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Abstract

Introduction: We investigated whether adding CT and/or 18F-FDG PET radiomics features 

to conventional prognostic factors (CPFs) improves the prognostic value in locally advanced 

non-small cell lung cancer (NSCLC).

Materials and Methods: We retrospectively identified 39 cases with stage III NSCLC who 

received chemoradiotherapy and underwent planning CT and staging 18F-FDG PET scans. Seven 

CPFs were recorded. A feature selection was performed on 48 CT and 49 PET extracted radiomics 

features. A penalized multivariate Cox proportional hazards model was utilized to generate models 

for overall survival based on: (1) CPFs alone, (2) CPFs with CT features, (3) CPFs with PET 

features, and (4) CPFs with CT and PET features. Linear predictors generated and categorized 

into two risk groups for which Kaplan-Meier survival curves were calculated. A log-rank test was 

performed to quantify the discrimination between the groups and calculated the Harrell’s C-index 

to quantify the discriminatory power. A likelihood ratio test was performed to determine whether 

adding CT and/or PET features to CPFs improved the model performance.

Results: All the four models significantly discriminated between the two risk groups. The 

discriminatory power was significantly increased when CPFs were combined with PET features 

(C-index 0.82, likelihood ratio test P<0.01) or with both CT and PET features (0.83, P<0.01) 
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compared to CPFs alone (0.68). There was no significant improvement when CPFs were combined 

with CT features (0.68, P=0.25).

Conclusion: Adding PET radiomics features to CPFs yielded a significant improvement in the 

prognostic value in locally advanced NSCLC, whereas adding CT features did not.

MicroAbstract:

This paper reports on the first investigation to compare the prognostic value of CT and 18F-FDG 

PET radiomics features for patients with locally advanced non-small cell lung cancer treated with 

chemoradiotherapy. This 39-patient study demonstrated that adding PET radiomics features to 

conventional factors significantly improved the prognostic value compared to conventional factors 

alone, whereas adding CT radiomics features did not significantly improve the accuracy.
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Introduction:

Lung cancer continues to be the leading cause of cancer-related death and its prevalence is 

only second to breast cancer in women and prostate in men1. Non-small cell lung cancer 

(NSCLC) accounts for about 85% of all lung cancers2. Patients with locally advanced 

NSCLC are frequently inoperable, and concurrent chemoradiotherapy is the current standard 

of care3,4. Disease stage, performance status, gender and histology are considered the most 

important prognostic factors for overall survival in patients with locally advanced NSCLC5. 

While computed tomography (CT) is the primary imaging modality to diagnose and stage 

patients with NSCLC, 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) 

has been shown to be a superior modality and widely used for both diagnosing and staging 

in NSCLC6,7. A systematic review and meta-analysis of published data on the prognostic 

value of 18F-FDG PET in NSCLC has confirmed that increased standardized uptake 

value (SUV) of the primary tumor is a poor prognostic factor in NSCLC8. However, the 

commonly used metrics such as the maximum SUV (SUVmax) and mean SUV (SUVmean) 

are very simple and may not represent a reliable measure of tumor heterogeneity.

Radiomics is a rapidly evolving technology that extracts high-dimensional quantitative 

features from imaging data9–11 and allows for non-invasive tumor heterogeneity profiling 

with routinely acquired CT and 18F-FDG PET scans9,10,12, which has great potential to 

increase the prognostic power of CT and PET imaging. Many studies have mined and 

applied radiomics to investigate its prognostic value in multiple types of cancer including 

lung cancer. Addition of radiomics features extracted from pre-treatment CT or 18F-FDG 

PET imaging data to conventional prognostic factors has been shown to improve overall 

survival prediction in locally advanced NSCLC13,14. However, there have been no data as 

to whether there is any significant difference in the prognostic value between CT and PET 

radiomics features or any significant gain by combining CT and PET radiomics features.

Given that CT and PET provide complementary information, the prognostic value may 

be significantly improved by combining two modalities. However, the limited studies 
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which have combined radiomics of the two modalities have yielded conflicting results. 

