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Abstract

The evaluation of natural ventilation potential for cooling indoor spaces during

the early design phases is of great interest to researchers and practitioners.

Among various definitions and usages for natural ventilation potential (NVP) in

early design evaluation, this paper reviews and identifies the key performance

indicators, and proposes two new dynamic metrics—natural ventilation cooling

effectiveness (NVCE) and climate potential utilization ratio (CPUR). The metrics

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

1



are  dynamically  responsive  to  various  design  options,  in  both  steady  and

transient states,  allowing consideration of thermal  mass.  Assisting in design

development processes, the metrics quantify how well indoor spaces make use

of  natural  ventilation’s  cooling  capacity.  Case  studies  are  presented  to

demonstrate how NVCE and CPUR enable designers to evaluate the predicted

performance and how to apply the information to improve building design. The

results  of  the design iterations showed that the relationship among various

design parameters should be dynamically understood in order to evaluate the

performance of natural ventilation, confirming that “the more the airflow, the

greater  the potential,”  and “the heavier  the thermal  mass,  the greater  the

energy saving” were not always true.

Keywords:  natural  ventilation;  key  performance  indicators;  interactive

modeling; building simulation; ventilative cooling; thermal mass

1. Introduction

Building  analyses  using  natural  ventilation  as  an  alternative  cooling  source

have reported meaningful energy reductions world-wide. For instance, natural

ventilation helped meet thermal comfort criteria in Bangkok, Thailand, with a

steady  airflow  of  0.4  m/s  [1].  Simulations  of  a  building  with  a  natural-

ventilation-dedicated  component  in  Tokyo,  Japan,  demonstrated  a  35%

reduction in electricity energy demand for cooling  [2–4].  Also,  analysis of a

traditional  Italian building reported that natural  ventilation would save 43 –

53% of cooling energy depending on Italian local climates [5]. Some climates

offer better opportunities than others. For example, a building in a hot and dry

climate in Mexico would utilize more of natural ventilation’s potential than one
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in a hot and humid climate in the same country [6].

In addition to climate conditions, the benefits from natural ventilation could be

increased or  decreased via  a  combination of  various  design  strategies.  For

example,  two identical  buildings  in  a  hot  and  humid  climate  could  lead  to

different  thermal  environments  depending  on  heat  capacities  of  building

materials  [6].  Thermal  mass is  known to have significant  impact  on natural

ventilation’s  cooling  potential  [7–9],  and  alternating  cooling  modes,  namely

mixed-mode, is an effective way to utilize natural ventilation [10–13]. Window

operation controlling the timing of  the use of  natural  ventilation is  another

significant  element  in  natural  ventilation  [14–16].  Particularly,  night-time

ventilation, or night-time cooling, utilizes the lower air temperature during the

night to help cool the space and mitigate the peak cooling demand during the

day with the help of thermal inertia [17,18].

These  multifaceted  factors  influencing natural  ventilation’s  cooling  potential

make  it  important  to  consider  the  interrelationship  among  building  design

decisions. This paper aims to quantify natural ventilation’s cooling performance

of a building with such factors, assisting in design iterations during early design

phases. It explores relevant metrics that indicate natural ventilation’s cooling

potential, proposes new metrics to be used in early building design phases, and

investigates  how  these  metrics  inform  the  dynamics  of  various  design

strategies combined with natural ventilation. 

1.1. Natural ventilation potential (NVP)

Numerous  studies  have  used  a  general  term,  natural  ventilation  potential

(NVP), to indicate natural ventilation’s usage in buildings and sites. One major

purpose  of  these  studies  was  to  evaluate  the  suitability  of  using  natural
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ventilation  at  given  sites  or  under  given  climates  [19–26].  Researchers

examined  local  conditions  including  meteorological,  morphological,

environmental,  and thermal information to evaluate NVP.  Researchers could

then compare NVPs of various regions, countries, or worldwide. Another major

purpose served by NVP evaluation was to describe a building’s potential  to

utilize  natural  ventilation with  a given set  of  a  building design options  (for

example, window location or opening areas) [27–29]. The foci of these studies

were on building design or  building components to identify better  solutions

utilizing natural ventilation. Previous studies on NVP of sites and buildings are

listed in Table 1.

Table 1. Previous work on Natural Ventilation Potential (NVP) research on

climates

Location Category Evaluation purpose NVP Metric

[20] USA Site NVP of the US Target ACH and 
potential cooling 
effect

[21] Mediterranea
n coastal 
zones

Site Climate comparison Statistical wind rose
and radar plot

[22] Warm-humid 
climates in 
Asia

Site City comparison Thermal comfort 
improvement

[23] European 
climates

Site City comparison Very high/ high/ 
medium/ poor

[24] Sheffield 
District, UK

Site NVP and urban 
morphology

Urban morphology 
indices (rugosity, 
porosity, sinuosity) 
and pressure 
coefficients

[26] Geneva, 
Switzerland

Site Site NVP Good/medium/poor

[30] Australia Site NVP comparison of 
Australian climates

NV hour and 
satisfied natural 
ventilation hour 
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(SNVH)

[31] China Site NVP of China Annual cooling 
energy savings 
(kWh/m2-year)

[32] Canada Site Weather data set 
comparison

NV hour

[33] China Site Re-evaluation of city's 
NVP with a more realistic
building setting

Airflow rates

[17] European 
climates

Site Night-time cooling Climate cooling 
potential

[25] China Site City comparison NV hour and 
pressure difference 
pascal hours (PDPH)

[34] China Site City comparison, revised
from [25]

PDPH

[35] India Site NVP of India PDPH

[27] Turkey Building Indoor partitions Air velocity

[28] Hong Kong Building Various window opening 
degrees

ACH

[29] General Building Window opening design Natural ventilation 
effectiveness (NVE)

[36] General Building New equation Airflow rates

[37] General Building Building design NVE

[38] Elblag, 
Poland

Building Multiple chimneys and 
window tilts

ACH

[39] California, 
USA

Building Validation with 
occupants' window use, 
local weather conditions,
indoor environmental 
conditions

ACH

[40] General Building Window opening design PMV and extended 
PMV measures

[41] General Building Window opening size 
and atria

Ventilation 
performance 
indicator (VPI)

As revealed from the above literature, NVP has referred to various quantities
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depending on the focus of the research.  Some used conventional  quantities

including airflow rates, air speeds, air changes per hour (ACH), and the total

number of hours in a year during which natural ventilation provides acceptable

air conditions (NV hour). Others proposed new metrics to nondimensionalize or

otherwise  describe  a  certain  aspect  more  effectively  to  suit  their  research

objectives.  Such  customized  metrics  include  climate  potential  for  natural

ventilation (CPNV)  [19],  pressure difference Pascal  hours  (PDPH)  [25,34,35],

climate  cooling  potential  (CCP)  [17],  ventilation  performance  indicator  (VPI)

[41],  satisfied  natural  ventilation  hour  (SNVH)  [30],  and  natural  ventilation

effectiveness (NVE) [29,37].

