

90



Figure 4.26: Geant4Reweight PCA PC 2

There are several other systematics in addition to those delved into above, such as normal-

ization systematics, Michel tagging, FD rock systematics, and matter density systematics.

The normalization systematic is the composite of multiple small systematics effects, such as

uncertainty in POT, differences in detector masses, and pileup of events in the ND.
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Chapter 5

Fit to Oscillation Parameters

5.1 The Likelihood Function

The log likelihood function for a set of neutrino oscillation parameters, θ⃗, and a set of

M systematic parameters, ϕ⃗, is given by equation 5.1 [13]. The likelihood function is, in

general, the probability of getting the measured data assuming some set of parameters of

the underlying model. The first term is the Poisson log likelihood, for N bins of energy,

applying Stirling’s approximation. ei(θ⃗, ϕ⃗) is the predicted energy bin value for bin i with

oscillation and systematic values θ⃗ and ϕ⃗. oi is the observed number of events in bin i. The

second term is the systematic pull term, coming from the normal log likelihood, with each

systematic term ϕk, normalized by the standard deviation of that pull term, σk.

−2 lnL(θ⃗, ϕ⃗) = −2
N∑

i=1

[
ei(θ⃗, ϕ⃗)− oi + oiln

oi

ei(θ⃗, ϕ⃗)

]
+

M∑

k=1

ϕ2
k

σ2
k

(5.1)

For the 2024 NOvA analysis, there are 4 oscillation parameters, included in the fit: sin2θ23,
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sin22θ13, ∆m2
32, and δCP . The number of systematic parameters, M, is 68.

Constraints for unmeasured oscillation parameters from solar and reactor neutrino experi-

ments are fixed to the following values [121]:

∆m2
21 = 7.53× 10−5eV2

sin2θ12 = 0.307

5.2 Frequentist Parameter Inference

Figure 5.1: Confidence belt for a distribution with underlying parameter µ and estimator x.
Image taken from Feldman-Cousins paper [61]

.
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In Frequentist statistics, we are interested in making confidence intervals for parameters of

interest using the data we measure. The general procedure will be outlined for a distribution

of one parameter for simplicity, but the method is easily generalized to any number of

parameters.

We consider a distribution P (x|µ). Here, x is a measured statistic, and µ is an underlying

parameter we want to infer. If we want to make a confidence interval of “confidence” α, for

each value of µ, we make an interval from some chosen c1 to c2 such that

α =

∫ c2

c1

P (x|µ)dx (5.2)

. See a visual representation of these intervals together in figure 5.1. To get the confidence

interval given a measurement x, you then take the interval of µ values contained within the

belts intersecting x, as also shown in figure 5.1.

This is the general procedure, but the choice of c1 and c2 for each µ has to be made. The

choice is in many situations obvious, such as for confidence intervals for the mean of a

Gaussian distribution when the standard deviation is known. Clearly here, for any mean µ,

we can choose c1 and c2 on either side of µ with equal distance from this mean. Or, if we

want a upper or lower limit, we can bring either c1 or c2 to ±∞ and let the other side float

to find the appropriate α.

The band also doesn’t need to be continuous. We can frame the problem of these belts to

any ordering principle which orders which values of x to add to the band first for a given

value of µ, adding more values of x until we reach α.
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5.2.1 The Feldman-Cousins Method

Choosing an ordering for confidence belts for the situation where your interval is near a

boundary in values is non-trivial. These include situations such as the rate parameter of

the Poisson distribution, or the standard deviation of the Gaussian, near 0. You may be

tempted to choose a central interval around the mean for values of the data where the

parameter doesn’t include zero, then switch to an upper limit in the case it does. This

method doesn’t work properly though, as can be seen by drawing the confidence belts for

this situation [61].

A unified method that will stitch these two situations together is often called the “Feldman-

Cousins” method. In this method, for a value of the underlying model µ, we choose which

x values to include in band by ordering them with the following metric:

R =
P (x|µ)
P (x|µ̂) (5.3)

where µ̂ is the value of µ that maximizes P (x|µ) for the given x.

5.2.2 Profiling

For making confidence regions of our Frequentist parameters of interest, we need a way of

dealing with nuisance parameters. For our uses, nuisance parameters include all parameters

we are not currently making confidence regions for, including all the systematic parameters,

as well as the other oscillation parameters. When creating the confidence regions for 2

oscillation parameters at a time, the other floating 70 parameters must be dealt with.

For this, we use the technique of “profiling” over the nuisance parameters [13]. This means

we choose values for the nuisance parameters where the likelihood is maximum. For every
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point of parameter space being fit to, θ⃗, we maximize the nuisance parameters, ϕ⃗:

ˆ̂
ϕ⃗ = argmaxϕ⃗L(θ⃗, ϕ⃗) (5.4)

where note here θ⃗ and ϕ⃗ are the fit and nuisance parameters, not the oscillation and system-

atic parameters as before.

The Feldman-Cousins ordering now becomes

R =
L(θ⃗,

ˆ̂
ϕ⃗)

L(ˆ⃗θ, ˆ⃗ϕ)
(5.5)

where it’s important to note the bottom is the maximum over all parameter space, where in

the top, ϕ⃗ is maximized for each θ⃗ individually.

5.2.3 Computational Considerations

Wilks’ theorem [116] can be used as an approximation to compute the log likelihood values

at different fit parameter points, as it shows the likelihood ratio asymptotically becomes

a χ2 distribution, allowing one to calculate thresholds for different confidence values at fit

parameter points quickly. The conditions for Wilks’ theorem to be accurate aren’t met

for our fit though, since we have relatively small sample sizes and boundaries in our fit

parameters.

For this reason, using Wilks’ theorem can give a quick approximate Frequentist fit, but a

more accurate fit requires simulating large numbers of pseudo-experiments to get the more

accurate distribution of confidence thresholds. Running the full Feldman-Cousins corrections

with profiling for a fit to NOvA’s oscillation parameters is therefore a very computationally

expensive procedure, which is run on high performance computing (HPC) resources at the
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National Energy Research Scientific Computing Center (NERSC) [107].

5.3 Bayesian Parameter Inference

In Bayesian statistics, we infer the parameters of our model (here called ‘θ’, which can be

multidimensional) using data (‘x’, also possibly multidimensional) using Bayes’ rule:

p(θ|x) = p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ (5.6)

. Here, p(x|θ) is our model, and p(θ|x) is our “posterior”, which is the probability density

of the parameters of the model, given the data we observed. We also need to specify p(θ),

called the “prior”, which represents our knowledge of the model before the data. We can

put information we already know about the model in the prior, or use an “uninformative”

prior, which can be a uniform in the parameter you’re trying to measure. In general, for a

prior with a non-zero density at all allowable points of the parameter space, the choice of

prior won’t matter in the high statistics limit.

Note the bottom term is independent of θ, and serves as a normalization factor. Many texts

therefore drop the bottom factor, and write Equation 5.6 as:

p(θ|x) ∼ p(x|θ)p(θ) (5.7)

.