Bogowicz et al. found no significant differences in the discriminatory power of local tumor 

control between CT-based radiomics, PET-based radiomics and multimodal PET/CT-based 

radiomics in head and neck squamous cell carcinoma15. Conversely, multimodal PET/CT 

imaging-based radiomics has improved the prediction of tumor local and loco-regional 

failure in NSCLC16 as well as lung metastasis in soft-tissue sarcomas17 compared to single 

modality radiomics. To the best of our knowledge, survival prediction utilizing PET/CT 

multimodal imaging-based radiomics in locally advanced NSCLC has not been explored.

In this study, we investigated whether adding radiomics features based on pre-treatment CT 

(for radiotherapy planning) and/or 18F-FDG PET (for staging) to conventional prognostic 

factors (CPFs) improves the prognostic value in patients with locally advanced NSCLC 

treated with chemoradiotherapy.

Materials and Methods:

Patients

Following institutional review board approval, records of 76 patients with stage III NSCLC 

who were treated concurrently with chemotherapy and conventionally fractionated RT from 

January 2005 through March 2016 at the University of California Davis Comprehensive 

Cancer Center were retrospectively reviewed. Patients were included in the analysis with the 

following criteria: (1) patients received ≥46 Gy of RT, and (2) patients underwent treatment 

planning CT and 18F-FDG PET scans within 10 weeks prior to treatment. Patients were 

excluded if they received prior or subsequent RT to the thorax. A total of 39 patients 

were eligible for this study. Patients were censored at the last known follow-up. Patient 

characteristics are summarized in Table 1.

Conventional prognostic factors—CPFs included in the analysis were: (1) age at 

therapy start, (2) gender, (3) histology (squamous cell carcinoma, adenocarcinoma, other), 

(4) overall stage (IIIA vs. IIIB), (5) smoking pack-years, (6) Karnofsky performance status 

(KPS), and (7) chemotherapy regimen (carboplatin-based vs. cisplatin-based). These CPFs, 

in particular performance status and overall staging, have been shown to be prognostic 

factors in LA-NSCLC5. Overall stage (which includes T and nodal stage) is regarded as a 

prominent survival prognostic factor in LA-NSCLC5, and therefore was selected over T or 

nodal stage alone to be included as a CPF.

CT and PET imaging

CT images were acquired for radiotherapy planning during free breathing with a Brilliance 

Big Bore multislice CT scanner (Philips Healthcare, Andover, MA) (32 patients) or AcQSim 

CT scanner (Picker, Cleveland, OH) (7 patients) in helical acquisition mode. All the CT 

images were reconstructed with the Standard B filter (calibrated by the manufacturer to 

provide accurate HUs). The in-plane voxel dimension was approximately 1 mm, and the 

slice thickness was 2–3 mm. 18F-FDG PET/CT images were acquired for staging. Patients 

fasted for a minimum of 4 hours prior to the exam and were administered with 359–

877 MBq of 18F-FDG. Scans were performed between 53–129 minutes after 18F-FDG 

Moran et al. Page 3

Clin Lung Cancer. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



administration with a Discovery PET/CT scanner (GE Medical Systems, Milwaukee, WI) 

for the majority of patients (35 patients), or with a Philips Gemini TF scanner or Biograph 

TruePoint scanner (Siemens Healthcare, Erlangen, Germany). All images were reconstructed 

with the ordered subset expectation maximization algorithm. Attenuation correction was 

performed with low-dose CT images acquired immediately after the PET scan. The PET 

in-plane voxel dimension was 3.65–5.47 mm, and the slice thickness was 3–5 mm. MIM 

(MIM Software, Cleveland, OH) was used to measure the SUV normalized to lean body 

mass, which avoids confounding factors from fatty tissue and is a better representation of 

metabolic activity than body weight or surface area normalization18,19.

Radiomics feature quantification

Figure 1 shows the schematic of the analysis performed in this study. To compute radiomics 

features, we used the physician-drawn gross tumor volume (GTV) contours (used clinically 

for radiotherapy treatment planning) for the planning CT images and metabolic tumor 

volume (MTV) contours defined by thresholding for the PET images. Both the CT GTV 

and PET MTV included primary and nodal diseases that were FDG avid on PET. Non-FDG 

avid masses or enlarged lymph nodes were not included. This approach provided a fair 

comparison of CT-based radiomics and PET-based radiomics. For CT radiomics feature 

quantification, we used the CT images acquired for radiotherapy treatment planning rather 

than the low-dose CT images acquired immediately after the PET scan. The metabolic tumor 

volume (MTV) on the PET image was defined by thresholding with 45% of the maximum 

SUV in a similar manner to Cook et al.20. The low-dose CT was used for PET attenuation 

correction. Forty-eight and forty-nine radiomics features were extracted from the CT and 

PET image datasets, respectively.

