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Abstract

Eco-evolutionary dynamics in high dimensions

by

Stephen Martis

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Oskar Hallatschek, Chair

With the advent of many new and revolutionary technologies (e.g. cheap high-throughput
sequencing, precise gene editing, and more), biology has become a much more quantitative
science over the past few decades. With these technologies in hand, we find ourselves able
to probe some of the “fundamental” questions and assumptions that undergird the fields of
evolution and ecology, both in controlled laboratory environments and in natural settings.
However, with these new, quantitative observations, it is clear that some of the frameworks
we use to think about biological populations are insufficient to describe relatively simple
scenarios.

One of the key assumptions shared by population genetics and theoretical ecology is that
these two fields are distinct. In other words, it has been taken for granted that ecological and
evolutionary processes act separately and on disparate timescales. However, this may not
necessarily be the case, where even in controlled laboratory evolution experiments, ecological
structure frequently evolves on human observable times. This leads to an interesting (and
broad) set of questions – what are the new timescales to consider in a joint eco-evolutionary
process? How does eco-evolutionary feedback affect known observables? What new ob-
servables might be relevant? And, importantly, what should we find surprising in such a
setting?

The contents of this dissertation hope to start to answer some of these questions by proposing
and analyzing relatively simple models of eco-evolutionary dynamics. Since the task involves
combining models that fall under the distinct classes of population genetics and ecology, the
resulting joint models are necessarily more complex. However, by taking cues from statistical
physics, I study these models in an explicitly high-dimensional setting, finding some forms
of simplification.

First, inspired by experimental observations of diversification resulting from the evolution
of novel resource preferences, I (in joint work with Benjamin Good and Oskar Hallatschek)
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propose a minimal model of evolution in the setting of resource consumption with trade-
offs. This model combines aspects of niche construction theory from the realm of ecology,
with directional selection from the realm of population genetics. We study the low and high
dimensional behavior of the model and describe its relatively simple steady state behavior
which is dominated by resource generalists.

Second, I extend this model to include epistasis, or ‘rugged’ trade-offs. I show that the
simple behavior of the non-epistatic model yields to a richer phase diagram when there is
even weak epistasis. I show that in the many resource limit, the resource generalist state
becomes ‘fragile’ to small epistatic fitness differences. This results in a transition in which
the steady state gives way to a state of ‘punctuated equilibrium’ in which the ecosystem
spends long times waiting for fitness mutations which bring about rapid rearrangement of
the resource strategies of resident strains. This can be understood in light of the form of
the Lyapunov function, which naturally separates into fitness specific and ecology specific
components.

Finally, I propose a simple model of predator-prey co-evolution in a high dimensional setting.
Using a combination of stochastic and deterministic simulations and theory inspired by the
physics of disordered spin systems, I show that co-evolution stabilizes such populations for
sufficiently variable interactions and for sufficiently high mutation rates, which stands in
sharp contrast to expectations from ecological models alone. I also derive the phase boundary
between a stable eco-evolutionary phase and an extinct phase, showing the dependence on
relevant parameter combinations.
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Chapter 1

Introduction
Dongh was worried by these multiple-choice futures, but Lyubov enjoyed them.
In diversity is life and where there’s life there’s hope, was the general sum of his
creed, a modest one to be sure.

— Ursula K. LeGuin, The Word for World is Forest [43]

1.1 Set and setting
The amount of biological diversity that exists and persists at many scales of observation
is remarkable. Even in the well-manicured neighborhoods of Berkeley, California, many
different types of macroscopic and microscopic diversity are readily observed. For instance,
one might encounter many different species of tree standing side-by-side in a yard. Looking
up at a particular tree, one might observe several species of bird sitting in its branches. A
particularly entrepreneurial reader might go on to examine a soil sample from the base of
the tree under a microscope and see hundreds or even thousands of types of microbes that
coexist in that environment. It is a wonder that all of these living things, from the trees to
the birds to the microbes, have descended from a common ancestor billions of years ago and
yet persist together. A natural (and everlasting) question, then, is “how might this all have
come to be?”

Dobzhansky’s famous dictum that “nothing makes sense in biology except in the light
of evolution" [19] has served as a loose organizing principle (really a sort of repeated, if
imprecise, mantra) for modern thinking about this question. In recent years, by coupling
mathematical models of evolutionary dynamics with advances in sequencing technology, we
have started to take both this question and this principle more “seriously.” Specifically, many
researchers have begun to engage with them quantitatively, attacking more precise questions
about the “tempo and mode” [66] of evolution – both in controlled laboratory settings and
through observations of natural populations.

Many attempts to model the process of evolution have relied on certain simplifying as-
sumptions, specifically that we can roll all of an evolving system’s biological complexity into
a small set of effective parameters, including, perhaps most importantly, a scalar quantity
that has been referred to as ‘fitness’ [33, 11]. Fitness can mean many things and can be
measured differently depending on the specific context or even who you ask [44, 1, 62]. At
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its most essential, fitness is a phenotype associated with a genotype. This phenotype is often
defined as the genotype’s growth rate when compared to the growth rate of the genotypes
that comprise its surrounding population. Fitness, so defined, can take on positive, negative
or null values, referring to genotypes that are growing, declining or indistinguishable from
average within a population. In general, a genotype’s fitness can vary with time, but in the
simplest case, we can assume that it is constant for all time. 1

In this constant scalar fitness framework, mutations can result in fitness changes, which
in turn accrue within a population over time. We can then picture evolution as an incre-
mental process by which mutation seeds types with increasingly higher fitness, marching
towards higher and higher values along an abstract fitness axis. Indeed, there has been
much work to construct explicit models of this process, which has borne out some clear pre-
dictions [17] and even some correspondence with carefully controlled laboratory experiments
[6]. However, with an influx of quantitative data, there is increasing evidence that these
simple mathematical models of evolution, while incredibly rich and fruitful, are insufficient
to describe even relatively simple laboratory experiments [30, 34, 12], let alone what we
observe in complex natural settings [29, 55].

Returning to Dobzhansky’s metaphor, we can understand that the “light of evolution"
illuminates myriad other processes that occur within and between populations: competition,
altruism, predation and many more complex scenarios. In addition, it is intuitively clear that
individuals adapt to the abiotic characteristics of their environments, consuming resources
and developing mechanisms to avoid toxins. These additional processes and externalities,
which can loosely be described as ecology, in turn strongly influence what can and will evolve.
So even in the simplest scenarios, the evolutionary process and a genotype’s ‘fitness’ can be
extremely contingent on the environmental or ecological setting in which it proceeds.

So in some sense we ought to refine the metaphor. Evolution is still the light that guides
us, but ecology is the battery that powers the light, and as such ought to directly inform any
attempt to understand the evolutionary process. But even this isn’t the complete picture.
Oftentimes, the timescales of environmental and evolutionary change are comparable (and
even directly coupled). When this is the case, the more apt description is that evolution
and ecology form a closed loop (Fig. 1.1), a sort-of perpetual motion machine in which light
and battery power each other – or put more simply, the metaphor breaks down. How then
should we assess our simple models of adaptation along a single dimension?

We can go all the way back to Darwin, who acknowledged such a potentially complicated
relationship between ecology and evolution in his original treatise “On the Origin of Species,"
where he alluded to an “entangled bank" of species evolving together in a shared and co-
created environment [13]. So instead of starting from a reductionist view of evolution as
an incremental process along a one-dimensional fitness axis, we might instead embrace the
messy complexity of a joint eco-evolutionary process. Taking cues from statistical physics, we

1Needless to say, this sort of vast simplification has accrued years of criticism and debate, which I shall not
discuss here. Instead we will hold up scalar fitness models as a sort of ‘straw man’ which, while undoubtedly
useful, might be worth reconsidering. Parties interested in critical discussions of scalar fitness might see [4]
and many more.
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Figure 1.1: An eco-evolutionary metaphor. Evolution illuminates biological observation
and experiment, but ecology ‘powers’ the evolutionary process. In this sense ecology and
evolution form a closed feedback loop, that cannot necessarily be disentangled.

can look at large, complex eco-evolutionary systems with the hope that there is simplification
when there are sufficiently many constituent parts (e.g. species, resources, genotypes, etc).
Such high-dimensional models are the core contents of this dissertation.

The rest of this introduction will lay the groundwork for the coming chapters by providing
an aerial view of some of the established (and most illustrative) low- and high-dimensional
evolutionary and ecological frameworks that have received attention over the years. I will
also identify some of the difficulties in combining these processes in the most general case
and will discuss some of the extant models of joint eco-evolutionary dynamics. But first,
I will discuss the relevant experimental and observational work that informs the different
modeling choices and motivates why we even need models in the first place.

1.2 Observations and experiments

Relevant scales

Before we get into any specifics, it’s instructive to get a feel for the numbers and scales that
we typically deal with when we think about evolutionary and ecological processes. Depending
on the particular system and question of interest, the relevant numbers can vary greatly, but
I will do my best to call attention to when this may be relevant to our estimates.

There is a vast range of timescales that we must consider if we go back to the very
beginning of life on planet Earth. Current fossil evidence suggests that microbial life was
present on earth as early as 4.28 billion years ago in the purported remnants of hydrothermal
vents [20]. This is not so long after the Earth itself formed approximately 4.5 billion years ago.
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In natural communities like the gut microbiome, the time it takes for a microbe to reproduce
is approximately one day or ∼ 105 s [40]. Taking this to be the mean reproduction time
for all microbes, over all time, we can estimate (conservatively) the number of microbial
generations since the earliest known:

1017 s
105 s/generation

∼ 1012 generations

Another important scale to get a handle on is the typical size of the communities we
care about. The population size can serve as a rough indicator of the relevance of noise in a
system, with large populations typically being less prone to stochastic effects. Sticking with
the human-relevant example of the human microbiome as a “typical” microbial community,
there are 102−103 or more unique species in a given human microbiome, inhabiting different
compartments at a broad range of abundances. Among all these species, there are some
estimates that there are roughly 1014 microbial cells in and on a human body (with the
majority residing in the gut) [65]. This is roughly as many human cells as there are in an
average human, which is quite remarkable (and perhaps even shocking). If this population
size is roughly constant, then over the course of a single day, almost all of these microbial
cells will have been replaced by their descendants. As such, this will have allowed for many
mutations to have entered this metapopulation.

We can get a handle on the mutation rate by looking to experimental and observa-
tional data. Mutation rates can vary greatly across species, but we will stick specifically to
microbes. A reasonable estimate of the per base mutation rate of a bacterium is 10−10 mu-
tations/nucleotide/reproduction event [7]. Of course, this neglects other types of mutational
events, including rearrangements, horizontal gene transfer, deletions, and insertions, but it
serves as a good base case to begin with. We expect that a typical microbe has roughly
106 nucleotides in its genome [53], this gives us 10−4 single site mutations per reproduction
event. Plugging in our population size estimate for a single human microbiome, this amounts
to 1010 single site mutations per day per microbiome (consistent with the lower end of the
estimate in [75]). If we assume that this single microbiome has existed since the dawn of
life, we have that there have been 1022 single site mutations over the course of its entire ∼ 4
billion year history. This may seem like an extremely large number, but we need to compare
it to the size of ‘genome space’ in order to get a true sense of scale.

Given that a microbe has about 106 nucleotides in its genome, that means that there are
roughly 10106 possible genomes of that length. For our single microbiome example, if every
mutation resulted in a new, never before seen genome, there would have only ever been 1022

unique genomes over its history. Given estimates that the global bacterial population size
is roughly 1031, that makes 1043 bacteria that have ever lived (assuming a fixed population
size). This would have resulted in the (vast overestimate) of 1039 unique genomes. This is
orders of magnitude greater than the number of stars in the observed universe. However,
this is tiny when compared to the size of total genome space. In fact, it corresponds to
completely exploring the space of a single stretch of DNA of less than 100 nucleotides in
length. This is much shorter than the length of even a typical gene.
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So now we can try to synthesize some of this information. Sticking specifically to mi-
crobes, we can see that despite rapid adaptation, the evolutionary search of genome space is
in no sense even close to exhaustive. Furthermore, we can also see that since many microbes
can coexist in shared environments (e.g. the human gut), there ought to be some sort of
coupling between the biotic and abiotic surroundings of a species and its evolutionary future.
Additionally, at least empirically, despite all of these interactions and rapid changes, natural
ecosystems seem to be remarkably stable on human relevant timescales and beyond. The
very large numbers at play (and their relative scales), the evolutionary coupling of chance to
contingency, and the observed qualitative stability are all important to keep in mind when
considering modeling choices and some of the results presented in future chapters.

Relevant observations

Equipped with a sense of scale, we can discuss some relevant observational and experimental
work which lends credence to an underlying eco-evolutionary process. The observational
examples have a large impact on human health and global environmental health. The evo-
lution experiment that I discuss is relevant here because it was specifically designed to avoid
ecological structure, which repeatedly turned up by evolutionary means.

Human gut microbiome

The human gut microbiome is a fascinating system that plays a crucial role in human health.
As mentioned in the previous section, an extremely large number of species at fairly large
abundances live within our large intestine. The gut microbiome has been implicated in many
pathologies in mouse and human models, from ones localized to the gut like inflammatory
bowel disease [16], to obesity [46], to pathologies that affect brain health and function [56, 37].
As such, it is clearly an important system to understand.

As of now, there is very little in the way of a unifying framework to understand gut
microbiome composition and function. However, with the relative ease of modern sequencing
technology, we are accruing a collection of observations that can begin to inform and constrain
theoretical models. Among the important observations is that the gut microbiome seems to
be resilient (or stable, at the species and even strain level), both over long times [21] and
in the face of relatively large perturbations, including antibiotic treatment [61]. In addition,
there is mounting evidence that adaptation occurs on human relevant timescales within the
gut [75, 24], which is consistent with our discussion in the previous section.

This presents an interesting theoretical challenge then – if the gut is typically so stable
(at coarse taxonomic scales), but is also adapting at the genetic level, how can we reconcile
these two phenomena? One might expect that adaptation would greatly change the compo-
sition of microbial types present, at least if we were to rely on a fitness-based description of
the evolutionary process. This leaves us with a few possibilities: mutations occurring in gut
microbes are effectively neutral, some type of spatial or niche structure prevents sub pop-
ulations from directly competing with each other for shared resources, or something more
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complicated might be happening, like monopolization effects [14]. In reality, all of these
and more might be contributing factors to the observed data, but both more data needs to
be analyzed and more careful models need to be proposed to constrain the scenarios which
might be relevant to the human gut.

Host-pathogen co-evolution

A prime and timely example of eco-evolutionary feedback is that of the co-evolutionary
dynamics of pathogens and their hosts. I would be remiss not to mention the COVID-19
pandemic, which is ongoing at the time of writing of this dissertation. The qualitative dy-
namics of this global pathogen can be described as ‘co-evolutionary’, as the global population
develops immunity and new variants begin to evade this immunity. However, since this is
an ongoing crisis, I cannot precisely comment on how this fits within the context of this
dissertation. It will remain to be seen whether eco-evolutionary thinking can bring much to
bear on the understanding and outcome of the pandemic.

However, one extremely well-studied and relevant example of host-pathogen co-evolution
is the adaptation of influenza to human immunity. Influenza is a viral pathogen that in-
fects about 1 billion people every year, globally [57]. Since it persists over sufficiently long
timescales (many years), it has measureably evolved and rapidly at that. It evolves so rapidly
in fact, that a new vaccine is tailored to the specific strain that is dominant in a given year
[25]. There is a whole cottage industry of scientists and organizations which contribute to
this process, sequencing strains globally and developing methods to better predict which
strain will be the next to rise to high frequency [51].

In addition to constant evasion of human immune recognition in the short term, influenza
has branched into different co-circulating lineages on longer (but still observable) time scales
[63]. This sort of quasi-speciation can be attributed to many things including allopatry
via multiple jumps into human hosts [38], the dynamical process of immune escape [74]
and canalization in high-dimensional ‘shape spaces’ [8]. Regardless, this sort of coexistence
phenomenon has an inherently ‘ecological’ character which is driven by evolutionary change.
Understanding the exact mechanism by which multiple strains evolve and persist is crucial
for mitigating the endemic spread of this disease.

Prochlorococcus diversity

Recent progress in sequencing has allowed for the detailed characterization of genetic diver-
sity in non-human related natural populations. One such population is that of the ocean-
dwelling cyanobacterium Prochlorococcus, a so-called ‘global species’ [36]. Prochlorococcus
is the most abundant photosynthetic organism on the planet, with an estimated population
size of 1027 cells spread out across the world’s oceans [9]. Despite its characterization as a
single ‘species,’ there is substantial variation within this taxonomic class, with many different
clades or ecotypes having been observed in different samples.
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With the help of single-cell whole-genome sequencing of many individual cells, it was
found that even within ecotypes there are still finer-scaled clusters of diversity [36]. These
‘genomic backbones’ are estimated to have diverged potentially millions of years ago (cor-
responding to many millions of generations). One possible ecological explanation for this
genealogical structure is ‘ancient, stable niche partitioning’ [36]. However this presents an
interesting theoretical problem since there has clearly been sufficient time for substantial
adaptation of these diverged lineages, which would naively reduce any diversity.

Lenski’s longterm evolution experiment (LTEE)

An extremely simple and invaluable laboratory experiment that serves as an important point
of reference for evolutionary and ecological theory is Richard Lenski’s long-term evolution
experiment (LTEE) [45]. The essential goal of the LTEE was to simply watch evolution
proceed in a sufficiently simple and well-controlled laboratory setting. This was carried
out by taking a well-characterized laboratory strain of Escherichia coli and propagating
it for ∼30 years (or ∼60,000 generations) in a minimal, fixed environment [48]. The null
expectation was that over time, the E. coli strain would acquire mutations so that evolved
strains would have improved fitness in the environment in comparison to their ancestors.
And this was in fact observed [71], though the complete picture is much more complex.

After several years of ‘simple’ directional adaptation, it was observed that in one pop-
ulation, two different phenotypic types emerged and were maintained at intermediate fre-
quencies [64]. The types were observed to have a colony-level phenotype, and are referred
to as ‘morphs.’ The first morph, the so-called L morph, exhibited relatively large colonies
when plated on rich media. The second morph, the S morph, exhibited small colonies on
plates. Importantly, these phenotypic characteristics are heritable, so one could infer that
the phenotypic changes were caused by changes at the genetic level. See Fig. 1.2 for an
image of these morphs.

By counting colonies, it was initially determined that these types had emerged and fluc-
tuated at intermediate frequencies for many thousands of generations [64]. Later, using
molecular and sequencing techniques, it was discovered that the S morph had acquired the
ability to process acetate, a byproduct of the L (as well as the ancestor) type’s metabolism,
which primarily used glucose as a carbon source. The molecular changes that necessitated
this phenotypic change were later teased apart [59]. It was shown that only a small set of
mutations were sufficient for the S morph to evolve, allowing for its relatively rapid emer-
gence.

However, this is only a single population out of twelve initial populations in the LTEE.
Perhaps this observed diversification was the result of chance? Luckily, part of the experi-
mental design of the LTEE was such that samples of populations were frozen and stored away
every 500 generations, thus preserving a ‘fossil record’ of the evolutionary process. A recent
study went back and examined this fossil record, sequencing many of the time points to
observe the dynamics of adaptation at the genomic level [30]. Remarkably, it was discovered
that many populations consisted of multiple haplotypes co-existing at intermediate frequen-
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Figure 1.2: S and L morphs from the LTEE. The S and L morphs plated on maltose
media. Only the S morph can utilize maltose which allows for the differential coloration of
the two types. On more standard plates, the size differential between colonies would be more
readily observed, although it is still noticeable here. Photo c/o Joao Ascensao.

cies. So apparently in E. coli grown in minimal media, diversification is not necessarily a
rare occurrence. Indeed diversification has also been observed in an independent experiment
in E. coli [22]. Moreover, it was observed that over time there was continued evolution on
the diversified lineages, leading to perturbations in lineage frequencies, while overall the rate
of adaptation slowed. Despite the simple nature of this model system, it would seem that
the timescales of ecology and evolution are comparable even in this context.

1.3 Ecology and mean-field population dynamics
Now that we have some sense of what is out there in nature and in laboratories, we can
start to think about the right ingredients in modeling the processes that underlie these
systems. First, we discuss models of ecology. A core facet of mathematical ecology is
population dynamics. Population dynamics is the study of how populations grow, fluctuate
and interact, primarily by means of difference equations and differential equations. This
is obviously an extremely broad field that would take several textbooks [49, 52], lecture
notes [5, 58] and Youtube videos [32] to provide a satisfying overview. I will not attempt
to do this here. Instead, I will focus on some of the relevant background for the remaining



CHAPTER 1. INTRODUCTION 9

chapters of the dissertation. The main thrust of this section will be to describe ‘mean-
field’ population dynamics models, which are commonly employed deterministic models of
population growth. Any biological population is subject to stochastic forces. However, if
the population size is large enough, it can often be assumed (with impunity) that stochastic
effects are subleading and that discrete population variables can be treated as continuous
quantities. To be pedagogically complete, I will illustrate how these deterministic models
can connect to microscopic stochastic dynamics, since, as I will discuss in the next section,
stochasticity cannot be ignored in evolutionary dynamics.

The simplest models: exponential and logistic growth of single
species

In the simplest case, a fixed environment with limitless resources and no interactions with
other species or abiotic elements, each identical individual in a population will grow at a
fixed rate, s. This can be captured by the following mean-field differential equation model
for the number of individuals n:

d

dt
n = sn ⇒ n(t) = n(0)est

This is an incredibly simple, but also incredibly rich model that is relevant to population
genetics (as we will discuss in the next section).

However, resources are never limitless and so exponential growth cannot proceed indefi-
nitely (i.e. it is reasonable to assume that there is some sort of population size regulation).
One common way to account for this is via the phenomenological logistic growth model:

d

dt
n = sn

(
1− n

K

)
in which K is the carrying capacity or total population size. In this model a population at
low abundance (n� K) will grow exponentially at rate s until nonlinear effects kick in and
the population saturates at K individuals. Carrying capacity or population size control is
the simplest form of ecological interaction in a population dynamic model. To see what I
mean precisely, we need to look at the underlying stochastic reaction process.

If we use the variable X to denote an exchangeable individual in the population, we can
define two types of interactions with accompanying rates:

X
s−→ 2X

X +X
s/K−−→ X

If we go through the process of writing down a master equation for the dynamics of the
probability distribution of the population size, P (n, t) (the probability that there are n
individuals of type X present at time t), we recover the logistic equation when we take the
mean-field limit [23]. A large class of theoretical models from population genetics have the
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Figure 1.3: Different examples of mean-field population dynamics. Panel A shows
simple logistic growth. For short times, the logistic function can be approximated by expo-
nential growth, but eventually nonlinear effects kick in and cause the population abundance
to saturate at some final equilibrium value. Panel B shows predator-prey dynamics for a
single predator and a single prey type. These dynamics follow a limit cycle in the mean-
field limit. However, this limit cycle is marginally stable so that stochastic fluctuations will
drive rapid extinctions. Panel C shows chaotic (competitive) Lotka-Volterra dynamics of 4
species. Notice that individual population abundances can get close to zero so that such
chaotic systems can be especially susceptible to stochastic extinctions. The parameters used
were found and described in [70].

logistic model as a mean-field limit albeit with a different underlying reaction process. We
will discuss this in a later section of the introduction.

In many cases in ecology and in population genetics, we are specifically interested in
models with multiple types, i.e. when there are sets of individuals which are not exchange-
able. In considering such cases, we need to have a sufficiently reasonable description of what
constitutes a type. We start with a version of the logistic reaction scheme above, except
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we have N types that interact. In the most general case, a single type i is described by
up to 2N + 1 parameters, s and Kij (as well as Kji). This means that we can have up to
N(2N + 1) ∼ N2 rate parameters describing one population. In proceeding, we will start
from the level of stochastic interactions to get a handle on the microscopic details of the
model and then assert the relevant mean-field equation and how it depends on these de-
tails. However, before we discuss the general case, we will start from a simplified case with
maximally symmetric interactions where Kij = Kji = K.

The first process we can consider is that each type possesses its own intrinsic growth rate,
si, which gives us the set of reactions:

Xi
si−→ 2Xi

Now since the population size control is implemented by an interaction at the microscopic
level we can make several choices for its generalization to the multi-type case. On the one
hand, we can assume that all types have the same interaction parameter, K, so that we have
a set of interactions:

Xi +Xj
si/K−−−→ Xj

where this ‘death reaction’ is proportional to the growth rate of the dying type. This results
in the mean field equations for the population size of the types:

d

dt
ni = sini

(
1−

∑
j nj

K

)
In this model, it can be demonstrated that the type with the highest growth rate will comprise
the entire population at long times, which is known as the competitive exclusion principle.

But why should interactions take this specific form? Even if we limit ourselves to inter-
actions that are a simple product of the abundances of the reactants, we are left with an
embarrassment of options. We might have the case where interactions are proportional to
the growth rate of the surviving type:

Xi +Xj
sj/K−−−→ Xj

which results in a different set of mean field equations with qualitatively different behaviors:

d

dt
ni = ni

(
si −

∑
j sjnj

K

)
These equations have been extensively studied under the umbrellas of population genetics,
ecology, physics and game theory. They are often referred to as the replicator equations and
serve as a minimal model of evolutionary games.

In the most extreme case, we can have a unique rate for every interaction:

Xi +Xj
aij−→ Xj
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so that there are N growth rate parameters and N2 interaction parameters. This yields the
mean-field equations:

d

dt
ni = sini −

∑
j

aijninj

These equations are referred to as competitive Lotka-Volterra equations, and these have also
been studied in many contexts. Interestingly, it was proved that for systems with 5 or more
species, depending on the choice of parameters, any dynamics could be expected: stability,
limit cycles, or chaos [67]. We will discuss this model and its extensions to non-competitive
cases shortly.

From this simple example we can start to recognize a couple of things. First of all,
there are many particular choices that we can make in describing the population dynamics
of a system. What the ‘relevant’ choices are and whether or not there are useful forms of
universality among the space of models is an important and as yet unsolved problem. The
other key observation is that even in this relatively simple model, there is an explosion in
the number of parameters that rapidly grows with the order of the interactions. This is the
first suggestion that understanding these sorts of population models statistically might be
a fruitful strategy in understanding their typical behavior. This is a line of inquiry many
others have pursued and which is continued in this dissertation.

Abiotic interactions: MacArthur’s consumer-resource model

Now that we have discussed the case where we have multiple ‘types’ growing with and
without population size control, we can start to include more details, i.e. more types and
specific mechanisms of population size control. One of the classic models of size control via
external factors is MacArthur’s consumer-resource model. I go on to analyze this model in
following chapters so it bears utility to discuss it in some detail here.

The consumer-resource model partitions a system into two classes, unsurprisingly referred
to as consumers and resources. The consumers require resources in order to grow, otherwise
they are removed (via death or some other mechanism like the outflow of a chemostat). The
resources can typically be biotic or abiotic, but we will only consider the latter case here.
The biotic case bears some relation to predator-prey models which we will discuss in the
next section and in chapter 4 of the dissertation.

We will denote abundance of consumers by the variables Cµ and the abundance of re-
sources by the variables Ri. In this case, instead of starting from individual-based interac-
tions, we’ll jump directly to the mean-field and justify this post-hoc. The dynamics of the
consumers take the form:

d

dt
Cµ =

[
gµ(~R)− δµ

]
Cµ

where gµ(~R) defines the growth rate of consumer µ as a function of the set of resource
abundances and δ is a death or outflow rate. We have used vectorial short hand in defining
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the growth rate, but this should not be taken to indicate any special properties of the function
gµ.

In the most general case, abiotic resources will obey the equations:

d

dt
Ri = si − hi(~C,Ri)

Such abiotic resources are supplied at a fixed rate si and are depleted at a rate hi, which
is a function of the consumer abundances and the abundance of resource i. More terms
might be added, for instance an outflow rate (perhaps modeling a chemostat environment),
but typically these can be incorporated into the generic depletion rate hi. Other potential
complications include scenarios in which the supply rates are functions of the consumer
abundances (for instance in the case of cross-feeding type behavior), or interactions between
the resources. However, we do not consider cases like this in this dissertation although they
present an interesting avenue for study and are almost certainly relevant in natural and
experimental settings.

In the generic form that we have cast them, not much can be said about the properties
of solutions to these equations other than that there is a fixed point when:

gµ(~R∗) = δµ and si = hi(~C
∗, R∗i )

We need to more precisely specify the model in order to determine whether or not this fixed
point is feasible and stable. There are several assumptions that have commonly been used to
make progress along these lines. The original consumer-resource model implementation [47]
(which has been reanalyzed in the high-dimensional limit in [2]) made the following relatively
simple assumptions for the growth rate of consumers and consumption rate of the resources:

gµ(~R) =
∑
i

aµiwiRi and hi(~C,Ri) =
∑
µ

aµiCµRi

We can eliminate the resource abundances to get an equilibrium condition for the type
abundances: ∑

i

aµiwisi∑
µ aµiC

∗
µ

= δµ

Since there is an equilibrium (which can proven to be unique, see chapters 2 and 3), any
fluctuations will be around this equilibrium. We can in turn show that fluctuations are
subleading in the limit of large population sizes, so that our mean field assumption is justified
[29].

In the model where the death rate is constant across types, δµ = δ, as might be the
case in a chemostat, and in which the resource strategies ~aµ are constrained by linear trade-
offs (e.g.

∑
i aµi = const. ∀µ), the model has the remarkable feature that an assembled

ecosystem can easily break the bounds set by competitive exclusion [60]. What this means
is that at equilibrium, the number of species at finite abundance can be greater than (in
fact arbitrarily greater than) the number of resources. However, upon introducing variance
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in the death rate δµ, this symmetry is broken unless very particular conditions are met and
the number of species is bounded by the number of resources [68]. In chapters 2 and 3, I
show that evolutionary dynamics can break this sort of fragile excess coexistence. However,
in chapter 3, I show that a type of non-equilibrium high diversity state can be achieved with
a more complex trade-off constraint surface.

Biotic interactions: the Lotka-Volterra framework

Interactions need not necessarily be mediated by externally supplied resources. Types might
interact with each other through competitive mechanisms (which we have already discussed),
as well as through predation, cooperation, and potentially even higher order interactions.
This is not surprising as we typically think of natural ecosystems comprised of a food web of
different consumers and different prey. In our discussion of logistic-like population dynamic
models, we came up with a set of equations describing competition for a single resource
dimension.

These competitive Lotka-Volterra equations can be generalized to incorporate other types
of interactions. For instance predation:

Xi +Xj
aij−→ 2Xi

and cooperation:
Xi +Xj

bij−→ 2Xi + 2Xj

The so called generalized Lotka-Volterra equations take on a form that is at least visually
similar to the competitive case:

d

dt
ni =

(
si +

∑
j

aijnj

)
ni

However, now the matrix of interactions A = aij can take on entries with arbitrary sign and
has no strict a priori structure. The matrix A is referred to as the community matrix and
its properties will be analyzed shortly.

