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Automated Detection of Systematic Off-label Drug Use In Free Text of 
Electronic Medical Records 

Kenneth Jung, MS1, Paea LePendu, PhD1, Nigam Shah, MBBS, PhD1 
1Stanford University, Stanford, CA 

Abstract 
Off-label use of a drug occurs when it is used in a manner that deviates from its FDA label.  Studies estimate that 
21% of prescriptions are off-label, with only 27% of those uses supported by evidence of safety and efficacy.  We 
have developed methods to detect population level off-label usage using computationally efficient annotation of free 
text from clinical notes to generate features encoding empirical information about drug-disease mentions.  By 
including additional features encoding prior knowledge about drugs, diseases, and known usage, we trained a 
highly accurate predictive model that was used to detect novel candidate off-label usages in a very large clinical 
corpus. We show that the candidate uses are plausible and can be prioritized for further analysis in terms of safety 
and efficacy.   
Introduction 
Off-label use of drugs occurs when a drug is used in a manner deviating from its FDA approved use. Estimates of 
the extent of off-label use in office-based practices found that 21% of those prescriptions were off-label.  Of these 
usages, 73% lacked adequate evidence regarding safety and/or efficacy (1, 2).  Off-label uses are problematic 
because they have not been evaluated for safety and efficacy.  Previous studies relied on surveys of clinicians, had 
limited coverage in terms of the drugs studied, and have been limited to particular practice types (3).   
 
The widespread adoption of electronic medical records (EMR) provides an opportunity to detect off-label use in an 
automated, scalable manner.  In this paper, we combine features encoding the empirical relationship of mentions of 
drugs and indications in the free text of clinical notes with additional features that represent prior knowledge about 
known indications of drugs to build a predictive model achieving high accuracy in a hold out test set. Feature 
ablation experiments showed that both the empirical features and the prior knowledge derived features were critical 
to achieving this performance.  Notably, our method does not rely on a labeled dataset of clinical text for training the 
model.  We applied this model to a very large clinical dataset to identify potential novel off-label usages.  These 
usages were generally plausible, with some apparently bona fide off-label usages.   
Background 
Off-label usage of drugs is problematic because such usages have not been evaluated for safety and efficacy.  For 
instance, Tiagabine was approved for use as adjunctive therapy for partial epilepsies.  However, when used as the 
sole or primary treatment, it was found to cause seizures.  In 1998, 20% of uses of Tiagabine were off-label, but by 
2004 this fraction had increased to 94% (4).   
 
Electronic medical records provide an opportunity to detect off-label usage in a comprehensive, automated manner.  
Unfortunately, EMR systems typically do not link drugs to the indications for which they are prescribed (3).  
Furthermore, research has shown that the structured data in EMRs is often incomplete, with the free text of clinical 
notes providing the most complete view of patient care (5).  There has been much work done applying Natural 
Language Processing (NLP) to clinical text for document retrieval and information extraction (6).  The 2010 i2b2 
NLP Challenge (7) focused on three problems relevant to detecting off-label use — concept recognition; assertion 
classification; and relationship classification, including the relationship ‘Drug used to treat Indication.’  If we solved 
this problem, we could detect off-label usages by simply checking whether these used to treat relationships are 
approved usages.  But despite the impressively high performance achieved by submissions to the challenge, these 
approaches cannot be employed to comprehensively detect off-label usages because they require abundant training 
data that adequately covers the space of drugs and indications over which we wish to make predictions (8).   
 

In this work, we reframe the problem of detecting off-label drug use to bypass the need for labeled training data.  
Rather than detecting whether or not a drug is being used to treat an indication within a chunk of text, as in the i2b2 
NLP Challenge, we determine whether the drug is being used to treat the indication in the population as a whole.  
We used a computationally efficient concept extraction pipeline based on the NCBO Annotator (9) Web Service to 
tag a very large corpus of clinical text from the Stanford Hospital System with mentions of drugs and indications.   
The empirical counts of mentions from this pipeline have been used for population level tasks such as associating 
drugs with adverse events — e.g., the relationship between Vioxx and myocardial infarction (10).  In particular, 
these tags have been used to calculate a measure of association between drugs and indications to yield a list of 
potential off-label usages after applying various heuristic filters (11).  We built on this work by combining features 
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representing the empirical relationship between drug and indication mentions in the text with features encoding 
knowledge about drugs, indications, and known usage to train a classifier that achieves high performance in a hold 
out test set.  Finally, we applied the classifier to discover novel potential off-label usages.    
 