Also note the radically different interpretation than Frequentist statistics. Here in Bayesian

statistics, we can talk freely about the probability that the parameters are in some range,

and also transform the posterior to give the posterior of a related parameter.

Another large difference in Bayesian statistics is the treatment of nuisance parameters. In-

97



stead of profiling as is common in Frequentist statistics, Bayesian statistics marginalizes out

nuisance parameters from the posterior distribution. If θ is our parameter of interest, and

λ is a nuisance parameter, so the joint posterior is p(θ, λ|x), then we marginalize over the

parameter λ by integrating over it:

p(θ|x) =
∫

p(θ, λ|x)dλ (5.8)

5.3.1 Bayesian Hypothesis Testing

Bayesian hypothesis testing differs significantly from that of Frequentist statistics. Say we

have two possible models, H0 and H1. The probability of a model could be given in the

standard way as in Equation 5.6, where θ is instead here discrete, and the integral on the

bottom becomes a sum. The issue with this is that the probability of a model given the

data, such as P (H0|x), will be dependent on the priors. Also, there may be many different

models, and we only want to compare two, H0 and H1.

So instead, it often useful to find the “Bayes Factor” [68], here called BF10:

BF10 =
P (x|H1)

P (x|H0)
(5.9)

. Note this will be the same as the ratios of their posterior probabilities assuming they have

the same prior. This represents effectively the ratio of the evidence from the data for H1

compared to H0.

For hypotheses with models with ranges of continuous parameters, the Bayes factor becomes

BF10 =

∫
p(θ1|H1)p(x|θ1, H1)dθ1∫
p(θ0|H0)p(x|θ0, H0)dθ0

(5.10)
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. For the results of the NOvA oscillation analysis, we can express the mass ordering and

octant preference with a posterior probability assuming the priors of the two are the same,

as well as the corresponding Bayes factor.

5.3.2 Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) is a method for inferring the posterior distribution of

Bayesian parameters of interest. A Markov Chain is a series of objects where the next object

of the chain is chosen from a probability distribution based on the last object, making a

“chain” of sampled points. There are a number of MCMC algorithms that efficiently sample

from any probability distribution based on a prescribed set of rules for choosing the next

point based on the last point. By using MCMC to sample a large number of points from a

Bayesian posterior, we can recreate its shape.

To sample from our oscillation parameter space, we sample from the joint posterior of all

oscillation and systematic parameters simultaneously. To marginalized over the parameters

not included in a particular result being shown, you simply drop the parameters you’re

not interested in from the chains. They’re implicitly marginalized over this way, as the

frequency of that parameter’s occurrence in its respective phase space will weight the chain

appropriately.

MCMC chain length must be sufficiently long so the chain has ample time to explore the

entire phase space of the target distribution. The start point of the chain isn’t important,

as the chain should “fall into” the distribution over time. The beginning values of the chain

may be biased though, before it has “found” the distribution, so it’s common to remove

some segment of the beginning of the chain, usually called “burn-in”.
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Credible Intervals

To make intervals like confidence intervals from Frequentist statistics, called “credible” inter-

vals in Bayesian statistics, you bin the values sampled from the posterior. You then choose

the appropriate number of bins necessary to reach the desired level of confidence, i.e., you

add bins to the credible interval until the desired percent of probability of the posterior is

contained.

There are numerous schemes for deciding the ordering of which bins to add first. We use the

method of adding bins by largest to smallest value, which will in general give the smallest

region. This method doesn’t guarantee a contiguous region, as is apparent by looking at

the results from later sections, but you can choose a scheme that does, such as choosing a

central region, if a single contiguous region is needed or wanted.

Importance Sampling

Importance sampling is a powerful method that allows samples drawn from one distribution

to be weighted to reflect another distribution. For our purposes in MCMC, this means

that MCMC samples drawn sampled from a posterior using one prior can be individually

reweighted to represent the posterior with another choice of prior. Therefore, we can create

MCMC chains with one prior, and reweight them after, to give the distribution for a different

prior.

If we drew samples with an original prior in a variable x, p(x), and we want to reweight

to represent a posterior with a different prior p′(x), then we weight each of the draws of a

sample, i, with value, xi, with weight
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p′(xi)

p(xi)
(5.11)

.

5.3.3 NOvA’s MCMC Implementations

NOvA has implemented two MCMC algorithms: Metropolis and Hamiltonian Monte Carlo

(HMC) [14]. The Metropolis-based sampler was implemented from scratch, and named

ARIA. The HMC sampler uses an external library, called Stan, and has implemented an

interface to it into NOvASoft.

ARIA

The Metropolis algorithm is a remarkably simple yet powerful algorithm. To sample a new

point based on a previous point, we first choose a candidate point from a symmetric proposal

distribution, the most common choice being the multivariate Gaussian. This proposed point

is “accepted” with probability Min[P (x′)
P (x)

, 1]. Otherwise, the previous point is kept as the

new point. An illustration of this process for a 1 dimensional Gaussian distribution is shown

in figure 5.2.

NOvA’s implementation is called ARIA, named after Arianna W. Rosenbluth, who wrote

the first computer implementation of the method [91]. ARIA was originally developed for

use in the NOvA-T2K joint fit [113].
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Figure 5.2: An illustration of the Metropolis algorithm. Image taken from external reference
[89].

Stan

Stan [41] is a framework that implements the No U-Turn Sample (NUTS) [76], which is an

adapted version of Hamiltonian Monte Carlo (HMC) [56]. HMC is a sophisticated algorithm

that chooses a next point by simulating a particle through a potential defined as a function

of the target probability distribution. It simulates the particle “falling” through the distri-

bution. NUTS adapts this, simulating the particle moving both forward and backward in

time, and adds a mechanism where it stops when the particle makes a “U-Turn”, which is

when it stops and starts moving in the opposite direction. It then chooses a point randomly

along this path it has drawn out. The point is then accepted or rejected, in a similar fashion

to Metropolis.

This complicated algorithm has a distinct advantage over Metropolis, in that adjacent points

in the chain are significantly less correlated between one another, and the algorithm can

explore the parameter space far more efficiently.
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Mass Ordering Switching

The mass ordering is a more complicated consideration than other continuous parameters for

MCMC. Typically, MCMC will have a difficult time getting from the “island” of one mass

ordering to the other, so an MCMC chain started in one will stay in that mass ordering for the

whole chain. For ARIA, with the Metropolis algorithm, this is simply solved by introducing

a binary mass ordering parameter, where when choosing new proposed parameters, you also

have a chance of proposing a mass ordering switch, where then the proposed point has a

chance to switch ordering by the normal rules of the Metropolis algorithm.

For Hamiltonian Monte Carlo which Stan uses, discrete parameters are more awkward to

handle, as you can’t differentiate along this parameter. For this, we do what is often done

with discrete parameters in HMC, which is to use another MCMC algorithm to handle this

parameter [38]. Here we use the Metropolis algorithm we use for ARIA for the mass ordering,

where after the HMC is done for other parameters, we propose a mass ordering flip, and

then accept or reject it based on the normal rules of the Metropolis algorithm.