1.2. Evaluation metrics for an interactive design process

This study proposes NVP metrics that can be used during early design but later

than a site evaluation phase—namely,  the design development (DD) phase.

The DD phase is  an important  design phase where multidisciplinary issues,

including energy-conscious design, acoustic design, lighting design, envelope

design, indoor environmental design and more, are addressed. For this reason,

partnership  and  arrangements  among  various  disciplines  are  critical,  and

vigorous  design  efforts  are  ideally  made  during  the  DD  phase  [42].  The

evaluation metrics, therefore, should not only consider site information but also

reflect design specifics. The desired criteria of such metrics would include:

 Dynamic response to design alternatives, such as materials, room design,

window design, etc.;

 Ability to consider both steady-state and transient thermal behavior of a

building; and

 Information that directly gives design feedback.
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1.3. Research scope and methodology

Among various purposes for using natural ventilation, including controlling air

quality,  increasing work productivity,  and cooling,  this  paper  focuses  on its

cooling effectiveness. The paper reviews existing NVP metrics and consolidates

their  key  characteristics  into  two  new  metrics—natural  ventilation  cooling

effectiveness (NVCE) and climate potential utilization ratio (CPUR)—in order to

meet the criteria described in Section 1.2. Lastly, the paper demonstrates the

usage of NVCE and CPUR in design phases, and how these metrics incorporate

and characterize design decisions as well as various climate zones.

2. Review of natural ventilation performance metrics

2.1. Commonly  used  metrics  in  natural  ventilation

prediction

2.1.1. Volume airflow rates 

As direct measures of airflow, volume airflow rates (m3/s) and air speeds (m/s)

are often used in natural ventilation evaluation. Such metrics were determined

in experiments by using the tracer-gas decay method [43] and conducting wind

tunnel  tests  [44],  as  well  as  in  numerical  models  including airflow network

(AFN) and computational fluid dynamics (CFD) [36,38,45–47]. 

For example, ASHRAE Standard 62.1 [48] requires a breathing zone to meet a

certain ventilation rate  (V bz)  depending on the zone’s population (Pz),  floor

area (Z z), and occupancy categories (e.g., bedroom, lobby, or office room). The

calculation is given by:

V bz=RpPz+Ra Az ,
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where Rp is outdoor airflow rate required per person, Pz is zone population, Ra

is outdoor airflow rate required per unit area, and Az is zone floor area. Rp and

Ra for different occupancy categories are listed in [48].

2.1.2. Air changes per hour

Air changes per hour (ACH) is another popular metric for natural ventilation

evaluation ranging from indoor ventilation [20,28,49,50] to urban wind studies

[51,52]. It measures the ratio of incoming airflow volume for an hour to the

room volume, written as:

ACH=
3600 ( s )V̇

vol
,

where  V̇  is  the  airflow  rate  (m3/s)  and  vol is  the  room  volume  (m3).  In

experimental settings, an ACH can also be calculated by using the tracer-gas

decay method [39,53]. The ACH in this method is computed as:

ACH=3600 ln
C0

Cr

1
τ

,

where C0 is the initial CO2 concentration, Cr is concentration at the time τ. 

2.2. Customized metrics suggested by researchers

2.2.1. Natural  ventilation

evaluation by site and climate conditions

Ref.  [26] defined  natural  ventilation  potential  (NVP)  as  “the  possibility  to

ensure an acceptable indoor air quality by natural ventilation only” and passive

cooling  potential  (PCP)  as  “the  possibility  to  ensure  an  acceptable  indoor
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thermal comfort using natural ventilation.” They described NVP levels of local

districts  of  Geneva,  Switzerland,  with  good,  medium  and  poor  NVP  and

visualized them on a map using GIS. No building information was considered

since the purpose was to evaluate NVP of  a  site  rather  than of  a  building.

Criteria of NVP included but were not limited to meteorological data, including

wind speed, direction, and air temperature; mean height of buildings; mean

orientation of the streets; and buildings’ adjacency with neighbors.

Similarly,  but  with  different  criteria,  [23] evaluated  NVP  of  five  sites.  Their

criteria included undisturbed wind, local wind, stack effect, noise levels, and

pollutant levels, as well as urban fabric and experts’ ratings. NVPs were rated

as very high, high,  medium and poor.  In  another study,  the NVPs of Basel,

Switzerland,  were  evaluated  and  categorized  as  highest,  intermediate,  and

lower NVPs [54]. The study created maps for pollution hours, noise hours, stack

hours, as well as wind hours and analyzed them to yield NVP.

A metric named climate potential for natural ventilation (CPNV) quantified a

climate’s  suitability  for  natural  ventilation  based  on  air  temperature  and

humidity  ratio  [17].  The  lower  and  the  upper  temperature  criteria  were

determined by the adaptive model of ASHRAE Std. 55 [55], although the author

indicated that other adaptive models might also be used, such as CEN Std. EN

15251 [56]. The lower and the upper humidity ratios were determined by the

relative humidity of 30 % and 70 %. The CPNV was then calculated by the sum

of the hours, during which climate condition met the criteria, divided by the

total number of hours in a year. The metric is given as:

CPNV=
Σ i=1

n hNV ,i

htot

,
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where  htot is  total  number of  hours in  a year,  and  hNV ,i is  1 if  the climate

condition at the ith hour of the year meets thermal criteria, and 0 otherwise.

2.2.2. Natural  ventilation

evaluation by pressure difference

A  natural  ventilation  performance  indicator  using  pressure  differences  was

proposed by [25]. The authors suggested the pressure difference Pascal hours

(PDPH) as a means to predict NVP. The equation for the ‘effective pressure

difference (ΔPeff )’ was calculated by the building’s ventilation rate due to stack

and wind effects, using the orifice flow equation.