A special case: predator-prey interactions

Predator-prey interactions are a classic subclass of this model that have been studied in great
detail. In the simplest case, we might have a single prey and a single predator strain, both
of which are assumed to be far from their carrying capacities. We can assume that without
sufficient prey, the predator would die off and that without predators, the prey would grow
exponentially. This leads to the coupled set of equations for the prey population, X, and
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the predator population, Y :

d

dt
X = (b− aY )X

d

dt
Y = (−d+ cX)Y

We can readily show that there is the trivial fixed point, (X∗, Y ∗) = (0, 0), as well as a
non-trivial fixed point:

Y ∗ = b/a, X∗ = d/c

We can study the stability properties of these fixed points. The trivial fixed point is unstable,
which can be shown rather simply. For the nontrivial fixed point we obtain the following
linearized equations for small perturbations δX and δY :

d

dt
δX = −aX∗δY

d

dt
δY = cY ∗δX

We can compute the eigenvalues:
λ± = ±i

√
bd

Since the eigenvalues are pure imaginary, we can infer that there is a closed orbit around
the fixed point. These orbits are determined by the initial conditions of the system and are
given by isoclines of the conserved quantity:

V ≡ cX − d lnX + aY − c lnY

Many species: May’s stability result

An extremely important result in the history of theoretical ecology is Robert May’s sweeping
yet simple comment on the stability of generic high-dimensional Lotka-Volterra models [50].
May’s argument starts with the community matrix of a generalized Lotka-Volterra model (or
really the Jacobian matrix of any arbitrary high-dimensional differential equation model),
which determines the stability of the assumed fixed point of the equations. In other words,
for the system under consideration, perturbations around a fixed point ~n∗ will be described
by:

d

dt
δ~n = Aδ~n

One can then go on to assume that the diagonal of the matrix has values of −1, which
indicates carrying capacity constraints on the individual types. This gives us:

A = B − In
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where In indicates the n-dimensional identity and B is a matrix with random entries. There-
fore, the eigenvalues of A, which determine stability, are given by λB − 1 where λB is an
eigenvalue of B.

The entries of B are drawn from a distribution with mean 0 and variance σ2. Importantly,
these sorts of matrices had been studied in the context of large interacting quantum systems
and so the statistical properties of their eigenvalues had been worked out by Wigner, Ginibre,
Mehta and others. The distribution of eigenvalues for a random, not necessarily symmetric
matrix of the sort with which we are concerned is given by a ‘circular law’ (in contrast to the
semi-circular law of Wigner, which applies to random symmetric matrices). The eigenvalues
of the matrix are uniformly distributed within a circle of radius σ

√
n centered at (0, 0) on

the complex plane. The condition for stability is that the largest real part of the eigenvalues
is less than zero. This translates to:

σ
√
n < 1

which is the result reported in May and others [50, 3].
We can learn a lot from this exceedingly brief and simple ‘proof’ (which is only slightly

shorter than May’s original paper). First and foremost it is readily apparent that statistical
thinking can be extremely useful when considering large ecological models and can lead to
sweeping, generic results. Second, that we have our work cut out for us – it would seem all
but the most particular ecological models will be unstable. Moreover it seems that we can
expect any small heterogeneity to destabilize a sufficiently large ecosystem. We will return
to this topic in chapter 4, where I show that for evolving systems, the situation can be quite
different: high variance interactions can actually be a prerequisite for stability.

1.4 Evolutionary dynamics and population genetics
The evolutionary process acts on top of the population dynamics of a system. However,
in the spirit of simplification, much of population genetics has treated situations where the
population size is approximately fixed. In this section, I will present some of the important
aspects of evolutionary dynamics and population genetics. Where possible, I will make
explicit connections to population dynamic models from the previous section.

The basics: selection, mutation, and drift

There are three ‘fundamental’ forces at play in any evolutionary process: selection, mutation,
and drift. The scare-quotes should be taken to indicate that fundamental is meant in its
most qualitative sense. Of course, there are other important biological processes which
complement these three basic forces, such as recombination and horizontal gene transfer.
However, despite their clear relevance in many natural systems, we will not discuss them
here since they are not necessarily relevant to the particular systems that I study in the
following chapters.
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Selection, broadly defined, is the process by which differences in genotypes and phe-
notypes in a population lead to changes in the frequency of those types. An important
phenotypic quantity that tracks these changes is the so-called ‘fitness’ of an individual type.
Fitness is an inherently difficult term to define precisely, since an individual’s fitness can be
both population and environment dependent [39]. But in essence, fitness refers to the growth
rate of an individual with respect to its surrounding population, e.g. with respect to the
population mean. Types can be partitioned into three classes then: 1) positive fitness, or
having higher fitness than the population mean 2) negative fitness, or declining with respect
to the mean of the population 3) neutral, having fitness that is identical to the mean.

Mutation is the process by which genotypic and phenotypic diversity are generated within
a population. There are many methods by which this can occur, but one of the most
commonly discussed methods is the single-site mutational process. In this process, a single
nucleotide position in the genome undergoes a change, which can have downstream effects
on the protein that it encodes. Some mutations are nonsynonymous and change the actual
amino acid sequence that is encoded. Since the genetic code has some redundancies, some
mutations are synonymous, and do not change the encoded amino acid sequence. It is
often assumed that synonymous mutations are ‘neutral’ and have no fitness effect, while
nonsynonymous mutations can have substantial fitness effects. However, increasing evidence
shows that this might not be the case for synonymous mutations [42], perhaps due to the
physical process of translation that occurs in the ribosome [35].

Drift is the final ‘fundamental’ force of evolutionary dynamics, and in essence it encodes
the statement that any population biology process will be noisy. Drift is the process by which
stochasticity perturbs the frequencies of types within a population so that it is separate from
selection. It can take many forms and can be due to many particular subprocesses, although
in practice it is assumed to come as a result of the distribution of offspring numbers or
sampling noise [27]. One of the key historical debates of the population genetics community
is whether or not evolutionary dynamics are drift-dominated or selection-dominated [41]. In
the first case, all genotypes and mutations are effectively neutral with respect to each other
so that fluctuations drive the dynamics of types over relatively long timescales (which are
typically proportional to the population size). In the second case, mutation seeds appreciable
fitness differences, which leads to rapid changes in the composition of types.

The Wright-Fisher model and single locus dynamics

The canonical model that incorporates these processes is known as the Wright-Fisher model.
The Wright-Fisher model assumes a population of constant size N , on top of which muta-
tions and selection occur. Drift is encoded in the fact that the population is finite (though
perhaps large). In the model, time is discrete and measured in ‘generations.’ In the current
generation, let us assume that there are N individuals distributed among M distinct neu-
tral genotypes, the ‘parents.’ The next generation of N ‘children’ is generated by taking a
multinomial sample of the parents, with weights defined by each parent type’s frequency. In
the case where there are fitness differences, these enter into the weights as well, with positive
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Figure 1.4: Wright-Fisher model and its scaling limit. Illustration of the Wright-Fisher
model and the limiting process when the population size becomes large. In this limit the time
between generations is small enough to be approximately continuous, ∆t = 1/N . In this
scaling limit N formally goes to infinity, but s ∼ O(1/N) so that the product Ns ∼ O(1).

fitness types getting a boost according to their fitness coefficient, s. In addition, mutations
occur in the process of creating the next generation with a probability µ per individual.

In order to build intuition, we can turn our attention to a simple case within the Wright-
Fisher framework, known as the single locus model. Let us consider the dynamics of a single
binary genetic site with two allelic states. WLOG we can denote one of these alleles as
the ‘wild type’ allele and measure fitness with respect to this type. We assume that the
population is clonal in the wild type until t = 0, when a single mutant individual is born, so
that fmut(0) = 1/N . Let us say that this type has fitness 1 + s, compared to the wildtype
fitness 1. In the next generation after its initial appearance, this type is sampled according
to the binomial distribution:

P (# mutants = n) =

(
N

n

)
wn(1− w)N−n

where the normalized weight is given by:

w =
fmute

sτ

fmutesτ + (1− fmut)

where τ is the generation time. We notice that in the limit s→ 0, this reproduces what we
would expect for a neutral mutation, namely w = fmut.

Coarse-graining over generations assuming the product sτ is small, so that frequency
changes over a generation are small, we obtain the following Langevin equation as the ap-
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propriate continuum limit for the selection-drift dynamics of the mutant frequency:

d

dt
f = sf(1− f)︸ ︷︷ ︸

selection

+

√
f(1− f)

N
η(t)︸ ︷︷ ︸

drift

where we have dropped the subscript of the frequency (e.g. due to the population size
constraint, for the single-locus case the frequency of the mutant uniquely defines the state
of the system). The first term on the right hand side of the equation can be understood as
the deterministic contribution of selection and is formally identical to the logistic model we
defined in our discussion of ecological models. The second term is the contribution of genetic
drift (i.e. binomial sampling noise).

This model and its variants have been studied in detail in many other contexts [28], so I
will not reproduce that here, except for a key point: drift is a singular perturbation and can
never completely be neglected. The fate of a mutation is intimately linked to its dynamics
when rare, e.g. in a drift dominated boundary layer [27]. We can see this by appealing
to a heuristic analysis of the relevant timescales on which drift and selection substantially
perturb frequencies.

Let us say that we have a focal genotype in a population at frequency f , with selection
coefficient s. From the deterministic component of our Langevin equation, we see that the
change in frequency due to selection is given by:

δf ∼ |s|f(1− f)δt

so that selection will change the frequency by a factor of δf/f ∼ O(1) on the timescale

τsel ∼ 1/|s|
Similarly we have that the change in frequency due to drift is given by:

δf ∼ N
(

0,

√
f(1− f)δt

N

)
The timescale on which drift will perturb the frequency by a factor of O(1) is:

τdrift ∼ Nf(1− f)

We can then compare these timescales:
τdrift

τsel
= N |s|f(1− f)

This ratio allows us to separate the Langevin equation into a ‘bulk’ and two boundary layer
regimes where selection and drift, respectively, dominate the dynamics:

d

dt
f ≈


√

f
N
η(t), for f . 1/N |s|

sf(1− f), for f(1− f)� 1/N |s|√
1−f
N
η(t), for 1− f . 1/N |s|
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Importantly for spontaneous (small effect) mutations, which inevitably start at frequency
1/N , they will start in the first (stochastic) regime so that stochastic effects cannot neces-
sarily be ignored when considering evolution.

Linked selection

In the previous section we described how independent mutations arise and fix. However, mu-
tations do not typically fix independently. Instead, a new mutation will typically come up
on a background that includes other older mutations. The fitness effects of these mutations
will then combine in some way to give the fitness of the mutant. However, the map between
a genotype and fitness is not necessarily ‘additive,’ as evidenced by experimental observa-
tions. In such a situation, in which we have epistasis, we can appeal to Sewall Wright’s
classic conceptual model of a ‘fitness landscape’ [72]. When the genotype-phenotype map is
epistatic, a population might follow a complex trajectory along a ‘rugged’ high-dimensional
landscape, eventually reaching a local fitness peak. Such epistatic evolution can impact no-
tions of predictability in evolution and can interact with genetic drift effects in non-intuitive
ways [15].

Even when the situation is at its simplest, and the fitness landscape is additive, linked
selection can be quite complex. This is no more apparent than when the mutation rate is
high compared with the time it takes a mutation to fix in the population. In such a case,
multiple mutant lineages will compete within a population at once. This is the so-called
clonal interference regime of population genetics. Competition between lineages can slow
any individual lineage from fixing as we can see from a simple heuristic analysis.

We can follow the analysis of Desai and Fisher for illustrative purposes [17]. Let’s say
we have a population with total number of individuals N . We assume that there is a
typical beneficial fitness effect, s, and a beneficial mutation rate Ub. From our analysis in
the previous section, a single mutation will escape the drift dominated regime on timescale
τest ∼ 1/NUbs. When τest is sufficiently small in comparison to the typical fixation time
of a mutant (NUb � 1

logNs
), multiple mutants compete in the population at one time. In

this case it can be shown that the population fitness distribution takes on an approximately
Gaussian shape in fitness space at long times.

The rightmost edge of this ‘solitary wave,’ referred to as the nose, consists of a small
population of very fit types that will make up the bulk of the population at some later time.
Since it consists of relatively few individuals, the nose will be highly subject to stochastic
drift effects until it increases in size and is pushed sufficiently far into the bulk of the wave
packet. This process of the nose being pushed into the bulk must exactly balance the process
of seeding new highly fit types for the wave’s shape to be stable, so that we can derive a
typical speed of adaptation. Importantly, observables from such models drastically differ
from expectations from the simple Wright-Fisher picture described above [54, 28].
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1.5 Eco-evolutionary dynamics
Now that we have illustrated some of the basic characteristics of both ecological and evolu-
tionary processes, and have hopefully built some intuition for the relevant behaviors when
they are treated separately, we can turn to the joint eco-evolutionary process. We have
learned several key factors in the previous sections. First, we saw that ecological interac-
tions can lead to complex behavior. Even when ecology results in a stable population size,
near the fixed point interactions will by definition balance clonal growth rate terms, and so
that the interactions cannot necessarily be ignored. In the evolutionary context, we have
seen that stochasticity can play a crucial part in adaptation due to the existence of a ‘drift
boundary,’ i.e. mutations are subject to strong fluctuations when they first arise. In ad-
dition, evolution dictates that linkage and lineage structure and the phenotype ‘landscape’
should play some part in a joint eco-evolutionary framework.

We can consider a ‘generic’ eco-evolutionary model, which accounts for all of these forces,
deterministic and stochastic. The ‘ecological’ component will consist of two terms: 1) the
growth of different genotypes 2) the interactions between different genotypes. The ‘evolu-
tionary’ component will be comprised of two terms as well: 1) mutation between genotypes
2) drift or noise. To make things slightly more precise, we can write down a representative
Langevin equation of these dynamics:

d

dt
n(~g) = s(~g)n(~g)︸ ︷︷ ︸

growth

+
∑
~g ′

A(~g,~g ′)n(~g ′)n(~g)︸ ︷︷ ︸
interaction︸ ︷︷ ︸

‘ecology’

+
∑

|~g−~g ′|=1

[
µ~g′→~g(~n)− µ~g→~g′(~n)

]
︸ ︷︷ ︸

mutation

+
√
D(~n)η(t)︸ ︷︷ ︸

drift︸ ︷︷ ︸
‘evolution’

There are two key subtleties that I will call attention to. Fist, the mutation term can
depend on the composition of the population ~n because it depends on the specific birth
process that underlies each genotype. This is discussed in a more concrete setting in chapter
4. Second, the drift term can be fairly complex, but can be derived by considering the
microscopic interactions via the chemical Langevin equation, only given an understanding
of the underlying interaction structure [23].

However, while we can write down a plausible generic model, it is exceedingly complex
and a general solution is not readily found. In order to proceed, assumptions must be made
about the form of different terms or a least about their corresponding timescales. There
have been many attempts to formally and verbally articulate the expected behaviors of such
restricted eco-evolutionary models (which assume a separation of timescales or which might
apply to specific systems). I will go on to discuss some special cases that fall within the
generic eco-evolutionary class presented above. Aside from adaptive dynamics in particular,
the mathematical analysis of these cases are relatively new and underexplored.
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Adaptive dynamics

The adaptive dynamics framework (also known as evolutionary invasion analysis) is a sweep-
ing one that describes generic eco-evolutionary process in the ‘strong selection, weak mu-
tation’ regime [26]. This means that mutations occur slowly, while selection acts rapidly
so that there is no interference between the dynamics of mutations. In the language of
the generic eco-evolutionary model from above, the ‘ecology’ terms act on timescales that
are much faster than the ‘mutation’ terms. Furthermore, adaptive dynamics operates on
abstract (often continuous and low-dimensional) phenotype space, with mutations moving
along a phenotype axis in small increments.

In this regime, the main quantity that is relevant for a mutant is its invasion fitness,
or the growth rate of a type when it is rare in a population (which is a function of its
abstract phenotype). The invasion fitness is a function of the mutant phenotype, y, and the
environmental conditions, E, which are set by the resident population phenotypes, ~x:

sinv(y, E~x)

Consider an initially clonal population and consider a rare mutant with invasion fitness sinv.
If the invasion fitness of the mutant type is positive, it will invade. If its invasion fitness
is negative, it will not. However, invasion itself does not determine the final state of the
population (i.e. just because a type invades does not mean it will fix in the population).

The final fate of the population can be determined by a ‘reciprocal invasion analysis.’
If the mutant can invade the initially clonal wild type population and the wild type can
invade an initial clonal mutant population, then the two types will coexist at some inter-
mediate frequency. This can be formalized by examining the form of the interaction kernel,
specifically its second derivative. One can then formalize different points around which such
‘evolutionary branching’ will occur in the population. These are known as evolutionary sin-
gular states, where the second derivative of the invasion fitness vanishes. The great result of
adaptive dynamics was to show that there are attracting evolutionary singular states around
which branching is inevitable.

There is an extensive literature studying the different outcomes of different adaptive
dynamics scenarios [18]. There have even been some attempts to connect the theory with
experimental observations [22]. However, because of limitations of the assumptions and the
extreme generality of the model, direct quantitative applicability seems to be an ongoing
challenge.

The Red Queen hypothesis

The red queen hypothesis originated as a primarily ‘verbal’ model of co-evolution proposed
by Van Valen [69]. The Red Queen hypothesis gets its name from Lewis Carroll’s classic
book Through the Looking-glass. In the book [10], the titular Red Queen tells Alice:

Now, here, you see, it takes all the running you can do, to keep in the same place.
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Van Valen’s proposition was that this might serve as a reasonable metaphor for the evolu-
tionary process of species that stably exist in competition with each other. It can be assumed
that coexisting types will adapt at relatively similar rates. As such the mean relative fitness
of any particular competitive ecosystem ought not to change too much. The population is
left effectively ‘running in place.’

As it is formulated verbally this is inconsistent, since fitness gains result in higher fre-
quency, which results in the increased chance for further adaptation along a particular lineage
rather than as an entire population. However, it was recently shown that a similar type of be-
havior arises from a mathematical model of host-pathogen co-evolution [74]. In this scenario
a pathogen population, in order to evade host immunity must constantly evolve. In doing
so it forms a stable distribution of ‘effective’ fitness, in analogy to traveling wave models
of directional selection [17, 54], although the types that comprise the population constantly
change.

The co-evolving Kill-the-Winner model

The kill-the-winner model is another primarily ‘verbal’ model that seeks to explain the main-
tenance of diversity in phage-bacteria systems. The gist of the model is that phage will be
more likely to attack a bacterial population that is at high abundance rather than one at low
abundance (since interactions scale with the product of abundances). Therefore, whatever
bacterial strain is highly abundant at a given time will be driven to lower abundances by
phage until another strain grows to sufficiently high abundance. At this point the phage
will consume the newly abundant strain and the cycle will continue, so that on average all
bacterial populations are maintained at intermediate abundances.

It was recently demonstrated that stochasticity can destroy this sort of coexistence since
the phage are able to drive bacterial abundances low enough to be close to extinction.
However, by adding a simple mutational kernel to both the bacterial and phage types,
coexistence can be rescued [73]. Therefore, eco-evolutionary coupling seems to be crucial in
this case, and a detailed exploration of the parameter combinations describing this coupling
is discussed in Chapter 4.

1.6 The structure of this dissertation
The subsequent chapters will proceed as follows.

Chapter 2 is adapted from [31]. This work discusses a model of resource competition
and how evolutionary dynamics impacts the types of communities that evolve. This model
exploits properties of mean-field consumer-resource models, while respecting the ‘proper’
evolutionary dynamics (e.g. by respecting genetic drift). In this model, mutation is parti-
tioned into ‘directional’ and ‘ecological’ components which arrive stochastically on top of the
equilibrium population dynamics, mimicking observations from microbial evolution experi-
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ments. Depending on their relative rates, we find that these two components balance each
other, dictating the number of species that might coexist at long times.

Chapter 3 extends the evolving resource competition model by imposing that ecological
mutations are accompanied by fitness costs and benefits, modeling epistasis. In this work we
show that weak epistasis can destabilize the particular form of the diversification-selection
balance found in Chapter 2. This results in a type of ‘phase’ behavior and a transition
between a generalist dominated state and a phase in which the resident resource strategies
continually change over long times. This transition can be understood in light of the form
of the Lyapunov function of the consumer-resource model, which acts analogously to a free
energy from statistical physics.

Chapter 4 discusses a fully stochastic model of rapid predator-prey co-evolution, that goes
beyond the strong selection, weak mutation regime into the territory of clonal interference.
In this work I show that despite the apparent complexity of the problem – chaotic pop-
ulation dynamics, stochastic evolutionary dynamics, clonal interference, and more – there
is vast simplification when the number of strains is large. In this simplification there is
an emergent feedback mechanism, which stabilizes the population dynamics. I propose the
mechanism by which this stabilization occurs and show that highly variable interactions are
counter-intuitively more stable in contrast to the classical intuition. I also characterize the
phase diagram of the model and provide relevant parameter combinations that describe the
transition to stability.

Finally, in Chapter 5, I conclude by speculating about the place of this work in the bigger
picture. Here and throughout these chapters, I attempt to connect my results to concepts
from statistical physics and established literature to lend to their interpretation.
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Chapter 2

Adaptation limits ecological
diversification and promotes ecological
tinkering during the competition for
substitutable resources

Preface
I start my discussion of eco-evolutionary models with work that was done in collaboration
with Benjamin Good and Oskar Hallatschek. This work was partially inspired by a recent
flurry of attention from the physics community directed at MacArthur’s consumer-resource
model, specifically focused on ecological processes such as community assembly. However,
very few works have addressed the topic of evolution in these types of community settings.
Since the ecological dynamics are well-studied, the consumer-resource model seemed like a
reasonable place from which to attack evolutionary questions. In addition, the observed
diversification in Lenski’s long term evolution experiment, due in part to evolving resource
preferences, provided an important empirical touchstone. At the point of writing this dis-
sertation, the consumer-resource model is over 50 years old. Yet incredibly, it continues to
bear insight.

There are two primary threads in this work. The first is low-dimensional eco-evolutionary
dynamics for 2 resources. The second is a high-dimensional eco-evolutionary dynamics with
relatively simple properties. What we find in this case is that the observed dynamics are com-
pletely analogous to the low-dimensional case. However, this analogy is fragile to modeling
choices, which is explored in greater detail in the next chapter.

The remainder of this chapter was published in its entirety as:
“Adaptation limits ecological diversification and promotes ecological tinkering during the
competition for substitutable resources.” Benjamin H Good, Stephen Martis, Oskar Hal-
latschek. PNAS (2018).
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2.1 Abstract
Microbial communities can evade competitive exclusion by diversifying into distinct ecolog-
ical niches. This spontaneous diversification often occurs amid a backdrop of directional
selection on other microbial traits, where competitive exclusion would normally apply. Yet
despite their empirical relevance, little is known about how diversification and directional se-
lection combine to determine the ecological and evolutionary dynamics within a community.
To address this gap, we introduce a simple, empirically motivated model of eco-evolutionary
feedback based on the competition for substitutable resources. Individuals acquire herita-
ble mutations that alter resource uptake rates, either by shifting metabolic effort between
resources or by increasing the overall growth rate. While these constitutively beneficial mu-
tations are trivially favored to invade, we show that the accumulated fitness differences can
dramatically influence the ecological structure and evolutionary dynamics that emerge within
the community. Competition between ecological diversification and ongoing fitness evolution
leads to a state of diversification-selection balance, in which the number of extant ecotypes
can be pinned below the maximum capacity of the ecosystem, while the ecotype frequencies
and genealogies are constantly in flux. Interestingly, we find that fitness differences generate
emergent selection pressures to shift metabolic effort toward resources with lower effective
competition, even in saturated ecosystems. We argue that similar dynamical features should
emerge in a wide range of models with a mixture of directional and diversifying selection.

2.2 Introduction
Ecological diversification and competitive exclusion are opposing evolutionary forces. Con-
ventional wisdom suggests that most new mutations are subject to competitive exclusion,
while ecological diversification occurs only under highly specialized conditions [56]. Recent
empirical evidence from microbial, plant, and animal populations has started to challenge
this assumption, suggesting that the breakdown of competitive exclusion is a more common
and malleable process than is often assumed [43, 48, 54]. Particularly striking examples
have been observed in laboratory evolution experiments, in which primitive forms of ecology
evolve from a single ancestor over years [53], months [30], and even days [52].

In the simplest cases, the population splits into a pair of lineages, or ecotypes, that
stably coexist with each other due to frequency-dependent selection, leading to a breakdown
of competitive exclusion [30, 53, 18, 17, 57]. The mechanism of coexistence can often be
traced to differences in resource utilization, or to the accessibility of privileged spatial or
temporal niches. Interestingly, these microbes rarely cease their evolution once ecological
diversification has been achieved. Sequencing studies have shown that adaptive mutations
continue to accumulate within each ecotype, even when population-wide fixations are rare
[31, 63, 29]. This additional evolution can cause the ecological equilibrium to wander over
longer timescales, as observed in the shifting population frequencies of the two ecotypes
[53, 29]. In certain cases, these evolutionary perturbations can even drive one of the original
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lineages to extinction, either through the outright elimination of the niche [17], or by the
invasion of individuals that mutate from the opposing ecotype [63].

Pairwise coexistence is the simplest form of community structure, but similar dynamics
have been observed in more complex communities as well. Some laboratory experiments
diversify into three or more ecotypes [52, 13, 50], and it is likely that previously undetected
ecotypes may be present in existing experiments [29]. Moreover, many natural microbial
populations evolve in communities with tens or hundreds of ecotypes engaged in various
degrees of competition and coexistence [62, 34, 16]. Although the evolutionary dynamics
within these communities are less well-characterized, recent work suggests that similar short-
term evolutionary processes can occur in these natural populations as well [5, 66, 20].

While the interactions between microbial adaptation and ecology are known to be impor-
tant empirically, our theoretical understanding of this process remains limited in compari-
son. Early work in the field of adaptive dynamics [21] showed how ecological diversification
emerges under very general models of frequency-dependent trait evolution, which are thought
to describe the limiting behavior of a wide class of ecological interactions near the point of
diversification. Numerous studies have also investigated the effects of evolution on ecolog-
ical diversification and stability using computer simulations, in which the parameters of a
particular ecological model are allowed to evolve over time [8, 9, 36, 1, 2, 55, 65]. Yet while
both approaches can reproduce some of the qualitative behaviors observed in experiments,
it has been difficult to forge a more quantitative connection between these models and the
large amount of molecular data that is now available.

One reason that quantitative comparisons have been difficult is that evolution also se-
lects for other traits that are not directly involved in diversification. For example, natural
selection always works to maintain essential cellular functions, while there may be a benefit
to removing costly functions that are not needed in the current environment. As a result,
mutations that influence an ecologically-relevant phenotype like acetate metabolism might
have to compete with constitutively beneficial mutations that are only tangentially related
to metabolism [e.g. the loss of the yeast mating pathway [38]]. In some experiments, these
constitutively beneficial mutations may even comprise the bulk of the mutations that reach
observable frequencies [63, 39, 29]. Although many models exist for describing constitutively
beneficial or deleterious mutations in the absence of ecology [47], we lack even a basic the-
oretical understanding of how they behave when they are linked to ecological phenotypes,
and vice versa. The absence of quantitative theoretical predictions makes it difficult to draw
any inferences from the vast molecular data that is now available.

To start to bridge this gap, we introduce a simple, empirically motivated model that
describes the interplay between ecological diversification and directional selection at a large
number of linked loci. The ecological interactions derive from a well-studied class of con-
sumer resource models [61, 51, 59, 3], in which individuals compete for multiple substitutable
resources (e.g. different carbon sources) in a well-mixed environment. We extend this eco-
logical model to allow for heritable mutations in resource uptake rates, which can either
divert metabolic effort between resources, or increase the growth rate on all resources. The
latter class of mutations provides a natural way to model adaptation at linked genomic loci.
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Constitutively beneficial mutations might seem like an ecologically trivial addition to the
model, since they are always favored to invade on short timescales. On longer timescales,
however, we will show that these accumulated fitness differences can dramatically influence
both the ecological structure and the evolutionary dynamics that take place within the
community. By focusing on the weak mutation limit, we derive analytical expressions for
these dynamics in the two resource case, and we show how our results extend to larger
communities as well. These analytical results provide a general framework for integrating
ecological and population-genetic processes in evolving microbial communities, and suggest
new ways in which these processes might be inferred from time-resolved molecular data.

2.3 Evolutionary model of resource competition
To investigate the interactions between ecological diversification and directional selection,
we focus on a simple ecological model in which individuals compete for an assortment of
externally supplied resources in a well-mixed, chemostat-like environment (Fig. 2.1). This
resource-based model aims to capture some of the key ecological features observed in certain
microbial evolution experiments [53, 18], as well as more complex ecosystems such as the
gut microbiome [16], while remaining as analytically tractable as possible.

In our idealized setting, individuals compete for R substitutable resources, which are
supplied by the environment at a fixed rates (Fig. 2.1). Individuals are characterized by
a resource utilization vector ~r = (r1, . . . , rR), which describes how well they can grow on
each of the resources. We assume that the resource utilization phenotypes are constitutively
expressed, so that we may neglect complicating factors like regulation. We will find it useful
to decompose the phenotype ~r into a normalized portion αi = ri/

∑
j rj, and an overall

magnitude X = log(
∑

i ri). The components of αµ,i represent the fractional effort devoted
to growth on resource i, so we will refer to this quantity as the resource strategy vector. In
contrast, the parameter X resembles environment-independent measure of overall fitness, an
analogy that we will make more precise below.

We assume that individuals reproduce asexually, so that the state of the ecosystem can
be described by the number of individuals nµ with a given resource strategy vector ~αµ and
fitness Xµ. Under suitable assumptions, the ecosystem can be described by the stochastic
differential equation,

∂fµ
∂t

=
R∑
i=1

αµ,i

[
eXµ−Xi(t) − 1

]
fµ +

ξµ(t)√
N

, (2.1)

where N is a fixed carrying capacity, fµ = nµ/N is the relative frequency of strain µ, and
ξµ(t) is a stochastic contribution arising from genetic drift (SI Appendix 2.6). The state of
the environment is encoded by the set of resource-specific mean fitnesses,

X i(t) = log

(∑
µ αµ,ie

Xµfµ

βi

)
, (2.2)



CHAPTER 2. ADAPTATION LIMITS ECOLOGICAL DIVERSIFICATION 35
…

x

x

Resource strategy, ~↵

Fi
tn

es
s,

X

U↵

UX

b  Heritable mutations

a   Competition for      resources Simulated evolutionary dynamicsc

Generation, t

A
lle

le
 fr

eq
ue

nc
y, 

f
(t

)

R

�1 �2 �R
Strategy mutations
Fitness mutations

d

e

f

Figure 2.1: Ecological and evolutionary dynamics in a simplified consumer-
resource model. (a) Schematic depiction of ecological dynamics. Substitutable resources
are supplied to the chemostat at constant rates βi (i = 1, . . . ,R), measured in units of
biomass (

∑
i βi = 1). Cells import resources at genetically encoded rates, ri, which define a

normalized resource strategy αi = ri/
∑

j rj and overall fitness X = log
∑

i ri. (b) Schematic
depiction of evolutionary dynamics. Mutations that alter resource strategies (~α) occur at
rate Uα, while mutations that alter overall fitness (X) occur at rate UX . (c-f) Simulated
ecological and evolutionary dynamics, starting from a clonal ancestor, in an environment
with R = 2 resources. The four panels represent independent populations evolved under
different sets of parameters, which differ only in the mutation rates and fitness benefits of
pure fitness mutations (SI Appendix 2.6). Lines denote the population frequency trajectories
of all mutations that reached frequency ≥ 10% in at least one timepoint. Resource strategy
mutations are shown in red, while pure fitness mutations are shown in blue.

where βi denotes the fractional flux supplied by resource i. Eq. (2.1) is an example of a more
general and well-studied class of consumer resource models introduced by Refs. [41, 61],
whose ecological properties have been explored in several recent works [59, 51, 3].