Computational Considerations

MCMC methods has distinct computational advantages over the Frequentist fit. Since many

chains can be run independently to get large statistics, we can get sufficiently large MCMC

samples from running many chains in parallel on FermiGrid [49]. Large enough samples can

be generated in 1-2 days, as opposed to the full Feldman-Cousins corrected Frequentist fit,

which takes ∼weeks to run on NERSC.

Also, the Frequentist confidence intervals must be run separately for each parameter space,

such as δCP vs sin2θ23 and sin2θ23 vs ∆m2
32. In contrast, MCMC only has to be run once,

then the chains can be marginalized over any set of parameters after, getting posteriors in
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any parameter space you want without needing to re-run MCMC.

Debugging MCMC can be more complicated than Frequentist fits, though, as it’s a stochastic

process, unlike Frequentist fits where each step can be checked in a more straightforward way.

For this reason, we have a number of numerical diagnostics that validate MCMC is operating

as expected, as well as the two independent MCMC implementations which validate against

each other. Validation is the topic of section 5.3.4.

5.3.4 Validation of NOvA’s Samplers

Diagnostics

MCMC is a very powerful method, but can be difficult to diagnose and validate compared

to Frequentist methods of fitting. For this reason, many methods have been developed to

validate MCMC methods. The most simple of these is simply to look at the “traces” of

MCMC chains, which is simply plotting the value of one parameter from a chain against the

step of the chain. This will help show you whether or not you have removed enough burn-in,

and if you haven’t you may see the beginning of the trace will look visibly different from the

rest.

An example of traces from ARIA for oscillation parameters is show in figure 5.3 Notice

the beginning of the traces are distinctly different from later aspects of it, which can help

motivate the choice of how much burn in you need. For ARIA, we settled on a burn-in of

100,000 for this 2024 analysis.

Another standard diagnostics is the autocorrelation, rk, defined as

rk =

∑n−k
i=1 (θi − θ)(θi+k − θ)∑n

i=1(θi − θ)2
(5.12)
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Figure 5.3: Traces of oscillation parameters from MCMC sampler ARIA

can roughly be thought of as the correlation between elements of the chain with the elements

k later [38]. An example of this for the oscillation parameters from ARIA can be seen in

figure 5.4. Notice how rk starts around 1, then drops to 0 at higher lag.

Lastly, you can look at R̂ to monitor the convergence of the chains. R̂ will drop to 1 as

chain length goes to infinity, and will tell you if the chain length chosen is long enough [68].

The R̂ should be below 1.05, and ideally mostly under 1.01. R̂ for each of 500 Stan chains is

tabulated and shown in figure 5.5 Note around 10 of the 500 chains have a slightly elevated

R̂ for ∆m2
32.
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Figure 5.4: Autocorrelation of oscillation parameters from MCMC sampler ARIA

Stan-ARIA Comparisons

Another powerful validation method is provided by our two MCMC implementations. The

samplers are implemented entirely separately, with one being external to NOvA altogether,

so agreement between them strongly backs up their validity.

Figure 5.6 shows Stan - ARIA comparisons for Asimov fake data at the 2020 best fit point.

The comparisons show great agreement.
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Figure 5.5: R̂ for 500 Stan chains from a fake data fit, for each oscillation parameter. The
left most bin represents R̂ of all chains together, which the other bins are the per chain R̂.
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Figure 5.6: ARIA and Stan comparisons for Asimov fake data at the 2020 NOvA best fit
point
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Asimov Point ∆m2
32(×10−3eV2) sin2θ23 δCP Description

A 2.41 0.57 0.82π 2020 NOvA Best Fit
B 2.51 0.53 1.50π Near T2K’s 2020 Best Fit
C -2.45 0.50 1.5π Near Global Fitter Preference
D 2.40 0.46 1.0π LO and CP Conserving
E -2.44 0.46 0.5π Far From NOvA’s Preferred Region

Table 5.1: Standard “Asimov Points” chosen to test NOvA fitters for this analysis

5.3.5 Reactor Constraints

Traditionally, both in the Frequentist analyses and the first Bayesian analysis, NOvA intro-

duces a constraint on sin2(2θ13) from the latest high-precision reactor experiment. For the

2024 NOvA result, we use Daya Bay’s latest measurement [25]. For the Bayesian analysis,

this is implemented as a normal prior on sin2(2θ13) using their measurement. We call this

the “1D” reactor constraint (or Daya Bay constraint).

Besides a measurement of sin2(2θ13) alone, Daya Bay also reports their results in sin2(2θ13)

vs ∆m2
32, which are reported separately for normal and inverted ordering hypotheses, shown

in figure 5.7. Daya Bay is not sensitive to the mass ordering itself, that is the sign of

∆m2
32, but we can use the information in this 2D reactor constraint in each mass ordering

to further constrain the mass ordering in NOvA. This is implemented as an alternative prior

on sin2(2θ13) vs ∆m2
32. We call this the “2D” reactor constraint (or Daya Bay constraint).

With importance sampling, it is easy for us to sample with a prior flat in sin2(2θ13), then

reweight the events later to get the results for the 1D and 2D reactor constraint without

needing to resample
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(a) (b)

Figure 5.7: sin2(2θ13) vs ∆m2
32 contours from Daya Bay, in normal (a) and inverted (b)

orderings, taken from reference [48]

5.3.6 Fake Data Fits

For the 2024 NOvA analysis, we used a set of standard test oscillation parameter point to

test fitters [46]. Their names and parameters are listed in Table 5.1, as well as a description

justifying its choice.

For these fake data studies, we will use “Asimov” fake data, in which the fake data is the

average fake data you get for a choice of oscillation parameters. That is, the bin values of

energy spectra are the expectation value of the oscillation parameter, and don’t include the

Poisson fluctuations in each bin. Studies with the Poisson fluctuations in each bin can also

be done, but note there are many different Poisson fluctuated fake datasets for the same

oscillation point, where the Asimov fake data used here is their average value.
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The reactor and solar parameter values will be kept constant between different points:

∆m2
21 = 7.53× 10−5eV2

sin2θ12 = 0.307

sin2θ13 = 2.20× 10−2

The Asimov fake data fits here are with 12.5M Stan samples, which isn’t as high statistics

as you’d like for the full data fits and may be jagged in places, but it’s more than enough to

make conclusions about the points of interest.

Asimov A – No reactor constraint

The NOvA 2020 best fit point, Asimov A, is the most common Asimov point to look at as

it gives the best guess as what our results may look like. With no reactor constraint, the

prior in sin2(2θ13) is flat, and this shows us how well NOvA can measure these parameters

with NOvA data only.

Various 1D and 2D posterior densities are shown in figures 5.8 - 5.14. Notice in 5.8 how NO

and IO prefer differing regions of δCP , see figure 2.12.