Also, the ‘required effective pressure difference (ΔPR)’ to meet the minimum

ventilated rate per ASHRAE Std. 62.2P  [57] was calculated. The PDPH is an

index for air pressure semi-analogous to degree-days for temperature, which

can be expressed as:

PDPH=1hr∗ ∑
hours

( ΔPeff −ΔPR ) ,if ΔPeff−ΔPR>0.

This metric is counted only when  ΔPeff−ΔPR>0 as noted in the equation. In

their  study,  the  PDPHs of  four  cities  in  China were  calculated  with  several

assumptions: south-facing buildings, identical openings on the south and the

north facades, and uniform indoor air temperature at 22 degrees Celsius. The

required  effective  pressure  difference  was  determined  by  the  minimum

requirements from ASHRAE Std. 62.2P neglecting possible internal loads. The

approach using the pressure difference gave useful information about NVP at a

city scale. Ref. [35] also used PDPH as an NVP metric.

10

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

10



2.2.3. Natural  ventilation

evaluation by temperature difference

A  metric  named  climate  cooling  potential  (CCP)  was  suggested  to  explain

degree-hours for the difference between indoor and outdoor air temperature

[17].  Defined  as  “a  summation  of  products  between  building/external  air

temperature-difference  and time interval,”  the CCP represented the cooling

potential of a climate and its impact on a building. The value of CCP was 1 if

the  temperature  difference  was  the  same  or  larger  than  the  critical

temperature  difference  for  night-time  ventilation,  and  the  value  was  0

otherwise. The metric is written as:

CCP=
1
N ∑

n=1

N

∑
h=h i

hf

mn,h(T b ,n,h−T e,n, h){m=1hr , if Tb−T e∧≥ ΔT crit

m=0 , if Tb−Te<ΔT crit ,

where h is the time of a day (h = 0, …, 23), H i and H f  are the initial and the

final hour of the night-time ventilation respectively, T b is building temperature,

T e is  external  temperature,  and  ΔT crit is  critical  temperature difference for

night-time ventilation, for which the authors used 3 K.

2.2.4. Natural  ventilation

evaluation by buoyancy effect

An  indicator  for  stack  ventilation  in  multi-story  buildings,  the  ventilation

performance indicator (VPI),  was suggested by  [41]. The authors provided a

dimensionless metric that informs designers how to meet the ventilation rate

and indoor temperature requirements via an atrium. VPI is defined as:
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VPI=( Q2

g 'H5 )
1
2 ,

where Q is airflow rate through the room (m3/s),  g' is reduced gravity due to

buoyancy  (m/s2),  and  H is  the  height  of  a  story  (m).  The  term,  g',  is

interchangeable with the measure of temperature, as in, g '
=gβ (T−T o), where

g is gravitational acceleration,  β is the thermal expansion coefficient, and  T

and  T o are  indoor  and  outdoor  temperatures.  Therefore,  VPI  can  compare

ventilation requirements  to  the  stack  effect  resulting from the temperature

difference and building height. The authors suggested that designers identify

the  “per-person  VPI”  per  requirements,  assign  occupancy  in  a  multi-story

atrium building, and then determine the opening sizes to meet the designed

VPI in each zone. 

2.2.5. Natural  ventilation

evaluation of building design

To evaluate the natural ventilation potential of a customized building design, a

metric called natural ventilation effectiveness (NVE) was suggested  [37]. The

metric compared the hourly airflow rate of a customized building to the airflow

rate that was required to offset the cooling and ventilation load. The ratios of

these two airflow rates were added for the hours of the test period and then

divided by the total hours. The NVE was calculated as: 

NVE=
Σ α
n {

α=1
α=1

α=ACHavail /ACHreq

, if ACHavail ≥ ACHreq

, if ACHreq=0
, otherwise,

where  ACHavail is the available air changes per hour to be provided through
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openings, and ACHreq is the required air changes per hour, and nis the number

of  hours  in  the  simulation  period.  This  equation  works  for  a  steady-state

condition.  The  authors  retrieved  the  calculation  of  ACHreq from  an  energy

simulation result. 

3. Proposed  and  revised  metrics  to  evaluate  the  effectiveness  of

natural ventilation’s cooling performance

3.1. Three key metrics: CPNV, NVCE and CPUR

To  suit  the  design  procedure,  this  project  focused  on  three  key  metrics,

including two existing metrics from literature. One of the two existing metrics is

climate  potential  for  natural  ventilation  (CPNV),  and  the  other  is  natural

ventilation  effectiveness  (NVE).  CPNV  is  useful  since  it  offers  the  baseline

information of the site based only on climate data, and is minimally revised in

this  paper  to  allow  for  customized  simulation  periods  and  criteria.  NVE  is

helpful  to  investigate  building  design  components  as  the  formulation  is

influenced  not  only  by  climate  conditions,  but  also  by  building  materials,

window configurations, internal and solar heat gains, and room sizes. 

In this paper, we revise the NVE for three purposes. First, the metric needs

mathematical  expressions  to  represent  the  above-mentioned  building

components. Because the original NVE calculation depended solely on energy

simulation results, the effect of having different design options on the metric

would be shown only at the end of simulations. To overcome this limitation and

offer users a clearer preview, we provide explicit  equations to calculate the

metric  in  this  paper.  The  equations  will  also  allow  analytical  approaches.

Second, this paper develops the formulation of the metric to work with thermal
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mass,  and  thus,  transient  conditions;  whereas  the  original  NVE  worked  for

steady-state  conditions  only.  Lastly,  while  the  original  NVE  has  taken  the

minimum ventilation requirements and cooling demands into consideration, we

name this revised metric Natural Ventilation Cooling Effectiveness, or NVCE, to

clarify the purpose of the evaluation and focus on cooling performance. 

With NVCE referring to a building’s potential and CPNV a site’s potential, a new

supplementary metric that compares the NVCE and CPNV is also proposed,

which  we  name  Climate  Potential  Utilization  Ratio,  or  CPUR.  This  metric

indicates  how  well  a  building  design  has  utilized  the  natural  ventilation

potential of the climate.