However, the essential features of Eq. (2.1) are not limited to this consumer-resource
framing. In SI Appendix 2.6, we argue that Eq. (2.1) captures the limiting behavior of a
much larger class of models in the limit that Xµ and X i are both small compared to one. In



CHAPTER 2. ADAPTATION LIMITS ECOLOGICAL DIVERSIFICATION 36

this case, we can expand the exponential in Eq. (2.1) to obtain the lowest order contribution,

∂fµ
∂t
≈

R∑
i=1

αµ,i
[
Xµ −X i(t)

]
fµ +

ξµ(t)√
N

. (2.3)

When R = 1, we recover the standard Wright-Fisher model of population genetics [11],
with its logistic growth function, ∂tfµ = (Xµ −X)fµ. The parameter Xµ coincides with the
standard measure of (log) fitness. In the presence of multiple resources, Eq. (2.3) can be
regarded as the simplest generalization the Wright-Fisher model that incorporates multiple
fitness dimensions. From an ecological perspective, Eq. (2.3) can also be viewed as a special
version of the Lotka-Volterra model that arises when the interactions between strains are
mediated by R intensive variables (the resource-specific mean fitnesses, X i). This is an
important simplification: although there is no closed-form solution for fµ(t) when R > 1,
Eq. (2.1) still possesses a convex Lyapunov function (SI Appendix 2.6), which implies that
fµ(t) must approach a unique and stable equilibrium at long times.

The ecological model in Eq. (2.1) only describes the competition between a fixed set of
strains. To incorporate evolution, we also allow for new strains to be created through the
process of mutation. We will show that it is useful to distinguish between two broad classes of
mutations. The first class, which we will refer to as strategy mutations, alter an individual’s
resource uptake strategy. For simplicity, we assume that these mutations constitute a perfect
tradeoff, so that the overall fitness X remains unchanged (though we will eventually relax
this assumption below). We assume that strategy mutations occur at a per genome rate Uα
and result in a new resource strategy ~α′ drawn from some distribution ρα(~α′|~α). In addition
to strategy mutations, we consider a second class of pure fitness mutations, which alter the
overall fitness X but leave the resource strategy ~α unchanged. These mutations capture the
effects of directional selection at a large number of other loci throughout the genome, which
may only be tangentially related to the resource utilization strategy. We assume that these
fitness mutations arise at a per-genome rate UX , and that they increment X by an amount
s drawn from the distribution of fitness effects, ρX(s). For simplicity, we assume that there
is no macroscopic epistasis for fitness [27], so that ρX(s) remains the same for all genetic
backgrounds.

We note that this division into fitness and strategy mutations is neither exhaustive nor
unambiguous. Some changes in resource strategy may also incur a fitness cost (see below),
and one can simulate a pure fitness mutation by shifting metabolic effort away from resources
that are not present in the current environment (i.e., those with βi = 0). Nevertheless,
considering these idealized cases as our fundamental axes will prove to be a useful conceptual
tool, which provides additional insight into the behavior of our model.

For example, pure fitness mutations might seem like an ecologically trivial addition to
the model, because they are always favored to invade. However, computer simulations show
that these accumulated fitness differences can still have a dramatic influence on both the
ecological structure and the evolutionary dynamics that arise in a given population. Fig-
ures 2.1C-F depict individual-based simulations of four populations, which are subject to
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the same environmental conditions and the same supply of strategy mutations, but have
different values of UX and ρX(s) (SI Appendix 2.6). Depending on the supply of fitness
mutations, the behaviors can include rapid diversification and stasis (Fig. 2.1C), unstable
but continually renewed coexistence (Fig. 2.1D), stable coexistence and rapid within-clade
evolution (Fig. 2.1E), or the permanent disruption of coexistence (Fig. 2.1F). In this way,
the seemingly simple model in Eq. (2.1) can produce a diverse range of behaviors, which
at least superficially resemble the complex dynamics observed in some microbial evolution
experiments.

To understand these different behaviors and how they depend on the underlying param-
eters, we will start by analyzing the simplest non-trivial scenario, in which the strains evolve
in an environment with just two resources. In this case, the environmental supply rates
and resource uptake strategies can be described by scalar parameters ~β = (β, 1 − β) and
~α = (α, 1 − α), respectively. This case will already be sufficient to elucidate many of the
key qualitative behaviors and fundamental timescales involved, while maximizing analytical
tractability. In the second section, we will extend this analysis to larger numbers of resources,
and comment on the additional features that are unique to this more complicated scenario.

2.4 Analysis

Selection for ecosystem to match environment, stable coexistence

We will begin by considering the dynamics in the absence of fitness differences (UX = 0,
Xµ = 0). The ecological dynamics in this “neutral” scenario have recently been described by
Ref. [51], and it will be useful to build on these results when we introduce fitness differences
below.

We begin by considering a single strategy mutation that occurs in a clonal population
of type α1, creating a new strain of type α2. The initial dynamics of this mutation can
be described by a branching process with growth rate Sinv = 〈∂tf〉/f , also known as the
invasion fitness (SI Appendix 2.6). In this case, the invasion fitness is given by

Sinv =
∆α(β − α1)

α1(1− α1)
, (2.4)

where ∆α = α2 − α1 is the difference between the mutant and wildtype uptake rates.
The invasion fitness is positive whenever ∆α and β − α1 have the same sign: if α1 < β,
then selection will favor mutations that increase α, while if α1 > β, selection will favor
mutations that decrease α. In this way, selection tries to tune the population uptake rate
to match the environmental supply rate. If α1 = β, then the invasion fitness vanishes for
all further strategy mutants. This constitutes a marginal evolutionarily stable state (ESS).
Using the definition of X i(t) in Eq. (2.2), we can see that the universal dynamics in Eq. (2.3)
correspond to a near-ESS limit, where the resource uptake rates remain close to β. For the
sake of generality, we will focus on this limit for the remainder of the main text. The full
expressions for the microscopic model in Eq. (2.1) are listed in the SI Appendix.
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When α1 and α2 are both close to β, Eq. (2.4) reduces to the quadratic form,

Sinv ≈
∆α(β − α1)

β(1− β)
. (2.5)

Since all mutations first arise in a single individual, many will be lost to genetic drift, even
when their invasion fitness is positive. With probability ∼Sinv � 1, the mutant lineage will
survive drift long enough to reach frequency f ∼ 1/NSinv, and will then start to increase
deterministically at rate Sinv. In sufficiently large populations, the transition to deterministic
growth will occur long before the mutant starts to influence its own growth rate, so that the
constant invasion fitness assumption is justified (SI Appendix 2.6).

At long times, the ecological dynamics will lead to one of two final states: the mutant
will either replace the wildtype (competitive exclusion) or the two will coexist at some
intermediate frequency (Fig. 2.2A). The latter scenario will occur if and only if the wildtype
can re-invade a population of mutants, which requires that the reciprocal invasion fitness,
SRinv ≈ ∆α(α2 − β)/β(1 − β), is also positive. By examining this expression, we see that
the mutant will outcompete the wildtype if its strategy lies between β and α1, while stable
coexistence occurs when α1 and α2 span β (i.e., α1 < β < α2 or vice versa). When this
condition for coexistence is met, the steady-state frequencies are determined by the linear
equation,

α ≡
∑
µ

αµf
∗
µ = β , (2.6)

whose solution is given by f ∗/(1− f ∗) = (β−α2)/(α1− β) [51]. In other words, the relative
frequencies of the strains are inversely proportional to their distance from the environmental
supply rate. According to Eq. (2.6), these frequencies are chosen such that the population-
averaged uptake rate α =

∑
µ αµf

∗
µ exactly balances the resource supply rate β. This

provides an intuitive explanation for the cause of coexistence: by maintaining the strains
at intermediate frequencies, the population is able to match the environmental supply rate
more closely than it could with either strain on its own.

Once this ecological equilibrium is attained, number fluctuations will continuously per-
turb the true frequency away from f ∗ (Fig. 2.2A), subject to a linearized restoring fit-
ness ∼∆α2/β(1 − β) (SI Appendix 2.6). The restoring force is strong compared to ge-
netic drift when N∆α2/β(1 − β) � 1, which leads to linearized fluctuations of order δf ∼√
β(1− β)/N∆α2, and a lifetime for the stable state that is exponentially long in

√
N∆α2.

At this point, additional strategy mutants are subject to very weak selection pressures: fluc-
tuations will induce momentary invasion fitnesses of order δSinv ∼ |α3 − α2|/

√
Nβ(1− β)

(which can be large compared to 1/N), but these fitness effects are quickly averaged to zero
during the ∼1/δSinv generations required for such a mutation to establish (SI Appendix 2.6).
Thus, once the population diversifies to fill the two niches, the rate of evolution dramatically
slows down (as in Fig. 2.1A), since the relevant timescales are controlled by genetic drift.
In this way, a large effect mutation can allow the ecosystem as a whole to reach an effective
ESS, long before any of the constituent strains reach the ESS on their own.
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Diversification load

We are now in a position to analyze how fitness alters the basic picture above. We begin by
revisiting the invasion of a mutant strain in an initially clonal population, this time allowing
for a fitness difference ∆X between the mutant and wildtype. In this case, the new invasion
fitness is given by a simple linear combination,

Sinv(∆α,∆X) ≈ ∆X + Sinv(∆α) , (2.7)

where Sinv(∆α) is the invasion fitness for a pure strategy mutation from Eq. (2.4). This
result describes, in quantitative terms, how selection balances its ecological preferences (α→
β) with its desire to maximize fitness (X → ∞). When the uptake rate of the resident
population is far from the environment supply rate [β − α1 ∼ O(1)], the ecological selection
pressures can be quite strong, with invasion fitnesses as high as 10% − 100%. This implies
that strongly deleterious mutations of order

∆Xmin ≈ −
∆α(β − α1)

β(1− β)
(2.8)

can hitchhike to fixation when the population colonizes a new ecological niche (a form of
diversification load).

Fitness differences perturb ecological equilibria

In addition to shifting the invasion fitness of a new mutation, fitness differences can also
alter the long-term ecological equilibrium between mutant and wildtype in Eq. (2.6). In
the extreme limit, this can disrupt the stable coexistence altogether. If the mutant is less
fit than the wildtype (∆X < 0), this will occur whenever ∆X is less than the maximum
diversification load ∆Xmin in Eq. (2.8). On the other hand, if ∆X > 0, extinction will occur
when the wildtype no longer has positive invasion fitness, or when ∆X exceeds a threshold

∆Xmax ≈
∆α(α2 − β)

β(1− β)
. (2.9)

We note that the fitness differences in Eqs. (2.8) and (2.9) are lower than the values required
for the mutant or wildtype to dominate in all environmental conditions (SI Appendix 2.6).
Instead, the fitness thresholds strongly depend on how the resource strategies differ from
each other, and how they differ from the environmental supply rate. When ∆α ∼ ε, even
small fitness differences (∆X ∼ ε2) can disrupt the stable ecology, while for ∆α ∼ O(1),
much larger fitness differences (∆X & 100%) can be tolerated.

When ∆Xmin < ∆X < ∆Xmax, the two strains continue to coexist, but their equilibrium
frequency is no longer given by Eq. (2.6). In this case, the competing drive to maximize
fitness means that selection will no longer favor an ecology that matches the environmental



CHAPTER 2. ADAPTATION LIMITS ECOLOGICAL DIVERSIFICATION 40

In
di
vi
du
al
s

Time

α1

x

+s

+s
+s +s

+s
α2

α2
Δf

In
di
vi
du
al
s

Time

α1

+s

+s
+s

α2

α2

b

c

+s

In
di
vi
du
al
s

Time

α1

α2

a

f *
2

f *
1

𝛿f
(resident)

(mutant)

Figure 2.2: Schematic illustration of key eco-evolutionary processes in a two-
resource ecosystem. (a) Ecological diversification from a clonal ancestor. In the absence of
fitness mutations, strains coexist at a stable equilibrium (f ∗) with fluctuations (δf) controlled
by genetic drift. Further strategy mutations are not favored to invade. (b) Pure fitness
mutations that sweep within an ecotype shift the stable equilibrium by ∆f ; accumulated
fitness differences can ultimately drive ecotypes to extinction. Further strategy mutations
allow the winning clade to re-diversify at a later time. (c) Occupied niches can also be invaded
by strategy mutations that arise in fitter genetic backgrounds. In this case, the original
ecotype lineage is driven to extinction while the ecological structure of the community is
preserved.

resource distribution, at least not perfectly. In SI Appendix 2.6, we show that the new
equilibrium frequency is given by

f ∗(∆X) ≈ f ∗0 +
β(1− β)

∆α2
·∆X , (2.10)

where f ∗0 is the neutral ecological equilibrium from Eq. (2.6). From this expression, we can
read off the typical fitness differences required to perturb f ∗ from its present value. This
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fitness sensitivity is again determined by the distance between the two resource strategies.
If ∆α ∼ O(1), large fitness differences (∆X & 100%) are required to change the equilibrium
frequency, while for ∆α ∼ ε, even very small fitness differences (∆X ∼ ε2) can generate large
changes in the equilibrium frequency.

Further fitness evolution and diversification-selection balance

Once the population achieves the stable ecology in Eq. (2.10), additional fitness mutations
will occur in each strain with probability proportional to the equilibrium frequency f ∗. In
our model, the invasion fitness of such a mutation is simply its fitness effect s, independent
of the ecological state of the population. With probability ∼s, this mutation will sweep
through its parent clade, changing the fitness difference between the clades by ±s and the
equilibrium frequency by ∆f = f ∗(∆X ± s) − f ∗(∆X) (Fig. 2.2B). In the linear regime of
Eq. (2.10), the frequency and fitness changes are directly related,

∆f ≈ ±
(
s

sc

)
, (2.11)

where sc = ∆α2/β(1−β) is the fitness scale that determines changes in equilibrium frequency.
If s� scf

∗(1− f ∗), then the stable coexistence will be disrupted, and the mutant clade will
take over the population. We will refer to such a scenario as ecosystem collapse, since one of
the niches is no longer occupied.

Similar behavior can occur when s� sc as well, except that now the ecosystem collapse
occurs due to cumulative effect of many pure fitness mutations. When the fitness mutations
accumulate independently, this process can be described by an effective diffusion model,

sc
∂f ∗

∂t
≈ 2NUXs

2(2f ∗ − 1) +
√

2NUXs3 · η(t) (2.12)

with a bias that reflects the higher probability of producing a mutation in a larger clade
(SI Appendix 2.6). Eq. (2.12) superficially resembles the drift-induced perturbations at
ecological equilibrium, except that the bias is now unstable rather than restoring. When
2f ∗−1�

√
s/sc, the mutation bias is weak, and the clade frequencies undergo a random walk

(δf ∗ ∼
√

NUXs3

s2c
· δt). But after a time of order τdrift ∼ sc

NUXs2
, the frequency differential grows

large enough that the more prevalent clade will deterministically produce more beneficial
mutations, so that it is destined for fixation. After a time of order τcollapse ∼ sc

NUXs2
log
(
sc
s

)
,

the fitness difference between the clades grows so large that the ecosystem finally collapses
(Fig. 2.2B). This timescale sets an upper limit on the lifetime of the stable state when many
fitness mutations are available.

Once the ecosystem collapses, there will be a strong selection pressure for the winning
clade to re-diversify through additional strategy mutations, and restart this process from
the beginning (Fig. 2.2B). To gain insight into these dynamics, we first consider the case
where the resource strategies are controlled by a single genetic locus, with fixed phenotypes
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α1 and α2, and mutations that alternate between the two states at rate Uα. After an
ecosystem collapse, Eq. (2.4) shows that the invasion fitness for the opposite strategy is
given by Sinv ∼ sc, so the collapsed state will persist for a time of order τdiversify ∼ 1/NUαsc,
until the stable ecology is re-established. If the two strategies are symmetric about β, so
that f ∗(0) = 1/2, the new stable state will persist for ∼τcollapse generations in the absence of
additional strategy mutations, and the process will then repeat itself. The relative probability
of observing the population in the collapsed (S = 1) or saturated (S = 2) states is therefore
given by

Pr[S = 2]

Pr[S = 1]
≈ τcollapse

τdiversify

∼
{

Uα
UX

(
sc
s

)
if s� sc,

Uα
UX

(
sc
s

)2
log
(
sc
s

)
if s� sc.

(2.13)

This expression shows the minimum amount of strategy mutations, or the maximum amount
of pure fitness mutations, that allow the population to maintain a saturated ecosystem.
We will refer to this dynamic steady state as diversification-selection balance, in analogy
to mutation-selection balance in population genetics [24]. Note that this balance crucially
depends on the state of the ecosystem through sc ∼ ∆α2/β(1 − β). All else being equal,
ecosystems with more similar resource uptake strategies will be disrupted more easily than
those with a higher degree of specialization.

Invading ecotypes can delay ecosystem collapse

Strictly speaking, the derivation of Eq. (2.13) is only valid in the limit that τcollapse �
τdiversify, since we neglected mutations between α1 and α2 when both niches were filled.
When τcollapse & τdiversify (i.e., when the ecosystem spends an appreciable amount of time in
the saturated state), we must also account for mutations between the two strategies that
arise before the ecosystem collapses. Those mutations that arise in the less-fit clade will have
little chance of invading. However, a mutation from the more-fit to the less-fit strategy will
establish with probability ∼|∆X|, where ∆X is the current fitness difference between the
two clades. If this mutation is successful, it will outcompete the resident lineage with the
corresponding value of α, and reset the fitness difference to ∆X = 0 (Fig. 2.2C). In this way,
invasion from one ecotype to another can significantly delay the process of ecosystem collapse,
since it relieves the tension between fitness maximization and (X → ∞) and selection to
match the environment (α→ β).

To analyze this process, we note that successful invasion events will occur as an inhomo-
geneous poisson process with rate λ(t) ∼ NUαf

∗
argmax(Xi)

|∆X|, where f ∗(t) and ∆X(t) are
again determined by the diffusion model in Eq. (2.12). This leads to a characteristic invasion
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timescale

τinvade ∼



1
NUXs

if Uα � UX ,
1

NUXs

(
UX
Uα

)2/3

if Uα � UX

(
s
sc

)3/2

,
sc

NUXs2
log
(
U2
Xs

3

U2
αs

3
c

)
if Uα � UX

(
s
sc

)2

,

∞ else.

(2.14)

which is derived in SI Appendix 2.6. Each of these regimes corresponds to a different
intuitive picture of the dynamics. In the first case, strategy mutations are frequent compared
to pure fitness mutations, and invasion occurs almost immediately after the first fitness
mutation arises. In the second case, invasion occurs after multiple fitness mutations have
accumulated, but when the frequencies of the clades still wander diffusively relative to each
other [f ∗ ≈ 1/2±O

(√
s/sc

)
]. In the third regime, invasion occurs after one of the clades has

grown to a sufficiently large frequency that it would have deterministically led to ecosystem
collapse. When the invading mutant establishes, it will therefore cause a rapid shift in the
frequencies of the ecotypes as f ∗(∆X) returns to f ∗(0).

Finally, when Uα � UX

(
s
sc

)2

, strategy mutants are sufficiently rare that the ecosystem
will typically collapse and re-diversify before invasion can occur. This sets the region of
validity of the diversification-selection balance in Eq. (2.13). Interestingly, Eq. (2.13) shows
that collapse and re-diversification can still dominate over invasion even when both niches
are typically filled (Pr[S = 2]� Pr[S = 1]). In this case, both the genealogical structure and
the typical state of the ecosystem will resemble the invasion regime, but the historical record
would contain a series of punctuated extinction and diversification events, interspersed with
long periods of gradual fitness evolution.

Fitness differences create opportunities for ecological tinkering

Our derivation of Eqs. (2.12) and (2.14) assumed that the two ecotypes were fixed by the
genetic architecture of the organism. Individuals could mutate between α1 and α2, but
mutations to other points in strategy space were forbidden. In the absence of fitness differ-
ences, we saw that selection for these additional strategy mutants is weak once both niches
have been filled (Sinv . 1/N), potentially justifying the single-locus assumption in terms of
a priority effect. However, the previous analysis shows that there can be strong selection
to switch strategies once fitness mutations accumulate, so it is also plausible that fitness
differences could lead to selection for strategy mutations more generally.

To investigate these selection pressures, we consider a population that is currently de-
scribed by the steady state in Eq. (2.10). We then consider strategy mutations that occur on
the background of α2, altering its strategy to α3 while leaving its fitness intact. The invasion
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Figure 2.3: Invasion fitness landscape for additional strategy mutations in a two-
resource ecosystem. The two resident ecotypes are illustrated by blue circles, while red
circles denote mutant strains created by strategy mutations on one of the ecotype back-
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∑
i αiX i, experienced by a

given resource strategy. Strains with overall fitness (X) above this line are favored to invade,
while others are selected against. If a mutant successfully invades, its effect on the ecosystem
is indicated by the text.

fitness for such a mutation is given by

Sinv ≈
(α2 − α3)∆X

∆α
, (2.15)

As anticipated, fitness differences create additional selection pressure for strategy mutations
beyond the simple switching behavior considered above.

The direction of selection is determined by the sign of ∆X. In the background of the
fitter clade (∆X > 0), selection favors mutations that increase the strategy in the direc-
tion of β (a form of generalism), while simultaneously disfavoring mutations that lead to
increased specialization (Fig. 2.3). The opposite behavior occurs in the less-fit background,
with selection favoring mutations that increase the distance from β, leading to increased spe-
cialization. Both behaviors have an intuitive explanation in terms of individuals preferring
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to allocate their metabolic energy toward the resource with the least-fit consumers, thereby
minimizing the effective competition that they experience.

Once a successful strategy mutation arises, it will sweep through part of the population
and alter the ecological equilibrium (Fig. 2.3). Mutations in the less-fit clade are straightfor-
ward to analyze. Since these are always directed away from both β and α1, these mutants
will sweep through their parent clade and increase the equilibrium frequency according to
Eq. (2.10). Successful mutations in the fitter clade have a wider range of outcomes, since
these are always directed toward β and α1. If α3 < β, the mutant lineage will outcompete the
less-fit strain α1, and will stably coexist with its parent clade α2 at an equilibrium frequency
f ∗ = (β −α2)/(α3−α2). On the other hand, if β < α3 < α2, the mutant lineage will always
sweep through its parent clade α2. If α3 is sufficiently close to α2, this will simply lead to
an increase in frequency according to Eq. (2.10). However, if α3 is close enough to β that
∆Xmax(α3) becomes less than the actual fitness difference, ∆X, then the mutant will sweep
out both clades and lead to an ecosystem collapse and subsequent re-diversification. Thus, in
addition to creating a larger target for invasion events, these additional strategy mutations
can also enhance the probability of ecosystem collapse. The balance between these compet-
ing tendencies will depend on the genetic architecture of the resource strategies, ρα(α′|α),
which is poorly parameterized by existing data. A detailed analysis of the potential regimes
will be left for future work.

Beyond pairwise coexistence

Our previous analysis focused on environments with only two substitutable resources, where
at most two strains can coexist at equilibrium. In this case, the structure of the stable
ecosystem was simple enough to admit a full analytical solution, which we could use to
derive explicit predictions for many evolutionary quantities of interest. However, many
microbial communities are found in environments with large numbers of potential resources,
and flexible gene pools that allow them to alter their resource uptake rates through horizontal
gene transfer [46]. It is therefore natural to ask how our results generalize to these more
complicated environments as well. A full analysis of this case is beyond the scope of the
present work, as there are even fewer constraints on the space of ecological and evolutionary
parameters compared to the two resource case. Nevertheless, it is still useful to know whether
our qualitative results extend beyond R = 2, and whether there are fundamentally new
behaviors that only arise in higher dimensions.

For a general ecological equilibrium, a mutation that alters the phenotype of a resident
strain from (Xµ, ~αµ) to (Xµ + s, ~αµ + ∆~α) will have an invasion fitness

Sinv ≈ s−
∑
i

∆αiX i , (2.16)

where the resource-specific mean fitnesses in Eq. (2.2) must be evaluated at the equilibrium
frequencies f ∗µ (SI Appendix 2.6). Increases in αi are favored when X i is lower than the
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Figure 2.4: Diversification-selection balance when R � 1. Circles depict the long-term
steady state from SSWM simulations of a binary resource usage model in a nearly uniform
environment (SI Appendix 2.6). Each point denotes an average over multiple timepoints
from 3 independent replicates; solid lines indicate the minimum and maximum replicate.
(a) The standard deviation in X i across the R resources. (b) The number of coexisting
ecotypes. The colored dashed lines denote the maximum ecosystem capacity S = R. The
black dashed line depicts the scaling relation in Eq. (2.19) which applies for S � R, with
an O(1) prefactor of 1/

√
2π included for visualization.

“effort-averaged” X i for the other resources, and vice-versa. Thus, similar to the two-resource
case, there is still a sense in which selection favors mutations that flow from high values of
X i to lower values of X i, though there are now

(R
2

)
beneficial directions, X i → Xj, rather

than just one.
The invasion fitness in Eq. (2.16) depends on the current community composition only

through the intensive variables X i. In a saturated ecosystem, where the number of coexisting
strains is equal to the number of resources, these can be directly obtained by a matrix
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inversion of Eq. (2.1),

X i ≈
∑
µ

α−1
i,µXµ , (2.17)

where α−1
i,µ is the left inverse of αµ,i. Thus, we see that in a saturated ecosystem, the X i

are given by linear combinations of the strain fitnesses Xµ, justifying their interpretation
as resource-specific mean fitnesses. Moreover, perturbation expansions of α−1

i,µ suggest that
the prefactor is still inversely proportional to an effective distance between the strategies
(SI Appendix 2.6), similar to the two-resource case in Eq. (2.15). We note that the equilib-
rium values of X i are conditionally independent of both the resource supply vector βi and
the strain frequencies f ∗µ; these quantities influence X i only through shaping the set of re-
source strategies that coexist at equilibrium. Thus, these saturated ecosystems dynamically
adjust their composition to screen the internal selection pressures X i from the external en-
vironmental conditions. Similar findings were recently obtained for the neutral case [where
X i = 0 [51]], as well as in certain community assembly processes in the R →∞ limit [59, 3].
Eq. (2.17) shows that this is a generic property that occurs whenever the number of surviving
species is equal to the number of resources.

In this limit, the steady-state frequencies f ∗µ can be obtained from a similar matrix
inversion,

f ∗µ ≈
∑
i

βiα
−1
i,µ −

∑
i,ν

βiα
−1
i,µα

−1
i,ν (Xµ −Xν) , (2.18)

which serves as the generalization of Eq. (2.10) for multiple resources (SI Appendix 2.6). As
in the two-resource case, small fitness differences perturb the neutral ecological equilibrium
via linear combinations of the strain fitnesses, with a prefactor that is inversely proportional
to the square of the effective distance between the resource strategies.

While the saturated case is particularly simple, we saw above that fitness mutations
can drive the number of surviving species below this saturated value. In contrast to the
two-resource case, these unsaturated ecosystems can now harbor multiple coexisting strains
when R > 2, leading to a continuous generalization of the diversification-selection balance
in Eq. (2.13). To investigate this effect, we performed computer simulations of a binary
strategy space model, in which individuals can either utilize or not utilize a given resource,
with mutations that toggle individual uptake rates on and off (SI Appendix 2.6). The results
recapitulate the qualitative behavior observed for R = 2 resources, in that a sufficiently high
rate of pure fitness mutations can constrain the number of distinct strategies that are able
to coexist (Fig. 2.4B). To compensate for the strong ecological selection pressures that can
arise when S � R, the populations are forced to evolve consortia of “generalist” strains such
that

∑
µ ~αµf

∗
µ is still close to ~β, at least at lowest order (Fig. 2.4A).

In a nearly uniform environment [βi ∝ 1 ± O(ε)], simulations show that the steady-
state ecosystem tends to be dominated by a single “generalist” strain (αµ,i ∝ 1), and a
collection of S − 1 single loss-of-function variants (αµ,i ∝ 1 − δµ,i) that recently descended
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Figure 2.5: Schematic of (a) ecological and (b) genealogical structure at the evo-
lutionary steady-state described in Eq. (2.19). In (b), blue dots represent pure fitness
mutations and red dots represent loss-of-function strategy mutations.

from mutations in the generalist background (Figs. 2.5 and 2.7-2.9). This is reminiscent of a
mutation-load argument [23], in which the preference for the generalist strain is balanced by
the greater entropy of loss-of-function mutants. However, a key difference in this case is that
the generalist strain is not actually favored by selection. By definition, all of the transient
states in Fig. 2.5 are ecologically stable, while the preference for the generalist strain arises
dynamically from the race to acquire pure fitness mutations.

The dynamics of this process can be characterized analytically in the weak mutation
limit, yielding a simple heuristic expression for the diversification-selection balance,

S ∼ 1

R

(
Uαε

2

UXs2

)
, (2.19)

which is valid for S � R (SI Appendix 2.6). The transition to the fully saturated state (S =
R) requires an even more stringent condition, which implies that unsaturated ecosystems
are obtained for a very broad parameter regime (Fig. 2.4B). In both cases, a larger number
of substitutable resources will lead to a less diverse ecosystem at diversification-selection
balance. This is ultimately due to the fact that the difference between generalists and single
loss-of-function variants becomes increasingly small as R →∞.

This suggests that the relative frailty of the diversification-selection balance in Eq. (2.19)
may be a pathological feature of the simple genetic architecture that we have assumed, in
which fit generalist phenotypes are easily accessible. If we instead impose an upper limit
Rc � R on the number of resources that a strain can metabolize, heuristic calculations
suggest that diversification-selection balance will be achieved for substantially higher values
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of S, even for large R (SI Appendix 2.6). In this case, the ecological and genealogical
structures that are attained at this evolutionary steady state will be considerably more
complex than the shallow star-shaped genealogies in Fig. 2.5. A more detailed analysis of
this steady state will be considered in future work.

2.5 Discussion
In microbial populations, primitive ecological interactions can evolve spontaneously over
years [53], months [30], and even days [52]. Yet this process rarely takes place in isolation. In
rapidly evolving populations, diversifying selection must compete with directional selection
acting on other loci throughout the genome. Here, we have introduced a simple mathematical
framework to model the interactions between these two processes in asexually reproducing
organisms.

The ecological interactions in our model emerge from the competition for substitutable
resources (e.g. different carbon sources), according to a well-studied class of models from
theoretical ecology [61, 51, 59, 3]. To incorporate evolution into this model, we assumed that
individuals can acquire mutations that alter their resource uptake rates. We showed that it
is useful to distinguish between two characteristic types of mutations: (i) strategy mutations,
which divert metabolic effort from one resource to another and (ii) fitness mutations, which
increase the overall growth rate but leave the relative uptake rates unchanged. Strategy
mutations enable ecological diversification, while fitness mutations capture the effects of
directional selection at other genomic loci.