For 5.9, it can be seen that the lower octant of θ23 is preferred. This is true only with

the reactor constraint, and the reason why can be seen in figure 5.12. The Daya Bay θ13

measurement is shown overlapping the 2D posterior, and it becomes clear the upper octant is

more consistent with the reactor measurement. For ∆m2
32, NO is preferred but only slightly.
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Figure 5.8: δCP with no reactor constraint applied, with fake data drawn from Asimov A

0.35 0.4 0.45 0.5 0.55 0.6 0.65

23θ2sin

0

0.005

0.01

0.015

0.02

P
os

te
rio

r 
de

ns
ity

Both MO

NOvA Fake Data

σ1

σ2

σ3

No Daya Bay constraint
Bayesian Cred. Int.

0.35 0.4 0.45 0.5 0.55 0.6 0.65

23θ2sin

0

0.002

0.004

0.006

0.008

0.01

0.012

P
os

te
rio

r 
de

ns
ity

over orderings, Normal MO
Marginalized jointly

NOvA Fake Data

σ1

σ2

σ3

No Daya Bay constraint
Bayesian Cred. Int.

0.35 0.4 0.45 0.5 0.55 0.6 0.65

23θ2sin

0

0.002

0.004

0.006

0.008

P
os

te
rio

r 
de

ns
ity

over orderings, Inverted MO
Marginalized jointly

NOvA Fake Data

σ1

σ2

σ3

No Daya Bay constraint
Bayesian Cred. Int.

Figure 5.9: sin2θ23 with no reactor constraint applied, with fake data drawn from Asimov A
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Figure 5.10: sin22θ13 with no reactor constraint applied, with fake data drawn from Asimov
A
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Figure 5.11: ∆m2
32 with no reactor constraint applied, with fake data drawn from Asimov A
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Figure 5.12: sin2θ23 vs sin22θ13 with no reactor constraint applied, with fake data drawn
from Asimov A
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Figure 5.13: sin2θ23 vs ∆m2
32 with no reactor constraint applied, with fake data drawn from

Asimov A
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Figure 5.14: δCP vs sin2θ23 with no reactor constraint applied, with fake data drawn from
Asimov A

114



Asimov A – 1D reactor constraint

Figures 5.15 - 5.19 show various posteriors with the traditional 1D reactor constraint applied

as a prior. Figure 5.15 shows δCP doesn’t change significantly after applying this constraint.

θ23 on the other hand does see a significant shift towards upper octant, as discussed in the

no reactor constraint section. ∆m2
32 also sees a significant shift towards normal ordering.
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Figure 5.15: δCP with the 1D reactor constraint applied, with fake data drawn from Asimov
A
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Figure 5.16: sin2θ23 with the 1D reactor constraint applied, with fake data drawn from
Asimov A
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Figure 5.17: ∆m2
32 with the 1D reactor constraint applied, with fake data drawn from Asimov

A
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Figure 5.18: sin2θ23 vs ∆m2
32 with the 1D reactor constraint applied, with fake data drawn

from Asimov A

CPδ

0.4

0.5

0.6

23θ2
si

n

0
2
π π

2
π3 π2

Both MO

NOvA Fake Data

σ1 σ2 σ3

With 1D Daya Bay constraint
Bayesian Cred. Int.

CPδ

0.4

0.5

0.6

23θ2
si

n

0
2
π π

2
π3 π2

over orderings, Normal MO
Marginalized jointly

NOvA Fake Data

σ1 σ2 σ3

With 1D Daya Bay constraint
Bayesian Cred. Int.

CPδ

0.4

0.5

0.6

23θ2
si

n

0
2
π π

2
π3 π2

over orderings, Inverted MO
Marginalized jointly

NOvA Fake Data

σ1 σ2 σ3

With 1D Daya Bay constraint
Bayesian Cred. Int.

Figure 5.19: δCP vs sin2θ23 with the 1D reactor constraint applied, with fake data drawn
from Asimov A
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Asimov A – 2D reactor constraint

Figures 5.20 - 5.24 show Asimov A fake data fits, this time with the 2D reactor constraint.

The IO model has even more tension with Daya Bay in this full phase space, pushing even

further towards NO. The octant on the other hand becomes less decisive, with a small move

back towards lower octant when compared with the 1D reactor constraint.
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Figure 5.20: δCP with the 2D reactor constraint applied, with fake data drawn from Asimov
A
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Figure 5.21: sin2θ23 with the 2D reactor constraint applied, with fake data drawn from
Asimov A
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Figure 5.22: ∆m2
32 with the 2D reactor constraint applied, with fake data drawn from Asimov

A
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Figure 5.23: sin2θ23 vs ∆m2
32 with the 2D reactor constraint applied, with fake data drawn

from Asimov A
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Figure 5.24: δCP vs sin2θ23 with the 2D reactor constraint applied, with fake data drawn
from Asimov A
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Asimov B

Asimov B is fairly close to Asimov A, except ∆m2
32 is somewhat higher, sin2θ23 is slightly

lower towards max mixing, and the largest difference is δCP which is all the way at 3π
2
, a

region disfavored by NOvA for the NO model, but the best fit point for T2K.

The fake data fits for Asimov B are shown in figures 5.25 - 5.31. The most striking detail

is the order preference, where NO is now highly preferred. Many IO plots look quite jagged

do to lack of statistics. With 2D reactor constraint here, we see a NO preference of 99.98 %,

over 3 σ.

Besides the large order preference, the same region of δCP is preferred now in both NO and

IO as seen in figure 5.25. A fairly strong upper octant preference is shown in figure 5.26.

A normal ordering preference is shown before the reactor constraint, but figure 5.29 shows

why the reactor constraint further strengthens the NO preference, as the reactor θ13 value

ends up far outside the IO posterior.
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Figure 5.25: δCP with the 1D reactor constraint applied, with fake data drawn from Asimov
B
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Figure 5.26: sin2θ23 with the 1D reactor constraint applied, with fake data drawn from
Asimov B
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Figure 5.27: sin22θ13 with no reactor constraint applied, with fake data drawn from Asimov
B
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Figure 5.28: ∆m2
32 with the different reactor constraints applied, with fake data drawn from

Asimov B
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Figure 5.29: sin2θ23 vs sin22θ13 with no reactor constraint applied, with fake data drawn
from Asimov B
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Figure 5.30: sin2θ23 vs ∆m2
32 with the 1D reactor constraint applied, with fake data drawn

from Asimov B
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Figure 5.31: δCP vs sin2θ23 with the 1D reactor constraint applied, with fake data drawn
from Asimov B
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Asimov C

Figures 5.32 - 5.38 show fake data fits at Asimov C, near the global fitter preferred region

in the IO, with δCP being 3π
2
. θ23 is at the max mixing point.