3.2. Proposed  metric:  natural  ventilation  cooling

effectiveness (NVCE)

3.2.1. Definition  of  natural

ventilation cooling effectiveness

Ranging from 0 to 1, the revised NVCE measures the effectiveness of natural

ventilation as a cooling resource within a timestep. The NVCE of a single time

step (NVC Ets) is defined as:

NVC Ets ≡qavail /qreq (1)

where qavail is the cooling power available through natural ventilation, and qreq

is the required cooling power that would bring the indoor temperature to a

desirable  temperature.  Unlike  the  original  NVE,  the  proposed  NVCE  adopts

cooling  power,  q,  instead  of  ACH  to  consider  transient  cases  more

conveniently, as we elaborate in Section 3.2.3. The NVCE of a desired duration
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(a year, a season, or a month) is then defined as an average of each NVC Ets

within the duration, as in Eq. (2):

NVCE=
Σnts

NVC Ets

nts

, (2)

where nts is the number of time steps of the simulation period, which is 8760 if

a time step is an hour and the simulation period is a year.

3.2.2. NVCE  in  a  steady

state

The  key  variables  in  NVCE  are  the  available  cooling  power  (qavail)  and  the

required cooling power (qreq¿. Equation (3) defines qavail as below:

qavail≡{
0 ,∧if T target−T out<0

−ρcV̇avail (T target−Tout ) ,∧otherwise,
(3)

where ρ is air density, c is the specific heat of air at constant pressure, V̇ avail is

intake  airflow  rate  through  natural  ventilation  obtained  by  simulations,

calculations,  or  measurements,  and  T target and  T out are  target  and  outdoor

temperatures.  The  indoor  temperature  (T ¿)  under  a  steady  state  can  be

calculated as in Eq. (4):

T ¿=
qgain

UA+ρcV̇ avail

+Tout , (4)

where U is the thermal transmittance of the building envelope, A is the area of

building envelope,  and  qgain is  the sum of  heat  gains from solar  heat  gain,

occupants, lightings, and various home appliances, excluding the heat gains or

losses  through  the  envelope.  However,  if  qavail is  not  sufficient,  such  that
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T ¿>T target, there must be supplementary cooling power (q¿) to achieve T target as

in Eq. (5).

T target=
qgain+q¿

UA+ρcV̇ avail

+T out (5)

We define qreq as the sum of available and supplementary cooling powers as in

Eq. (6). NVCE ts can then be written as in Eq. (7).

qreq≡qavail+q¿ (6)

NVCE ts=
qavail

qavail+q¿

=
−ρcV̇ avail(T target−T out)

− {qgain−UA (T target−T out ) }
(7)

In a steady state, NVCE can also be expressed as Eq. (8).

NVC Ets=
qavail

qreq

=
V̇ avail

V̇ req

=
ACHavail

ACHreq

(8)

Equation  (7) is elaborated from the original NVE, yet it still  holds the same

formula as NVE. Detailed steps from Eq.  (4) through Eq.  (8) are explained in

Appendix A.

3.2.3. NVCE  in  a  transient

state

When thermal mass is present, Eqs. (4-(5) need to be modified to consider the

heat storage of the mass as in Eqs. (9-(10): 

T ¿, n+1=T ¿ ,ne
−t
τn + (T out , n+Rnqgain ,n )(1−e

−t
τ n )

T target ,n+1=T ¿ ,n e
−t
τ n +(Tout ,n+Rn(qgain ,n+q¿ ,n))(1−e

−t
τ n )

R≡ (UA+ρcV̇ avail )
−1

τ≡RC ,

(9)

(10)

where  T ¿, n+1 and  T target ,n+1 denote the indoor and target temperatures of the
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next  time  step,  and  t  is  the  length  of  a  time  step  in  seconds. A  target

temperature is a desired temperature, which could be either fixed or varying,

and supplemental cooling (q¿) is varied each time step to maintain the target in

a hypothetically conditioned building. The heat gain (qgain) is varied throughout

the day as solar gain changes and occupancy varies. As V̇ avail may vary each

time step, so do R and τ. With these variables, NVCE can be written as below.

NVC Ets=
qavail

qavail+q¿

¿
−ρcV̇ avail(T target−Tout)

−ρcV̇ avail (T target−T out )−{qgain−(T target ,n+1−T ¿e
−t
τ

1−e
−t
τ

−Tout) 1
R }

(11)

In Eq.  (11), all variables except  T target ,n+1 are of the current time step,  n.  As

Eqs.  (3)(7),(11) indicate,  NVC Ets=0 when no cooling power is available from

natural ventilation (qavail=0), and NVC Ets=1 when no supplemental cooling is

needed (q¿= 0). If NVCE is between 0 and 1, it is the fractional cooling capacity

that natural ventilation can provide compared to the cooling capacity required

to meet the target indoor temperature.

3.3. Proposed  metric:  Climate  potential  utilization  ratio

(CPUR)

While NVCE indicates the status quo of the current design in terms of natural

ventilation’s cooling performance, Climate Potential Utilization Rate (CPUR) is

introduced to quantify how much room for improvement is left under the given

climate. A CPUR is simply the ratio of NVCE to CPNV as described in Eq.(12). To

use the metrics correctly, the duration, time step, and thermal criteria of NVCE
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and CPUR must be the same. 

CPUR≡ NVCE /CPNV (12)

3.4. Understanding NVCE and CPUR together

The metrics dynamically respond to building design and climate conditions as

explained in  Table 2. The combination of the two metrics of NVCE and CPUR

can then provide useful information in interactive design and energy modeling. 

Error: Reference source not found illustrates the conceptual workflow as to how

the metrics may be used during an early design phase. For example, architects

set a goal  to achieve NVCE of 1 to replace mechanical  cooling with natural

ventilation  entirely.  While  evaluating  the  site,  they  notice  that  the  given

climate has CPNV of 0.8. An initial design option may turn out to have an NVCE

of 0.4, which architects know it is only the half of what the climate has to offer,

as CPUR is 0.5. Through numerous design iterations, they keep track of NVCE

to  identify  the  best  design  option.  A  CPUR that  is  greater  than  1  may  be

achieved  by  using  thermal  mass  strategically.  This  is  because  a  properly

calculated thermal storage amount may help a room remain at a comfortable

level, even when the outdoor air is warmer than the comfort criteria.   

Figure 2 explains the interpretation of the combination. For example, a low

NVCE and a low CPUR indicate that natural ventilation cannot offer as much

cooling power as the specific building needs, but there still is room to improve

the NVCE since the building has not utilized the climate potential very well. A

low NVCE  and  a  high  CPUR  may  not  be  encouraging,  as  this  combination

implies that the building requires significant mechanical cooling despite a high
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utilization  ratio  of  its  climate  resources.  Having  this  information  while

developing a building design would allow architects to revise their design to

better utilize natural ventilation. 