This classification scheme is best viewed as a conceptual tool, rather than a statement
about the underlying biology. We have mostly focused on mutations with either a perfect
tradeoff or a perfect benefit, but Eqs. (2.7) and (2.16) apply equally well in more realistic
cases where a shift in resource strategy is accompanied by a change in the overall growth
rate. These expressions can be used to predict when the costs of an opportunistic mutation
will outweigh its ecological benefits, or vice versa. Similarly, true fitness mutations (e.g. an
increase in ATP efficiency) are assumed to be rare in nature, since they could have fixed in
the population long ago. In practice, effective fitness mutations are more likely to correspond
to strategy mutations whose tradeoffs are simply not exposed by the current environmental
conditions. In this picture, the overall fitness Xµ can be viewed as an emergent trait that
arises whenever we project high-dimensional cellular phenotypes onto a restricted set of axes
(SI Appendix 2.6). The presence of effective fitness mutations may therefore be a more
general phenomenon than their name would seem to imply.

The creation of new strains via mutation bears a superficial resemblance to immigration
from a fixed species pool, which is the traditional scenario considered in theoretical ecology.
However, this analogy is exact only in the absence of inheritance, when the phenotypes of
nearby genotypes are uncorrelated from each other. In contrast, when the effects of mutations
are heritable, we have seen that directional selection can produce dramatic departures from
traditional ecological predictions.
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Similar to immigration [60, 3], strategy mutations allow an initially clonal population
to diversify into stably coexisting ecotypes, whose upper bound is set by the number of
resources. Yet because fitness mutations are heritable, further evolution will lead to fitness
differences between the clades, which can dynamically shift the ecological equilibrium over
time, and eventually drive less fit clades to extinction. The mere observation that selec-
tion can disrupt coexistence is not surprising, since drug resistance or other harsh selection
regimes provide striking examples of this effect. However, our quantitative analysis shows
that this collapse can happen long before any clade is universally inferior to another, and
that it can result from the compound effect of many small effect mutations that would not
lead to extinction on their own. These results suggest that ongoing directional selection may
have a larger impact on the structure of microbial communities than is often assumed. In
particular, while previous ecological analyses suggest that the number of ecotypes should
meet [59, 3] or even exceed [51] the number of resources, our results raise the possibility that
they could also reside at a diversification-selection balance below the maximum capacity of
the ecosystem.

In addition to their influence on coexistence, we also found that fitness differences accrued
via directional selection will generate emergent selection pressures for continual evolution of
the ecological phenotypes, even in a saturated ecosystem. While these internal selection
pressures are reminiscent of the Red Queen effect [64], our quantitative analysis shows that
they select for different phenotypes than in the standard predator-prey setting. In particular,
less fit clades do not experience increased selection pressure to narrow their fitness deficit
by accumulating fitness mutations. Instead, selection favors mutations that divert metabolic
effort toward resources with lower effective competition, even at the cost of widening the
fitness deficit. Moreover, the direction of selection toward any given resource can shift
dynamically as the fitness differences and resource uptake strategies evolve over time.

Most of our analysis focused on the strong-selection weak-mutation regime, in which
the current ecological equilibrium is attained before the next mutation occurs. In this limit,
when the resource uptake strategies are sufficiently close to the supply rates, our model takes
on a universal form that closely resembles traditional models of adaptive dynamics [21, 10].
The key difference is that directional selection behaves as an additional trait dimension,
which is effectively constrained to remain far from its optimum at all times (Fig. 2.6, SI
Appendix 2.6). Our results show that this simple broken symmetry can lead to dramatic
deviations from the standard adaptive dynamics picture.

In contrast to adaptive dynamics, we also allow for mutations that have non-infinitesimal
effects on resource uptake rates, which turn out to play a key role in controlling the dy-
namical behaviors that we observe. In practice, the genetic architectures of most ecological
interactions remain poorly characterized empirically. In a few well-studied cases, ecological
diversification can be traced to a single large-effect mutation [17, 45], while in others, a series
of smaller mutations have been implicated [49]. Our present analysis suggests new ways in
which we might constrain this key parameter experimentally, either by analyzing fluctuations
in ecotype frequencies on long timescales [29], or by measuring the joint distribution invasion
fitness (Sinv) and ecological perturbation (∆f) across a panel of engineered mutations [49].
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Of course, the present work has focused on a highly simplified model, which omits many
of the complicating factors expected in either natural or laboratory settings. A particularly
important limitation is our focus on the weak mutation limit (NU � 1). While analytically
convenient, this assumption is violated by many of the laboratory experiments that motivated
this study. In SI Appendix 2.6, we describe a preliminary extension of our results to the
case where NU � 1, which builds on the intuition gleaned from the weak mutation limit.
However, a more thorough investigation of this regime is required to quantitatively fit the
model to evolutionary measurements (e.g. in an approximate-likelihood framework [27]).
Future work will also be required to fully explore the effects of crossfeeding, time-varying
environments, recombination, and other additions to our basic model [e.g. K-selection [42]].
We believe that our results provide a promising analytical framework in which to investigate
these effects, which have mostly been confined to simulations so far.

It is also interesting to ask whether our results can mapped onto more diverse modes of
ecological interaction, or whether there are other universality classes yet to be discovered.
Since our model can be viewed as the simplest generalization of population genetics with
multiple fitness axes, we hypothesize that it may capture the limiting behavior of a broader
class of ecological interactions that are mediated by a small number of intensive variables. If
so, its analytical tractability may offer a promising avenue for investigating the interactions
between ecology and evolution more generally.
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2.6 Supporting Information (SI)

Derivation of the model
In this section, we show how the coarse-grained Langevin dynamics in Eqs. (2.1) and (2.2)
emerge from two different microscopic models. The first is a simplified class of consumer-
resource models described in the main text. We also describe a second implementation that
is a more direct extension of the traditional Wright-Fisher model. Motivated by results from
population genetics, we then describe a special limit of Eq. (2.1) that is expected to describe
the behavior of a much broader class of models, which differ in some of their microscopic
details. To illustrate this limit, we show how it applies to a class of consumer-resource models
analyzed by Refs. [59, 3].

Consumer-resource model

Our consumer-resource derivation closely follows the one described by Ref. [51], except that
we now allow strains to vary in their total energy budget. In particular, we assume that all
strains µ and resources i are present in a well-mixed volume V , which is diluted at rate D.
In the consumer-resource framework, the per capita growth rate of each strain is mediated
by the resource concentrations,

∂tnµ = gµ(~c)nµ −Dnµ +
√
nµD · ηµ(t) , (2.20)

where nµ is the absolute number of individuals of strain µ, gµ(~c) is a strain-specific growth
function, and ηµ(t) is a Brownian noise term [19] whose mean and covariance are given by

〈ηµ(t)〉 = 0 , (2.21)
〈ηµ(t)ην(t

′)〉 = δµ,νδ(t− t′) . (2.22)

The resource concentrations (in units of V −1) obey a second set of equations,

∂tci = Si −Dci −
∑
µ

dµ,i(~c)nµ
V

+

√
ciD

V
· ηi(t) , (2.23)

where Si is the input flux of resource i, dµ,i(~c) is the per capita depletion rate of resource i by
strain µ, and ηi(t) is an analogous set of noise terms that describe fluctuations in the resource
concentrations. This general class of models has been studied previously by Refs. [41, 61],
and others. Following Ref. [51], we consider a restricted subset of models where the growth
and depletion functions take on a particularly simple form:

gµ(~c) =
∑
i

bµ,idµ,i(~c) , (2.24)

dµ,i(~c) = rµ,iλi(~c) . (2.25)
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The first assumption states that the resources are effectively substitutable, i.e. biomass can
be produced equally well from suitably normalized versions of any imported resource. The
constant normalization factor b−1

µ,i can be interpreted as the amount of imported resource
i necessary to create one cell of strain µ. The second assumption states that the resource
uptake rates can be factored into a species-and resource-specific (but concentration inde-
pendent) factor rµ,i, and a species-independent (but resource and concentration-specific)
function λi(~c). For example, λi(~c) could denote the uptake rate of a pathway that imports
resource i, while rµ,i denotes the constitutive expression of that pathway in an individual of
strain µ. In this picture, strains can differ in their overall expression of a given pathway, but
have limited ability to tune its biochemical properties. This should be a good approximation
for strains that have recently descended from a common ancestor, though it may be violated
for more rapidly evolving enzymes in distantly related species.

We assume that the resource fluxes and concentrations are both large, such that the
dilution and noise terms can be neglected in Eq. (2.23). Following Ref. [51], we also as-
sume a separation of timescales between the dynamics of resource concentrations, such that
the resource concentrations reach a quasi-equilibrium SiV ≈

∑
µ dµ,i(~c)nµ before the strain

abundances start to change significantly. Under these assumptions, we can eliminate the
concentration variables entirely, and obtain a set of coarse-grained dynamics for the strain
abundances:

∂tnµ =

[
−D +

∑
i

SiV bµ,irµ,i∑
ν rν,inν

]
nµ +

√
nµD · ηµ(t) . (2.26)

In this model, the dynamics of the total number of individuals, N̂(t) =
∑

µ nµ(t), does not
close, due to the µ dependence in the biomass conversion factor bµ,i:

∂N̂

∂t
= −DN̂ +

∑
i

SiV

[∑
µ bµ,irµ,inµ∑
ν rν,inν

]
+
√
N̂D · ηµ(t) . (2.27)

However, if we assume that the strains share similar biomass conversion factors bµ,i ≈ bi
(similar to our previous assumption that λ(~c) is independent of µ), then the equation for
N̂(t) closes. We find that N̂(t) rapidly approaches a steady-state value N ≡∑i SibiV/D on a
timescale of order 1/D, with fluctuations of order

√
N . Such fluctuations become irrelevant

in the large N limit, which suggests that we rewrite the dynamics in terms of the strain
frequencies, fµ = nµ/

∑
ν nν and measure time in units of D−1. Following the derivation in

Ref. [26], the dynamics of the frequencies fµ can be shown to satisfy

∂fµ
∂t

=

[
−1 +

∑
i

βiαµ,ie
Xµ∑

ν αν,ie
Xνfν

]
fν

+
∑
ν

[δµ,ν − fµ]

√
fν
N
ην(t) ,

(2.28)
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where we have defined the normalized parameters

βi =
Sibi∑
j Sjbj

, (2.29)

αµ,i =
rµ,i∑
j rµ,j

, (2.30)

Xµ = log
∑
i

rµ,i . (2.31)

The stochastic noise term ξµ(t) in Eq. (2.1) in the main text can therefore be identified with
the linear combination

ξµ(t) =
∑
ν

[δµ,ν − fµ]
√
fνην(t) , (2.32)

whose correlation structure ensures that
∑

µ fµ(t) = 1 at all times.

Deterministic Lyapunov function

The deterministic part of Eq. (2.1) possesses a Lyapunov function,

Λ(~f) = −
∑
µ

fµ +
∑
i

βi log

(∑
µ

αµ,ie
Xµfµ/βi

)
, (2.33)

= −
∑
µ

fµ +
∑
i

βiX i , (2.34)

which is convex and bounded from above, and for which

dΛ

dt
=
∑
µ

1

fµ

(
dfµ
dt

)2

≥ 0 . (2.35)

Among other things, this implies that the deterministic dynamics have a unique equilibrium
that is approached at long times. We exploit this fact in the simulations in Appendix 2.6.

Subdivided environment model

The familiar form of Eq. (2.28) suggests that these dynamics can also be obtained from a
generalization of the standard Wright-Fisher model [11], in which the population is period-
ically subdivided into separate environments. In this model, the strains in environment i
produce a number of gametes proportional to their Wrightian fitness, Wµ,i. After a period
of growth, Nβi gametes are chosen from each environment and mixed together to obtain the
next generation. The expected fraction of individuals in the next generation is

〈fµ(t+ ∆t)〉 =
∑
i

βi

[
Wµ,ifµ∑
νWν,ifν

]
. (2.36)
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When 〈fµ(t+∆t)−fµ(t)〉 is small, this update rule has the same continuum limit as Eq. (2.28),
with

Xµ = log

(∑
i

Wµ,i

)
, (2.37)

αµ,i =
Wµ,i∑
jWµ,j

. (2.38)

The near-ESS limit

Building on well-known results from population genetics, we expect that the model in
Eq. (2.1) will attain its greatest generality in the limit that the intrinsic fitness differences
Xµ and the resource-specific mean fitnesses X i are both small compared to one (though still
nonzero). This ensures a separation of timescales, in which the population- or ecosystem-
level dynamics take place over times that are much longer than a single generation. Previous
work has shown that the population-level dynamics in this case become insensitive to many
assumptions about the underlying birth-death process [11].

The requirement that Xµ is small is familiar from the standard diffusion limit of the
Wright-Fisher model [11]. From the definition of the resource-specific mean fitness in Eq. (2.2),
we see that a sufficient condition for X i to be small is that the resource strategies αµ,i are
close to βi. Since we have previously identified αµ,i = βi as a marginal evolutionarily stable
state (ESS), we have termed this regime the near-ESS limit. Alternatively, it can be viewed
as a generalization of the standard diffusion limit of population genetics.

We can access the near-ESS limit of Eq. (2.1) in several different ways. We can either
work with the full model and take the near-ESS limit in the end, or else we can work directly
with the near-ESS limit of Eq. (2.1). We have employed for the former strategy for most
of this work. However, in certain cases, it can be more convenient take the near-ESS limit
of Eq. (2.1) as our microscopic model (just as it is convenient to work directly with the
Wright-Fisher diffusion process).

To obtain the near-ESS limit of Eq. (2.1), we first rewrite the resource uptake strategies
in the form

αµ,i = βi (1 + γµ,i) , (2.39)

for some rescaled vector γµ,i. The normalization conditions for αµ,i and βi yield a corre-
sponding condition for γµ,i, ∑

i

βiγµ,i = 0 . (2.40)
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If we substitute Eq. (2.39) into Eqs. (2.1) and (2.2) and expand to lowest order in Xµ, γµ,i,
and 1/N , we obtain

∂fµ
∂t

=

[
Xµ −

∑
ν

Xνfν

]
fµ +

ξµ√
N

−
∑
i,ν

βiγµ,iγν,ifνfµ

+

(∑
i,ν,σ

βiγν,iγσ,ifνfσ

)
fµ .

(2.41)

The first two terms coincide with the diffusion limit of the Wright-Fisher model, as expected,
while the ecological interactions enter at O(γ2) in the third term. These interactions take
the form of a symmetric Lotka-Volterra model with a special interaction matrix formed by
the outer product of the resource strategy vectors,

Aµ,ν =
∑
i

βiγµ,iγν,i . (2.42)

The rank of this matrix is at most R, regardless of the number of strains. The final term is
analogous to the mean fitness term in the Wright-Fisher model, and ensures that

∑
µ fµ = 1

at all times. Although this three-body term is formally outside of the Lotka-Volterra model,
it is often small in practice, and can be neglected in many calculations.

Fitness differences arising from variable death rates

To illustrate the generality of the near-ESS limit, we show how it can apply to a separate
class of consumer-resource models that have been studied in the literature [59, 3], in which
the fitness differences arise from differences in the underlying death rate. In other words, we
assume that the dilution rate D in Eq. (2.20) can now vary between strains:

D → D +mµ . (2.43)

Although this model is formally different than the one we consider in Eq. (2.1), it produces
the same limiting behavior as Eq. (2.41) when the fitness differences are small on the timescale
of a single generation, i.e., when mµ � D. At lowest order, variation in the death rate will
generate effective fitness differences of the form

Xµ → Xµ −
mµ

D
. (2.44)

Even whenmµ/D is small, we have shown that these fitness differences can produce dramatic
effects when integrated over many generations. Yet at lowest order, the effect of death rate
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variation is indistinguishable from the variation in growth rate that we have considered
above.

Of course, the limiting behavior in Eq. (2.41) will cease to apply if the fitness differences
between strains are no longer small. In this regime, however, the dynamics will often depend
on aspects of the birth-death process that are not captured by toy models like Eq. (2.20)
[e.g., cell-to-cell variation in growth rate [40], phenotypic delays in mutation penetrance [58],
how genetic drift is implemented, etc.]. These would need to be carefully chosen to match
the biological system of interest. To ensure the greatest generality, we therefore focus on the
aspects of the model that can be captured by Eq. (2.41). Enumeration of other universality
classes is an interesting topic for future work.
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Competition for two resources
In this section, we derive our main results for the two resource case. The major advantage
of this limit is that the multidimensional resource space reduces to the scalar interval (0, 1).
Without loss of generality, we will write everything in terms of the first resource component,
defining β = β1 and αµ,1 = αµ, with the remaining components β2 = 1−β and αµ,2 = 1−αµ
fixed by the normalization condition. Following the description in the main text, we will
begin by analyzing the competition between two strains, and then consider the effects of
adding a third strain to a pair of previously coexisting strains.

Competition between two strains

To anayze the competition between two strains, we let α1 and α2 denote the strategy vectors
of the two strains, and let ∆X = X2 −X1 denote the fitness difference between them. We
arbitrarily designate strain 1 as the “wildtype” and consider the frequency of the “mutant
strain”, f ≡ f2. With these definitions, the stochastic term in Eq. (2.32) can be written as

ξ2(t) =

√
(1− f)2f

N
η2(t)−

√
f 2(1− f)

N
η1(t) ,

=

√
f(1− f)

N
η(t) , (2.45)

where η(t) is a third Brownian noise term with 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t−t′). Eq. (2.1)
can then be rewritten in the familiar population genetic form [11],

∂f

∂t
= se(f)f(1− f) +

√
f(1− f)

N
η(t) , (2.46)

where the effective frequency-dependent selection coefficient, se(f), is obtained from the
deterministic portion of Eq. (2.1),

se(f) ≡ 1

f(1− f)

(
∂f2

∂t

)
deterministic

,

=
β
[
α2e

∆x − α1

]
α1 + [α2e∆x − α1] f

+
(1− β)

[
(1− α2)e∆X − (1− α1)

]
1− α1 + [(1− α2)e∆X − (1− α1)] f

.

(2.47)

Our main results can be derived from limiting versions of this basic model.
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Invasion of a new strain

The invasion of a new strain corresponds to the f → 0 limit, in which Eq. (2.46) reduces to
the linearized form,

∂f

∂t
= Sinvf +

√
f

N
η(t) , (2.48)

with an invasion fitness Sinv defined by

Sinv ≡ lim
f→0

se(f) ,

=
(
e∆X − 1

)
+ e∆X

[
(β − α1)(α2 − α1)

α1(1− α1)

]
. (2.49)

Eq. (2.48) can be solved using standard methods [35]. We will simply quote the relevant
results here, while a more pedagogical exposition can be found in Chapter 1 of Ref. [25].

For initial frequencies small compared to the 1/NSinv, the genetic drift term dominates,
and there is a high probability that the mutant will drift to extinction. However, with
probability pest = 2NSinvf(0), the mutant will drift to frequency ∼1/NSinv, after which
point the selection term dominates over genetic drift. This “established” lineage will then
grow deterministically as f(t) = 1

2NSinv
eSinvt, which can be matched onto the full nonlinear

(but deterministic) solution as f increases further. The full solution is somewhat unwieldy,
but the first-order nature of the ODE shows that f(t) cannot decrease as t→∞. Thus, once
the mutant establishes, the deterministic dynamics will never drive the mutant close enough
to the drift barrier that extinction becomes likely again. This suggests that the branching
process description will be valid as long as f(t) remains sufficiently small during the duration
of the establishment process that f(t)� 1 and se(f) ≈ Sinv. This will be true provided that
these conditions are satisfied at the drift barrier, 1/NSinv, which leads to the conditions

NSinv � 1 , (2.50)
NSinvα1

α2e∆X − α1

� 1 , (2.51)

NSinv(1− α1)

(1− α2)e∆X − (1− α1)
� 1 . (2.52)

These conditions can be satisfied simultaneously for sufficiently large N .

Stable coexistence

If Sinv > 0 and the mutant is lucky enough to establish, then the frequency-dependent
selection term will either drive the mutant to fixation (f = 1) or else stabilize at some
intermediate frequency f ∗. As described in the main text, stable coexistence requires that
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the reciprocal invasion fitness,

SRinv ≡ lim
f→1
−se(f) ,

=
(
e−∆X − 1

)
+ e−∆X

[
(β − α2)(α1 − α2)

α2(1− α2)

]
, (2.53)

is also positive. Solving this equation when SRinv = 0 yields the critical fitness threshold

∆Xmax = log

(
1 +

(α1 − α2)(β − α2)

α2(1− α2)

)
, (2.54)

which reduces to Eq. (2.9) in the main text in the near-ESS limit. We might naively assume
that this threshold would be equivalent to the fitness that gives strain 2 a higher uptake rate
on both individual resources, i.e. α2e

∆X ≥ α1 and (1 − α2)e∆X ≥ 1 − α1. Although this is
indeed a sufficient condition for strain 2 to fix, the true thresholds in Eqs. (2.9) and (2.54)
are much weaker conditions, which depend on the environmental supply vector β. This
means that in practice, stable coexistence will be disrupted long before one of the strains is
uniformly better than the other.

When the conditions for stable coexistence are met, the equilibrium frequency f ∗ is
obtained from the condition that se(f ∗) = 0. From Eq. (2.47), we see that this can only
happen if α2e

∆X − α1 and (1− α2)e∆X − (1− α1) have different signs, i.e. neither strain is
uniformly better than the other. Solving for f ∗, we find that

f ∗ =
f ∗0 +

[
f ∗0 + α1(1−α1)

∆α2

] (
e∆X − 1

)
[
1 + α2

∆α
(e∆X − 1)

] [
1− (1−α2)

∆α
(e∆X − 1)

] , (2.55)

where f ∗0 = (β−α1)/∆α is the equilibrium frequency in the absence of any fitness differences.
When f = f ∗, the resource-specific mean fitnesses X i take on the values

X1 = − log

[
1−

(
1− e−∆X

)(1− α2

∆α

)]
,

X2 = − log
[
1 +

(
1− e−∆X

) ( α2

∆α

)]
,

(2.56)

which are independent of the resource supply vector β. This extends the “environmental
shielding” behavior derived in the neutral limit by Ref. [51]: when two strains coexist on
two substitutable resources, the strain frequencies evolve so that the remaining selection
pressures take on values that are independent of the environment, and depend only on the
identities of the coexisting strains. We will revisit this behavior again in the multi-resource
case below.

In the limit that fitness differences are small [specifically, when ∆X is small compared
to 1, α2/∆α, and (1− α2)/∆α], Eq. (2.56) reduces to the linearized version,

X1 =
(1− α2)

∆α
∆X , X2 = − α2

∆α
∆X , (2.57)
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while Eq. (2.55) reduces to the linear relation quoted in Eq. (2.10) in the main text. This
defines a second fitness scale,

Xf ≡ f ∗(1− f ∗)
(
∂f ∗

∂∆X

)−1

,

=
(β − α1)(α2 − β)

β(1− β) + (β − α1)(α2 − β)
, (2.58)

over which f ∗(∆X) changes significantly. Note that Xf has approximately the same scaling
behavior for small and large β − α as the critical threshold ∆Xmax in Eq. (2.9).

For frequencies close to f ∗, the selection term again grows small compared to the genetic
drift term. Linearizing Eq. (2.46) around f ≈ f ∗, the fluctuations δf = f − f ∗ are described
by

∂δf

∂t
= −Xeqf

∗(1− f ∗)δf +

√
f ∗(1− f ∗)

N
η(t) , (2.59)

where we have defined the equilibrium restoring fitness

Xeq ≡ −
∂se(f)

∂f

∣∣∣∣
f=f∗

=
1

β(1− β)

(
(α2e

∆X − α1)[(1− α2)e∆X − (1− α1)]

α1[(1− α2)e∆X − (1− α1)]− (1− α1)[α2e∆X − α1]

)2

.

(2.60)

In the limit that ∆X � 1, this becomes

Xeq =
∆α2

β(1− β)

[
1 +

2α2 − 1

∆α
∆X

]
. (2.61)

This model can again be solved using standard methods [33]. The stationary distribution
of δf tends toward a normal distribution with mean zero and standard deviation σf =
1/
√

2NXeq, which decays on a timescale ∼1/Xeqf
∗(1− f ∗). The quasi-deterministic model

is therefore self-consistent provided that

σf
f ∗(1− f ∗) =

√
∆α2

2N(β − α1)2(α2 − β)2
� 1 , (2.62)

which can be satisfied for sufficiently large N .
The fluctuations in f lead to similar fluctuations in the resource-specific mean fitnesses,

X i, whose first order contribution is given by

δX1 =
∆α

β

[
1 +

α2

∆α
(e∆X − 1)

]
e−X1δf ,

δX2 = − ∆α

1− β

[
1− (1− α2)

∆α

(
e∆X − 1

)]
e−X2δf .

(2.63)
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Competition between three strains

Having characterized the dynamics for a pair of strains, we next consider a scenario in which
a third strain is introduced into a stable ecosystem where a pair of strains already coexist.
Without loss of generality, we will assume that the third strain is a mutant version of the
second strain, with fitness X3 = ∆X + s and strategy vector α3. From the definition of the
model in Eq. (2.1), this mutant strain will have an invasion fitness

Sinv = α3

(
e∆X+s−X1 − 1

)
+ (1− α3)

(
e∆X+s−X2

)
(2.64)

where the resource-specific mean fitnesses X1(t) and X2(t) are dictated by the two strain
process in Eq. (2.46). If the mutant was actually identical to its parent strain (i.e., if α3 = α2

and s = 0), it should never be favored to invade, since it can at best compete neutrally with
its parent. This implies that

α2

(
e∆X−X1 − 1

)
+ (1− α2)

(
e∆X−X2 − 1

)
= 0 , (2.65)

when averaged over the timescales required for the mutation to invade. Multiplying this
expression by es and subtracting it from Eq. (2.64), we can then rewrite the general invasion
fitness in the form

Sinv = (es − 1) + (α3 − α2)
(
e−X1(t) − e−X2(t)

)
e∆X+s , (2.66)

We consider the implications of this expression in various special cases below.

No fitness differences

In a completly neutral scenario (∆X = s = 0), the resource-specific mean fitnesses are solely
determined by the fluctuations δX1 and δX2 from Eq. (2.63), and Eq. (2.66) reduces to

Sinv = (α3 − α2)
[
δX2 − δX1

]
=

(α2 − α3)(α2 − α1)

β(1− β)
δf(t) . (2.67)

Since 〈δf(t)〉 = 0, this agrees with the deterministic results of Ref. [51], who found that
all further invasion fitnesses vanish in a neutral population when the ecosystem is fully
expoited. However, our stochastic analysis shows that fluctuations can induce momentary
selection pressures of order

δSinv ∼
(α2 − α3)(α2 − α1)

β(1− β)

1√
NXeq

, (2.68)

which can be large compared to 1/N . However, these momentary selection pressures average
out to zero over a timescale 1/Xeqf

∗(1−f ∗). When N is large, this is much shorter than the
timescale ∼1/δSinv required for the mutant lineage to escape the drift barrier. This shows
that internal fluctuations cannot induce anomalous establishment events in our model. To
leading order in N , ecological selection pressures vanish in a neutral population when two
strains coexist on two substitutable resources.
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Pure fitness mutations

In the case where the mutant lineage is created by a pure fitness mutation, α3 = α2, and the
invasion fitness reduces to

Sinv = es − 1 ≈ s , (2.69)

which is identical to the standard Wright-Fisher model. This justifies our interpretation
of Xµ as a fitness parameter. Eq. (2.69) is a slightly stronger result, since it implies that
pure fitness mutations continue to establish at the same rate, regardless of the structure of
the ecosystem. When such a mutation establishes, it is guaranteed to displace its parent
strain, resulting in a two-strain competition between strain 3 and strain 1, which now differ
in fitness by an amount ∆X+s. If ∆X+s ≥ ∆Xmax from Eq. (2.9), then stable coexistence
will be disrupted, and strain 3 will take over the entire population. On the other hand, if
∆X + s < ∆Xmax, the mutant will only displace its parent strain, and will be prevented
from sweeping through the entire population. Instead, the successful mutation will shift the
equilibrium frequency by an amount

∆f = f ∗(∆X + s)− f ∗(∆X) ,

≈ β(1− β) + (β − α1)(β − α2)

∆α2
· s , (2.70)

where we have employed the linearized approximation for f ∗ from Eq. (2.10) in the main
text.

Pure strategy mutations

If the mutant lineage is created by a pure strategy mutation (s = 0), then the invasion fitness
reduces to

Sinv =
α3 − α2

α1 − α2

(
e∆X − 1

)
, (2.71)

where we have retained only the leading order contribution as N →∞. The ∆X � 1 limit
is listed in Eq. (2.15) in the main text. The interpretation of this expression, and the various
scenarios that can arise after establishment, are described in the main text as well.

Evolution of a single-locus ecology

The results above allow us to analyze the effects of further evolution in our consumer resource
model. As a first pass, we focus on a simplified scenario, in which strategy mutations switch
between two fixed strategy vectors, α1 and α2, and occur at rate Uα. We assume that α1

and α2 span β, so that the strains can stably coexist. We also assume that α1 and α2 are
sufficiently close to β that we can invoke the near-ESS limits of various expressions above.
We note that while this assumption is also employed in the adaptive dynamics literature
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[21, 10], our model also differs from these results in a key way, as it includes α that go
beyond the infinitesimal evolution assumption in adaptive dynamics.

Our model also differs from the canonical adaptive dynamics scenario in that it includes
pure fitness mutations, which occur at rate UXρX(s). We assume that the tails of ρX(s)
are sufficiently light that the distribution can be approximated by a characteristic beneficial
fitness effect [28], which we will also denote by the generic variable s below. Our analysis
here will focus on the strong-selection weak mutation (SSWM) regime that arises in the
limit that N → ∞ and Uα + UX → 0. The first assumption guarantees that genetic drift
is only relevant when mutations are sufficiently rare, so that the establishment process can
be modeled by the branching process techniques above. The second assumption guarantees
that all mutations establish or go extinct before the next mutation occurs, so that they can
be described by the two- and three-strain competition processes above. Violations of this
assumption are considered in more detail in a following section.

No strategy mutations

We first consider the dynamics under pure fitness mutations when Uα/UX = 0. We assume
that the population has just diversified into a pair of coexisting strains with fitness difference
∆X = 0, and equilibrium frequency f ∗0 . Pure fitness mutations will occur in each clade at
rate NUXf ∗ and NUX(1 − f ∗), respectively. According to Eq. (2.69), these establish with
probability pest = 2s, sweep through their parent clade, and result in a new fitness differential,

∆X =

{
+s with probability f ∗,
−s with probability 1− f ∗, (2.72)

which depends on the genetic background in which the mutation arose. This fitness differ-
ential will lead to a shift in the equilibrium frequency ∆f = ±s/sc described by Eq. (2.11)
in the main text. If ∆f < −f ∗ or ∆f > 1− f ∗, then by definition stable coexistence will be
disrupted, since the new frequency would fall outside the interval from 0 to 1. [One can also
see this directly from the fitness bounds ∆Xmin and ∆Xmax in Eqs. (2.8) and (2.9).] Since
the mutant has already swept through its parent clade, a disruption of coexistence implies
that it will take over the entire population. In the near-ESS limit, we can combine these two
conditions to obtain a convenient asymptotic condition for s:

s� scf
∗
0 (1− f ∗0 ) ≡ (α1 − β)(β − α2)

β(1− β)
. (2.73)

In this regime, the lifetime of coexistence is of order τcollapse ∼ 1/NUXs (the time that it
takes for one fitness mutation to occur).