Here, δCP in figure 5.32 looks like Asimov A, where NO and IO prefer opposite regions,

because in NO and IO, values of δCP prefer opposite sides of νe - ν̄e count space, see figure

2.12. Also, mass ordering is poorly differentiated, as can be seen in figure 5.35. NO/IO

are in comparable proportion for no reactor constraint and the 1D reactor constraint, and

NO is actually preferred more strongly with the 2D reactor constraint. The reason for this

unexpected feature is because the assumed (negative) value of ∆m2
32 in Asimov C is in

tension with the preferred value of ∆m2
32 in Daya Bay’s sin2(2θ13) vs ∆m2

32 surface in the

IO.
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Figure 5.32: δCP with the 1D reactor constraint applied, with fake data drawn from Asimov
C
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Figure 5.33: sin2θ23 with the 1D reactor constraint applied, with fake data drawn from
Asimov C
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Figure 5.34: sin22θ13 with no reactor constraint applied, with fake data drawn from Asimov
C
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Figure 5.35: ∆m2
32 with the different reactor constraints applied, with fake data drawn from

Asimov C
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Figure 5.36: sin2θ23 vs sin22θ13 with no reactor constraint applied, with fake data drawn
from Asimov C
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Figure 5.37: sin2θ23 vs ∆m2
32 with the 1D reactor constraint applied, with fake data drawn

from Asimov C
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Figure 5.38: δCP vs sin2θ23 with the 1D reactor constraint applied, with fake data drawn
from Asimov C
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Asimov D

Asimov D fake data fits are in figures 5.39 - 5.45. Asimov D is a point in the lower octant

and a CP conserving value of δCP .

δCP is similar in preferred region to Asimov A, with separate preferred spaces for δCP in NO

and IO assumptions. The posterior peaks around 1.0π in NO, the “correct” Asimov point.

In figure 5.40, you see θ23 prefers the lower octant in both NO and IO

For figure 5.42, we see the mass ordering prefers the NO with no reactor constraint, which

gets slightly weaker actually with the 1D constraint, but adding the ∆m2
32 information as

well in the 2D reactor constraint pushes things to a fairly strong NO preference.
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Figure 5.39: δCP with the 1D reactor constraint applied, with fake data drawn from Asimov
D
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Figure 5.40: sin2θ23 with the 1D reactor constraint applied, with fake data drawn from
Asimov D
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Figure 5.41: sin22θ13 with no reactor constraint applied, with fake data drawn from Asimov
D
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Figure 5.42: ∆m2
32 with the different reactor constraints applied, with fake data drawn from

Asimov D
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Figure 5.43: sin2θ23 vs sin22θ13 with no reactor constraint applied, with fake data drawn
from Asimov D
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Figure 5.44: sin2θ23 vs ∆m2
32 with the 1D reactor constraint applied, with fake data drawn

from Asimov D
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Figure 5.45: δCP vs sin2θ23 with the 1D reactor constraint applied, with fake data drawn
from Asimov D
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Asimov E

The last Asimov point we consider, E, is far from NOvA’s preferred region, being in the IO,

lower octant, with δCP being π
2
(which is an unfavored region for IO normally), shown in

figures 5.46 - 5.52. We see this point, like B, has low statistics in one of the mass orderings,

this time in NO, with a strong IO preference. Figure 5.49 shows this IO preference, which

strengthens with the the 1D reactor constraint, the reason for which is shown by figure 5.50.

Here the 1D Daya Bay band is far from the preferred region NO region. The preference

shrinks with the 2D Daya Bay constraint, where Daya Bay’s preferred ∆m2
32 point is fairly

far from the Asimov point.

For δCP , figure 5.46 shows both NO and IO plots have posteriors that prefer this “correct”

δCP region. Figure 5.47 shows a relatively strong preference for the lower octant in both

mass orderings, near the Asimov point.
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Figure 5.46: δCP with the 1D reactor constraint applied, with fake data drawn from Asimov
E
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Figure 5.47: sin2θ23 with the 1D reactor constraint applied, with fake data drawn from
Asimov E
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Figure 5.48: sin22θ13 with no reactor constraint applied, with fake data drawn from Asimov
E
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Figure 5.49: ∆m2
32 with the different reactor constraints applied, with fake data drawn from

Asimov E

0.4 0.5 0.6

23θ2sin

0

0.05

0.1

0.15

0.2

0.25

13θ22
si

n

Both MO

NOvA Fake Data

σ1 σ2 σ3 Reactor

No Daya Bay constraint
Bayesian Cred. Int.

0.4 0.5 0.6

23θ2sin

0

0.05

0.1

0.15

0.2

0.25

13θ22
si

n

over orderings, Normal MO
Marginalized jointly

NOvA Fake Data

σ3 Reactor

No Daya Bay constraint
Bayesian Cred. Int.

0.4 0.5 0.6

23θ2sin

0

0.05

0.1

0.15

0.2

0.25

13θ22
si

n
over orderings, Inverted MO
Marginalized jointly

NOvA Fake Data

σ1 σ2 σ3 Reactor

No Daya Bay constraint
Bayesian Cred. Int.

Figure 5.50: sin2θ23 vs sin22θ13 with no reactor constraint applied, with fake data drawn
from Asimov E
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Figure 5.51: sin2θ23 vs ∆m2
32 with the 1D reactor constraint applied, with fake data drawn

from Asimov E
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Figure 5.52: δCP vs sin2θ23 with the 1D reactor constraint applied, with fake data drawn
from Asimov E
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Chapter 6

2024 NOvA Results

6.1 Event Counts and Spectra

The 2024 analysis results were first presented at Neutrino 2024 [117]. Table 6.1 shows the

observed event counts for all samples, compared to the prediction numbers at the Frequentist

best fit oscillation point. For the νµ and ν̄µ samples, the predicted rates of background are

low, with the largest other channel being the wrong sign channel. For the νe and ν̄e samples,

the backgrounds are larger, coming from the beam νe’s, NC, and cosmics, in order of largest

to smallest. Lastly, for the new low E νe sample, it’s predicted to be dominated by NC

backgrounds.

Figure 6.1 shows the spectrum of selected νµ CC events for FHC and RHC and figure 6.2

shows these same spectra broken up by hadronic energy fraction quartile. Figure 6.3 shows

the spectrum of selected νe CC events for FHC and RHC, for the core, peripheral, and low

energy samples (FHC only).
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Neutrino Beam Anti-neutrino Beam

νµ νe LowE νe ν̄µ ν̄e

νµ →νµ 372.7 4.0 0.3 24.7 0.2
–νµ →–νµ 24.7 0.1 0.0 71.8 0.2
νµ →νe 0.4 121.6 2.9 0.0 2.1
–νµ →–νe 0.0 1.7 0.1 0.0 18.2
Beam νe +

–νe 0.1 26.3 0.8 0.0 6.5
NC 5.5 16.3 5.0 0.8 2.0
Cosmic 4.6 5.7 0.5 0.7 1.1
Others 1.5 0.8 0.1 0.2 0.1

Signal 398.2 121.6 2.9 96.7 18.2
Background 11.3 54.9 6.8 1.7 12.2

Best fit 409.5 176.5 9.7 98.4 30.4
Observed 384.0 169.0 12.0 106.0 32.0

Table 6.1: The observed and predicted νµ(ν̄µ) disappearance and νe(ν̄e) appearance event
counts at the Far Detector
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Figure 6.1: νµ sample predictions shown at analysis best fit point, overlaid with data, with
hadronic energy fraction quartiles combined, FHC (left) and RHC (right)
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Figure 6.2: νµ sample predictions shown at analysis best fit point, overlaid with data, FHC
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6.2 Frequentist Results

Figure 6.4 shows the best fit points of the 2024 NOvA Frequentist fit. Note the best fit point

is again in the upper octant (UO) and normal ordering (NO). The δCP best fit is at 0.875π,

close to the NOvA 2020 point. See section 6.2.2 for an illustration of different δCP values

compared to our νe event rates.