These features can be categorized into texture (31 features for each of CT and PET), 

morphology (6 features for each of CT and PET) and statistics (11 CT features, 12 PET 

features). Before feature computation, voxel intensity values were resampled into equally 

spaced 64 bins for both CT and PET images, which allows for normalization of intensity 

values across patients, reduced image noise, and increased robustness against variations 

in the number of voxels. Texture features were computed using MATLAB (MathWorks, 

Natick, MA) with the CGITA toolbox21. Morphology and statistics features were calculated 

using the same methods as Aerts et al.12. Table 2 shows a list of the extracted radiomics 

features.

Radiomics feature selection

As previously described by Aerts et al, we selected radiomics features for the data analysis 

using two criteria: robustness to uncertainties in tumor segmentation (for each of the CT 

GTV and PET MTV) and non-redundancy12. Robustness to segmentation uncertainties 

was quantified with the intraclass correlation coefficient (ICC) between pairs of feature 

values. For the CT GTV, we used two distinct contours delineated by two different 

radiation oncologists for a subset of 15 patients. For the PET MTV, we used three distinct 

contours defined by three different threshold values: 35%, 45% and 55% of the peak SUV. 

Features with an ICC >0.8 were identified, and then evaluated for the redundancy with the 

Pearson’s correlation coefficient between different pairs of features for the 15 patients. If the 
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correlation was >0.8, the one with a higher ICC was selected for the data analysis to remove 

feature redundancy.

Statistical Analysis

Multivariate statistical analysis was performed to build four prognostic models based 

on: (1) CPFs alone (as baseline), (2) CPFs combined with CT radiomics features, (3) 

CPFs combined with PET radiomics features, and (4) CPFs combined with CT and 

PET radiomics features (Figure 1). All the analyses were performed using the R 3.4.1 

software (R Foundation, Vienna, Austria) with the following packages: survival (version 

2.41–3), penalized (version 0.9–50), and survcomp (version 1.26.0). The seven CPFs and 

selected CT and/or PET radiomics features were entered into a penalized multivariate Cox 

proportional hazards model, in which covariate automatic selection and model development 

are performed simultaneously. Covariate selection resulted in inconsistencies in the CPFs 

across the four models. Specifically, KPS was included in the two models (CPFs with 

PET features; and CPFs with CT and PET features), but not in the other two models 

(CPFs alone and CPFs with CT features). To maintain the scientific rigor, we added KPS 

to those two models such that all the four models have the same CPFs, allowing for 

unbiased comparisons. The model included the L1 penalty parameter, which balances model 

goodness-of-fit and complexity. The “penalized” package in R standardizes all covariates by 

their unit central L2 norms, which ensures that the influence of difference in the covariate 

scales is minimized. The choice of the penalty parameter is determined by maximizing 

the cross-validated log likelihood. Under each model, linear predictors (defined as the 

sum of the products between model coefficients and corresponding covariate values) were 

generated for individual patients during cross-validation. The resulting linear predictors were 

then categorized into low- and high-risk groups of patients using k-medians clustering. 

The rationale for k-medians clustering is that a few patients had extreme values of linear 

predictors, which would have skewed the results in k-means clustering. Kaplan-Meier 

overall survival curves were calculated for the resulting two groups of patients. For each 

model, we used the log-rank test to quantify the discrimination between the two groups. 

We also calculated the Harrell’s C-index as a measure of the discriminatory power. The 

C-index represents the proportion of concordant patient pairs among all possible pairs while 

discarding the pairs that have become incomparable because of censoring, and a higher 

value indicates better discriminatory power. Furthermore, we performed the likelihood ratio 

test to determine whether adding CT and/or PET radiomics features to CPFs significantly 

improved the model performance. P <0.05 was considered to be statistically significant in 

this study.

Results:

Of 48 CT radiomics features extracted, 17 features met the selection criteria. Of 49 PET 

features, 17 features met the selection criteria. Table 3 shows the covariates selected for each 

model as well as hazard ratios and P values. Figure 2 shows cross-validated Kaplan-Meier 

overall survival curves with log-rank statistics for each model. According to the log-rank 

statistics, all the four models significantly discriminated between two risk groups of patients. 