In the opposite regime, when s� scf
∗
0 (1−f ∗0 ), individual fitness mutations lead to small

shifts in f ∗, and many such mutations must accumulate before stable coexistence is disrupted.
In this case, we can model the changing equilibrium frequency using an effective diffusion
process. In an interval of time δt, the fitness differential changes by δ∆X = s(k2 − k1),



CHAPTER 2. ADAPTATION LIMITS ECOLOGICAL DIVERSIFICATION 65

where k2 and k1 denote the number of fitness mutations that accumulate in the f ∗ and
1 − f ∗ backgrounds, respectively. In the weak mutation limit, these occur as a Poisson
process with rates 2NUXsf

∗δt and 2NUXs(1− f ∗)δt, respectively, so that

〈k2 − k1〉 = 2NUXs(2f
∗ − 1)δt , (2.74)

Var(k2 − k1) = 2NUXsδt . (2.75)

The fitness difference ∆X can therefore be described by an effective diffusion process,

∂∆X

∂t
= 2NUXs

2[2f ∗(∆X)− 1] +
√

2NUXs3η(t) , (2.76)

where the equilibrium frequency f ∗ itself depends on ∆X through Eq. (2.10) in the main
text. Changing variables from ∆X to f ∗, we obtain Eq. (2.12) in the main text. For our
detailed calculations, it will be somewhat more convenient to work with the rescaled variables
Y = 2f ∗ − 1 and k = 2NUXst, which yields a related equation

∂Y

∂k
=

2s

sc
Y +

√
4s2

s2
c

· η(τ) . (2.77)

This is similar to the equation for the drift-induced fluctuations in Eq. (2.59), except that
the bias is now a destabilizing force, rather than a stabilizing one. This reflects the fact that
larger clades are more likely to acquire beneficial mutations in the weak mutation limit, which
leads to further increases in frequency. We can quantify the strength of this snowballing effect
by analyzing the ultimate fixation probability of strain 1 (i.e., the probability that Y → 1) as
a function of the current value of Y = 2f ∗− 1. Eq. (2.77) implies a corresponding backward
equation for the fixation probability

2s

sc
Y
∂Pfix

∂Y
+

2s2

s2
c

∂Pfix

∂Y
= 0 , (2.78)

whose solution is given by

Pfix(f ∗) ≈ 1√
2π

∫ 2f∗−1√
s/sc

−∞
e−

u2

2 du . (2.79)

This function undergoes a sharp transition near 2f ∗−1 ∼
√
s/sc. When |2f ∗−1| �

√
s/sc,

fixation and extinction of the clade are equally likely, while for 2f ∗ − 1 �
√
s/sc, fixation

is virtually guaranteed. This transition has a simple interpretation in terms of the relative
strengths of the bias and noise terms in Eq. (2.12):

√
s/sc represents a critical frequency

difference above which the bias dominates over the noise term. Since
√
s/sc is itself a

small parameter in the s � sc regime, this implies that the random portion of the clade
competition process is confined to frequencies near 50%. Reversals from frequencies near
f ∗ ≈ 0 or f ∗ ≈ 1 are asymptotically unlikely.
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To investigate the dynamics of this process, we analyze the mean squared frequency
difference 〈Y 2〉. Using Eq. (2.77), we can derive a closed moment equation for 〈Y 2〉

∂〈Y 2〉
∂k

=
4s

sc
〈Y 2〉+

4s2

s2
c

, (2.80)

whose solution is given by

〈Y (k)2〉 = Y (0)2e
4sk
sc +

s

sc

(
e

4sk
sc − 1

)
. (2.81)

Solving for k and converting back to units of time, we find that

t =
sc

8NUXs2
log

(〈Y (t)2〉+ s/sc
Y (0)2 + s/sc

)
. (2.82)

The behavior of this function has a simple heuristic interpretation based on the fundamental
timescales of Eq. (2.12). These heuristics follow from standard arguments [7, 14, 6], so we
will simply quote the relevant results here, while referring the interested reader to Chapter
1 of Ref. [25] for a more detailed exposition.

Starting from |2f ∗0 − 1| �
√
s/sc, the clade frequencies will wander diffusively for a time

τdrift ∼ sc
NUXs2

until the frequency difference reaches
√
s/sc, after which point the major

clade deterministically acquires mutations for τcollapse ∼ sc
NUXs2

log(sc/s) more generations
until it reaches fixation. On the other hand, if the clades start with a frequency difference
|2f0−1| �

√
s/sc, then the major clade will deterministically fix within ∼ sc

NUXs2
log
(

1
|2f∗−1|

)
generations

Including strategy mutations

We can use the results above to analyze the case where Uα/UX > 0. For very low values of
Uα/UX , strategy mutations will rarely occur before the ecosystem collapses according to the
process described above. In this case, the main effect of strategy mutations is to re-diversify
a population that consists of a single ecotype. The invasion fitness of such a mutation is
therefore given by Eq. (2.4) in the main text, and will vary depending on which ecotype
dominates the population.

We can therefore distinguish between two regimes. If |2f ∗0 − 1| �
√
s/sc, then both

ecotypes are equally likely to fix, and the average invasion fitness is

X inv =
(β − α1)(α2 − α1)

β(1− β)
+

(β − α2)(α1 − α2)

β(1− β)
= sc , (2.83)

This leads to a diversification timescale τdiversify ∼ 1/NUαsc, and the diversification-selection
balance in Eq. (2.13) in the main text. On the other hand, if |2f ∗0 − 1| �

√
s/sc then the

clade with the larger initial frequency will typically be the one that fixes. Without loss of



CHAPTER 2. ADAPTATION LIMITS ECOLOGICAL DIVERSIFICATION 67

generality, we will relabel the strains so that f ∗ always represents this clade. In this scenario,
the average invasion fitness is instead given by X inv ∼ sc(1 − f ∗0 ), which is strictly smaller
than sc. In this case, the diversification-selection balance is given by

Pr[S = 2]

Pr[S = 1]
≈ τcollapse

τdiversify

∼ Uα
UX

(sc
s

)2

(1− f ∗0 ) log

(
1

2f ∗0 − 1

)
. (2.84)

For still larger values of Uα/UX , strategy mutations will start to occur before one of the
clades has fixed in the population. If the mutation occurs in the fitter clade, it will have an
invasion fitness Sinv = |∆X|, and will reset the fitness difference to zero if it establishes. On
the other hand, if the mutation occurs in the less fit clade, it will have a negative invasion
fitness and will not be able to establish. Thus, the net effect of these strategy mutations is
to set ∆X = 0 at a time-dependent rate

λ0(t) = 2NUαf
∗∆Xθ(∆X)− 2NUα(1− f ∗)∆Xθ(−∆X) , (2.85)

where θ(z) is the Heaviside step function, and f ∗(t) and ∆X(t) are determined by the effective
diffusion process in Eq. (2.12) in the main text. The first successful strategy mutation will
occur on a characteristic invasion timescale determined by the implicit relation∫ τinvade

0

λ(t)dt ∼ 1 . (2.86)

Since the fitter strain will typically be the most abundant as well, Eq. (2.85) will only differ
by a factor of two from the much simpler expression

λ0(t) ∼ NUα|∆X| . (2.87)

Since Eq. (2.86) is only accurate up to an order one factor, we will use this simpler approx-
imation for λ0(t) instead.

Based on these definitions, we can obtain a self-consistent solution to Eq. (2.86) in var-
ious regimes. If Uα � UX , then strategy mutations will arise much faster than individual
mutations. In this case, a lucky fitness mutation will establish in one of the clades after a
time of order 1/NUXs, so that∫ t

0

λ0(t′)dt′ ∼ NUαs

(
t− 1

NUXs

)
. (2.88)

This yields an invasion timescale

τinvade ∼
1

NUαs
+

1

NUXs
∼ 1

NUXs
, (2.89)

which is self-consistent provided that Uα � UX .
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If τinvade � 1/NUXs, then multiple fitness mutations will accumulate before the first
successful strategy mutation arises. If τinvade � τdrift then the fitness differential ∆X wanders
diffusively as |∆X| ∼

√
NUXs3t, and∫ t

0

λ(t′)dt′ ∼ NUα
√
NUX(st)3/2 . (2.90)

This leads to an invasion timescale of order

τinvade ∼
1

NUXs

(
UX
Uα

)2/3

, (2.91)

which is self consistent provided that Uα � UX � Uα (sc/s)
3/2.

If τinvade � τdrift, or if the initial frequency differential already exceeds the critical value√
s/sc, then the successful strategy mutation will occur when ∆X is growing deterministi-

cally as

∆X ∼ sc

√
(2f ∗0 − 1)2 +

s

sc
· e

4NUXs
2t

sc , (2.92)

so that ∫ t

0

λ0(t′)dt′ ∼ Uαs
2
c

UXs2

√
(2f ∗0 − 1)2 +

s

sc
· e

4NUXs
2t

sc . (2.93)

If τinvade � τcollapse, this leads to an invasion timescale,

τinvade ∼
sc

8NUXs2
log

(
U2
X

U2
α

s4

s4
c

1

(2f ∗0 − 1)2 + s
sc

)
, (2.94)

which will be self-consistent provided that Uα
(
sc
s

)3/2 � UX � Uα
(
sc
s

)2. Finally, for UX �
Uα
(
sc
s

)2, strategy mutants are sufficiently rare that the ecosystem will typically collapse and
re-diversify before invasion can occur. In this case, τinvade formally diverges. The various
regimes for τinvade are summarized in Eq. (2.14) in the main text.

The effects of clonal interference

In our analysis above, we have focused on the weak mutation limit, in which only two or
three strains exist within the population at any one time. While this enabled many analytical
simplifications, it is also known that many microbial populations lie outside this regime. This
is particularly true for many microbial evolution experiments in which stable coexistence has
been observed to evolve spontaneously. While a thorough analysis of this regime is beyond
the scope of the present work, we will summarize the key differences that are likely to arise
in the effective diffusion process in Eq. (2.12) in the main text.
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Outside of the weak-mutation limit, many established beneficial mutations will be driven
to extinction due to clonal interference with other beneficial mutations that happen to seg-
regate at the same time [22]. In the limit that clonal interference is strong (NUX � 1), this
has two main consequences. First, the rate of adaptive substitution scales much more weakly
with N than the linear expectation NUXs from the SSWM limit. In the case of coexisting
strains, this will also apply to the subpopulations Nf ∗ and N(1−f ∗) that correspond to the
two clades. As a result, the bias term in Eq. (2.12) will be significantly reduced (and essen-
tially vanishes in the limit of strong clonal interference). Second, clonal interference causes
the rate of adaptation to become more deterministic in addition to reducing it, since it is
no longer limited by the supply of beneficial mutations. The dynamics of these fluctuations
are poorly understood in the general case, though Ref. [15] has shown that they lead to a
long-term diffusion constant,

DX =

 s

log
(

s
UX

)
3

. (2.95)

for the total fitness gain in a model similar to ours. Thus, as long as Nf ∗(1 − f ∗) remains
sufficiently large that clonal interference within each clade remains strong, we expect the
effective diffusion model in Eq. (2.12) to be better approximated by the limiting form

sc
∂f

∂t
∼
√
DX · η(t) . (2.96)

Due to the weaker bias term, we expect that the relative frequencies of the clades can
undergo dramatic reversals before one or the other accumulates a fitness advantage that
is large enough it to fix. Interestingly, such reversals have been observed in a long-term
experiment in E. coli [29]. However, a more thorough analysis of this clonal interference
regime remains an interesting avenue for future work.



CHAPTER 2. ADAPTATION LIMITS ECOLOGICAL DIVERSIFICATION 70

Competition for many resources
In this section, we show how many of the results derived in the two-resource case can be
extended to systems with larger numbers of resources. Most of these results will apply for
arbitrary values of R, but we are particularly interested in the qualitative differences that
arise in the many resource limit where R � 1.

Invasion of a mutant strain

We begin by considering a mutation that occurs in an ecosystem with an arbitrary number
of coexisting strains, with equilibrium resource-specific mean fitnesses, X i. Without loss of
generality, we will assume that the mutation occurs in the µ = 1 strain, and leads to a new
phenotype (Xµ+s, ~αµ+∆~α), where the strategy perturbation must satisfy the normalization
constraint

∑
i ∆αi = 0. The invasion fitness for the resident strain µ must be zero, since

it is by definition present at the ecological equilibrium. Using this fact, along with the
normalization condition on ∆~α, one can show that the general invasion fitness for the mutant
is given by

Sinv ≡
∑
i

(αµ,i + ∆αi)
[
eXµ+s−Xi − 1

]
, (2.97)

= (es − 1) + es
∑
i

∆αi

(
eXµ−Xi − 1

)
, (2.98)

which generalizes the two-resource invasion fitness in Eq. (2.66). In the near-ESS limit where
s, Xµ, and X i are all small compared to one, this expression reduces to Eq. (2.16) in the
main text.

Ecological equilibria

The invasion fitness in Eq. (2.97) depend on the structure of the stable ecosystem through the
resource-specific mean fitnesses, X i, which depend on the equilibrium strain frequencies f ∗µ
through the definition in Eq. (2.2). Compared to the two-resource case above, it is generally
more difficult to calculate the ecological equilibrium for a set of strains when R > 2. Part
of this difficulty is caused by the vector nature of the resource space, which can no longer
be projected down onto a single scalar dimension. However, this is more than just a book-
keeping issue — there are also fundamentally new kinds of ecological equilibria that can arise
when R > 2. In a two-resource system, ecological equilibria are either monocultures (with
S = 1 resident strains), or else contain the maximum number of coexisting strains permitted
by the environment (S = 2). However, when S > 2, one can also have stable coexistence at
any intermediate value of 1 < S < R, in addition to the saturated state with S = R. These
two classes of equilibria turn out to have very different properties.

Saturated ecosystems. The saturated stable state (S = R) is the closest analogue of
the two-resource equilibrium that we studied in Appendix 2.6. In this case, we can obtain



CHAPTER 2. ADAPTATION LIMITS ECOLOGICAL DIVERSIFICATION 71

an explicit solution for the strain frequencies, f ∗µ, and resource-specific mean fitnesses, X i,
attained at equilibrium as a function of the phenotypes (Xµ, ~αµ) of the resident strains.
By definition, the per capita growth rate (∂t log fµ) of each resident strain must vanish at
equilibrium, which yields a system of S equations for the R resource-specific mean fitnesses:∑

i

αµ,ie
−Xi = e−Xµ . (2.99)

When k = p, this system can be inverted to obtain

e−Xi =
∑
µ

α−1
i,µe
−Xµ , (2.100)

where α−1
i,µ is the left inverse of αµ,i. In the limit that |Xµ − Xν | � 1, this reduces to

Eq. (2.17) in the main text. Using the definition of X i in Eq. (2.2) in the main text, we
obtain a second system of R equations for the k equilibrium frequencies:

βi =
∑
µ

αµ,ie
Xµ−Xif ∗µ , (2.101)

which is the non-neutral generalization of Eq. (2.6) in the main text. Again, when S = R,
we can invert this system to obtain

f ∗µ = e−Xµ
∑
i

βie
Xiα−1

i,µ =
∑
i

βiα
−1
i,µ∑

ν α
−1
i,ν e

Xµ−Xν
, (2.102)

since the left and right inverses are equal in this case. In the limit that |Xµ −Xν | → 0, we
obtain the leading order contribution

f ∗µ ≈
∑
i

βiα
−1
i,µ −

∑
i,ν

βiα
−1
i,µα

−1
i,ν (Xµ −Xν) . (2.103)

To gain intuition into these formulae, we consider a set of strains whose resource strategies
are a mixture of specialist and generalist components:

αµ,i = (1− ε)βi + εδµ,i , (2.104)

where 0 ≤ ε ≤ 1 provides a measure of the “distance” between the resource strategies. In
this case, the inverse matrix has the asymptotic limits

α−1
i,µ ∼

{
δi,µ +O(1− ε) if 1− ε� 1,
δi,µ−βµ

ε
+O(1) if ε� 1,

(2.105)

so that

X i ∼
{
Xi if 1− ε� 1,∑

j 6=i βj(Xi−Xj)
ε

if ε� 1,
(2.106)
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and

f ∗µ ∼
{
βµ if 1− ε� 1,

βµ

[
1−

∑
ν 6=µ βν(Xµ−Xν)

ε2

]
if ε� 1.

(2.107)

Unsaturated ecosystems. In contrast to the saturated case, when the number of
surviving species is less than the number of resources (S < R) the equations in Eq. (2.99)
underdetermine the resource-specific mean fitnesses, X i, so we must invoke the non-linear
constraints in Eq. (2.101) to jointly solve for X i and f ∗µ. Alternatively Ref. [59] has shown
that the equilibrium values of X i can be obtained from the solution of a convex optimization
problem, subject to the constraints in Eq. (2.99). In particular, if we define the transformed
variable hi = e−Xi , then the equilibrium value of hi is the solution to the convex optimization
problem

~h∗ = argmax~h

{∑
i

βi log hi :
∑
i

αµ,ihi = e−Xµ ∀µ
}
. (2.108)

In fact, this method yields a general solution for the equilibrium value of X i for any initial
collection of strains, provided that the equality constraints in Eq. (2.108) are replaced by
inequalities (≤). Given the equilibrium values of X i, the surviving species correspond to the
indices µ where the equality condition is satisfied. The corresponding values of f ∗µ satisfy
the (generally overdetermined) set of equations in Eq. (2.101), which can be inverted using
constrained linear regression. We employ this technique to implement the SSWM simulations
in Appendix 2.6 below.

We note that since the objective function in Eq. (2.108) depends on βi, the equilibrium
values of X i will also generally depend on the environmental supply vector in an unsaturated
ecosystem, in contrast to the β-independent values obtained in the saturated case. Thus, the
ecosystem is no longer able to dynamically adjust to “shield” the internal selection pressures
from the current state of the environment [59, 51, 3]. Shifts in βi can therefore lead to new
opportunities for evolutionary adaptation.

Evolution in a binary resource usage model

Since there are few empirical constraints on the genetic architecture of resource strategies in
the limit of many resources (R � 1), we focused on a toy “binary usage” model similar to the
one considered by Ref. [59]. In this model, genomes can either encode the ability to utilize
a given resource or not (e.g. through the presence or absence of a particular pathway), so
that the resource strategy is of the form

αµ,i =
Iµ,i∑
i Iµ,i

. (2.109)
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where Iµ,i ∈ 0, 1 is a binary indicator variables. Individuals can acquire loss-of-function
mutations at rate U−α

∑
i Iµ,i, which cause one of the values of Iµ,i = 1 to switch to Iµ,i = 0.

We also assume that they can acquire gain of function “mutations” (e.g. horizontal acquisition
of a gene from the environment) at rate U+

αR, which force a randomly chosen uptake rate
to the Iµ,i = 1 state. Under these assumptions, the pure mutation dynamics will lead to an
binomial ensemble of resource strategies, analogous to the one considered by Ref. [59], with
a “success probability” of

〈∑i Iµ,i〉
R =

U+
α

U−α
. (2.110)

For simplicity, we will assume that the R resources are all supplied at nearly identical rates.
Note that in the completely symmetric case (βi = 1/R), a “generalist” strain with Iµ,i = 1
will constitute a marginal evolutionary stable state. To avoid this pathological behavior, we
will consider small perturbations around the completely symmetric state:

βi =
1

R

(
1 + εi −

1

R
∑
j

εj

)
, (2.111)

where the εi are small random perturbations drawn from some distribution, and sorted in
descending order (ε1 ≥ ε2 ≥ . . . εR). For simplicity, we will assume that the εi are i.i.d.
Gaussian variables with scale ε� 1. The steep tail ensures that the maximum perturbation
scales as

ε1 ∼
√

2ε2 logR , (2.112)

and can be bounded to be sufficiently small for a suitable choice of ε. Under these assump-
tions, an ecosystem comprised of a single “generalist” strain will still have nonzero ecological
selection pressures encoded by the resource-specific mean fitnesses,

X i ≈ −εi , (2.113)

so that some alternate resource strategies will be favored to invade.
By simulating evolutionary dynamics in this model in the weak mutation limit for various

values of UX and s (Appendix 2.6), we find that the long-term structure of the ecosystem
tends toward a state in which there is a single generalist strain and S − 1 single loss-of-
function variants that have recently descended from this strain (Figs. 2.5 and 2.7-2.9). In
the limit that UX/Uα → 0, this state must also coincide with a saturated state (S = R). If
we let f1 denote the frequency of the generalist strain, then the equilibrium frequencies are
given by

f1 = 1− (R− 1)ε1 , (2.114)

fi =

(
1− 1

R

)
(ε1 − εi) , (2.115)
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where we have assumed that Rε1 � 1. In other words, all resources except the one with
the largest value of εi will have a loss-of-function strain. In the limit that ε1R � 1, the
loss-of-function strains will constitute a tiny fraction of the population, and most mutations
will arise in the generalist strain. In particular, the accumulation of fitness mutations will
cause the fitness of the generalist strain to grow as X1 ∼ NUXs

2t. We therefore wish to
understand when and how this fitness differential drives some of the loss-of-function variants
to extinction.

Due to the symmetry of the system, if j strains are driven to extinction, these must
be strains with loss-of-function mutations in genes with the next j largest values of εi, i.e.
i = 2, . . . , j + 1. Let Xc(j) denote the critical value of X1 required for these j strains to go
extinct. Expanding Eq. (2.1) in the main text to lowest order in X1, (1 − f1), 1/R, and ε,
the equilibrium frequencies satisfy

R− 1 =
∑
i

(1− δµ,i)
[R− 1

R (1−X1f1) + εi +
f1

R + fiδi>j+1

]
, (2.116)

or

fi ≈
1− f1

R − εi −RX1f1 . (2.117)

To self consistently solve for 1− f1, we sum over i = j + 2, . . . ,R to obtain:

1− f1 ≈ R ·
1

j + 1

j+1∑
k=1

εk −
R2(R− 1− j)

j + 1
X1 . (2.118)

Substituting this back into our expression for fi, we obtain:

fi ≈
1

j + 1

j+1∑
i=1

εk − εi −
R2

j + 1
X1 . (2.119)

We can then self-consistently solve for j by setting fj+1 = 0. For example, if j = 1, then we
have

Xc(1) ∼ ε1 − ε2
R2

. (2.120)

This will be a quenched random variable, since we have assumed that the εi are randomly
distributed. Given our Gaussian assumption, the typical value of ε1 − ε2 will occur for

ε1 − ε2 ∼
ε log logR√

logR , (2.121)

which yields

Xc(1) ∼ ε · log logR
R2
√

logR . (2.122)
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On the other hand, if j ∼ R, we have

Xc(j) ∼ ε · 1

R . (2.123)

These two fitness scales are separated by a gap of order

Xc(R)

Xc(1)
∼ R

√
logR

log logR , (2.124)

which grows increasingly large as R � 1.
We can use these results to derive heuristic expressions for the number of species S at

steady state as a function of Uα/UX . We first consider the limit where S � R. As mentioned
above, the generalist strain comprises the vast majority of the population, so that to a first
approximation, we can assume that all fitness and strategy mutations occur on this genetic
background. Furthermore, since S � R, most loss of function mutations will target a
resource i that does not already have a loss-of-function variant, where the resource-specific
mean fitness is given by

X i ≈ log

(
α1,ie

X1

βi

)
≈ X1 − εi . (2.125)

According to Eq. (2.16), the invasion fitness for a loss-of-function variant that targets resource
i is given by

Sinv ∼
−εi
R . (2.126)

Since these loss of function mutations are produced from the generalist background at rate
NUα per resource, the number of coexisting strains increases at rate

dS
dt

=
∑
i

NUα ·
|εi|
R
θ(−εi) ∼ NUαε . (2.127)

in the absence of fitness mutations.
However, as we mentioned above, the accumulation of fitness mutations will cause the

fitness of the generalist strain to grow as X1(t) ∼ NUXs
2t. Since loss-of-function variants

do not acquire further fitness mutations of their own, their fitness is frozen at whatever
fitness the generalist strain had at the time that the mutation arose. The fitness difference
between the mutant and the generalist therefore grows with time until it reaches a critical
value Xc(R) ∼ ε/R, at which point the loss-of-function variant is driven to extinction. This
gives rise to two characteristic dynamical regimes depending on whether Xc(R) is larger or
smaller than the effect s of a typical fitness mutation.

If s � Xc(R), then the generalist lineage must acquire multiple fitness mutations to
drive one of the loss-of-function variants to extinction. To a first approximation, the fitness
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difference between the generalist and the jth most-recently created loss-of-function variant
in this regime is given by

∆Xj ∼
j

NUαε
·NUXs2 . (2.128)

The number of coexisting ecotypes S at steady-state is therefore determined by the relation
∆XS ∼ Xc(R), which reflects a balance between the elimination of the oldest loss-of-function
variant due to the accumulation of fitness mutations and the production of new loss-of-
function variants through strategy mutations. Solving for S, we obtain the scaling relation,

S ∼ 1

R

Uα
UX

( ε
s

)2

, (2.129)

listed in Eq. (2.19) in the main text.
On the other hand, if s� Xc(R), then a single fitness mutation in the generalist strain

is sufficient to drive loss-of-function variants to extinction. Before this mutation arises,
all the loss-of-function variants will share the same fitness difference (∆Xj = 0), and this
value suddenly shifts to � Xc(R) once the successful fitness mutation occurs, driving all
of the existing loss-of-function variants to extinction. This leads to oscillations in S in the
time between successive fitness mutations, which range from Smin ∼ 1 immediately after
the fitness mutation arises, to a maximum value of Smax ∼ Uαε/UXs right before the next
mutation arises. Since the loss-of-function variants accumulate linearly with time, this leads
to a time-averaged value

S ∼ Uαε

UXs
. (2.130)

Both expressions should remain valid up to the point where there is an appreciable prob-
ability that new loss-of-function mutations target a resource that already has pre-existing
variant (S ∼ R). However, there can still be a broad intermediate regime between this point
and the point where the ecosystem is completely saturated (R − S . 1). The saturated
state will coincide with the evolutionary steady-state if the generalist strain is able to seed
fitter loss-of-function variants into all the relevant resource dimensions before X1(t) increases
to the point Xc(1), where the first strains start to go extinct. Once again, there are two
characteristic timescales depending on whether Xc(1) is large or small compared to s.

If s� Xc(1), then the generalist lineage must acquire multiple fitness mutations to before
the first loss-of-function variants are driven to extinction. This will happen over a timescale,

Tcollapse ∼
Xc(1)

NUXs2
∼ ε

NUXs2
· log logR
R2
√

logR . (2.131)

During this time, loss-of-function mutations will occur in the generalist background at rate
NUαR and will establish with probability ∼X1(t). Since the loss-of-function mutations are
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chosen randomly, R logR such establishments are required to cover the total number of
resource dimensions with high probability [12]. This requires a timescale Tdiv that satisfies∫ Tdiv

0

NUαRNUxs2t ∼ R logR , (2.132)

or

Tdiv ∼
√

logR
NUαNUXs2

. (2.133)

The ecosystem will remain saturated if Tcollapse � Tdiv, which leads to the condition

UX �
Uα

R4 log2R
( ε
s

)2

. (2.134)

We can compare this point to the transition to R−S ∼ R from Eq. (2.19), which shows
that these regimes are separated by a gap of order

UX(R− S ∼ 1)

UX(R− S ∼ R)
= (R logR)2 , (2.135)

while

UX(R− S ∼ R)

UX(S ∼ 1)
= R2 . (2.136)

Limits on the number of utilized resources

The fragility of the diversification-selection balance in Appendix 2.6 can be attributed in
large part to the emergence of a fit generalist strain that is able to utilize all of the available
resources. In practice, however, there might be biological constraints or other costs that
limit the number of resources that a given strain can metabolize. This leads us to consider
an extension of our binary resource usage model, in which the maximum number of utilized
resources is capped at some value Rc � R. In this way, we can consider complex ecosystems
(R →∞) while restricting the metabolic repertoire of any given strain. A full analysis of this
model is beyond the scope of the present work. Instead, we will outline a heuristic calculation
that suggests that diversification-selection balance at large R is achieved for substantially
higher values of S than in Appendix 2.6 above.

We first note that when Rc � R, multiple strains are required to cover the available
resources. The minimum possible number of strains is S ∼ R/Rc, which is achieved when
each of the strains specializes on a disjoint subset of Rc resources. To lowest order in ε, the
frequencies of these strains are given by

fµ ≈
Rc

R . (2.137)
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With the same genetic architecture of strategy mutations that we assumed above, this state
will form the basis of the new diversification-selection balance. Generalizing our analysis
above, this state will consist of R/Rc independent copies of the diversification-selection
balance in Appendix 2.6, except with R → Rc. The strains that utilize Rc resources will
be prevented from branching into new resources because of the maximum resource capacity.
Meanwhile, single loss-of-function mutants on these backgrounds will be too small to acquire
a gain-of-function mutation before their parent acquires enough fitness differences to drive
them to extinction.

However, this behavior is strongly dependent on the specific genetic architecture that we
assumed, as well as our focus on the SSWM limit. In larger populations, there may be a
substantial probability for strains to acquire multiple strategy mutations in a short period
of time, which would allow them to break out of their resource neighborhood. To mimic
this effect in the SSWM limit, we can introduce a new rate U (2)

α � Uα to represent the
probability that two strategy mutations arise in the same lineage in a single generation. In
particular, we will use this new rate to model resource swap events, in which one of the
currently utilized resources is deleted and replaced with a randomly drawn resource. As
above, we will assume that this mutation rate scales with the number of utilized resources,
so that the net rate is given by U (2)

α kµ, where kµ = 1/
∑

i α
2
µ,i.

In this augmented model, if we start from the set of R/Rc disjoint strains, then the
fitnesses of these strains will wander diffusively as Xµ ∼ NUXfµs

2t±
√
NUXfµs3t, so that

the typical fitness differences between a pair of strains is of order ∆X(t) ∼
√
NUXfµs3t.

These fitness differences will create a selection pressure for strategy mutations that swap a
resource from one of the fitter strains with a resource from one of the less fit strains. Such
a mutation will have an invasion fitness

Sinv =
e∆X(t) − 1

Rc

≈ ∆X(t)

Rc

. (2.138)

Successful swap mutations will be produced on a timescale τdiversify that satisfies∫ τdiversify

0

NU (2)
α Rc ·

√
NUXfµs3t

Rc

dt ∼ 1 . (2.139)

Solving for τdiversify, we obtain

τdiversify ∼
1

s

(
NU (2)

α

)−2/3
(
NUX ·

Rc

R

)−1/3

, (2.140)

∆X(τdiversify) ∼ s

(
UXRc

U
(2)
α R

)1/3

. (2.141)

Once the successful swap mutation invades, it will create a new ecotype that coexists
with the parent clade, as well as the ecotype that currently utilizes the new resource. To
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lowest order in 1/Rc, the equilibrium frequency is given by

f ∗ν ∼
1− e−∆X(t)

2

Rc

R . (2.142)

When ∆X � 1, this frequency will be small compared to the other dominant ecotypes. As
above, fitness mutations will therefore preferentially accumulate in the dominant ecotypes,
causing the fitness advantage, ∆X(t), of the swap mutant to decrease over time at rate
NUXf

∗
µs

2. After a time of order

τcollapse ∼
∆X(τdiversify)

NUXs2 · RcR
∼ 1

s

(
UXRc

U
(2)
α R

)1/3 R
NUXRc

, (2.143)

the fitness of the less fit ecotype will have caught up to the swap mutant, and the latter will
be driven to extinction. The ratio between τcollapse and τdiversify is therefore given by

τcollapse

τdiversify

∼
(
U

(2)
α R

UXRc

)1/3

. (2.144)

If this ratio is sufficiently large, then new swap mutants will typically establish before the
fitness differences drive any of the existing swap mutants to extinction. For fixed Rc, this
will become increasingly true R →∞.