Also shown are the preferences for NO with both the 1D and 2D reactor constraint. We see

with the normal 1D reactor constraint, we have a mild preference at 1.36 σ for the NO. The

preference slightly strengthens if we use the 2D reactor constraint instead to 1.57 σ.

Parameter Best-fit Normal Ordering Preference (σ)

sin2 (θ23) 0.546+0.032
−0.075

W/ 1D Daya Bay
constraint

p-value 0.1731
1.36σ

∆m2
32

(
10−3 eV2

)
2.433+0.035

−0.036
W/ 2D Daya Bay

constraint
p-value 0.1158

1.57σδCP (π) 0.875

Figure 6.4: Frequentist best fit values for oscillation parameters, and preferences for NO,
with 1D and 2D Daya Bay constraint

Figure 6.5 shows the Feldman-Cousins corrected sin2θ23 vs ∆m2
32 contours for the NO, with

the standard 1D reactor constraint. The surface is mostly in the same region as the 2020

analysis, but tighter in both dimensions. Figure 6.6 shows the 90% surface compared to

other experiments. It falls right in line with other experiments surfaces, with no obvious

tensions.

At the time of writing, the Feldman-Cousin corrected sin2θ23 vs ∆m2
32 IO contours, and the

δCP vs sin2θ23 contours were not finished running on NERSC, so only the Bayesian results

are available for these (see section 6.3).
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Figure 6.5: NO sin2θ23 vs ∆m2
32 Frequentist contours

6.2.1 Effects of Systematics

Figure 6.7 shows the uncertainties of various groups of systematics on the 3 oscillation

parameters of interest at the Frequentist best fit point. Like previous analyses, detector

calibration remains NOvA’s largest uncertainty. For sin2θ23, the detector calibration error

bar is much larger than the others, with the uncertainty pulling mostly left, towards the LO.

Statistical uncertainty dominates uncertainties here. For ∆m2
32, the error bars are mostly

symmetric, with detector calibration not as dominant compared to other systematic groups.

Systematics have a larger relative effect compared to statistical uncertainty here. Lastly, for

δCP , the error bars on the systematic groups pull mostly left, closer to max CP violation.

6.2.2 Bi-Event Plot

Figure 6.8 shows the expected νe vs ν̄e event counts for different values of δCP , shown as

ellipses, the upper and lower octant best fits, and the NO and IO best fits. NOvA remains in
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Figure 6.7: Uncertainties of oscillation parameters at best fit point in the Frequentist fit

a degenerate region, consistent with both octants and mass orderings, with a slight preference

for the NO.
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No Constraint 1D Constraint 2D Constraint

Prob BF Prob BF Prob BF

Upper Octant Preference 57% 1.3 69% 2.2 67% 2.0
Normal Ordering Preference 69% 2.2 76% 3.2 87% 6.8

Table 6.2: Probabilities and corresponding Bayes’ factors for upper octant and normal or-
dering preference with various Daya Bay constraints

6.3 Bayesian Results

The probabilities and corresponding Bayes factors for ordering and octant preference from

Bayesian MCMC sampling are shown in Table 6.2. For octant preference, NOvA shows a

slight preference for the upper octant, which is strongest with the 1D reactor constraint,

and gets slightly weaker with the 2D reactor constraint. These results show a noteworthy

preference for the normal ordering, which is strongest with the 2D reactor constraint, at

87%.

6.3.1 Oscillation Parameters – No reactor constraint

NOvA-only fits for oscillation parameters are shown in Figures 6.9 - 6.12.

The NOvA only measurement of sin2(2θ13) is shown in figure 6.9. The Daya Bay value is at

0.0851± 0.0024, more consistent with the NO than the IO, which can be seen as the reason

for the shift towards NO preference with the 1D reactor constraint shown in Table 6.2.

Figure 6.10 shows sin2θ23 with no Daya Bay constraint. Note although there is still an overall

preference for sin2θ23 > 0.5, the highest posterior density point is in the lower octant. This

is not the case with reactor constraints applied, and figure 6.11 illustrates why, as the Daya

Bay value is more consistent with the upper octant in sin2θ23 vs sin2(2θ23) space.
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Figure 6.9: sin22θ13 with no reactor constraint applied
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Figure 6.10: sin2θ23 with no reactor constraint applied

Lastly, figure 6.12 shows the NOvA-only sin2(2θ13) vs ∆m2
32 posterior against Daya-Bay’s

2D contours used for the 2D reactor constraint. It shows that not only does IO have a slight

tension with Daya Bay in sin2(2θ13), but also in the ∆m2
32 direction, which gives the 2D

reactor constrain the largest mass ordering preference.
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Figure 6.11: sin2θ23 vs sin22θ13 with no reactor constraint applied
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Figure 6.12: sin22θ13 vs ∆m2
32 posterior, for NO and IO, compared to Daya Bay contours

used for the 2D reactor constraint [25].
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HPD
Both MO Normal MO Inverted MO

δCP 0.93π 0.93π 1.49π
sin2θ23 0.54 0.55 0.54

∆m2
32(×10−3 eV2) – 2.42 -2.47

Table 6.3: Highest Posterior Density (HPD) points for oscillation parameters with the 1D
Daya Bay constraint applied

6.3.2 Oscillation Parameters – 1D reactor constraint

The fits for the oscillation parameters applying the 1D Daya Bay constraint are shown in

figures 6.13 - 6.18. The 1D reactor constraint is traditionally the constraint NOvA results

have been presented with in past analyses. The highest posterior density (HPD) points are

listed in Table 6.3.

Figure 6.13 shows δCP , broken up into different orderings with their respective credible

intervals. As in the past, NOvA is in a degenerate region, supporting NO and IO models

with different regions of δCP . The NO density has two peaks, one near π and the other

near 0, the two CP conserving values of δCP . IO peaks near 3π
2
, being inconsistent with CP

conserving points at more than 2 and 3 σ, assuming IO.