The C-index increased when CPFs were combined with PET features (0.82) or with both 
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CT and PET features (0.83) compared to CPFs alone (0.68), suggesting better discriminatory 

power. However, the C-index was comparable when CPFs were combined with CT features 

(0.68). The likelihood ratio test showed significant improvements in discriminatory power 

when CPFs were combined with PET features (P <0.01) or with both CT and PET features 

(P <0.01) compared to CPFs alone. However, there was no significant improvement when 

CPFs were combined with CT features (P = 0.25). Also, there was no significant difference 

between CPFs combined with PET features and CPFs combined with both CT and PET 

features (P = 0.28), indicating no significant impact of CT features on the prognostic value.

Discussion:

This study suggests that adding 18F-FDG PET radiomics features to CPFs may significantly 

improve the prognostic value compared to CPFs alone in locally advanced NSCLC, while 

CT radiomics features may not significantly improve the accuracy. To the best of our 

knowledge, this is the first study to compare the prognostic value of CT and PET radiomics 

features in stage III NSCLC. Our results suggest that 18F-FDG PET metabolic imaging­

based radiomics may have better prognostic power than CT anatomical imaging-based 

radiomics. Similar findings have been reported by Vaidya et al., who investigated the 

predictive value of CT and PET features for treatment response in 27 patients with stage 

I-IV NSCLC16. Although they did not directly compare the performance of CT features and 

PET features, several PET features showed significant univariate associations with tumor 

loco-regional failure (P <0.05), whereas no CT features showed significant associations. 

Bogowicz et al. also investigated whether PET-based radiomics improve local tumor control 

prognostic models compared to CT-based radiomics in 121 patients with head and neck 

squamous cell carcinoma15. They found that PET-, CT-, and PET/CT-based radiomics 

showed similar model performance but that the CT-based model overestimated the local 

control probability whereas the PET-based radiomics model did not.

Our findings of PET radiomics features are consistent with previous studies reporting that 

combining PET features with CPFs improved risk stratification in patients with stage 

III NSCLC20,22. Although there have been many studies demonstrating the prognostic 

and predictive potential of PET radiomics features23,24, negative findings have also been 

reported25–28. Lemarignier et al. found no significant associations between PET texture 

features and pathological response in 171 patients with large or locally advanced estrogen 

receptor-positive breast cancer, whereas the SUVmax and total lesion glycolysis showed 

significant associations28. Our findings of CT radiomics features are inconsistent with 

Fried et al. who demonstrated that adding CT features to conventional factors significantly 

improved risk stratification for overall survival, local-regional control, and freedom from 

distant metastases compared to conventional factors alone in stage III NSCLC. An 

improvement for survival was borderline significant (P = 0.046)13. One possible explanation 

for this inconsistency is that the sample size of the present study (39 patients) is smaller 

than that of the Fried study (91 patients). Given these inconsistent data on both CT- 

and PET-based radiomics, further studies are necessary, including validation of prognostic 

models through a large-scale study with appropriate approaches such as strategies described 

in the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or 

Diagnosis (TRIPOD) statement29.
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There were relatively large variations in a few PET imaging parameters between patients, 

including 18F-FDG uptake period and voxel dimension. These factors affect SUV 

quantification as reported in previous studies30,31, and hence may also affect radiomics 

feature quantification. Galavis et al. quantified the variability of 50 PET radiomics features 

due to different acquisition modes, matrix sizes, post-filtering widths, reconstruction 

algorithms and iteration numbers32. Of the 50 features, 40 features showed substantial 

variability (relative differences >30%). Only four features were found to have variability 

<5%. Additionally, respiratory motion blurring also affects radiomics feature quantification. 

Yip et al. reported significant differences in texture features between three-dimensional 

(3D) and 4D PET images of 26 patients with lung cancer, suggesting that 4D PET-based 

radiomics may have better prognostic value33. However, 4D PET is limited by lower signal­

to-noise ratio than 3D PET because of a smaller number of events for each respiratory phase 

bin. Standardization of imaging protocols is essential to reduce the variability in quantitative 

imaging34,35.