On the other hand, if τcollapse � τdiversify, then a typical resource swap mutation will
be driven to extinction before the next arises. However, because the timing of the swap
mutations is a random process, anomalously late mutations may occur for which ∆X(t) ∼
O(1). In this case, the swap mutant is no longer rare compared to its parent, and there
is strong selection pressure for loss- (and later gain-) of-function mutations to arise in this
mutant background.

Together, these arguments suggest that the simplest generalization of the steady-state in
Appendix 2.6 will generally be unstable whenever we impose a cap on the number of utilized
resources, and that the corresponding diversification-balance will be attained for much higher
values of S than we would expect based on our previous analysis. Further analysis of these
dynamics are left for future work.
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Connections to adaptive dynamics
Our model shares certain features associated with the traditional models studied in adaptive
dynamics [21, 10], though it also differs from these models in several key ways. In this sec-
tion, we attempt to make this connection more explicit, using the notation and terminology
employed in the adaptive dynamics literature. As adaptive dynamics relies on the weak
mutation limit, we will confine our discussion to this regime as well.

Two resources, no fitness differences

For simplicity, we will start by considering the two-resource case in the absence of fitness
differences, where individuals are described by a scalar resource phenotype α. To make the
connection with adaptive dynamics explicit, we will define a rescaled trait,

x =
α− β√
β(1− β)

, (2.145)

such that x → 0 as α → β. Following Ref. [21], we then let sx(y) denote the invasion
fitness of a mutant of phenotype y in a monomorphic population of phenotype x. In the
neighborhood of x→ 0, Eq. (2.4) shows that sx(y) takes on a simple quadratic form

sx(y) = (x− y)x . (2.146)

Under the standard adaptive dynamics assumption that y is infinitesimally close to x, the
phenotypes will evolve in the direction of the fitness gradient,

D(x) =
∂sx(y)

∂y

∣∣∣∣
y=x

= −x . (2.147)

This gradient vanishes for x = 0 which shows that x∗ = 0 (or α=β) is an evolutionarily
singular strategy. This strategy is convergence stable, in that infinitesimal mutations drive
the population toward x = 0 when |x| > 0. However, it is only marginally ESS-stable, since
∂2sx(y)/∂y2 = 0 at x = 0. The second derivative classification in Ref. [21] also shows that
stable dimorphisms can coexist in the neighborhood of x∗.

These two features combine to make our evolutionarily singular strategy behave as both
an evolutionarily stable strategy (ESS) and an evolutionary branching point. On the one
hand, x∗ = 0 resembles an ESS because no mutant strains are favored to invade once the
population reaches x∗. On the other hand, x∗ = 0 resembles an evolutionary branching
point because the population will typically branch into a stable dimorhpism once x − x∗

approaches the typical spacing between mutants. Thus, in practice, the population will
always branch before it reaches the ESS, even if this is excluded under truly infinitesimal
evolution. However, unlike a traditional branching point where ∂2s∗x(y)/∂2y > 0, there is
no further selection to drive the branched phenotypes x1 and x2 away from each other once
branching has occurred. We showed in the text that this can be viewed as a generic feature
of a saturated ecosystem (where S = R) when there are no overall fitness differences between
strains.
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Resource continuum, no fitness differences

One might ask why the evolutionarily singular strategy is so peculiar in our model, given that
consumer-resource theory is often touted as an example of evolutionary branching points in
the adaptive dynamics literature [1]. The key difference is that in this existing literature, the
trait x does not usually refer to the uptake rate of a single resource, but instead is used to
parameterize an entire curve of resource uptake rates for a continuum of different resources.
To choose a simple example, one might imagine that the resources denote seeds of different
sizes, which are indexed by a continuous parameter z. The function β(z) then represents
the distribution of seed sizes supplied by the environment, which is often assumed to have a
Gaussian form

β(z) =
e−

z2

2√
2π

, (2.148)

centered at some special value z = 0. Individual uptake rates are often assumed to have a
similar Gaussian shape

α(z|x) =
e−

(z−x)2

2σ2√
2πσ2

, (2.149)

with a preferred value of z = x and a characteristic width σ. The trait x is then subject
to further evolution, rather than the individual uptake rates α(z). Substituting these func-
tions into Eq. (2.1) (with Xµ = 0), the invasion fitness for phenotype y in a monomorphic
population of phenotype x is given by

sx(y) = exp

(
1

σ2

[
x2

2

(
1 +

1

σ2

)
− y2

2

(
1− 1

σ2

)
− 2xy

σ2

])
− 1 . (2.150)

The fitness gradient ∂sx(y)/∂y vanishes when x = 0, showing that x∗ = 0 is an evolutionarily
singular strategy, as anticipated. The second derivative is given by

∂s∗x(y)

∂y2
=

1− σ2

σ4
. (2.151)

For σ > 1, x∗ is a true ESS, while for σ < 1, x∗ is a true evolutionary branching point. In
the neighborhood of x∗, selection will act to drive the phenotypes further apart from each
other after branching has occurred.

We can understand this behavior using the intuition developed in the main text. Since
there are an infinite number of resources in this model, the ecosystem is certainly not satu-
rated when S = 2. Thus, we can expect much of the selection pressure to focus on bringing
the population averaged uptake rate α(z) closer to the environmental supply rate β(z). When
the niche width σ is larger than the range of resources supplied by the environment, the best
way to do this is with a single strain centered at x = 0. Branching is therefore not favored.
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On the other hand, if σ is smaller than the range of supplied resources, then the ecosystem
as a whole can match the environmental supply rate better if there are two strains centered
at intermediate locations on the real axis (|x− y| > 0).

In this way, we see that the R = 2 resource case, far from being pathological, serves as
a basic building block that allows us to understand more complex scenarios that are often
considered in the literature. It also illustrates how the genetic architecture of the uptake rates
(in this case, whether the α(z) can evolve independently or are restricted to the Gaussian
family) can play a key role in determining the emergent dynamics of the model.

Directional selection as an intermediate asymptotic

We now return to the two-resource case above and examine how changes in the overall fitness
(X) alter the adaptive dynamics analogy. Individuals are now described by a two-dimensional
phenotype, (X,α). Generalizing our analysis above, we will now define a two-dimensional
trait space:

x1 =
α− β√
β(1− β)

, x2 = X . (2.152)

In this notation, the invasion fitness in Eq. (2.7) becomes

sx1,x2(y1, y2) = (y2 − x2) + (x1 − y1)x1 , (2.153)

whose fitness gradient is given by

∇ysx1,x2(y1, y2) = (−x1, 1) . (2.154)

As expected, the overall fitness dimension always selects for phenotypes that increase X,
regardless of the value of α. As a consequence, there are no longer any evolutionarily singular
strategies in this model, so the formal classification such points in the adaptive dynamics
framework does not apply any more. Nevertheless, we have seen that behaviors very similar
to evolutionary branching still occur in our model if we project down onto the x1 coordinate.
Furthermore, the old evolutionarily singular strategy at x∗1 = 0 continues to play a key role
in these dynamics. The major difference is that these ecologically stable polymorphisms are
now only quasi-stable under evolutionary perturbations, as our analysis in the main text
shows that further fitness evolution can drive one of the ecotypes to extinction (Fig. 2.3B).
This behavior is consistent with observations from laboratory evolution experiments [29].

Although we have motivated this behavior with the abstract notion of overall fitness, our
analysis suggests that similar behavior will generically arise in multi-dimensional phenotype
spaces whenever one of the traits (i) approaches its marginal branching point x∗i , while at
least one of the other traits (j) remains far from x∗j (Fig. 2.6). Previous work suggests
that such highly asymmetric approaches to a stationary point may be common feature of
gradient descent dynamics in high dimensional spaces [37]. This suggests that the competi-
tion between resource and strategy mutations can be viewed as a more general intermediate
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Figure 2.6: An intermediate asymptotic of adaptive dynamics. In a multidimensional
phenotype space, a population that is far from the evolutionarily singular strategy can display
the quasi-stable branching behavior analyzed in the main text if one of the trait dimensions
(x1) is close to the singular coordinate (x∗1). In the specific context of our consumer resource
model, x1 corresponds to the resource uptake strategy (α), while x2 corresponds to the overall
fitness (X).

asymptotic that describes the process of ecological diversification during the asymptotically
long times required to approach an evolutionarily singular strategy in a high dimensional
trait space.

Of course, our simplified consumer-resource model is peculiar in that it contains just a
single marginal ESS (~α = ~β) even for large R. For generic high-dimensional landscapes, in
contrast, previous work suggests that the relevant critical points will often be more akin to
saddle points [37]. In this case, we conjecture that Fig. 2.6 would describe the approach
to one such saddle point, until the positive eigenvalues combine to drive the population
away from the current critical point and toward a saddle of lower index. This hypothesis
suggests that repeated bouts of diversification and ecosystem collapse could occur even in
glassy regimes where the population never reaches a true ESS. A detailed understanding of
these dynamics remains an interesting topic for future work.
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Simulations

Individual-based simulations

The simulations in Fig. 2.1 were carried out using an individual-based, discrete generation
algorithm similar to the one employed in Refs. [28, 27] for a single resource. Each simulation
starts with a clonal population of N individuals, and in each subsequent generation, the
population undergoes a selection step followed by a mutation step. At each step, we keep
track of the number of individuals nµ with a given strategy vector αµ,i and overall fitness
Xµ.

In the selection step, each lineage nµ is assigned a new size from a Poisson distribution
with mean

λµ = C

(
R∑
i=1

αµ,ie
Xµ−Xi

)
, (2.155)

where

X i = log

[∑
µ

αµ,ie
Xµ

βi
·
(

nµ∑
ν nν

)]
, (2.156)

and C = N/
∑
λµ is a normalization constant chosen to ensure that the total population

size remains near N ±O(
√
N).

In the mutation step, the new lineage size is pruned into multiple sublineages representing
different mutations that occur on the original lineage background. With probability UX , an
individual founds a new sublineage ν is founded with fitness Xν = Xµ + s, where s is drawn
from the distribution of fitness effects ρX(s). With probability Uα, an individual founds a
new sublineage with a strategy vector ~αν drawn from the distribution ρα(~α′|~α).

The simulations in Fig. 2.1 were carried out for R = 2 with β = 0.5. We utilized a
Gaussian distribution of fitness effects, ρX(s) ∝ exp(−s2/2s2

0), for the pure fitness mutations.
The distribution of strategy mutations, ρα(α′|α), was taken to be a beta distribution with
mean α and coefficient of variation Var(α′)/E(α′)2 = 0.05, but with α′ rounded to the nearest
value of 1/5, . . . , 4/5. The initial resource strategy for the ancestral population was chosen
uniformly at random from these discrete values.

Each simulation was performed for a total of 60, 000 generations. Every 500 generations,
we simulated a round of “metagenomic sequencing”. We calculated the population frequen-
cies of all mutations present in the population, and reported these values after binomial
resampling at a depth of D = 1000.

A copy of our implementation in C++ is available on Github (https://github.com/
benjaminhgood/consumer_resource_simulations).

https://github.com/benjaminhgood/consumer_resource_simulations
https://github.com/benjaminhgood/consumer_resource_simulations
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SSWM simulations

To simulate the long-term dynamics of the binary usage model in Fig. 2.4 (Appendix 2.6), we
use an optimized simulation algorithm that is specifically designed for the strong-selection,
weak mutation (SSWM) regime. Similar to traditional SSWM algorithms in population
genetics [44], this algorithm gains an efficiency advantage by simulating only successful inva-
sion events. In our case, however, the successful invasion events can now lead to non-trivial
ecological equilibria, in addition to simple fixation.

Our simulations start with a collection of strains (Xµ, ~αµ) at time t = 0. To assess
convergence to diversification-selection balance, we performed simulations for two initial
conditions: (i) a single generalist strain with αµ,i = 1/R (ii) a collection of R specialist
strains with αµ,i = δµ,i and Xµ drawn from a Gaussian distribution with variance σ = 10−7.
Figs 2.8 and 2.9 show a comparison of these two initial conditions for R = 10. Since
the agreement is generally good, we utilized the more rapidly converging generalist initial
conditions for the main simulations in Figs 2.4 and 2.7.

After drawing the initial condition, we first calculate the ecological equilibrium, f ∗µ, for
this collection of strains using the convex optimization procedure in Appendix 2.6, using the
MOSEK software package [4]. This algorithm yields the equilibrium values of h∗i = e−Xi

and the set of ecotypes Σ∗ that survive at equilibrium. Within this subset, the equilibrium
frequencies are obtained from the solution of the linear system in Eq. (2.101), which will be
overdetermined when S < R. We obtain a solution to this system by solving the constrained
least squares problem,

~f ∗ = argmin~f

∑
i

∣∣∣∣∣∑
µ∈Σ∗

αµ,ie
Xµfµ −

βi
h∗i

∣∣∣∣∣
2

:
∑
µ∈Σ∗

fµ = 1

 , (2.157)

using the SciPy library [32].
Once the initial ecological equilibrium is obtained, the simulation proceeds via a series

of virtual timesteps, each of which represents the successful invasion of a single mutation.
In each step, we first enumerate the set of fitness and strategy mutants that are generated
from mutations on each of the current strains µ, and calculate their corresponding invasion
fitness from Eq. (2.97). We use these values to calculate the net rate of successful invasions
from each mutation type. We assume that fitness mutations confer a characteristic fitness
benefit s, so that the rate of successful fitness mutations in strain µ is given by

RX
µ = NUXf

∗
µ (es − 1) . (2.158)

The rate of successful loss-of-function mutations for resource i is given by

R−µ,i = max

{
0, NUαf

∗
µ ·
∑
j 6=i

αµ,j(h
∗
j − h∗i )

kµ − 1
· θ(αµ,i − δ)

}
, (2.159)
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where kµ = 1/
∑

i α
2
µ,i is the current number of resources utilized by strain µ, θ(z) is the

Heavisde step function, and δ is an infinitesimally small positive number so that the step
function is well-defined. The rate of successful gain-of-function mutations is given by an
analogous expression,

R+
µ,i = max

{
0, NUαf

∗
µ ·
∑
j 6=i

αµ,j(h
∗
i − h∗j)

kµ + 1
· θ(δ − αµ,i)

}
. (2.160)

Since these successful invasion events arise as a compound Poisson process, the time Test to
the next successful invasion event is exponentially distributed with rate

Rtot =
∑
µ

[
RX
µ +

∑
i

(
R+
µ,i +R−µ,i

)]
. (2.161)

Using the Poisson thinning property, the identity of the invading mutation is chosen at
random from the enumerated list with probability proportional to its corresponding R-value.
Once the identity of the invading strain is determined, we find the new ecological equilibrium
~h∗ and ~f ∗ using the constrained procedure above. By assumption, the time to reach this
new equilibrium is negligible compared to Test in the SSWM limit. The current time t is
then incremented by Test, and the process repeats itself.

We repeated this process for a total of M successful invasion steps until the ecosystem
converged to diversification-selection balance (M ∼ 100, 000). The simulations in Figs. 2.5
and 2.7-2.9 were carried out for ε = 10−3 and s = 10−7, scanning through different values of
UX/Uα.

A copy of our implementation in Python is available on Github (http://github.com/
StephenMartis/consumer-resource-many-resources).

http://github.com/StephenMartis/consumer-resource-many-resources
http://github.com/StephenMartis/consumer-resource-many-resources
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Figure 2.7: Ecological structure at diversification-selection balance in a binary
usage model. (Top) For each of the simulated populations in Fig. 2.4, the fraction of
the population occupied by the generalist ecotype, αµ,i = 1/R. (Bottom) For the same
populations, the frequency-weighted average of kµ = 1/

∑
i αµ,i (a measure of the number

of utilized resources) for the remaining non-generalist ecotypes. A value of R − 〈kµ〉 = 1
indicates that the rest of the population consists of single loss-of-function mutants that
descend from the generalist background.
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Figure 2.8: Approach to diversification-selection balance from different initial con-
ditions. An analogous version of Fig. 2.4 comparing specialist and generalist initial condi-
tions for R = 10.
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Figure 2.9: Long-term ecological structure from different initial conditions. An
analogous version of Fig. 2.7 comparing specialist and generalist initial conditions forR = 10.
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Chapter 3

Quenched disorder and directional
selection lead to punctuated equilibrium
in the competition for substitutable
resources

Preface
We start from the results from the previous chapter and focus specifically on the high-
dimensional limit, where types are competing for many resources. In particular, let’s focus
on the emergence of a generalist ‘steady-state’ and the diversification-selection balance. This
is not necessarily the case for different choices of genetic architecture, although we only
showed this for a peculiar special case in which compound mutational events were allowed.
In the current chapter, I seek to explore a class of plausible alternate genetic architectures by
appealing to an ensemble approach. In this approach I define a class of disordered models,
randomly drawn from a distribution and make statements at the level of the distribution,
rather than any particular instantiation. I achieve this by adding a small perturbation to
the simple ‘binary usage’ genetic architecture: that resource strategies have intrinsic random
fitness effects. This ends up strongly affecting the eco-evolutionary dynamics, resulting in
a type of ‘phase’ behavior. In addition, I recast the Lyapunov function of the consumer-
resource model into a form that allows for a simpler interpretation of the eco-evolutionary
process.

The remainder of this chapter will be submitted for publication in an edited form.
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3.1 Abstract
Quenched disorder in the form of rugged fitness landscapes can strongly impact the mode
and tempo of evolutionary dynamics, as well as the observed distribution of genotypes in a
population. However, in natural and laboratory settings, evolution and complex ecological
dynamics can play out in tandem. When this is the case, populations can split into coexist-
ing ‘ecotypes’ with different ecological characteristics and varying degrees of overlap between
their niches. It is much less clear how ruggedness might impact this eco-evolutionary sce-
nario or affect distributions of ecotypes and their characteristics. To address this, we extend
a simple model of eco-evolutionary dynamics based on the competition for substitutable re-
sources by incorporating quenched disorder. We have previously demonstrated that without
disorder, fit generalists tend to dominate the population at long times [11]. However, weak
disorder is sufficient to destabilize the generalist fixed point, giving rise to an extended regime
in which the dynamics can be summarized by a cycle consisting of short bursts of diversifica-
tion and long periods spent waiting for fitness mutations. Furthermore, in this ‘punctuated
equilibrium’ phase, the composition of ecotype strategies continually changes. We postulate
that at long times the dynamics are ergodic in metabolic strategy space. Finally, we suggest
how these model dynamics might be relevant in real ecological communities.

3.2 Introduction
In natural settings, microbes often exist in large, diverse communities, competing for a
common pool of resources. As they compete and grow, they are subject to evolutionary
forces such as selection, genetic drift and recombination on timescales that are observable.
Studies have demonstrated that even in controlled laboratory experiments initialized with
clonal populations, random mutations can lead to stable diversification into coexisting types
[28, 3]. After diversification, there is continued adaptation within diversified lineages [10],
which can perturb the equilibria at which coexistence is maintained [30]. Therefore, it seems
that evolution can drive fluctuations in microbial ecosystems, potentially perturbing their
stability and affecting their composition.

Given this observation, coupled with the principle of competitive exclusion and the
stochastic effects inherent to evolutionary processes, it might be surprising then that ex-
tensive genomic diversity, even at the sub-species level, persists in natural microbial systems
[20]. One might expect that an exceptionally fit generalist type would evolve by chance and
sweep out any diversity within a set of closely related lineages, but this seems not to be
the case in key natural examples [14, 1, 25]. The persistence of fine-scale diversity presents
an additional theoretical challenge – how do seemingly discrete clades persist over tens of
millions of generations in the face of adaptation? Why do we not instead observe more of a
continuum of recently diverged types?

Much theoretical work has attempted to model persistent diversity by focusing primarily
on ecological considerations. Models based on the classical consumer-resource and Lotka-
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Volterra frameworks show that diversity can persist in the many-ecotype limit, given con-
straints on the distribution of intertype interactions [5], spatial structure [27, 2], time depen-
dent environmental fluctuations [13], the absence of fitness differences [29], as well as other
more particular mechanisms (e.g. so-called ‘Kill-the-winner’ dynamics) [32]. Crucially, many
of these coexistence mechanisms neglect that continued evolution, in addition to assembly
and competition, can play a major role in shaping observed microbial community structure.
Furthermore, since these models do not incorporate evolution or the notion of inheritance,
they are intrinsically unable to comment on the generation of the long-lived microdiversity
that has been observed in natural systems.

In recent work [11], we explicitly modeled the eco-evolutionary process by allowing for
evolutionary dynamics to occur on the background of MacArthur’s consumer-resource model
with linear metabolic trade-offs [18, 29, 33]. We split evolutionary change into two compo-
nents: 1) changes in metabolic strategies (diversity-generating mutations) 2) changes in
fitness (selective mutations). We showed that in the context of this model, the genera-
tion of diversity and the selective forces eliminating it can balance each other, leading to
a non-equilibrium steady state in which the relative rate of directional selection controls
the number of co-existing species at long times [11]. However, in the long time limit, the
community can be extremely simple, even in regimes where the rate of strategy mutations
is very high. The final stable community consists of a dominant generalist type which seeds
closely related types that only ever achieve low frequencies. Because this state is stable to
the evolutionary dynamics (see Supplement), additional structure like spatially separated
demes cannot readily facilitate the coexistence of ecotypes with diverged strategies at long
times.

Key to this behavior is the linear budget trade-off we considered, which has been consid-
ered in other contexts [29, 33]. Trade-offs between phenotypic traits have been extensively
studied in the ecology literature and are expected to play a major part in ecosystem com-
position and stability [7, 35]. Recent work has identified the persistence of variants with
trade-offs in closely related strains [4]. Modeling work has tried to understand the under-
lying effect of metabolism on ecological structure [21] and the effect of nonlinear tradeoffs
on coexistence and the stability of generalists [26, 17]. A recent simulation study looked
at evolution with nonlinear tradeoffs in a consumer resource model on 3 resources [6] and
observed various limiting behaviors depending on the shape of the constraint surface. Cru-
cially, the trade-offs considered were smooth, and directional selection was not considered.
In the evolution literature, rugged fitness landscapes have also been extensively studied in
purely competitive dynamics without any sort of additional ecological structure [22, 23].
However, it remains an open question how such ruggedness might affect the dynamics of
systems evolving on a high dimensional phenotypic space.

Here, we propose a relatively simple extension of the evolving consumer-resource model
in which we incorporate a ‘rugged’ (or disordered) metabolic budget. We show that even
weak disorder leads to a transition in which the generalist-dominated diversification-selection
balance phase is destabilized. The generalist state gives way to a ‘punctuated equilibrium’
phase in which ecotypes are not localized in strategy space over long times. In purely
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competitive models of recombinant evolution, it has been demonstrated that ruggedness
can lead to clustering of alleles into discrete clones [22]. In our eco-evolutionary model,
ruggedness can lead to long-lived clustering of resource strategies that bears qualitative
similarity to the ‘genomic backbones’ observed in natural populations [14]. Finally, we show
that in the punctuated equilibrium phase, since there is no single attracting state, a simple
metapopulation inevitably exceeds the bounds on diversity set by competitive exclusion.

3.3 Consumer resource model with quenched disorder
We construct a model of S ecotypes competing for R substitutable resources (e.g. different
carbon sources) in a well-mixed ‘chemostat.’ Nutrients are supplied to the chemostat at
normalized rates βi, such that

∑
i βi = 1. For convenience, we have βi ∼ 1/R + εi with

εi ∼ N (0, ε). Generally we work in the ‘near uniform’ supply limit where ε� 1/R, although
many of our qualitative observations will hold for less uniform supply vectors.

Each ecotype’s phenotype is parametrized by a metabolic strategy vector αµ,i and a
scalar ‘energy budget’ eXµ . The strategy vector is normalized

∑
i αµ,i = 1, lending to its

interpretation as a vector of allocations in a budget. The continuous space of possible
strategies can be represented as an R-dimensional simplex due to this constraint. The total
energy allocation of the ecotype, the ecotype’s capacity to convert resources into biomass,
can be interpreted as a type of scalar fitness. From here on, we will refer to it as such. A
separation of timescales between the rate of consumption of nutrients and the growth rate of
the species is assumed so that the resources are held at steady state. See SI for more details
about the model and some natural interpretations.

With these considerations in place, the population dynamics of the species’ frequencies,
fµ, are given by the following set of S differential equations:

dfµ
dt

=

(
R∑
i=1

βiαµ,ie
Xµ∑

ν αν,ie
Xνfν

− 1

)
fµ (3.1)

These population dynamics possess a Lyapunov function, as noted in many previous studies
[33, 11], which is maximized along a valid dynamical trajectory. Importantly, this steady
state can be found numerically using standard techniques from convex optimization. The
equilibrium value of the Lyapunov function has a useful interpretation:

H(~f ∗) = X
∗︸︷︷︸

directional
selection

−
R∑
i=1

βi log
βi
Di︸ ︷︷ ︸

ecology

where we have defined the equilibrium average fitness:

X
∗ ≡ log

〈
eX
〉

= log

(∑
ν

eXνf ∗ν

)



CHAPTER 3. PUNCTUATED EQUILIBRIUM IN RESOURCE COMPETITION 98

and the normalized demand:
Di ≡

∑
ν

αν,ie
Xν−X

∗
f ∗ν

So the Lyapunov function seeks to maximize the mean fitness, while matching the resource
supply distribution with the appropriately normalized demand distribution. This quantity
H(~f ∗) will increase along any incremental evolutionary trajectory. We discuss this in more
detail in the Supplementary Information.

Our rugged consumer resource model only slightly alters the model structure by dictating
that the fitness can be split into an additive component and a disordered component that
depends on the strategy vector:

Xµ = Xadditive
µ +Xdisorder

µ (~αµ)

The biological motivation for this term is that different ecotypes or species might pay different
fitness costs or benefits by arranging their metabolic strategy in specific ways. This can be
interpreted as a type of epistasis, or non-additive allelic contributions to a phenotype. In
this case, the strategy components non-additively combine to contribute to the total budget
of a strain. For an assembly process, this has been reported not to significantly change the
steady state properties of the system (as described in [33, 29]) – however it will markedly
change the evolutionary dynamics. In the SI, we discuss the consequences of this sort of
quenched disorder for purely ecological processes like community assembly, but for the rest
of the main text, we will be concerned with the setting in which ecotypes are allowed to
evolve.

In defining the disordered term, we primarily work with a ‘pairwise’ model in which
Xdisorder
µ is a function of the pairwise presence/absence of components of the strategy vector:

Xdisorder
µ =

R∑
i,j=1

Jij(αµ,i;αµ,j)

This parametrization is commonly used in the population genetics literature [23], is com-
putationally simple to implement, and is sufficient to possess qualitative properties (e.g. a
multi-peaked landscape) we are interested in presently. However, the choice of the particular
disorder model should not change the qualitative aspects of our work. The pairwise model
and alternatives are discussed in the Supplementary Information.

3.4 Evolution in the binary resource mutational
architecture

In order to model the evolutionary process, we have to choose a genetic architecture. This
choice is not particularly well-constrained by experimental data, so we opt for a choice that is
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maximally tractable while still reasonably well-motivated. Specifically, we allow for constant
improvements in fitness (e.g. the ‘staircase model’):

Xµ → Xµ + s

and the gain and loss of metabolic function (e.g. ‘bitflip’ mutations) accompanied by disorder
effects:

~αµ → ~α′µ =
~αµ ± ||~αµ||22êi

1± ||~αµ||22
Xµ → Xµ −Xdisorder(αµ) +Xdisorder(α′µ)

where êi is the ith unit vector. Note that ||~αµ||2 is the L2 norm, while the strategy vector
is normalized according to the L1 norm. This form of the strategy mutation is such that
normalization is maintained:

R∑
i=1

αµ,i =
R∑
i=1

α′µ,i = 1

In this picture, allowed strategies fall on facets of the R-simplex.
This partition between two mutational ‘types’ captures the notion that only a fraction

of a species’ genome contributes to its metabolism, while many mutational loci (including
synonymous mutations and ones occurring in non-coding regions [31]) can have significant
fitness effects. The staircase mutational model is assumed for its relative simplicity, and
for the fact that the distribution of fitness effects can be characterized by a single typical
effect size in many simple population genetic models of directional selection [9]. The binary
resource architecture serves as a minimal model of gain and loss of function of different
metabolic pathways. Microbial genomes are typically very dynamic, mutating rapidly and
exchanging genetic material through horizontal gene transfer [20, 8], so we expect this to be
a good ‘zeroth order’ approximation.

We work in the strong selection, weak mutation regime, neglecting concurrent mutations
and clonal interference, so that mutations arrive at rates proportional to the frequency of the
background they appear on and to their invasion fitness. The invasion fitness is the growth
rate of a mutant when infinitesimally rare. The invasion fitness of a mutant on background
µ can be computed as a function of the existing population equilibrium:

Sinv =
R∑
i=1

eX
additive
µ +Xdisorder

mut αmut,i
βi∑

ν e
Xνανif ∗ν

− 1

When this quantity is positive, the mutant can invade, when it is zero or negative, in our
infinite population size model, the mutant cannot invade. However, in finite populations and
populations undergoing rapid adaptation (as is the case in many microbial populations), such
deleterious mutations might be relevant mutations that can reach substantial fractions of the
population. Understanding the impact of such mutations is an interesting avenue for future
work.
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We studied the binary resource model with a ‘flat’ fitness landscape (Xdisorder = 0) in
detail in previous work [11]. At long times, this model was found to reach a non-equilibrium
steady state in which a highly fit generalist type, which can consume every resource (~α =
~1/R), dominates the population. This type, in turn seeds single loss of function variants
which persist at low frequencies of order ε for time scales of order ∼ ε/UXs

2 (see Figure
3.1). These knockouts are wiped out when the generalist acquires sufficiently many fitness
mutations, which is increasingly likely in a higher dimensional model since the knockout type
frequencies become negligible. However, this picture qualitatively changes with the addition
of a disordered fitness component.

Figure 3.1: Generalist type with two knockout types in the competition for three resources.
The generalist is the type located at the center of the strategy simplex. With disordered
fitness, some fraction of knockouts will have higher fitness than the generalist type and so
when they are competing, they will take up a disproportionate share of the total population.
With high enough knockout fitness, subsequent mutations are much more likely to occur on
these backgrounds, leading to the inevitable extinction of the generalist.