Methods 
The learning problem we posed is: predict whether a given drug is being used systematically to treat a given 
indication.  This is a different problem than detecting whether a given drug is being used to treat an indication in a 
particular clinical note.  We are not interested in textual-level drug usage per se, but rather population level usage.  
To this end, we trained a classifier to recognize this population level relationship.  Note that we do not predict off-
label usage directly - if a drug is being used to treat an indication, we simply look up whether or not the drug is 
approved for that indication.  All other usages are by definition off-label.  The overall workflow for our method is 
depicted in Figure 1 and described in detail below.   
 

Constructing a labeled dataset of positive and negative examples 
We used known usages from the Medi-Span® Drug Indications Database™ (Wolters Kluwer Health, Indianapolis, 
IN) as positive examples.  Medi-Span links drugs to indications with one of three relationships: FDA approved, 
accepted use, and limited evidence.  We consider all of these to represent known uses.  To construct negative 
examples, we randomly selected a drug and indication from Medi-Span and then randomly selected another drug 
and indication that occurs in the data with approximately the same frequency.  Frequency based matching was 
performed because previous work (12) suggests that frequency based features derived from the annotation pipeline 
can distinguish between drug associated adverse events and treatment relationships.  The "negative" pairs were 
filtered to remove inadvertent known usages.  The overall ratio of negative to positive examples in this ‘ground 
truth’ dataset was set to 4:1.  Negative examples may not be true negatives if they are simply not known by Medi-
Span.  However, we expect that such pairs are rare so that our labels are a good approximation of the ground truth.  

 
Annotation of Clinical Text 
We used an annotation pipeline based 
on the NCBO Annotator to tag input 
text with UMLS (13) unique concept 
identifiers (CUI's), yielding a set of 
drug and indication mentions for each 
clinical note.  These tags were filtered 
using NegEx (14) and ConText (15) to 
remove mentions that are negated or 
refer to people other than the patient in 
question. Drugs were normalized into 
active ingredients (e.g., Excedrin was 
rewritten into acetaminophen, aspirin 
and caffeine) using RxNORM (16).  
Indications were normalized to the set 
of indications used in Medi-Span using 
the SNOMED CT hierarchy by 
recursively rewriting the indication as 

its parents in the SNOMED CT hierarchy until we reach an indication used by Medi-Span.  For instance, Amok is 
not in the Medi-Span target vocabulary so it is rewritten as its parent term, mania.  We used this pipeline on the free 
text of clinical notes in the Stanford Clinical Data Warehouse (STRIDE).  STRIDE contains over 9.5 million clinical 
notes for 1.6 million patients over a time period of 18 years.  The annotator is flexible with respect to target 
vocabulary and optimized to run efficiently on very large corpora - this dataset was processed in approximately 7 
hours using only 4.5 GB of disk space.  We found 1,726 drugs and 1,468 indications that occur in the data.    
 

Feature Construction 
For each patient, a drug or indication occurs in their record if it appears at least once in any of the patient’s notes; 
they co-occur if they are mentioned in notes that are time-stamped within one day of each other.  These counts, 
along with association measures derived from them — the chi squared statistic, reporting odds ratio and the 
conditional probability of a drug mention given an indication mention, were used as features.  The fraction of 
patients in which the drug occurs before the mention of the indication (drug first fraction) was also included, along 
with drug first fractions adjusted for the frequency of the drugs and indications (12).  Overall, we calculated nine 
features that encode the empirical relationship between mentions of the drugs and indications. 
 