Table 2. Dynamic nature of CPNV, NVCE, and CPUR.

CPNV NVCE CPUR

qavail qreq

S
it e Influenced by local 

climate
× × × ×

Influenced by intake 
airflow

(window sizes, single-sided 
ventilation, cross-
ventilation, displacement 
ventilation, etc.)

× × ×

Influenced by heat gain 
and loss 

(Building materials, internal 
and solar heat gains, etc.) 

× ×

Influenced by thermal 
mass

× ×

Figure 1. Conceptual diagram of the usage of CPNV, NVCE, and CPUR. 
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Figure 2. Understanding NVCE and CPUR together.

4. Interactive modeling in a design process using NVCE and CPUR

4.1. Feasibility study description

A  feasibility  study  was  conducted  to  demonstrate  a  way  to  harness  the

dynamic metrics within an interactive design framework, and to understand

building design options that influence the NVCE in various climates. Three cities

were  examined:  Phoenix,  AZ;  Fresno,  CA;  and  Denver,  CO.  The  cities  are

located in the 2B, 3B, and 5B climate regions, respectively, per [58]. The study

used  a  set  of  3D  parametric  design  platforms  including  Rhino  3D  [59],  a

computer-aided  design  application,  and  Grasshopper  [60],  a  visual

programming  language,  to  allow  an  interactive  design  procedure.  Two

Grasshopper plug-ins, Ladybug  [61] and Honeybee  [62], were used to import

weather data and run building energy simulations using EnergyPlus within the

Grasshopper environment. 

4.2. A  base  case  model  description  and  variations  to

consider

The  base  case  building  (Figure  3 (A))  was  the  prototypical  single-family

detached house model developed by the Pacific Northwest National Laboratory
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(PNNL) [63]. Originally intended for  the U.S. Department of Energy's Building

Energy Codes Program, the residential prototype building models for various

climate regions have been widely used in simulation research by either using

the  building  properties  only  and/or  using  building  geometries  [64–71].  We

downloaded EnergyPlus Input Files (IDF) for the three climate zones (2B, 3B,

and 5B) from [63]. These files included building properties in compliance with

the 2018 International Energy Conservation Code (IECC). The settings applied

in this study are detailed in Appendix B. 

For  natural  ventilation,  this  test  used  the

ZoneVentilation:WindandStackOpenArea  class  of  EnergyPlus  made  available

through  Honeybee.  This  model  automatically  decided  a  ventilation  mode

between  buoyancy-driven  or  wind-driven  ventilation  modes,  depending  on

window's height and angle towards the wind direction. All windows created in

this test were at the same heights, therefore, no stack effect was considered.

Users may choose other ventilation models offered in Honeybee, including a

custom ventilation type for chimneys or cowls, and a fan-driven ventilation with

a fixed airflow rate. Integration into the proposed workflow of models not yet

supported by Honeybee, including the airflow network model of EnergyPlus or

customized analytical models, would require further development.

The reference IDF data consisted of only two zones for a three-story house: an

attic zone and a living unit zone. Two floors were bundled as a living unit zone,

so we separated the floors to represent the ground floor and the second-floor.

Thermal zoning and distributions of internal heat gains should be determined

by the floor plans of a specific building. However, since this feasibility study

focuses on the demonstration of the workflow, we used the traditional core-

perimeter zoning method of EnergyPlus. Since the room is not as large as other
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reference commercial buildings and a core zone would not have any natural

ventilation, only perimeter thermal zones were created with a zone depth of

4.55 [m], which is a reasonable size for perimeter zones [72]. 

     

(A)  (B)

Figure 3. (A) A simulation model for a single-family detached house developed

by the Pacific Northwest National  Laboratory (PNNL) for U.S.  Department of

Energy’s  Building  Energy  Codes  Program;  and  (B)  Thermal  zoning  of  the

second-floor. The whole building was simulated, from which the second-floor

(highlighted in (a)) was analyzed.

Based on the base case, various design options listed in Table 3 were explored

to reveal their impacts on natural ventilation metrics under different climates,

and thus demonstrating how these metrics help make design decisions. Two

simulation periods, one from January to December and the other from May to

October, were chosen to represent seasonal impacts.

Table 3. Model set-ups for Study.

 Design factors Variables

(1) Climates Fresno, CA

Phoenix, AZ

Denver, CO
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(2) Simulation period Annual (Jan-Dec)

Seasonal (May-Oct)

(3) Operable window 
area 

5 %, 25 %, 50 %, and 
75 % airflow rates of 
base case

(4) Shading devices, 
glazing sizes, occupancy,
light fixture efficiency, 
appliances, etc. 

5 %, 25 %, 50 %, and 
75 % solar and internal 
heat gains of base case

(5) Thermal mass 5 %, 25 %, 50 %, and 
75 % thermal capacity 
of base case

After  obtaining NVCE of  each  city  for  a  base-case  building,  other  variables

including airflow rates, solar and internal heat gains (hereinafter heat gains),

and thermal capacities were tested with reduced values to represent different

design options. For example, the reduced airflow rates may represent reduced

opening areas, and the reduced heat gains may represent enhanced shading

strategy or reduced occupant density. With a combination of variations in Table

3 (3)-(5),  125  cases  for  each  city  were  examined  by  post-processing  the

simulation results in Python codes, which led to 375 cases for each simulation

period. The target temperature, T target, for CPNV and NVCE calculations was set

monthly according to the adaptive model proposed by [73]. Humidity is not of a

major concern in the chosen cities, and was not considered in the criteria.

4.3. Simulation work flow

The non-design metric, CPNV, was calculated based on thermal criteria (target

temperatures only in this case) and weather data imported through Ladybug.

Honeybee translated the 3D Rhino geometry into a thermal zone for energy

simulation,  and  read  climate  information  via  Ladybug.  Then  the  energy

simulation results including zone air temperature, total heat gains, and airflow
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rates were plugged to a customized component written in Python. The Python

component extracted the total heat gains (qgain) by summing up solar gain, and

internal heat gains from lighting, equipment and occupancy. The airflow rates

caused by infiltration and natural  ventilation were summed to calculate  the

total airflow rates (V̇ avail). This component used Eqs. (3)-(4, (10(11) to calculate

NVCE and CPUR. Figure 4 describes the work flow.

Figure 4. Parametric design frameworks.