3.5 Results

Fragile generalists in the large R limit

We start with with a single generalist strain on an ecosystem with R resources and consider
its stability to the mutational process. We simplify our analysis in this section, restricting
genotype space to the generalist and single loss-of-function (or knockout) variants (KOVs)
with randomly drawn fitness. Stability results derived from this single KOV model can be
though of as rough bounds for the full binary resource model in the sense that if the generalist
is unstable in the single KOV model, it will also be unstable in the full model.
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In the simplified scenario, KOVs with positive invasion fitness are able to invade. Without
ruggedness, these variants only persist at low frequencies of order fk ∼ ε, while the generalist
remains at frequency fg ∼ 1. Therefore any subsequent fitness mutations are more likely
to occur on the generalist background, which in turn drives the knockouts to extinction –
the system is ‘localized’ to the generalist state. Strategy evolution halts when R− 1 single
KO types have invaded since any subsequent mutations have neutral invasion fitness (see
Supplement or [11] for details).

However, with the inclusion of disorder, a KOV can be accompanied by a fitness gain,
which is potentially substantial. In turn, this fitness gain can result in a much larger fk
(see Figure 3.1 for schematic). The generalist can tolerate this decline in frequency, so long
as the fitness differences are not large enough that subsequent mutations are more likely to
happen on KOV backgrounds. So there is a critical strength of disorder, σc, above which a
runaway effect leads to the eventual extinction of the generalist with high probability. We
calculate σc for two edge cases, UX � Uα and UX � Uα.

For UX � Uα, we can derive an upper bound for σc relatively simply. In this scenario, at
time t = 0 a strategy mutation seeds a single knockout. We denote the generalist frequency
fg and the knockout frequency fk = 1 − fg. In the disordered model, there is an intrinsic
fitness difference between the generalist and the knockout when it is seeded, which we denote
∆X(0) = Xg(0)−Xk(0). Since there is a fitness differential already, the knockout can have
a (substantially) higher frequency than it would in the neutral model.

After the knockout is seeded there will be a long time spent waiting for the next strategy
mutation. During this time, fitness mutations will continue to accrue on the two backgrounds
and shift the fitness differential, ∆X(t) = Xg(t) − Xk(t), which will in turn perturb the
equilibrium frequencies. The critical point is the fitness difference required so that a single
knockout has a higher frequency than a generalist at t = 0. In this case subsequent mutations
will accrue on the knockout background, eventually driving the generalist to extinction.

We can calculate the critical value by starting with Eq. 3.1 for the two types. Setting the
time derivative of Eq. 3.1 to zero, we can solve for the generalist frequency at equilibrium, fg.
This is a function of difference between the generalist and knockout fitness, ∆X = Xg−XKO,
and the supply corresponding to the knocked out resource, βk:

fg =
βk

1− R−1
R e∆X

(3.2)

We set fg = 1/2 to get a condition for the critical knockout fitness a generalist can tolerate:

Xc
k = log

[ R− 1

(1− 2βk)R

]
(3.3)

In the many resource setting (R � 1), the highest fitness single knockouts will be the ones
most likely to invade. Formally in the limit R, since R−1

R → 1 and βk → 0, even a small
positive fitness effect is sufficient for a single knockout to have a higher frequency than the
generalist.
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When the disordered fitness is drawn from a distribution, the scaling of this critical fitness
with the number of resources is given by the appropriate extremal criterion. For disordered
fitness drawn from a Gaussian distribution with scale σ, we have the following scaling for
the critical strength of disorder:

σc .
log
[
R−1

(1−2βi)R

]
√

2 logR ∼ 1

R√logR (3.4)

which matches numerical results in Fig. 3.2. Importantly since σc scales inversely with the
number of resources, generalists competing for many resources can be particularly fragile
to fitness differences. However, it should be emphasized that σc is potentially substantially
lower in the full model that allows for multiple knockouts (since many of these will also have
fitness advantages).

Next, we consider the opposite dynamical limit, UX � Uα. In this case, strategy muta-
tions accrue quickly while fitness mutations accrue slowly. It is difficult to exactly compute
σc in this case, but once again, we can compute an upper bound. Given a realization of
disorder, we can ask what the frequency of the generalist is in the presence of all single
knockouts with positive invasion fitness. We can also calculate this equilibrium exactly for
arbitrary knockout fitness. We arrive at the phenomenological scaling ansatz:

σc ∼ R−2

which agrees very well with numerics (Fig. 3.2).
Importantly we can notice that, in the limit of infinite R, both of these upper bounds

scale down to zero so that the generalist state is extremely fragile. However, in the limit of
large but finite R, we see that a large gap opens between the critical values. These points
must connect with each other so that there must be a critical line across the phase diagram
of the disordered model (see dashed line Fig. 3.2). However, if we turn from this simplified
model to the full binary resource architecture where multiple knockouts are allowed, σc can
be much lower than the upper bound of the single knockout model (see red line Fig. 3.2).
This is due to the additional entropy due to double, triple, and higher order KOVs.

Pure strategy evolution results in degenerate ‘shielded’ equilibria

Whereas previously we discussed the stability of the single generalist type on the boundaries
of the phase diagram, we now turn the question of what ecology might emerge after the
generalist goes extinct. We start in the σ > σc region of the phase diagram, so that generalists
are assured to go extinct. For a given realization of random disorder and the environmental
supply ~β, we can observe different dynamical behaviors in the different limits of the phase
diagram.

We start by examining the UX � Uα limit. Above the critical disorder line, we are also
above the variation in resource supply ε. We term this the weak ecology regime. Since σ > ε,
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Figure 3.2: A Sketch of the eco-evolutionary phase diagram. The red region indicates the
phase in which the ecosystem is generalist dominated. For sufficiently high σ and low UX/Uα,
this gives way to a dynamic ‘punctuated equilibrium’ phase which we discuss later in the text.
We can estimate the boundary between the generalist phase and the punctuated equilibrium
phase by considering a simplified model in which there is competition only between the
generalist and single knockouts (the grey dashed line). However, the phase boundary in the
full model (the red line) can be substantially lower as seen in simulations. B The scaling
of the generalist frequency with all single knockouts gives the asymptotic limit of the grey
dashed line for slow fitness evolution (UX/Uα � 1). C The scaling of the generalist frequency
with the most fit single knockout gives the asymptotic limit of the grey dashed line for fast
fitness evolution (UX/Uα � 1).
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fitness differences will swamp any ecological differences so that the evolutionary process
will favor the mean fitness component of the Lyapunov function, whereas the ecological
component will be subleading in the invasion fitness. So the dynamics will select for the
highest fitness types that span the resource space. This results an effective niche partitioning
of resource space, whereby strains with relatively high fitness will fix on partially disjoint
sets of resources. This is analogous to a fitness peak in an adaptive walk on a rugged
landscape [15], except that multiple strains will coexist at the peak. Because the resources
are unevenly partitioned, continued fitness mutation accrues differentially across the different
strains. Eventually fitness differences can get sufficiently large that one niche invades the
others, but this may take exponentially many mutations or requires unrealistically large
fitness effect sizes and cannot readily be accessed with simulations.

In the other limit, for sufficiently small UX , we see that strategy evolution proceeds
and eventually halts while the ecosystem waits for the next fitness mutation. We call this
static ecosystem a strategy uninvadable state (SUS), in which no local strategy mutants
(e.g. single gain or loss-of-function variants) have a positive invasion fitness. With a fixed
disorder realization, if we run the dynamics many times, we see that different replicas can
reach different SUSs. This type of ergodicity breaking is characteristic of dynamics on rugged
landscapes and corresponds to different replicas getting trapped in different local optima of
the eco-evolutionary process. See Fig. 3.3 for an illustration of this phenomenon.

We also see that for increasing σ, the fractional filling of a SUS, S/R where S is the
number of strains at equilibrium, decays from 1 to approximately 2/R (since the generalist
cannot take over for UX = 0, ε 6= 0). While it is difficult to make analytical progress on
characterizing general properties of a SUS, we can still make some progress with simulations
to understand their qualitative properties. Specifically, we can characterize a SUS by looking
at the statistics of the equilibrium resource availabilities, defined as the ratio between the
supply and demand of resources:

A∗i =
βi∑

ν αν,ie
Xνf ∗ν

We see that this grows approximately linearly with the strength of disorder, consistent with
a ‘shielded’ state as defined in [33]. Such shielded states are robust to small perturbations
in the supply ~β by dynamically adjusting to minimize ecological selection pressures.

Fitness evolution can create opportunity for transitions between
equilibria

Now that we have established a qualitative sketch of the phase diagram and the behavior at
the boundaries, we can turn to analyzing the properties of the dynamical phase where the
fitness mutation rate becomes comparable to the strategy mutation rate, UX/Uα . 1. We
use ratio of the fitness mutation rate and the strategy mutation rate, UX/Uα, as a control
parameter. We also fix the rate of overall mutations so that N total mutations (of both
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Figure 3.3: A Three independent time series of the number of species initialized from the
generalist state, fixed realization of disorder, with σ = 10−6, s = 10−6, ε = 10−3. Only
bitflip strategy mutations are allowed. The number of species increases as loss of function
mutants invade, and the generalist is lost rapidly. Eventually evolution halts and no more
strategy mutants can invade. Bottom panel shows details of the final SUS state from the blue
trajectory. Species cluster, but are not merely related by single knockouts within clusters.
B Variance in the resource availabilities is grows linearly with the strength of disorder until
it exceeds the standard deviation in the resource supply ε. The dashed line is a guide to the
eye, StdDev(A) ∼ σ. C Fractional filling of the final SUS state, defined as the number of
ecotypes divided by the number of resources. Fits are logistic functions. Simulation curves
are averaged over ten realizations. The critical disorder strength σc (at which the generalist
goes extinct) falls far to the left of the range of the plot.

fitness and strategy type) occur in a fixed time Ttot. The mutations do not necessarily arrive
at evenly spaced intervals since the invasion fitnesses of the different mutational types are
dynamic quantities.

We can understand the dynamics in the regime by analyzing the behavior of the Lyapunov
function, H. We see that for a wide range of UX/Uα that H grows approximately linearly in
time when averaged over many mutations. This can be understood by considering limiting
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Figure 3.4: Long-time dynamics of the Lyapunov function. A. The Lyapunov function
evolves approximately linearly at long times. Simulations are for σ = 10−6. B. The velocity
of Lyapunov function grows with UX/Uα from 0 to UXs (which the y-axis of panel B has
been normalized by). A fit with a generalized sigmoid function is provided to guide the eye
and to indicate that the decay to the limiting values can be quite slow (e.g. much slower
than logistic).

cases. In the limit Uα = 0, this can be undrestood as mutations continually accruing on a
single generalist background – this is population genetics picture of sequential adaptation,
with a maximal slope given by UXs. In the limit of UX = 0, the system reaches an SUS
and evolution halts, so that the slope goes to zero. That the Lyapunov dynamics are also
approximately linear for intermediate values is akin to the diversification-selection balance
described in [11].

However, this is not the complete story since the short time dynamics can be quite differ-
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ent. These short time dynamics end up being crucial to the character of the ecosystem and
its composition, leading to distinct ‘phases,’ which we will describe. In the limit UX/Uα � 1,
we have established that the ecosystem is pinned to the generalist state. We have also es-
tablished that in the regime UX/Uα � 1, there is sufficiently rapid strategy evolution that
the ecosystem will reach an SUS. Upon reaching the SUS, evolution will effectively halt until
a fitness mutation arrives. In this sense, evolution is fitness mutation-limited since there
are no local ecological opportunities available. However, when a fitness mutation eventually
arrives, this will increase the mean fitness, but at the cost of slightly misaligning the supply
and demand distributions. This will start to create new opportunity for strategy mutations.
Eventually, sufficiently many fitness mutations will accrue on different strategy backgrounds
that a new strategy is able to invade.

These dynamics can be tracked by considering the ecological component of the Lyapunov
function alone:

DKL(β||D) ≡
∑
i

βi log

(
βi
Di

)
The form of this term is the Kullback-Leibler divergence between the supply of resources
~β and the appropriately normalized equilibrium demand, ~D. By the form of the Lyapunov
function, the eco-evolutionary process seeks to minimize this divergence while also maximiz-
ing the mean fitness. When fitness mutations are abundant, the optimal way to do this is
to have mutations accrue on a single generalist background. When fitness mutations are
rare, ecological invasions occur in between the arrival of fitness mutations. However, even
if fitness mutations occur slowly, they are crucial for allowing transitions between SUSs.
In this sense the ecosystem will cycle through SUSs in a way that is analogous to Gould’s
qualitative picture of ‘punctuated equilibrium’ [12]. The dynamics of the Lyapunov function
in turn, look ‘stuttered,’ as opposed to the generalist phase where H increases linearly even
on shorter times. We plot the short term dynamics of H in the generalist phase and in the
punctuated equilibrium phase in Fig. 3.5.

We can identify this punctuated equilibrium phase by appealing to the time-averaged dis-
tribution of strategies. At each time point, we store the frequency distribution of strategies.
We then time average this distribution over N � 1 mutational arrivals:

ρTA(~α) ≡ 1

Ttot

N∑
i=1

tifi(~α)

where ti is the time between mutation i and mutation i+1 and where fi(~α) is the frequency of
ecotype strategy ~α after the introduction of mutation i. This time averaged distribution gives
the probability that one will observe a given species when sampling the ecosystem over long
times. In the generalist phase, the ecosystem will be trapped in or near a single state, and so
this distribution will be sharply peaked. However, in the punctuated equilibrium phase, the
time-averaged distribution will smear out over all possible strategies as the system travels
between SUSs.
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Figure 3.5: Short time dynamics of the Lyapunov function. A. Lyapunov function
grows approximately linearly over short times for UX/Uα � 1 as mutations primarily accure
on a generalist background. B. However, for UX/Uα � 1, the Lyapunov function increases
in a more ‘stuttered’ manner since ecological mutations dominate. On longer timescales, H
evolves approximately linearly for both cases.

We define an order parameter to distinguish between these two phases which we call the
‘effective number of species:’

Neff = exp

{
−
∑
~α

ρTA(~α) ln ρTA(~α)

}

Intuitively, this measure tells us the number of uniformly distributed species that would
match the entropy of the time-averaged distribution. For a sharply peaked distribution, this
number is close to one and for a broader distribution it can be significantly higher (up to
2R). This order parameter is plotted for different mutation rates and strengths of disorder
in the phase diagram in Fig. 3.6. In addition, we see that the qualitative dynamics of the
ecological divergence, DKL(β||D), strongly differs between the generalist and punctuated
equilibrium phases.

3.6 Discussion
We have mapped out the dynamical phase diagram of an evolving consumer-resource model
with disordered fitness. Leveraging the structure of the model, and specifically the Lya-
punov function, we are able to identify a fitness-dominated generalist phase and an ecology-
dominated punctuated equilibrium phase. In previous work, we had identified the underlying
model structure as a fairly generic limit of resource competition [11]. As such, we expect
our qualitative conclusions should be relevant for this broader class of models. In addition,
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Figure 3.6: Eco-evolutionary ‘phases.’ A. Phase diagram plotting the effective number
of species (the exponential of the time-averaged entropy) as a function of the strength of
disorder, σ, and the rescaled fitness mutation rate. Note that the transition extends down
to extremely low σ. Also note that as σ approaches the scale of the typical niche size the
transition disappears. This is a result ofO(1) types having extremely high fitness that cannot
be destabilized on simulation timescales. Individual simulations were run for 107 mutations.
Points in the phase diagram were averaged over 20 simulations each. B Ecological divergence
in the generalist phase is pinned near its maximal value, which is the divergence of a single
generalist type maxDKL =

∑
i βi logRβi (which we refer to as a ‘generalist ecology’). C

In the punctuated equilibrium phase, the ecological divergence stays much closer to zero
(which is a ‘saturated ecology’) for long stretches of time, with sharp, stuttered excursions
away due to rare fitness mutations. Note the separation of scales between the values of the
divergence in B and C. The lower values in C approach the bounds of numerical tolerance
in our simulations (10−10).

in real systems, the ability to perform many different complex tasks might result in effec-
tive quenched disorder like that which we have proposed here (e.g. trade-off or constraint
surfaces might have some complicated rugged functional form). We have demonstrated that
such disorder becomes a more and more relevant factor as the dimension of resource space
grows.

In particular, since the model might describe ecosystems on intermediate to longer
timescales, we will speculate about the relation between our results and long-term labo-
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ratory evolution experiments. In laboratory evolution experiments, there is rapid fitness
evolution for several thousand generations and approximate clonality is maintained. How-
ever, it has been demonstrated that the rate of fitness adaptation can slow down significantly
over longer time horizons [37]. As this occurs, diversification is readily observed [10]. In the
context of our model, it is expected that an initially clonal population would diversify when
substitutable resources are available, especially as the rate of fitness adaptation decreases.
Quantitatively, the approximate timescale of this diversification should give an estimate of
the phenomenological rate parameter Uα. However, this is merely suggestive and would
require extensive experimental work to say anything conclusive.

Our model’s domain of applicability is not simply limited to microbial populations com-
peting for resources. For instance this work might be relevant in modeling the evolution of
the adaptive immune response over long times. In the adaptive immune system, there is
a co-evolutionary process between host immune cells and the pathogens that infect those
hosts [24]. It is desirable for the host to obtain ‘generalist’ or broadly neutralizing antibod-
ies (BNAbs), which are able to bind to many different antigens thus allowing for broad and
robust immunity [36]. Understanding the stability of generalists is extremely relevant for
understanding the likelihood that BNAbs both arise and persist. Since static consumer re-
source models have been extensively been used to model the statistical properties of immune
repertoires [19], this seems like a natural space to apply insights from our dynamical model.

We foresee many potential generalizations of our model to include more relevant ecological
and evolutionary processes. For instance, a dynamical model of metabolic rewiring, in which
the topology of the disordered landscape can itself evolve, or full explorations of clonal
interference regimes are interesting avenues for future work. A full exploration of how the
model generalizes to spatially structured environments or to environments with fluctuating
resources would also be interesting, especially in light of how the additional timescales would
interfere with or amplify the punctuated equilibrium phase.
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3.7 Supporting Information (SI)

Consumer resource model

There are a few independent ways to ‘derive’ the consumer resource model equations (Eq (1)
in the main text). We reproduce two of these arguments here for the sake of completeness
(from [33, 29] and also [11]). In both of these derivations, we imagine that we are concerned
with a chemostat with R substitutable resources. These resources may be different sugars or
other nutrients providing a single limiting element. We assume that there is outflow from
the chemostat at rate δ. We measure time in units of δ so that we can, WLOG, set δ = 1.

Phenomenological derivation: supply and demand

Without any nutrients or growth, a population of type µ is lost at rate δ = 1. In order to be
maintained in the chemostat, this type must consume sufficient nutrients to overcome this
loss rate. In the presence of nutrients, the growth of type µ can be summarized as:

dnµ
dt

=

(
R∑
i=1

EµiAi − 1

)
nµ

We refer to Eµi as the (unnormalized) strategy vector for type µ. This can be interpreted,
loosely speaking, as the amount of “effort" type µ puts in to obtaining resource i. The Ai is
defined as the “availability" of resource i given the current composition of the ecosystem.

There are certain physically motivated properties that Ai ought to have which we can
use to constrain its functional form. We can consider the total demand for resource i,

Di =
S∑
ν=1

Eνinν

We also consider the supply rate of resource i (in units of biomass/time), which is assumed
to be constant over time, Si. Two reasonable assumptions are that: 1) as the supply of a
resource increases, its availability should increase 2) as demand for a resource increases, its
availability should decrease. A simple function that encapsulates this behavior is simply the
ratio between the two:

Ai =
Si
Di

=
Si∑

ν Eνinν

so that the dynamics for the strains is:

dnµ
dt

=

(
R∑
i=1

EµiSi∑
ν Eνinν

− 1

)
nµ

In turn, we can then separate the “effort" into two components:

Eµi ≡ eXµαµi
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a magnitude, eXµ , and a normalized ‘strategy vector,’ αµi, where:∑
i

αµi = 1

Furthermore, we can readily demonstrate that the total population size in the chemostat is
constant at steady state and given by

∑
i Si. Normalizing by the total population size and

passing to equations for the frequencies of different strains, we recover our equation from the
main text:

dfµ
dt

=

(
R∑
i=1

eXµαµiβi∑
ν e

Xνανifν
− 1

)
fµ

‘Microscopic’ derivation: quasi-steady state resource dynamics

We can also recover this phenomenological derivation from a more microscopic consideration
of the dynamical equations describing resources and strains in a chemostat. We start with
the equations for strains:

dnµ
dt

= (gµ(~c)− 1)nµ

which include a growth rate, gµ, that depends on the resource concentrations, ~c = (c1, c2, ..., cR).
In addition we assume that the growth rate of strain µ is given by the weighted sum:

gµ(~c) =
∑
i

Eµiri(ci)

where ri(ci) is the uptake rate of resource i and Eµi is an enzyme or energy budget by which
strain µ commits different portions of its budget to different resource uptake pathways. The
uptake rate is assumed to be fixed across types by appealing to qualitative conservation of
pathways across closely related types and can take any reasonable functional form.

In addition, we define the dynamics of the resources:

dci
dt

= Si −
(∑

ν

kνiEνinν

)
ri(ci)

where kνi is a conversion factor between biomass produced and nutrients taken up. For
simplicity we assume that kνi = ki, so that nutrients are converted into biomass at the same
fraction across strains. We have also assumed that the vast majority of nutrients supplied
are consumed (so the outflow rate is negligible). If consumption is sufficiently fast then,
measured on the outflow timescale, the nutrient concentration is approximately constant
(dci/dt ≈ 0) so that:

ri(ci) ≈
Si/ki∑
ν Eνinν
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This gives us:
dnµ
dt

=

(
R∑
i=1

EµiSi/ki∑
ν Eνinν

− 1

)
nµ

Therefore from these microscopic considerations, we get the same dynamical equations for
the strain frequencies (except with renormalized supply vector Si/ki).

Lyapunov function

As described in other contexts, these consumer-resource dynamics possess a Lyapunov func-
tion. This function can be written in the form:

H(~f) = 1−
∑
ν

fν −
∑
i

βi log

(
βi∑

ν e
Xνανifν

)
which differs slightly from the versions presented in [33, 11] by the added constant. The 1
makes the role of the terms in H more apparent, but does not change the properties of the
function.

This function is convex and bounded from above and increases over any trajectory of
the dynamics and as such indicates that there is a unique equilibrium. Any valid trajectory
will maximize this function subject to the constraints that

∑
ν fν = 1 and fν ≥ 0. Looking

at the form of the Lyapunov function we can also understand the qualitative character of
the dynamics. The first two terms can be interpreted as enforcing a constraint that the
frequencies are normalized and always simply sum to zero at equilibrium. The third term
encodes the population mean fitness and the Kullback-Leibler divergence between the supply
vector and the ‘normalized’ demand (which we will define shortly).

It is illustrative to consider the optimum of H for a generalist type with a fitness Xg.
The value of the Lyapunov function achieved by this generalist at equilibrium is given by:

H(f ∗g = 1) = −
∑
i

βi logRβi +Xg

The first term encodes the mismatch between the generalist strategy and the environmental
supply:

DKL(~β||~αg) =
∑
i

βi logRβi

The second term is simply the generalist fitness. So as the generalist accrues fitness mutations
(and is replaced by subsequently more fit types, the Lyapunov function increases. There-
fore fitness mutations are always favored to invade. Furthermore, ecological opportunity is
mediated by differences between supply and demand in the form of the Kullback-Leibler
divergence. Both of these concepts can be generalized to more complex community cases,
which we shall proceed to do.

One thing we can notice is that although the dynamics are unique up to a fitness trans-
lation, the Lyapunov function is not. The absolute fitness of the strains enters into the value
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it takes at its optimum. To make clear the effects of fitness vs. strategies, we can consider
an ecosystem that maximizes H, given by the set of triples {(f ∗µ, ~αµ, Xµ)}. We can separate
out the mean fitness:

eX
∗
≡
∑
ν

eXνf ∗ν

Note that this quantity is averaged over ecotypes and not resources (i.e. it does not have
an index corresponding to a strategy dimension). As such, it is different from the ‘resource-
specific mean fitness’ which we defined in a previous publication [11]. We define the normal-
ized weights:

w∗ν ≡ eXν−X
∗
f ∗ν

where we have used asterisks to denote equilibrium quantities. Making the substitutions, we
get:

H(~f ∗) = X
∗ −

∑
i

βi log
βi∑

ν w
∗
νανi

= X
∗ −

∑
i

βi log
βi
Di

where we note that the normalized demand is in fact a valid distribution (e.g.
∑

iDi =∑
i

∑
ν w
∗
νανi = 1) so that the second term is precisely a Kullback-Leibler divergence. There-

fore, the ecological process seeks to optimize the Lyapunov function while balancing two
things simultaneously, maximizing the mean fitness of the resident strains while minimizing
the Kullback-Leibler divergence (or the relative entropy [16]) between the supply and the
normalized demand.

We can understand the entropy term by looking at the ensemble of all possible commu-
nities with fixed mean fitness, X∗. Over this ensemble of communities, the optimal ones are
the ones that are arranged such that demand matches the normalized supply exactly:

βi =
∑
ν

eXν−X
∗
ανif

∗
ν .

so that the optimal H is just the mean fitness:

H(~f ∗) = X
∗

This defines a manifold of optimal communities, which does not strictly constrain the number
of coexisting types at equilibrium. It is always possible to define this manifold when there
are no fitness differences between the strains present. It is a strictly infinite dimensional
manifold of linear combinations of points in the (R− 1)-simplex. However, there is a more
stringent requirement when there are fitness terms, eXν . We consider this and describe the
condition geometrically in the next section.

It has been observed that for assembled communities, there are two classes of ecological
steady states that can be obtained by the dynamics: ‘shielded’ and ‘vulnerable’ ecosystems.
Shielded ecosystems are ones in which purely ecological selection pressures vanish (e.g. the
Kullback Leibler divergence above vanishes because the normalized demand exactly matches
the supply). Vulnerable ecosystems are ones in which there can still be substantial ecological
selection pressure due to a mismatch in the supply and the demand.
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Eco-evolutionary dynamics of the Lyapunov function

We have discussed what happens to the Lyapunov function for a single optimum, but in
an evolutionary scenario, the value of the Lyapunov function will always increase. This can
be understood by introducing a type at low frequency, which leaves the Lyapunov function
unchanged. The subsequent dynamics following the same set of equations, so that the type
will only invade and reach finite abundance if its presence increases the Lyapunov function. In
the process of invasion, a new type will either invade and replace zero or more strains. There
are no ‘ecological suicide’-like effects where invasion causes extinctions of both residents and
the invader or ‘rock-paper-scissor’ dynamics.

We can get a handle on the evolutionary process in the high dimensional limit by con-
sidering a state in which the demand almost exactly matches the supply. In this state, the
equilibrium value of the Lyapunov function becomes:

H(~f ∗) = X −
∑
i

βi log
βi∑

ν e
Xν−X

∗
f ∗νανi

≈ X

From this state we can analyze changes in the Lyapunov function due to changes in the
fitness and the strategy of a type ν (e.g. the gradient flow). To compute these quantities,
we imagine a situation in which we suddenly infinitesimally perturb one of the strain’s
phenotypes, without running the dynamics. This results in an infinitesimal change in the
Lyapunov function without distorting the frequencies.

For a small fitness change, the infinitesimal change in the Lyapunov function is:

δH = δXνf
∗
ν

(
1 + ~β · ~αν

)
So that we can see that strategies closest to the supply vector (encoded by the dot product)
increase H the most. Note that the maximum such perturbation can differ from the max-
imum ‘invasion fitness’ which governs the evolutionary process. Therefore, while evolution
increases the Lyapunov function over a trajectory, it does not necessarily follow the steepest
direction of the gradient.

Similarly, for strategy mutations, we have that an infinitesimal strategy perturbation
gives:

δH = eXν−X
∗
f ∗ν δ~αν · ~β

where, once again the strength (and now sign) of the perturbation depends on its relation to
the supply vector. Note that the strength of the perturbation also depends on the fitness of
the strain background. Once again, this differs from the direction taken by the evolutionary
gradient.

Now let us consider evolution on a fixed realization of disorder. This results in infinites-
imal changes of the form:

δH = f ∗ν

[
δXν +

(
δXν~αν + eXν−X

∗
δ~αν

)
· ~β
]
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Taken together, we can see that for this joint process (by which strategy and fitness change
simultaneously) on a finite strategy space, the evolutionary process will terminate in the
absence of pure fitness evolution, but potentially at a local optimum of the Lyapunov func-
tion. Furthermore, we can assert that in the presence of fitness mutations, there is no longer
a strict optimum. Rather, optima of the disordered landscape are now all saddles with an
unstable direction along the fitness axis.

Figure 3.7: The necessary coexistence condition for a set of ecotype strategies in the consumer
resource model can be understood geometrically. The set of allowed strategies can be found
by projecting the intersection of a plane with the fitness function onto the strategy simplex.
In the neutral case, this fitness function is a plane, so the intersection is the whole of the
simplex. The intersection is almost certainly a set of vanishing measure for a sufficiently
rugged function (as illustrated above) so that randomly chosen species are not likely to
coexist at high diversity. However, there are many possible intersecting planes that can be
chosen based on the additive fitness and strategies so that many different combinations of
species can be made to coexist. A modified version of the convex hull condition from [29]
must also be satisfied for sufficiency and is discussed in the SI.



CHAPTER 3. PUNCTUATED EQUILIBRIUM IN RESOURCE COMPETITION 117

High diversity states in the consumer-resource model with rugged
metabolic tradeoffs

The consumer resource model, as formulated, possesses the interesting property that when
Xµ = Xν ∀µ, ν, many more species can coexist than the number of available resources,
seemingly breaking the constraints set by competitive exclusion [29]. The condition for this
anomalously high coexistence is that the nutrient supply ~β be within the convex hull of the
set metabolic strategy vectors of all the competing types {~αµ}. Randomly drawn fitness
differences break this symmetry, and the limit set by competitive exclusion, S ≤ R, is
restored.

The number of coexisting species S can be understood simply from the condition that
each such species must have a net growth rate of 0 at equilibrium. This can be translated
into the condition for the resource availabilities ~A s.t. Ai ≡ βi/

∑
ν ανie

Xνfν that:

~αµ · ~A = e−Xµ ∀µ

When all the Xµ are equal (or equivalently Xµ = 0), this condition can be satisfied for
S > R species. This can be understood by noticing that when fitness is 0 across ecotypes,
the equation is solved by ~A = ~1 (or, geometrically, these equations define an (R − 1)-
dimensional hyperplane). Since for every resource dimension, the availabilities Ai = 1, this
condition can be interpreted as the fact that each resource supply is perfectly matched by
the uptake of species present.