We also used features that encode prior knowledge of the drugs, indications and known usage.  These features are 

 

Figure 1.  Analysis workflow. 
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motivated by the intuition that drugs are typically used off-label because of similarity with an approved drug, such 
as a shared molecular target, pathway or drug class — e.g., Bevacizumab, an anti-angiogenic agent, is used off-label 
to treat age related macular degeneration, a form of blindness caused by aberrant growth of blood vessels (17).  We 
used the Medi-Span and DrugBank databases to construct features that encode this knowledge for each drug-
indication pair.  For Medi-Span, these included the number of drugs approved for the indication, number of drugs 
known to be used for the indication, the fraction of known treatments for the indication that are also approved, the 
maximum similarity of the drug to other drugs known to be used to treat the indication, and the maximum similarity 
of the indication to other indications treated by the drug. Similarity features were calculated using the cosine and 
Jaccard similarities as shown in Figure 2 below.   
 
The DrugBank 3.0 (18) database provides information on 6,711 drugs and their molecular targets, pathways, and 
indications.  The annotator was used to map DrugBank drug names and indications to our target vocabulary. 
Molecular targets, pathways, and drug categories were also extracted for each drug.  We calculated similarity 
features analogous to the Medi-Span similarity features, along with other features that capture similarity with respect 
to molecular targets, pathways, and drug categories.  Note that when calculating these features, we censored the test 
drug-indication pairs from Medi-Span and DrugBank to prevent data snooping.   

Training a predictive model 

We used these 24 features to train a support vector machine (SVM) using the e1071 library in R.  We randomly 
partitioned our ‘ground truth’ dataset into 37,776 training and 9,446 test examples. An SVM using a radial basis 
function kernel was trained on the training set and evaluated on the test set. We assessed the contribution of the 
different features by training and testing models using subsets of the features.  We then trained a classifier on the 
entire labeled dataset.  The resulting model was applied to all 2,533,768 possible drug-indication pairs.  Predicted 
usages that are not known usage are assumed to be potential novel off-label usage, and were sorted by estimates of 
their respective class membership probabilities obtained via a logistic regression model (19). Finally, we normalized 
indications to remove drug-indication pairs in which the indication is a sub-type of an approved indication. 
 

Results 
Table 1 Performance of the classifier on the test set using different subsets of features.   

Performance of the classifier 
The SVM achieved a precision of 
0.945, specificity of 0.989, recall 
of 0.778 and F1 score of 0.853 on 
the hold out test set.  Feature 
ablation experiments showed that 
the different groups of features 
each contributed significantly to 
overall performance, particularly 

with respect to sensitivity (Table 1).  For instance, using the empirical (STRIDE) features alone yielded a recall of 
0.485, and using Medi-Span features alone yielded a recall of 0.289, while using both feature sets achieved a recall 
of 0.768. Note that the addition of DrugBank to STRIDE features resulted in significantly better performance than 
either alone, but DrugBank appears less to be informative than Medi-Span.  We speculate that this is because of the 
relative lack of coverage of DrugBank with respect to indications – DrugBank does not link its indications to 
SNOMED CT, so we must map them to our target vocabulary using the NCBO Annotator.    
 

Predicting novel off-label usages 
We then applied an SVM trained on all labeled examples to predict potential novel off-label usage.  This recovered 
95.1% of the known uses, and classified 57,749 drug-indication pairs as off-label usages.  Applying a probability 
estimate cut-off of 0.95 and filtering out known usages yielded 10,765 potential novel drug-indication pairs.  Manual 
inspection of the list of potential novel drug-indication pairs revealed that the predictions are generally plausible 
given prior knowledge of the drugs and indications, and fairly often represent off-label usages that are not in Medi-

Feature Set Positive 
Predictive 
Value 

Specificity Sensitivity F1 

STRIDE only 0.792 0.969 0.485 0.602 
Medi-Span only 0.836 0.988 0.289 0.430 
STRIDE + Medi-Span 0.946 0.989 0.768 0.848 
STRIDE+DrugBank 0.853 0.977 0.552 0.670 
All 0.945 0.989 0.778 0.853 

 

Figure 2.  Calculation of drug and disease 
similarity features.  To calculate the similarity of 
drug m to other drugs used to treat indication n, 
we find other rows j such that entry (j,n) = 1 (i.e. 
drug j is known to treat indication n).  We 
calculate the cosine and Jaccard similarities of 
these rows (indicated by blue arrows) to row m 
and use the maximum similarity.  An analogous 
calculation is used to calculate indication. 
similarity.   
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Span (see Table 2 below for examples of potential new usages).  For instance, (Levofloxacin, Tularemia), 
(Ciclopirox, Onychomycosis), (Vincristine, Osteosarcoma), and (Cilastatin, Arthritis/Infectious) are predicted off-
label usages that are not in Medi-Span and but are supported by PubMed.  Cilastatin and ‘Arthritis, Infectious’ is 
particularly interesting because Cilastatin is used with the antibiotic, Imipenem, to slow the metabolism of the latter, 
leading to higher effective concentrations of the drug.  This is an example of a drug-indication association that is not 
precisely a ‘used to treat’ relationship, but is nevertheless clinically relevant.   
 