5. Results and discussion

5.1. Climate Potential of natural ventilation (CPNV) 

The climate potential of natural ventilation (CPNV) of each city was calculated
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using weather data, analysis period, and target temperatures, and is shown in

Table 4. Unlike the original CPNV calculation  [19], this study only considered

outdoor dry bulb temperature in order to be consistent with NVCE’s criteria. 

Table 4. CPNV of three cities

 City

Annual:  Jan  –
Dec

CPNV 

Seasonal:  May-
Oct 

CPNV 

Phoenix, AZ 0.66 0.41

Fresno, CA 0.83 0.68

Denver, CO 0.94 0.88

5.2. Natural Ventilation Cooling Effectiveness (NVCE)

5.2.1. NVCE of base cases

Having  followed  the  workflow  (Figure  4)  and  applied building  conditions

(Appendix B, Table B1), the base-case tests of three cities yielded NVCEs and

CPURs as listed in Table 5. As there were four zones on the second-floor, the

numbers presented in this section are  the average values of  the floor.  The

results show that the cooling potentials of sites (CPNV) and buildings (NVCE)

may disagree although the difference between these values can be small. In

fact, the reason why CPURs of these cases were very close to 1 was due to the

optimistic design assumptions including widely-open windows and high thermal

storage.

Table 5. NVCE and CPUR of base cases. 

City

Annual: Jan – Dec Seasonal: May-Oct

Base case NVCE (CPUR) Base case NVCE (CPUR)

Phoenix, AZ 0.63 (0.95) 0.36 (0.88)

Fresno, CA 0.81 (0.98) 0.65 (0.96)

Denver, CO 0.93 (0.99) 0.86 (0.98)
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5.2.2. NVCEs  of  various

design options

Different sets of design decisions led to wide ranges of consequences in NVCE

as shown in  Table 6. In Phoenix, the least airflow (5% of base case) with the

highest heat gains (100% of base case) and thermal mass (100 % of base case)

led to the minimum NVCE, while the most airflow with the lowest heat gains led

to the maximum NVCE with little to no impact from thermal mass. In Fresno,

the minimum NVCE was observed with the least airflow and the highest heat

gains, regardless of thermal mass. The maximum NVCE of Fresno was achieved

by the lowest airflow rate and the heat gains with the highest thermal mass.

Lastly,  in Denver, the least airflow and thermal  mass with the highest heat

gains resulted in the lowest NVCE; while the lowest airflow rate and heat gains

with the highest thermal mass offered the maximum NVCE.

Table 6. Minimum and maximum NVCE and CPUR of various design options.

Annual: Jan – Dec Seasonal: May-Oct

City
Minimum 

NVCE (CPUR)

Maximum 

NVCE (CPUR)

Minimum 

NVCE (CPUR)

Maximum 

NVCE (CPUR)

Phoenix, AZ 0.31 (0.46) 0.68 (1.04) 0.04 (0.09) 0.43 (1.04)

Fresno, CA 0.44 (0.53) 0.90 (1.08) 0.09 (0.13) 0.79 (1.17)

Denver, CO 0.68 (0.73) 0.99 (1.06) 0.43 (0.49) 0.99 (1.13)

The correlation between the tested variables and NVCE varied, too, suggesting

that natural  ventilation cannot be evaluated by a single factor,  i.e.,  airflow.

Below we describe how this metric helped identify better design options among

various alternatives in detail. Figures 5-7 present the results of the test cities.
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Each plot presents 125 test results with variations listed in Table 3 (3)-(5), in

which results with extreme settings are highlighted. 

5.2.2.1. Airflow rate

Airflow  rate  impacted  NVCE  in  most  cases  as  shown  in  Figures  5-7  (A).

Generally, higher airflow rates yielded higher NVCE. For Fresno and Phoenix,

securing a certain level of airflow was critical when heat gains were at base-

case, high values (Figures 5-6 (A) red and orange lines). In all test cities, airflow

did  not  significantly  impact  NVCE  when  both  heat  gains  and  thermal  heat

capacity were reduced to 5% of the base case (Figures 5-7 (A) blue dashed

lines). This indicates that if a building is equipped with highly effective shading

devices, highly efficient light fixtures, and light thermal  mass,  sizing airflow

openings may not be an important decision to make. 

On the other hand, some cases showed that higher airflow rates could have an

adverse effect on NVCE. For example, in Fresno and Denver, the maximum

NVCE was observed with the least airflow given low heat gains and base-case

thermal mass as shown in Figures 6-7 (A), green dashed lines. This means that

the indoor air can stay cooler than the outdoors and having more airflow from

outside can diminish the effect of the thermal delay and reduce NVCE.

5.2.2.2. Solar and internal heat gains

In some cases,  controlling heat gains was found to be the most  significant

factor in NVCE, and the impact range of reducing heat gains was at maximum

with  low  airflow  rates  and  base-case  mass  (Figures  5-7  (B),  green  dashed

lines). In other cases, the impact was minimal when the base case, high airflow

was provided (Figures 5-7 (B), red and orange lines). Unlike airflow rates or
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thermal mass, the impact of heat gains on NVCE was consistent: the higher the

heat gains, the lower the NVCE in all tests. In design practice, this would mean

that  strategic  building  orientation,  shading  design,  low occupancy  rates,  or

highly reflective building envelopes would help enhance the cooling effect from

natural ventilation.

5.2.2.3. Thermal mass

The influence of thermal mass on NVCE depended strongly on other settings,

including climate, airflow rate, and heat gains. While most cases in Phoenix

showed  negative  responses  to  the  increased  mass,  most  cases  in  Denver

showed otherwise, as shown in Figures 5 (C) and 7 (C). Furthermore, the blue

and  green  dashed  lines  of  Figure  6  (C)  reveal  that  NVCE  may  correlate

positively or negatively with thermal mass even under the same climate. The

results support many researchers’ findings that thermal mass should be chosen

after  a close examination of  other  building and climate conditions to avoid

overly warm situations [59–61]. The cases which showed negative correlations

of  NVCE  with  thermal  storage,  as  mostly  found  in  Phoenix  (Figure  5  (C)),

indicate that the building would require more cooling power with an increased

mass when mechanical cooling is used in addition to natural ventilation.