There are limitations to this study. First, histology of the LA-NSCLC (SCC, 

adenocarcinoma, other) varied in our cohort. Both histology and radiomics features 

(including morphological and statistical features, e.g., sphericity, mean/median/minimum 

HU, characterizing cavitation of SCC and subsolid morphology of adenocarcinoma) were 

entered into the penalized multivariate Cox proportional hazard model. Histology nor the 

radiomic features were selected as covariates, suggesting limited associations with outcome 

in our cohort. Previous studies (including Fried et al.14 and Cook et al.20), which used 

similar cohorts of patients containing SCC and adenocarcinoma, reported similar results 

(histology not selected as a covariate in multivariate models). Our cohort is homogeneous 

in overall stage (all patients had stage III NSCLC), whereas cohorts of patients with 

heterogeneous stage (including stage I-IV)36,37 are frequently used. Thus, patients in our 

cohort were treated similarly, thereby decreasing the variability in outcome based on 

treatment which is dictated by stage. Second, our study looked at overall survival as the end 

point, which is limited by confounding effects of unrelated causes of death and subsequent 

treatments. Other end points also have limitations. For example, local control, which would 

be a favorable end point when there is no regional nodal disease such as in early stage 

NSCLC, is not a favorable end-point in locally advanced NSCLC, especially given that 

assessment of local tumor status is difficult in this disease. Multiple large randomized 

control studies in locally advanced NSCLC have reported widely variable local control 

rates38,39. There have been several studies that have utilized overall survival as an end-point 

to test the value of radiomic features in locally advanced NSCLC13,14,40.

Conclusion:

This study demonstrated that adding 18F-FDG PET radiomics features to conventional 

factors significantly improved the prognostic value in locally advanced NSCLC compared 

to conventional factors alone. In contrast, adding CT radiomics features did not significantly 

improve the accuracy. Our findings suggest that 18F-FDG PET metabolic imaging-based 

radiomics may have better prognostic power than CT anatomical imaging-based radiomics. 

Further large-scale studies are needed to validate these preliminary findings.
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Clinical Practice Points:

The addition of radiomics features extracted from pre-treatment CT or 18F-FDG PET 

imaging data to conventional prognostic factors has been shown to improve the accuracy 

of overall survival prediction in locally advanced NSCLC.

In this study, the addition of PET radiomics features alone or both CT and PET features 

to conventional prognostic factors significantly improved the prognostic value, whereas 

the addition of CT features alone did not.

Incorporating radiomics features extracted from standard-of-care staging 18F-FDG PET 

to conventional prognostic factors may improve risk stratification of NSCLC, thereby 

improve clinical decision-making in treatment.
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Figure 1. 
Schematic of the radiomics analysis performed in this study. (I) Imaging. Planning CT 

and pre-treatment 18F-FDG PET image datasets were used in this study. (II) Tumor 

segmentation. The gross tumor volume on the CT image was delineated by the treating 

radiation oncologist for treatment planning purposes. The metabolic tumor volume on 

the PET image was defined by thresholding. (III) Radiomics feature quantification and 

selection. Three types of radiomics features were extracted from each of the CT and PET 

image datasets: texture, morphology and statistics. Feature selection was performed based 

on two criteria: robustness against tumor segmentation uncertainties and non-redundancy. 

(IV) Prognostic model building. Four models were built using (1) conventional prognostic 

factors (CPFs) alone as a baseline, (2) CPFs and CT radiomics features, (3) CPFs and 

PET radiomics features, and (4) CPFs, CT and PET radiomics features. We compared 

the performance of the resulting models to determine whether adding radiomics features 

improved survival prediction.
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Figure 2. 
Comparison of Kaplan-Meier overall survival curves between two risk groups of patients 

stratified based on conventional prognostic factors (CPFs) alone (A), CPFs combined with 

CT radiomics features (B), CPFs combined with PET radiomics features (C), and CPFs 

combined with CT and PET radiomics features (D).

Moran et al. Page 13

Clin Lung Cancer. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Moran et al. Page 14

Table 1.