Figure 6.14 shows sin2θ23 for different ordering breakdowns. Note these results are consistent

with max mixing, sin2θ23 = 0.5, within 1 σ.
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Figure 6.14: sin2θ23 with the 1D reactor constraint applied
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Figure 6.16: sin2θ23 vs ∆m2
32 with the 1D reactor constraint applied
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Figure 6.17: δCP vs ∆m2
32 with the 1D reactor constraint applied
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Figure 6.18: δCP vs sin2θ23 with the 1D reactor constraint applied
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6.3.3 Oscillation Parameters – 2D reactor constraint

Figures 6.19 - 6.22 show posteriors with the 2D reactor constraint in sin2(2θ13) vs ∆m2
32

applied. Figure 6.19 shows sin2θ23 posteriors, showing that with the 2D Daya Bay constraint,

sin2θ23 = 0.5 is now just outside the both orderings 1 σ credible interval.
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Figure 6.19: sin2θ23 with the 2D reactor constraint applied

Figure 6.20 shows the most noteworthy aspect of the 2D constraint: a stronger preference

for NO, at 87% preference.
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32 with the 2D reactor constraint applied
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Figure 6.21: sin2θ23 vs ∆m2
32 with the 2D reactor constraint applied
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Figure 6.22: δCP vs sin2θ23 with the 2D reactor constraint applied
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6.3.4 Systematic Systematic Posteriors

MCMC will generate chains in the full 72 oscillation parameter – systematic space, which

can be marginalized over any set of parameters to isolate the parameters of interest. The

parameters of interest are usually combinations of oscillation parameters such as in the

previous sections, but we can also look at the systematic parameters to see how the data

constrains them. The prior distribution for the systematics are all normal distributions,

with mean 0 and standard deviation 1. The distributions of the systematic posteriors,

marginalized over all other parameters, are shown in figure 6.23.
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Figure 6.23: Posteriors of systematic uncertainties individually, marginalized over all other
parameters. Red cross is the HPD point, cross shaded region is 1 σ interval, and blue lines
are at 0 and ±1, the HPD and 1 σ interval for the prior

Most systematic posteriors are very similar to the prior, with a few exceptions. “Cali-

bration” for example sees a strong pull down, with the HPD being near -1 σ. “Cor-

rMuEScaleSyst2024”, the muon energy scale correlated between the near and far detectors,

has a pull up, with the HPD being around 0.5 σ. ”RockScale”, a conservative systematic on
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the expected number of muons from neutrinos interacting in the rock for the FD, sees a pull

down with an HPD around -0.5 σ.

6.3.5 Jarlskog Invariant

The Jarlskog invariant is a metric that quantifies CP violation that’s independent of the

parameterization of the neutrino mass mixing matrix [54]. For 3 flavor neutrino oscillations,

it’s defined as:

J = cos(θ12) cos
2(θ13) cos(θ23) sin(θ12) sin(θ13) sin(θ23) sin(δCP ) (6.1)

J = 0 indicates CP conservation, where values farther from 0 indicate larger CP violation.

MCMC offers an easy way to evaluate the posterior of the Jarlskog invariant since the

sampled points of the oscillation parameter posteriors can be manipulated with ease. The

priors for terms with θ12 use the global average of solar neutrino experiments for a prior

[121]. We consider two different priors for δCP : a prior flat in sinδCP since J itself is in terms

of this, and also flat in δCP for theoretical reasons [55].

This Jarlskog invariant with these two priors for different mass ordering breakdowns is shown

in figure 6.24 with the 1D reactor constraint. In general, NOvA doesn’t reject J = 0 with

any significance. If one assumes NO, positive values of J are preferred, but J = 0 is in the 1

or 2 σ credible interval depending on the prior. If one assumes IO, negative values are more

strongly preferred, with J = 0 being strongly disfavored.
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Figure 6.24: Jarlskog Invariant with the 1D reactor constraint applied

Dataset P-Value
νµ 0.68
ν̄µ 0.44
νe 0.64

νe LE 0.81
ν̄e 0.20

Table 6.4: Posterior predictive p-values for individual samples, showing consistency of data
fit model

6.3.6 Posterior P-Values and Ranges

It’s natural to wonder how consistent the data is with the 3 flavor model, as large inconsis-

tencies could point to new physics. With Bayesian statistics, this is can be done looking at

posterior p-values and posterior ranges. Posterior p-values use the posterior distributions of

the models parameters (including oscillation parameters and systematics) to measure how

likely the sampled data is if the experiment was completed many times, analogous to the

Frequentist concept of p-value.

The posterior p-values are shown in Table 6.4 for the 5 individual analysis samples. In

general, they show great consistency with the data.

We can also look at the spectrum against the posterior ranges. Posterior ranges effectively

show the expected average value for each energy bin, given the fit posteriors of the model

parameters. The don’t include the Poisson errors on the bin, which is the difference between

posterior ranges, and posterior predictive distributions.
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The posterior ranges for the spectra of νµ samples is shown in Figure 6.25, and the νe samples

in figure 6.26. Visibly, these show reasonable agreement between the data points and the

posterior ranges.
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Figure 6.25: Posterior predictive ranges for νµ samples, with data points overlaid with Pois-
son errors
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Figure 6.26: Posterior predictive ranges for νe samples, with data points overlaid with Poisson
errors

The posterior range for the “bi-event” plot, comparing the νe counts versus ν̄e counts, is

shown in figure 6.27. These have overlaid ellipses showing the average breakdown for various

values of δCP in both the NO and IO. This is a powerful illustration of the δCP preferred

values for NO and IO shown in figure 6.13, as well as the ordering preference.
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6.3.7 Comparison To Other Experiments

Finally, we can compare the measurements of oscillation parameters from this result to other

results [12, 113, 51, 5, 6, 25, 18, 114, 11]. First, Figure 6.28 shows NOvA’s measurement

of ∆m2
32 compared to the measurement by other experiments, for NO and IO separately.

NOvA’s measurement is the most precise single experiment measurement. The value is

roughly consistent with other measurements. For the absolute value, the central value is

higher than IceCube’s, and lower than T2K’s.
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Figure 6.28: ∆m2
32 1 σ intervals for this result compared to other experiments, NO (left)

and IO (right)

Figure 6.29 shows the sin2θ23 measurement for NOvA compared to others. For both NO

and IO, NOvA’s measurement is in line with T2K’s, SuperK+T2K’s, and IceCube’s.
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Figure 6.29: sin2θ23 1 σ intervals for this result compared to other experiments, NO (left)
and IO (right)

In figure 6.30, NOvA’s δCP measurement is compared with other’s. In the NO, NOvA’s

credible interval has 2 segments, unlike other experiments. For the most part, NOvA’s

preference is lower than other measurements. In the IO, NOvA is very in line with everyone

else.
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Figure 6.30: δCP 1 σ intervals for this result compared to other experiments, NO (left) and
IO (right)

Figure 6.31 shows the δCP vs sin2θ23 posterior compared to other recent results. The trends

are mostly similar to the 2020 NOvA analysis. The NO posterior again prefers a sepa-

rate region of δCP than T2K’s, and T2K+SuperK. There is some overlap with T2K’s 2022

measurement near π. For IO, they all agree well.
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Figure 6.31: δCP vs sin2θ23 1 σ intervals for this result compared to other experiments, NO
(left) and IO (right)

Lastly, figure 6.32 shows NOvA’s sin2θ23 vs ∆m2
32 credible interval compared to other ex-

periments. These contours show very nice agreement for both NO and IO. Compared to

NOvA’s in NO, T2K is slightly above, though still significantly overlaps. It has even greater

overlap in IO.
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6.3.8 Validation

Figures 6.33 - 6.41 show consistency between NOvA’s two MCMC samplers: Stan and ARIA.