However, it should not lead to a misunderstanding that thermal mass would

not be beneficial in such climates. For example, if the building in Phoenix relied

solely on natural ventilation and the goal was to mitigate the peak temperature

during a hot day,  one should look at the temperature profile in addition to

NVCE  to  make  the  right  decision.  As  shown  in  the  temperature  graphs  of

Phoenix  (Figure 8),  heavy mass could be a better  option,  if  avoiding heat

exhaustion due to high indoor temperature was more important than having
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greater number of hours that met the target temperature. 
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Figure 8. Indoor air temperature graphs with heavy and light mass in Phoenix, AZ,

June 20-June 27.

5.3. Climate Potential Utilization Ratio (CPUR)

During the iterations of test cases, CPUR provided a sense of scale as to how

far  the  case  is  from  what  was  expected  from  the  climate  condition.  For

example, when the case in Phoenix had 95% airflow rate reduction with high

heat gains and high heat capacity (Figure 5 (A), red line), its seasonal NVCE

was merely 0.04 and CPUR was 0.09. Without looking at other case results for

comparison,  a  CPUR of  0.09 indicated  that  the  there was  still  a  chance  to

improve NVCE if a different option was selected.

In a steady state, in which no mass is considered, CPUR is always less than or

equal to 1, as indoor temperatures would be always higher than the outdoors

as long as internal heat gains exist. However, results from this study showed

that a CPUR that is greater than 1 (NVCE > CPNV) would be possible through

choosing the right thermal capacity, thanks to the thermal lag it carries.Error:

Reference source not found
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5.4. Limitation and future work

As the name of the metric indicates, NVCE focused on the cooling effect only. A

future  step  would  be  to  consider  the  quality  of  the  intake  air,  including

humidity and air pollution, within an NVCE evaluation, as many researchers

have addressed the importance of these factors  [16,77–81]. Doing so would

allow  the  use  of  various  comfort  criteria,  such  as  Standard  Effective

Temperature (SET) and Heat Index (HI), in addition to dry bulb temperature.

Although the test cases used fixed building configurations, the results implied

that operation strategies would also significantly influence the parameters of

NVCE. One may bring up questions, such as “what time of a day will a smaller

opening area benefit?” or “how do we incorporate this analysis when the space

is not occupied, thus allowing overwarming during unoccupied times of a day?”

Therefore, further studies should investigate how various building dynamics,

including dynamic shading design, window operations, and occupancy, would

determine NVCE.

In the workflow of a feasibility case study, the calculation of the metrics was

linked with EnergyPlus via custom programming,  as solar  and internal  heat

gains  and  airflow  needed  to  be  retrieved  from  energy  simulations.  In  the

EnergyPlus model,  we  applied  building settings as  close  as  possible  to  the

assumptions of the NVCE equations discussed in Section 3.2, which limited the

choice in test buildings and settings. To apply this approach in a more complex

building,  it  would  be  desirable  to  incorporate  the  NVCE  equations  within

EnergyPlus. This would reduce calculation errors as the equations can use the

uninterpreted,  native  EnergyPlus  values.  The  incorporation  of  NVCE  into

EnergyPlus would also make the NVCE analysis accessible to users who do not
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code. 

6. Conclusion

A complex set of conditions in buildings, variations in occupancy, and weather

conditions should be considered to evaluate the cooling capacity from natural

ventilation, in addition to asking a simple question—"is there airflow?” This is

why the “availability” of natural ventilation for a given building cannot solely

represent  its  “effectiveness”  in  cooling  the  space.  This  study  reviewed

evaluation  metrics  used  for  natural  ventilation  in  buildings,  selected  useful

metrics  for  design  procedures,  and  revised  them  to  further  include  the

transient behavior of thermal mass in the evaluation of natural  ventilation’s

performance. The three key performance indices identified in this paper were

climate  potential  of  natural  ventilation  (CPNV),  natural  ventilation  cooling

effectiveness (NVCE), and climate potential utilization ratio (CPUR). The study

further  demonstrated  the  applicability  of  such  metrics  within  a  design

procedure as follows:

 During  a  site  evaluation  and  schematic  design  phase,  CPNV  informs

general ideas as to how much cooling potential the site can expect from

natural ventilation.

 During a design development phase, in which various design options and

specifications  of  a  building  are  tested,  NVCE  provides  the  key

information  about  cooling  effectiveness  of  a  given  design  solution.  A

supplementary  metric,  CPUR,  explains  how  the  building  performs

compared to the expected CPNV. 

The main advantage of having these metrics is the interactive feedback they

offer  during  numerous  design  iterations.  In  the  feasibility  study,  we
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parameterized  important  building  components  in  the  3D  modeling

environment,  including  thermal  capacity,  overall  heat  transfer  coefficients,

internal heat gains, climate conditions, and comfort criteria. We then linked the

building parameters  with NVCE calculation,  such that NVCE and CPUR were

calculated each time the 3D model or a criterion was changed.

The wide ranges of NVCE shown by the feasibility tests support the hypothesis

that the relationship among various design parameters should be dynamically

understood in order to evaluate the performance of natural ventilation, since

“the  more  the  airflow,  the  better,”  or  “the  heavier  the  thermal  mass,  the

better” are not always true. The newly proposed metrics, NVCE and CPUR, offer

clearer perspectives on how the chosen settings influence natural ventilation’s

performance. The equations can be easily incorporated into a spreadsheet and

computer  scripts  for  a  simple  case,  and  can  be  used  in  combination  with

energy simulations and additional scripting for more comprehensive studies. 
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Figure 5. Results of Phoenix, AZ (V̇ , airflow rate; qgain, internal heat
gains; C, thermal storage).
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Figure 6. Results of Fresno, CA (V̇ , airflow rate; qgain, internal heat gains; C,
thermal storage).
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Figure 7. Results of Denver, CO (V̇ , airflow rate; qgain, internal heat gains; C,
thermal storage).
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Appendix A. Detailed steps through Eqs. (4-8)

In a steady state, the total heat gains and losses is equal to zero as in Eq. (A.1):

0  ¿qsolar+q
∫¿+qwall+qinf +vent ¿

(A.1)

where  qsolar is  solar  heat  gain,  q∫¿¿ is  internal  heat  gains  from occupancy,

lighting, appliances, etc.,  qwall is heat loss through the overall wall (including

opaque and glazing materials), and q inf +vent is heat loss through infiltration and

ventilation. Defining qgain=¿ qsolar+q
∫¿¿, we get Eqs. (A.2) and (4):

0  ¿qgain+UA (Tout−T ¿)+ρ cV̇avail (Tout−T ¿) (A.2)