Table 2 Examples of predicted novel off-label drug-indication pairs 

Error analysis 
Examination of these new pairs reveals several recurring error 
modes. First, some errors may stem from the annotation pipeline 
incorrectly identifying concepts.  For example, the use of 
Corticotropin to treat ‘Brain neoplasms’ may result from tagging 
‘Corticotropin Releasing Hormone’, used to treat swelling 
secondary to brain tumors, as ‘Corticotropin’.  Other errors arise 
from a mismatch between the mapping of indication mentions to 
their parents and the known indications in Medi-Span (20).  For 
instance, Medi-Span lists Tobramycin as approved for ‘eye 
infections, bacterial’, which is not a parent of ‘Conjunctivitis’, so 
the latter is considered a novel off-label use. Similarly, Felbamate 
is approved to treat ‘epilepsies, partial’ and ‘epilepsies, 

generalized’, which are not parents of  ‘Epilepsies, myoclonic’.  A third error mode occurs when a drug is used to 
treat indications that have sequelae that are also indications, a case of protopathic bias (21) - the NSAID 
Meclofenamate is approved to treat indications that cause fever, which is detected as a novel off-label use.   
Discussion 
Previous comprehensive surveys of off-label drug usage were derived from the National Disease and Therapeutic 
Index (IMS Health, Plymouth Meeting, PA), which relies upon surveys of office-based physicians.  We have 
described work that bypasses this expensive, time-consuming method in favor of automated methods that can be 
applied to the free text in EMRs.  Notably, we detect the use of a drug to treat an indication at a population level 
instead of the textual level, as has been the focus of previous work applying NLP to clinical text.  This allows us to 
use a computationally efficient concept extraction pipeline on a very large corpus of clinical text without labeled 
training text.  Mentions of drugs and indications were augmented with features derived from prior knowledge of 
known usages, increasing the performance of the classifier over that achieved using only empirical features. 
 

Future work will focus on three areas.  First, co-mentions of drugs and indications can be constrained to occur 
within the same sentence, potentially increasing the specificity of empirically derived features – intuitively, it is 
likely that a drug used to treat an indication co-occurs in the same sentence. Second, error modes arising from the 
questionable mappings of known indications to our target vocabulary may be addressed by training a classifier to 
detect such cases. This could have the additional benefit of flagging regions of disease and drug-indication 
ontologies that are mismatched in a data-driven manner.  Reconciling or combining other sources of known usage, 
such as the National Drug File - Reference Terminology (NDFRT) (22), which has a well curated set of mappings 
from drugs to their known indications, may also reduce the false positive rate by improving the filtering step 
independently of classifier performance.  Finally, we ultimately wish to detect novel off-label usage in order to 
assess the safety and efficacy of such usages.  This task would benefit from a systematic method for prioritizing 
novel off-label usages by criteria that capture their potential risks (23).  Intuitively, we are most interested in usages 
that involve drugs with serious side effects, are very common, or occur in populations with a high degree of poly-
pharmacy or co-morbidity, increasing the risk of drug-drug interactions or other uncharacterized adverse events.     
Conclusion 
Detecting and monitoring off-label use of drugs is an important problem because such uses have not been assessed 
for safety and efficacy.  We have focused on detecting off-label use defined as the use of drugs for unapproved 
indications.  Importantly, we defined the problem as identifying drug-indication pairs at the population level instead 
of the textual level.  A classifier using features that encode the empirical relationship between mentions of drugs and 
indications in clinical notes, along with prior knowledge about drugs, indications and known usages, achieves high 
performance in a hold out test set; and yields novel off-label uses that are generally plausible and in many cases 
appear to be bona fide novel off-label uses.  
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