Patient characteristics

Number of patients 39

Median patient age (range) [years] 66.6 (52.8–90.6)

Gender

 Male 24

 Female 15

Histology

 Squamous cell carcinoma 20

 Adenocarcinoma 15

 Other 4

Tumor stage

 T1 7

 T2 12

 T3 9

 T4 9

 Tx 2

Node stage

 N0 1

 N1 2

 N2 21

 N3 15

Overall stage

 IIIA 20

 IIIB 19

Smoking (pack-years)

 0–24 7

 25–49 17

 50–74 11

 75+ 4

Karnofsky performance status

 90–100 15

 70–80 24

Median duration between PET scan and treatment (range) [months] 1.1 (0.2–2.3)

Median radiation total dose (range) [Gy] 61 (46.0–66.2)

Median radiation dose per fraction (range) [Gy] 2 (1.8–2.0)

Radiation treatment technique

 IMRT 26

 VMAT 5

 3-D conformal 7

 Four-field 1

Chemotherapy regimen
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 Carboplatin-based 25

 Cisplatin-based 14

Abbreviations: IMRT: intensity modulated radiation therapy; VMAT: Volumetric modulated arc therapy.
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Table 2.

Extracted radiomics features

Texture Morphology

 Voxel-alignment matrix  Surface area

  Short run emphasis  Volume

  Long run emphasis  Compactness 1

  Intensity variability  Compactness 2

  Run-length variability  Sphericity

  Run percentage  Surface to volume ratio

  Low-intensity run emphasis Statistics

  High-intensity run emphasis  Skewness

  Low-intensity short-run emphasis  Kurtosis

  High-intensity short-run emphasis  Skewness (bias corrected)

  Low-intensity long-run emphasis  Kurtosis (bias corrected)

  High-intensity long-run emphasis  Entropy

 Intensity size-zone matrix  Mean

  Short-zone emphasis  Median

  Large-zone emphasis  Maximum

  Intensity variability  Minimum

  Size-zone variability  Peak

  Zone percentage  Standard deviation

  Low-intensity zone emphasis  Total lesion glycolysis*

  High-intensity zone emphasis

  Low-intensity short-zone emphasis

  High-intensity short-zone emphasis

  Low-intensity large-zone emphasis

  High-intensity large-zone emphasis

 Normalized cooccurrence matrix

  Second angular moment

  Contrast

  Entropy

  Homogeneity

  Inverse difference moment

  Dissimilarity

  Correlation

 Neighborhood gray-level dependence matrix

  Small number emphasis

  Large number emphasis

*
PET only
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Table 3.

Comparison of four prognostic models based on: (1) conventional prognostic factors (CPFs) alone, (2) CPFs 

combined with CT radiomics features, (3) CPFs combined with PET radiomics features, and (4) CPFs 

combined with CT and PET radiomics features

CPFs alone

 Covariate Coefficient Hazard ratio P value

 Stage (IIIA vs IIIB) −1.07 0.34 0.03

 Chemotherapy (carboplatin vs cisplatin based) 1.08 2.96 0.02

 Karnofsky performance status scale −0.05 0.96 0.13

CPFs with CT features

 Covariate Coefficient Hazard ratio P value

 Stage (IIIA vs IIIB) −0.88 0.41 0.08

 Chemotherapy (carboplatin vs cisplatin based) 0.92 2.51 0.06

 Karnofsky performance status scale −0.04 0.96 0.15

 CT low-intensity short-run emphasis −1.55 0.21 0.34

CPFs with PET features

 Covariate Coefficient Hazard ratio P value

 Stage (IIIA vs IIIB) −1.13 0.32 0.04

 Chemotherapy (carboplatin vs cisplatin based) 1.49 4.46 0.01

 Karnofsky performance status scale −0.06 0.94 0.06

 PET intensity variability 0.61 1.83 0.01

 PET total lesion glycolysis −0.10 0.91 0.11

 PET low-intensity short-zone emphasis −6.49 0.00 0.00

 PET large number emphasis −4.59 0.01 0.02

CPFs with CT and PET features

 Covariate Coefficient Hazard ratio P value

 Stage (IIIA vs IIIB) −0.77 0.46 0.23

 Chemotherapy (carboplatin vs cisplatin based) 1.19 3.28 0.05

 Karnofsky performance status scale −0.05 0.95 0.17

 CT low-intensity short-run emphasis −1.37 0.25 0.33

 PET intensity variability 0.58 1.79 0.01

 PET total lesion glycolysis −0.11 0.90 0.08

 PET low-intensity short-zone emphasis −6.59 0.00 0.00

 PET large number emphasis −4.83 0.01 0.02
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