T ¿
¿

qgain

UA+ρcV̇avail

+T out (4)

Starting from Eq. (5) in the main text, Eq. (7) was derived as in Eqs. (5), (A.3),

(6), and (A.4):

T target ¿
qgain+q¿

UA+ρcV̇avail

+T out (5)

q¿ ¿(T target−Tout )(UA+ρc V̇avail )−qgain (A.3)

qreq ≡qavail+q¿ (6)

¿−ρcV̇ avail (T target−T out )+(T target−Tout) (UA+ρcV̇ avail )−qgain

¿−{qgain−UA (T target−T out )} (A.4)

NVCE ts
¿

qavail

qavail+q¿

=
−ρcV̇ avail(T target−Tout )

−{qgain−UA (T target−Tout )} (7)

If we assume that the supplementary cooling power,  q¿, comes from natural
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ventilation, 

q¿ ¿−ρcV̇ ¿¿), (A.5)

where  V̇ ¿
 is the supplementary airflow rate from natural ventilation. Eqs. (6)

and (7) can be expressed as Eqs. (A.6) and (A.7):

qreq ≡qavail+q¿ (6)

¿−ρcV̇ avail (T target−T out )−ρcV̇ ¿(T target−T out)

¿−ρc (V̇ avail+V̇¿) (T target−Tout ) (A.6)

NVCE ts
¿

qavail

qavail+q¿

¿
−ρcV̇avail (T target−Tout )

−ρc (V̇avail+ V̇¿ )(T target−T out )
¿

V̇avail

V̇ req

,
(A.7)

where V̇ avail is the available airflow rate from natural ventilation, and V̇ req is the

ideal airflow rate (V̇ avail+V̇ ¿)  required from natural ventilation. Airflow rate is

used to define air changes per hour (ACH) as:

ACH=
3600 ( s )V̇

vol
,

where vol is the volume of the room. Therefore, Eq. (A.7) leads to Eq. (8):

NVC Ets=
qavail

qreq

=
V̇ avail

V̇ req

=
ACHavail

ACHreq

, (13)

where ACHavail is the available ACH from natural ventilation, and ACHreq is the

required ACH. 
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Appendix B. Detailed settings used in the feasibility test

Table B1. Base case model settings for three cities.

Phoenix, AZ 

(IECC Climate 
Region 2B) 

Fresno, CA

(IECC Climate 
Region 3B) 

Denver, CO

(IECC Climate 
Region 5B)

SI units 

c
IP units 

d
SI units IP units SI units IP units

Fenestratio
n

U-Factor a 2.271 0.400 1.817 0.320 1.703 0.300

Glazed 
fenestratio
n

SHGC a 0.250 0.250 0.250 0.250 Not 
Require
d

Not 
Require
d

Ceiling R-Value a 6.697 38 6.697 38 8.635 49

Equivale
nt U-
Factor b

0.170 0.030 0.170 0.030 0.148 0.026

Wood 
frame wall

R-Value 2.291 13 3.525 20 3.525 20

Equivale
nt U-
Factor

0.477 0.084 0.341 0.060 0.341 0.060

Floor R-Value a 2.291 13 3.348 19 5.287 30

Equivale
nt U-
Factor b

0.363 0.064 0.267 0.047 0.187 0.033

Slab R-Value a 0 0 0 0 1.762 10

Depth a - - - - 0.610 2.000

Glazing 
area

4.13 [m2] each

Opening 
area

1.24 [m2] each

Thermal storage per 
area 25,200  [J/K- m2] (Second-floor only)

Equipment load per 
area 5 [W/m2]

Lighting power density 7 [W/m2]

Number of people per 
area

0.02 [ppl/m2]

a Value  reference:  IECC  [82] Table  R402.1.2,  Insulation  and  Fenestration
Requirements by Component.
b Value reference: IECC [82] Table R402.1.4, Equivalent U-Factors. 
c SI units used are [W/(m2·K)] for U-Factor, [m2·K /W] for R-Value, [m] for depth.
The  values  were  converted  from  the  IECC  tables,  which  were  originally
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provided in the IP units. 
d IP units used are [Btu/(h·ft2·℉)] for U-Factor, [℉-ft2-h/Btu] for R-Value, [ft] for
depth. 

45

925
926
927

45


	Dynamic Metrics of Natural Ventilation Cooling Effectiveness for Interactive Modeling
	Abstract
	1. Introduction
	1.1. Natural ventilation potential (NVP)
	1.2. Evaluation metrics for an interactive design process
	1.3. Research scope and methodology

	2. Review of natural ventilation performance metrics
	2.1. Commonly used metrics in natural ventilation prediction
	2.1.1. Volume airflow rates
	2.1.2. Air changes per hour

	2.2. Customized metrics suggested by researchers
	2.2.1. Natural ventilation evaluation by site and climate conditions
	2.2.2. Natural ventilation evaluation by pressure difference
	2.2.3. Natural ventilation evaluation by temperature difference
	2.2.4. Natural ventilation evaluation by buoyancy effect
	2.2.5. Natural ventilation evaluation of building design


	3. Proposed and revised metrics to evaluate the effectiveness of natural ventilation’s cooling performance
	3.1. Three key metrics: CPNV, NVCE and CPUR
	3.2. Proposed metric: natural ventilation cooling effectiveness (NVCE)
	3.2.1. Definition of natural ventilation cooling effectiveness
	3.2.2. NVCE in a steady state
	3.2.3. NVCE in a transient state

	3.3. Proposed metric: Climate potential utilization ratio (CPUR)
	3.4. Understanding NVCE and CPUR together

	4. Interactive modeling in a design process using NVCE and CPUR
	4.1. Feasibility study description
	4.2. A base case model description and variations to consider
	4.3. Simulation work flow

	5. Results and discussion
	5.1. Climate Potential of natural ventilation (CPNV)
	5.2. Natural Ventilation Cooling Effectiveness (NVCE)
	5.2.1. NVCE of base cases
	5.2.2. NVCEs of various design options
	5.2.2.1. Airflow rate
	5.2.2.2. Solar and internal heat gains
	5.2.2.3. Thermal mass


	5.3. Climate Potential Utilization Ratio (CPUR)
	5.4. Limitation and future work

	6. Conclusion
	Author contributions
	Acknowledgment
	Bibliography
	Appendix A. Detailed steps through Eqs. (4-8)
	Appendix B. Detailed settings used in the feasibility test