Overall, the two have nearly flawless consistency, which provides strong validation for the

results from the Bayesian fitting of NOvA’s data for the 2024 analysis.
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Figure 6.33: δCP with the 1D reactor constraint applied, comparing Stan and ARIA
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Figure 6.34: sin2θ23 with the 1D reactor constraint applied, comparing Stan and ARIA
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Figure 6.35: sin22θ13 with no reactor constraint applied, comparing Stan and ARIA
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Figure 6.36: ∆m2
32 with the 1D reactor constraint applied, comparing Stan and ARIA
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Figure 6.37: sin2θ23 vs sin22θ13 with no reactor constraint applied, comparing Stan and
ARIA
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Figure 6.38: sin2θ23 vs ∆m2
32 with the 1D reactor constraint applied, comparing Stan and

ARIA
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Figure 6.39: δCP vs ∆m2
32 with the 1D reactor constraint applied, comparing Stan and ARIA
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Figure 6.40: δCP vs sin22θ13 with no reactor constraint applied, comparing Stan and ARIA
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Figure 6.41: δCP vs sin2θ23 with the 1D reactor constraint applied, comparing Stan and
ARIA
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Chapter 7

Conclusions

This dissertation describes the measurement of neutrino oscillation parameters using muon

neutrino disappearance and electron neutrino appearance from 26.6 ×1020 POT of neutrino

beam exposure and 12.5 ×1020 POT of antineutrino beam. This POT was the result of 10

years of NOvA data taking, and 95.6% more neutrino beam exposure since the last NOvA

analysis.

This analysis yielded the following results for the oscillation parameters for the 1D reactor

constraint:

Assuming Normal Ordering:

∆m2
32 = 2.424+0.035

−0.040 × 10−3eV2

sin2θ23 = 0.55+0.02
−0.06

δCP = 0.930+0.210
−0.290 π ∪ 0.150+0.150

−0.110 π

158



Assuming Inverted Ordering:

∆m2
32 = 2.472+0.035

−0.040 × 10−3eV2

sin2θ23 = 0.55+0.02
−0.05

δCP = 1.490+0.190
−0.210 π

with 76% preference for normal ordering.

This is currently the most precise measurement of ∆m2
32 made by any single experiment.

Consistency with reactor experiment’s sin2(2θ13) measurement is also used in different ways,

and by using a 2D constraint from Daya Bay from their measurement of sin2(2θ13) vs ∆m2
32,

the preference for the normal ordering increases to 87%.

This author worked on many aspects of this analysis, including the energy estimation for

both the νµ and νe events, systematic uncertainties, including the flux and beam uncertainty

modeling, cross section uncertainty modeling, and the implementation of a new uncertainty

into the analysis for Geant4 modeling uncertainty, and the Bayesian fit. This author also

worked on several methods to improve future NOvA analysis, including many CNN based

reconstruction algorithms, and helped build the framework to implement systematic uncer-

tainties for these and other deep learning based algorithms.
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Appendix A

Deep Learning Methods

A.1 Neural Networks

Neural Networks (NNs), also called artificial neural networks, are computational networks

that map an input to an output using a number of “nodes” with tuned weights [69]. See

figure A.1 for an illustration. The “input layer” can be thought of as a list of numbers input,

one for each node shown. Each line in the figure represents a connection between nodes,

where the numbers from the column of nodes on the left is transformed into the adjacent

column. Each line can be represented by a transformation on the last node, wx + b, where

w is a weight, b is a bias, and x is the value of the last node. For a node i in one layer, the

value, x′
i, is the sum of all the connections coming from the last layer, xj, passed through an

“activation function”, f :

x′
i = f(

∑

j

wi,jxj + bi) (A.1)
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. The activation function can be anything, but common choices are linear or “ReLU”:

ReLU(x) =





x if x > 0

0 otherwise

.

Figure A.1: Illustration of fully connected neural network. Image taken from Reference [67].

The output layer is a specially treated layer, as here you need to match the format of the

output data you are trying to fit to. In the case of regression, where we want the output to

follow some possibly continuous spectrum of values, we have one node with a linear activation

function in the case of one regression output, or any number of nodes to match the number

of regression outputs needed. For the case of classification, we want to output one or more

numbers between 0 and 1 to represent how confident the network is the input is or is not in

a certain class. For binary classification, we want one number between 0 and 1, so we have

one output node with a sigmoid function, σ, activation:

σ(x) =
1

1 + e−x
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which will map an input x to a number between 0 and 1, in a smooth fashion, which has

a non-zero derivative everywhere, which will be important for learning, discussed in section

A.1.1. For multiple classes, the “softmax” function will be used with as many nodes as

classes, which will jointly normalize these numbers between 0 and 1, such that they add up

to 1.

The figure here shows a fully connected network, but more specialized networks with different

connection schemes also exist and are more common to use than a simple network of this

form, but the ideas shown here will be the same.

A.1.1 Gradient Descent Learning

We’ve seen that neural networks have tuned parameters to achieve a mapping between inputs

and outputs, but this is only a useful concept if we have a way to tune them to achieve such

a mapping. We call the process of updating these weights “training”. For a supervised

network, such as the ones we’ll discuss here, we have a training dataset that has the inputs

as well as the desired outputs. We then have a “loss function” that tells us how close the

inputs and outputs are, to quantify if we are getting better or worse.

We update these weights by going through the training dataset, and using gradient descent

to moving the weights in the direction which minimizes the loss function. The gradient

here is taken in parameter space, which then gives the negative of the direction to update

the weights. Many software frameworks exist to implement neural networks and optimized

training procedures, such as TensorFlow [1] and PyTorch [96].
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A.2 Convolutional Neural Networks (CNN)

CNNs are a specialized type of NN that use a number of “filters” on an input image to capture

characteristics in a way that is translationally invariant across the image [34], see figure A.2.

NOvA uses CNNs in several applications, as the NOvA detector can see events as two

“images”, one for each view, both for regression and classification tasks [30, 101, 35]. There

are many CNN architectures, which use different constructions of CNN layers combined with

other layer types. NOvA uses MobileNet [78], GoogLeNet [110], and ResNet [72].

Figure A.2: Illustration of a CNN. Image taken from Reference [90].
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