In order to remain self-consistent, an additional constraint must be met, namely the so-
called ‘convex hull constraint’ [29]. This constraint specifies that for the above solution to
be valid, the supply vector ~β must fall within the convex hull of the set of resource strategies
{~αµ}. This can once again be understood geometrically. If each resource supply βi is equal
to a convex combination of strategies,

∑
µ αµifµ, then it must be within the convex hull of

{~αµ} by definition.
When there is random variation in the Xµ, this co-planarity can no longer be maintained

for S > R. However, with an disordered fitness term, where the Xµ(~αµ) are quenched
random functions of the ~αµ, the strategies ~αµ enter on both sides of the set of (now nonlinear)
equations defining the ecological equilibrium:

~αµ · ~A = e−Xµ(αµ) ∀µ

This defines the intersection (up to an arbitrary translation in fitness) of a plane and a
potentially very complicated manifold (see Fig. 3.7 for a schematic). Since a solution to
this equation is likely to be a set of vanishing measure, it is improbable for randomly chosen
species to coexist beyond the limits of competitive exclusion. However, particular sets of
many coexisting species can be found by solving for the intersection. For instance, in the
case where fitness is split into an additive and disordered component, one can trivially set
Xµ,additive = −Xµ,disorder(~αµ) to get back the effectively neutral model (i.e. a flat plane) and
break competitive exclusion as before. More generally, when it is possible to tune Xµ and ~αµ
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(for instance by genetic manipulations or by evolution), one can find many allowed equilibria
with S > R, with relatively few contraints on the resource strategies of ecotypes. Moreover,
for random disorder on a continuous strategy space, there are likely to be many possible
equilibria with S > R which are fundamentally different from the effectively neutral case,
since there are possible ‘tilted’ hyperplanes such that ~A 6= ~1. In the cases where ~A 6= ~1,
self-consistency requires a ‘tilted’ convex hull condition:

βi
A∗i
∈ conv

(
{eXµ(αµ)αµi}

)
We can get a handle on this by working in a slightly different space. At equilibrium, types
have ‘weighted strategies’ given by:

α̃µi ≡ wµ =
αµie

Xµ∑
ν ανie

Xνf ∗ν

These must satisfy:
~w∗µ · ~β = 1 ∀µ

so that in order to coexist, the weighted strategies must fall on the hyperplane in R-
dimensional real space that is perpendicular to the resource vector ~β.

However, despite the possibility of diverse S > R states including ones that might be
highly skewed due to fitness differences, all such states are unstable to additional fitness
differences imparted by continued evolution (as is the case in the neutral model). Once
again this can be understood geometrically. If a type increases its fitness, this will tilt the
hyperplane that defines coexistence, so that some (potentially several) types will be excluded
from the new coexistence hyperplane that is reached by the fixed point of the dynamics unless
all types match the fitness gain exactly. However, since mutations occur on a background at
a rate proportional to that background’s frequency, this sort of exact matching dynamic is
not likely with the evolutionary process we consider (e.g. fitness differences will always tend
to break coexistence).
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Evolving consumer-resource model

In this section we discuss the details of the evolutionary process that proceeds on the back-
ground of the consumer-resource model. We work in the strong selection, weak mutation
(SSWM) limit.

We start with a resident population at equilibrium so that:∑
i

αµie
XµA∗i = 1 ∀µ

which determines the set of strain equilibrium frequencies {f ∗µ}. We start by examining the
behavior of a mutant type occurring on background ν such that:

(Xν , ~αν)→ (Xν + δX, ~αν + δ~α)

Whether or not this mutant will invade is determined by its invasion fitness, or its growth
rate when rare:

Sinv =
∑
i

(ανi + δαi) e
Xν+δXA∗i − 1 ≈ δX + eXνδ~α · ~A∗

In the SSWM limit, invasion only occurs for mutations with positive invasion fitness. Note
that this quantity is different from the gradient of the Lyapunov function, so while positive
invasion fitness perturbations will increase the value of the Lyapunov function at equilibrium,
the most likely evolutionary path will not necessarily follow the steepest gradient in Lyapunov
function space.

Since we are in the SSWM limit, mutations occur as a compound Poisson process. The
probability that a mutation will occur on a background µ is given by its frequency at equi-
librium f ∗µ. In turn the probability that a mutation will establish, or survive genetic drift,
is taken to be proportional to its invasion fitness, Sinv. We split the mutational process into
two subprocesses, fitness mutation and strategy mutation.

Fitness mutations occur at overall rate UX and are assumed to have effect size s drawn
from some distribution of fitness effects (DFE) ρ(s). Strategy mutations occur at rate Uα.
Mutant strategies δ~α are drawn from a distribution of strategy effects (DSE) ρ(δ~α) that
maintains the normalization constraint on the strategy phenotype and does not force any
components to be negative. The binary use architecture is just a special case of this process.
The DFE is just a delta function with a positive value s and the DSE is a uniform distribution
over the nearest neighbors on a 2R-dimensional hypercube (genotype space).

The different mutants arrive at rates proportional to their invasion fitness. Successful
fitness mutants arrive at the following rate on background µ:

RX
µ = NUXf

∗
µ(es − 1)

The rate of successful gain (+) and loss (−) of function mutants for resource i on background
µ is given by:

R±µ,i = max

{
0, NUαf

∗
µ

(
~αµ · ~h∗ ± hiαµ,i

1± k−1
µ

− 1

)
Θ(∓αmu,i)

}
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where kµ = 1/
∑

i α
2
µ,i is the number of resources consumed by µ and where Θ is Heaviside

step function ensuring that the strategy component is there to lose or gain. Since these
mutations arrive as a compound Poisson process, we can use the properties of such processes
to get the rate of the next arrival:

Rtot =
∑
µ

[
RX
µ +

∑
i

(R+
µ,i +R−µ,i)

]

A particular invader is chosen randomly according to the weights given by their individual
rates. After a mutation invades, the ecosystem equilibrates to a new steady state. This
equilibration process is assumed to occur much faster than the mutation arrival process,
which is valid in the limit where the population size is very large.

Model simulations

The model is initialized with metabolism matrix J , which is symmetric and drawn from
Jij ∼ Normal(0, σ). The initial condition is that in which the system is seeded with a single
generalist strain. This is similar to the situation typical of laboratory evolution experiments,
in which well-adapted strains are propagated in consistent environmental conditions for many
generations. We also started with random initial conditions (i.e. assembled communities)
but this did not change our qualitative results.

Starting from our initial generalist strain, mutations arrive according to the dynamics
described above. Once a mutant arrives, the new ecological equilibrium is found by solving
for the resource availabilities via the following convex optimization problem:

~A∗ = argmax ~A

{
R∑
i=1

βi logAi s.t.
R∑
i=1

αµ,iAi = e−Xµ ∀µ
}

This solution was found using the Mosek solver package. The availabilities can then be
inverted to find the frequencies using constrained linear regression. This process is repeated
many times and the state of the system is saved at each step, along with the arrival time of
each mutant.
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Disordered fitness

We consider cases in which the resource strategies encode “rugged” fitness benefits and costs,
calling this the disorder term of the fitness. We can formally expand the disorder term:

Xµ = Xadditive
µ +Xdisorder(~αµ) = Xadditive

µ +
∑
i

hiγµi +
∑
i,j

Jijγµiγµj + ...

where we rescale the strategy vector components to take on values of ±1:

γµi = 2 · ||~αµ||−2
2 αµi − 1

This is simply a Fourier expansion of the function Xdisorder
µ , and is completely general.

We choose to truncate the infinite sum at quadratic order, since this is the minimal order
at which the strategy landscape becomes ‘rugged.’ We neglect first order terms (i.e. set
hi = 0) since these do not contribute to the ruggedness. Although the generalist can still
lose stability when only additive terms are present, the strategy landscape will have a single
fitness peak, which does not result in qualitatively new dynamics in the slow fitness regime.
We draw the coupling coefficients Jij from a Gaussian distribution with zero mean and width

σ√
2R(R−1)

, with parameter σ quantifying the strength of disorder.

We can also consider the fully uncorrelated disorder model, in which a random fitness
is assigned to an entire strategy, instead of being limited to pairs of components. This
is equivalent to taking the full sum above, which in some cases can be more theoretically
tractable than the pairwise model and acts as a useful limiting case. In our model, the
function Xdisorder takes on independent random values for each strategy:

Xdisorder(~α) ∼ N (0, σ)

Note, there is no need to normalize random draws as in the case of the pairwise model.
These are two ‘extremal’ models of rugged landscapes, respectively the maximally cor-

related and maximally uncorrelated cases. The core qualitative result of our model – that
the generalist is unstable – will be independent of which extreme we choose. This is true so
long as there is a finite collection of single knockouts with sufficiently high fitness advantages
that further mutation does not happen on the generalist background.
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Frequency of the generalist with knockouts

Single knockout and upper bound on σc

We have a generalist type which obtains a loss of function mutant on resource k. We have
that the ecological equilibrium is given by:

βk
fg

+
∑
i 6=k

βi
fg + αki

αgi
eXk−Xg(1− fg)

= 1

Alternately, we have the following equivalent condition from the dynamical equation for the
knockout type: ∑

i 6=k

βi
(1− fg) +

αgi
αki
eXg−Xkfg

= 1

We have that the strategy vector components for the generalist and the loss of function
variant are given, respectively, by αgi = 1/R and αki = 1/(R − 1). We are free to set the
fitness scale due to the symmetry of the model, so WLOG we set Xg = 0. So the equilibrium
condition is given by:∑

j 6=i

βj

(1− fg) + R−1
R eXkfg

=
1− βi

(1− fg) + R−1
R e−Xkfg

= 1

Therefore the frequency of the generalist is given by:

fg =
βi

1− R−1
R e−Xk

From this expression we can notice a couple of things. First of all, for neutral mutations,
the frequency of the generalist is given by:

fg = Rβi

so that in order for a knockout to persist, it must happen on a resource less abundant than
average (i.e. so that fg < 1). If the generalist has a fitness advantage over the knockout, we
see that the fitness difference that will no longer allow for diversification is given by:

Xc
g = log

(R(1− βi)
R− 1

)
We also notice that for a highly fit knockout, the frequency of the generalist is just:

fg = βi

so that a generalist type cannot go extinct from a single knockout alone.
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Instead continued mutation must occur for the generalist to go extinct. There are two
subsequent paths to extinction. First is that further knockout types occur on the generalist
background. We discuss this case in the next section since it is more complicated to analyze.
The second, simpler case, is that fitness mutations accrue on the knockout background and
drive the generalist to extinction.

This will happen when the generalist frequency is less than 1/2. This requires that the
fitness of the knockout mutant be at least:

Xc
k = log

[ R− 1

(1− 2βi)R

]
In the many resource limit, this reduces to:

Xk & 2βi

In the RPEM, the fitness difference between the loss of function type and the generalist
will be the sum of R − 1 IID Gaussian variables with variance σ2

R(R−1)
so that it will be

distributed as a Gaussian with mean zero and variance σ2/R. In this model σ2 is the
variance in fitness of the possible genotype pool. The maximum of all the possible single
loss of function types will scale as:

max(Xl −Xg) ∼
√

2σ2 logR

The critical strength of disorder such that the first loss of function type has a higher frequency
than the generalist is given by:

σ∗ ∼
log
[
R−1

(1−2βi)R

]
√

2 logR ∼ 1

R√logR
In the large R limit, this critical disorder upper bound gets small, so that small disorder
effects can strongly impact large ecosystems that evolve.

Frequency of the generalist with two knockouts

We have that there are three nonlinear equations that define the equilibrium frequencies
when we have a generalist with two single knockouts. They are given by:

βk1
fg + R

R−1
eXk2fk2

+
βk2

fg + R
R−1

eXk1fk1
+

1− βk1 − βk2
fg + R

R−1

(
eXk1fk1 + eXk2fk2

) = 1

βk2
fg + R

R−1
eXk1fk1

+
1− βk1 − βk2

fg + R
R−1

(
eXk1fk1 + eXk2fk2

) =
R− 1

R e−Xk1

βk1
fg + R

R−1
eXk2fk2

+
1− βk1 − βk2

fg + R
R−1

(
eXk1fk1 + eXk2fk2

) =
R− 1

R e−Xk2
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where we use the labels k1 and k2 to indicate both the knockout strains and the resource
dimensions that they do not utilize.

We can define the auxiliary variables:

x ≡ 1

fg + R
R−1

eXk2fk2

y ≡ 1

fg + R
R−1

eXk1fk1

z ≡ 1

fg + R
R−1

(
eXk1fk1 + eXk2fk2

)
so that the equilibrium conditions are now:

βk1x+ βk2y + (1− βk1 − βk2)z = 1

βk2y + (1− βk1 − βk2)z =
R− 1

R e−Xk1

βk1x+ (1− βk1 − βk2)z =
R− 1

R e−Xk2

We can solve for x, y and z to obtain:

x =
1− R−1

R e−Xk1

βk1

y =
1− R−1

R e−Xk2

βk2

z =
R−1
R

(
e−Xk1 + e−Xk2

)
− 1

1− βk1 − βk2

Finally, we notice that the frequency of the generalist is simply:

fg = x−1 + y−1 − z−1

We see that the generalist goes extinct around a similar point in this case with a similar
scaling given by the fg = 1/2 condition. This is because in the many resource limit, the top
two knockouts (with highest invasion fitness) should only weakly differ.

Frequency of the generalist with n knockouts

We examine the case where we have a generalist with n ≤ R− 1 single knockouts. As in the
two knockout case, we define auxiliary variables:

xk ≡
1

fg + R
R−1

∑
i 6=k e

Xifi

z ≡ 1

fg + R
R−1

∑n
i=1 e

Xifi
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Figure 3.8: Scaling in the frequency of the generalist when in competition with 2 most fit
single knockouts. The extinction of the generalist scales with approximately 1/R√logR

so that we have:

xk =
1− R−1

R e−Xk

βk

z =
1−∑n

i=1

(
1− R−1

R e−Xi
)

1−∑n
i=1 βi

with the frequency of the generalist given by:

fg =
n∑
k=1

x−1
k − (n− 1)z−1

Scaling with R− 1 knockouts

In the main text we looking at the one and maximal number of knockouts with Gaussian
pairwise disorder. However, since some of the knockouts have fitness disadvantages, not all
can invade. To see how the stability of the generalist scales with even more knockout types,
we look at the case with the maximal number of single knockouts (R− 1). This corresponds
to a maximally unstable case for the generalist when there is quenched disorder and only
single knockouts are allowed to invade. To ensure that all knockouts have beneficial fitness
effects, we choose the distribution of knockout fitnesses to be exponential with scale σ for
simplicity.

When we look at this case, we see that the generalist frequency rapidly goes to a limiting
form as a function of the renormalized fitness scale, σ̃ = σR3. The generalist goes extinct
at critical value σ̃c = 1, so that in the competition for more resources, the generalist will go
extinct for much lower bare σc. In the limit, this critical scale goes to zero.
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Figure 3.9: Phenomenological scaling in the frequency of the generalist when in competition
with knockouts with random fitness advantages. The generalist goes extinct for smaller and
smaller fitness differences as the number of resources goes to infinity. The frequency curve
scales even more extremely than the single knockout case.
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Relation to Tikhonov and Monasson (2018)

There are some key differences between the evolutionary model we propose and that proposed
in Tikhonov and Monasson (2018) (hereafter referred to as TM18) [34]. The model proposed
therein is a related evolutionary model. However, there are several important differences.
One important caveat is that in TM18 mutational steps do not have a sense of locality. In
other words, a mutant with a strategy can mutate into any other strategy with any fitness in
a single step. We don’t expect that this is realistic in a microbial population since getting any
particular genomic rearrangement from an evolutionary process seems extremely unlikely.

In addition, mutations are not partitioned into strategy and fitness types. In our model,
this separation, allows us to tease apart the different roles of strategy and fitness, leading
us to different conclusions. In the TM18 model, since strategy and fitness mutations occur
at the same time, this obscures the crucial role that fitness mutations play in breaking
‘gridlocks’ in the ecological dynamics.

Furthermore, in TM18 there is only a weak sense of inheritance (e.g. linkage). This leads
to very qualitatively different dynamics and conclusions from their model and from ours.
This highlights the importance of constraining the types of mutational kernels that might
be relevant in laboratory and natural populations.
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Chapter 4

Eco-evolutionary feedback can stabilize
multi-strain predator-prey communities

Preface
In the previous two chapters there is a significant restriction in our analysis – we specifically
considered the strong selection, weak mutation regime in order to maintain some degree of
tractability. While this can certainly be a relevant regime in real systems, it is unlikely to
be the relevant regime in microbial systems, for instance. In order to move away from this,
I opted to analyze a different model system – one with predator-prey interactions. Instead
of starting from a mean-field description and backing out the relevant eco-evolutionary dy-
namics in an ad-hoc manner, I started from a fully stochastic eco-evolutionary model and
showed that the mean-field description is the relevant one when the population size and
genome length become large. I also suggest that the model can be mapped onto a well-
known physics model of non-equilibrium phase transitions. This leads to predictions about
the stability of evolving predator-prey ecosystems, which, according to canonical results,
should be unstable [21] and even chaotic [29] in the high diversity limit. However, in the
evolving case, highly diverse ecosystems are more likely to be stable over long times.

The remainder of this chapter will be submitted for publication in edited form.
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4.1 Abstract
Ecological models with random interactions have provided insight into the problem of di-
versity, particularly showing that high variance in the distribution of interaction rates can
lead to instability, chaos and extinction. However, these models have traditionally neglected
evolution, which is central to the generation of biological variation and can act on timescales
comparable to ecological change. Here we demonstrate that when an unstable stochastic
predator-prey system is coupled to high-dimensional evolutionary dynamics, highly variable
interactions counter-intuitively stabilize the population, delaying extinction and increasing
the total population size. Using both stochastic and deterministic simulations and theory
based on the statistical physics of disordered systems, we show that this stabilizing effect is
driven by an eco-evolutionary feedback loop which causes the population size to grow as a
function of the variance of the interaction rates. We demonstrate that the stable regime cor-
responds with the clonal interference regime of population genetics. Importantly, we expect
qualitative aspects of our results to generalize to other evolving complex systems.

4.2 Main
Almost 50 years ago, the late Sir Robert May posed the question "Will a large complex
system be stable?" [21] He answered his own question with a resounding “No." His work
mathematically formalized a core problem in theoretical ecology – how can there be so much
diversity (down to the lowest taxonomic levels [17]) and how might it persist in the face of
strong competition, stochasticity, and apparent chaos? In this work, we show that evolu-
tionary dynamics can act as a key stabilizing component in model ecosystems. Importantly,
since evolution is coupled to the birth of new individuals, it can act on the timescales com-
parable to ecological change. When evolution is sufficiently fast, evolutionary and ecological
processes enter a stabilizing feedback loop that is driven by underlying phenotypic diversity.

This work enters into a long line of theoretical work to characterize the stability of
large, complex ecological models (which are often cast as variants of the generalized Lotka-
Volterra equation). We will partially summarize some of this work. About 50 years ago, May
and others recognized that large Lotka-Volterra systems (with or without randomly drawn
coefficients) readily admit chaotic dynamics [21, 34], which would potentially lead to cascades
of extinctions. May’s key result is that, for a broad class of disordered ecological models, the
variance of the distribution of interaction rates controls the stability of the dynamics – the
more variable the interactions, the less stable an ecosystem might be expected to be [21].

Since then, there have been many attempts to propose mechanisms that might stabi-
lize ecological models with highly variable interactions. These mechanisms, while plausible,
are typically finely tuned, or have particular structural requirements, and as such are un-
likely to be completely general. Among those proposed are the ‘Kill-the-Winner’ hypothesis
[35], spatio-temporally fluctuating environmental conditions [15], and higher-than-pairwise
interactions [3]. Most recently, stable spatio-temporal chaos was proposed as a diversity-
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preserving mechanism [29, 30]. Intriguingly, there has been some work to suggest that evo-
lution might stabilize small and relatively simple ecological models [32, 36, 37, 1, 18], while
other work suggests the opposite [33]. To the best of our knowledge, no work has connected
evolution to the ‘large, complex’ case proposed by May or proposed an adequate theory of
how the variation generated by evolution interacts with simple ecological interactions.

In order to address this gap, we developed a fully stochastic eco-evolutionary predator
prey model with randomly drawn interactions. The underlying ecological dynamics would be
unstable on its own [29]. We coupled the ecological dynamics to an evolutionary process on
a high-dimensional ‘genotype’ space. Using efficient stochastic simulations and theory based
on the statistical physics of disordered systems, we show that in this context, evolution is
able to stabilize the dynamics, but only for sufficiently high variance interactions – directly
contradicting May’s classic result. We show that potentially complex underlying strain
dynamics undergird this population-level stability. We also demonstrate that the transition
to stability coincides with the ‘clonal-interference’ regime of population genetics. Finally, we
discuss how our qualitative results might generalize to other eco-evolutionary scenarios.

4.3 Model description
We consider a system of many predators and prey in which every predator-prey pair has a
randomly drawn interaction rate. We assume nutrient saturation and well-mixed conditions
so that there is no explicit population size control for the predator or prey population. We
do not expect that the addition of a carrying capacity will change our qualitative results. We
also assume that the predation process is ‘lossy’ so that predators do not always reproduce
when they consume prey. We make this choice so that the interaction matrix is not anti-
symmetric. Anti-symmetric Lotka-Volterra models, which possess a conserved quantity, are
stably chaotic at the mean field level [11], while non-anti-symmetric models exhibit diverging
chaos [29]. Non-anti-symmetric interactions would also be generated by specifically biological
phenomena like phage burst size, in which a single predation event results in the production
of many phage particles. We do not attempt to explicitly model the phenomenon of burst
size, opting instead to focus on more generic aspects of non-anti-symmetric predator-prey
interactions.

The anti-symmetric component of the interaction between prey i and predator k is de-
noted aik. The aik are drawn from a distribution with mean a and standard deviation σa.
The ‘lossy’ component is denoted sik and is drawn from a distribution with mean s and
standard deviation σs. In the simulations in the main text, for ease of presentation we set
σa = σs = σ and a = s = 10−3. In the most general case, we assume that each prey has a
birth rate, bi and each predator has a death rate, dk. In our simulations we set bi = dk = 1.
We discuss modeling choices and variations of the model in the Appendix.

In addition, every predator and every prey is indexed by bitstrings of length Lp and
Lb, respectively, so that there are 2Lp predator and 2Lb prey types in the model. In all
that follows we consider Lp = Lb = L. We refer to the different values of the bitstrings as
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Figure 4.1: A schematic biological interpretation of the population dynamic model we em-
ploy. A) The systems we consider are well-mixed and consist of two ‘species’ which have
many strains. B) Interactions between the two types of species are mediated by bitstring
’genotypes.’ Interaction rates are drawn from a distribution. C) Mutations to the bitstring
genotype only occur during events that result in the birth of a new individual. The proba-
bility of a mutation given an event is p.

‘genotypes.’ For each birth event (of predator and prey), there is a probability, p, that a
mutation occurs (with probability 1 − p that a birth is clonal). We allow for mutations of
‘bitflip’ type so that only L mutant genotypes are accessible from a given genotype i (see
Fig 4.1). We denote this set of accessible genotypes Si. We describe the reactions in our
model in detail in Table 4.1.
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Reaction Description

Xi
(1−p)bi−−−−→ 2Xi

Clonal prey birth

Yk
dk−→ ∅ Predator death

Xi + Yk
sik−→ Yk ‘Lossy’ predation (no birth)

Xi + Yk
(1−p)aik−−−−−→ 2Yk Predation with clonal predator birth

Xi
pbi/L−−−→ Xi +Xj ∀j ∈ Si Prey birth with random mutation

Xi + Yk
paik/L−−−−→ Yk + Yl ∀l ∈ Sk

Predation with predator birth and random
mutation

Table 4.1: The set of reactions in our stochastic predator prey model.

These stochastic dynamics lead to the following mean-field equations:

dXi

dt
= Xi

(
bi −

∑
k

(aik + sik)Yk

)
+
p

L

∑
j∈Si

(bjXj − biXi)

dYk
dt

= Yk

(
−dk +

∑
i

aikXi

)
+
p

L

∑
i

∑
l∈Sk

(ailXiYl − aikXiYk)

The first terms on the right hand side of each equation are identical to the terms of a
standard mean-field predator-prey model, while the subsequent terms are novel and due to
mutation. These mutation terms take the form of diffusion operators on a hypercube (the
graph connecting the bitstring genotypes).

Above, we have assumed that the mutation probability, p, is constant across both predator
and prey genotypes and that accessible types are uniformly accessible, although both of
these assumptions may be relaxed. Importantly, mutation is explicitly coupled to births
(which in the case of the predator types only come about due to ecological interactions). An
independent mutation rate, µ, is only consistent when p is very small so that evolutionary
processes are slow and act on statistically steady ecological timescales. This is the realm
of classical population genetics and so-called adaptive dynamics. We discuss models in
which mutation is not correlated with birth (the ‘µ-model’, as opposed to our ‘p-model’) in
the Supplement. The contents of this paper primarily deal with steady regimes in which
evolutionary timescales are faster than ecological extinction timescales.

The form of the interactions and the genotypes can be motivated biologically. Often
interactions between cell types are mediated by binding between proteins. For instance,
we can imagine a phage-bacteria system in which the phage must recognize and bind to
a receptor on the surface of a bacterium in order to continue its life cycle. Or we might
consider an adaptive immune cell recognizing antigen. The bitstrings then represent an



CHAPTER 4. ECO-EVO FEEDBACK IN PREDATOR-PREY COMMUNITIES 136

encoding of these binding sites. The reaction rates vary because different pairs of binding
site sequences have different binding affinities. Importantly, these rates are fixed by the
physics of the interactions between different pairs of protein sequences. We assume that the
different genotypes are closely related enough that these binding affinities are drawn from
a single distribution with a well-defined mean and variance. However, single mutations can
vastly change the binding affinity of proteins, which has been observed in many years of
mutagenesis experiments [5, 19].

Explicitly modeling phenotypic correlations between closely related genotypes is possible
within our framework. Correlations between aik and sik are almost certainly bound to exist
in real systems and constrain the evolutionary landscape. We can view our uncorrelated
interaction landscape as a correlated one that has been coarse-grained over functional types
that are sufficiently closely accessible by mutation, but not so coarse-grained that the sign
of interactions can change. As such, we expect many of our results to hold when there are
still sufficiently large phenotypic differences between genotypically close phenotypes. We
discuss some such cases in the Supplement. The primary result is that correlations, while
more difficult to analyze and to simulate, only mildly affect our observations.

4.4 Population stability with strong selection, strong
mutation

We simulated the stochastic dynamics outlined above and plotted the total prey and predator
population sizes:

Xtot =
∑
i

Xi, Ytot =
∑
k

Yk

Representative simulation trajectories of the total population sizes for σ/a = 103 and σ/a = 0
(p = 0.1 fixed) are shown in Fig. 4.2. In the neutral case, σ = 0, either the predator or
prey population goes extinct on simulation relevant timescales. When we increase sigma,
we find the surprising result that population-level fluctuations are reduced. We find that σ
several orders of magnitude greater than the mean interaction strength damps population
oscillations in both stochastic and deterministic mean-field simulations. Moreover, we find
the counterintuitive result that the total population sizes grow with increased disorder when
compared to their neutral fixed point values (Fig. 4.3).

We also vary the mutation probability p, while holding σ = 0.1 fixed (Fig. 4.3). We see,
unsurprisingly, for low mutation rates, that either predator or prey extinction is highly likely.
However, at intermediate p, we see that sometimes the system gets locked in a low diversity
state for long times. These happen by chance and will go extinct on an anomalously long
timescale (they are metastable). As we increase p, amplitude fluctuations stabilize until we
reach p = 1, when the population level dynamics fluctuate around a fixed point. While the
p = 1 limit may not be natural (where all births result in mutations), it is a useful one to
keep in mind when trying to understand the mechanism of the stabilizing feedback.
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Figure 4.2: A) Stochastic simulations of the total predator and prey population size for
different interaction spread, σ (plotted on a logarithmic scale). The neutral eco-evolutionary
process (σa = σs = 0, a = s = 10−3) leads to rapid extinction of either the predator or both
populations. For highly variable interactions (σa = σs = 1, a = s = 10−3), we see that the
dynamics are stabilized. Both simulations have mutation probability p = 0.1. Extinction
never occurred in the high variance case in over 100 runs with 2 million interactions. B) The
strain dynamics underlying the stable population dynamics can be chaotic with constant
extinction and recolonization by mutation.

When we look at the stochastic dynamics at the strain level, we see that strong fluctu-
ations can undergird the apparent population stability in stochastic simulations. This is a
consequence of the long time strain abundances being sufficiently close to zero that tempo-
rary extinction is highly probable. Despite the fact that strains rapidly come up and die off
(and are repopulated), they can remain (on average) at finite abundances. However, if we de-
crease the average interaction strength (increase the average abundance), we see that strains
wander around relatively fixed abundances (i.e. they approach the deterministic dynamics).
Intuitively, this stabilization effect is due effective intraspecific interactions, which has been
identified as a potentially stabilizing mechanism in other contexts. Because evolution is also
a relevant process, this intraspecific diversity is continually renewed so that stability can be
maintained even in the face of individual strains going extinct.
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Figure 4.3: The transition between extinction and stability and the accompanying increase
in population size. A) The extinction probability sharply drops when the effective ‘tem-
perature’ is close to one. Near the transition, there are long-lived metastable states which
lead to a ‘smearing’ effect. We expect many of the simulations to the left of the transition
will go extinct given sufficiently long simulation time. Also not that the transition point
is systematically underestimated because we drop subleading terms in our estimate of the
mutation rate (see Supplement). B) The predator population size at the end of simulation
time grows with the variance in the interactions. Large dark blue dots are averages over
simulations. Small light blue dots are individual simulations. All averages are over 50 simu-
lations. For both A and B p = 0.1. The prey population size grows with a similar exponent
when conditioned on predator survival (if the predator goes extinct the prey population
grows indefinitely). C) Entropy of the predator strain distribution (normalized by log(2L))
at the final time point of the simulation, varying the mutation probability, p. D) Predator
abundance at the final time point of the simulation, varying the mutation probability, p.
Both C and D have σ = 0.1. Because of the presence of long-lived metastable states we look
at the median over realizations instead of the mean.
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4.5 Total population sizes are stable in the many strain
limit

From simulations, it is apparent that once in the stable phase, the total predator and prey
population sizes are approximately constant. Moreover, the averages of these abundances
increase with increasing disorder, σ. In order to understand this behavior, we look to the
the mean field equations for Xtot and Ytot:

dXtot

dt
=

∑
i

Xi

(
bi −

∑
k

(aik + sik)Yk

)
dYtot
dt

=
∑
k

Yk

(
−di +

∑
i

aikXi

)

The total population size (even in the stable phase) is governed by the same mean field
equations as the total population size without evolution (i.e. summing over all types, the
evolution terms cancel). However, because there is flux between types due to mutation,
this is not the complete picture, as is made clear by simulations. Instead, in the stochastic
model we see an inhomogeneous distribution of types at a given time, whereas in the long
time limit we expect that mutation (i.e. diffusion in genotype space) and birth-death noise
homogenizes the average abundances.

We can formalize this by appealing to dynamical mean field theory [22, 29, 30] to decouple
the interactions between predator and prey when the genotype space is large. We find that
the mean field dynamics of the total predator and prey population sizes are quite simple.
The attractor of these dynamics is a stable fixed point when the mutation probability and
the variance of interactions is sufficiently high. This can be understood if we notice that
predator mutation switches the sign of the feedback, which in turn stabilizes the deterministic
dynamics. Heuristically, when a predator feeds on a highly abundant prey type, it likely
produces mutants with sufficiently different feeding preferences so that the focal prey type’s
growth rate briefly increases.

We make an ansatz for the asymptotic behavior of the feedback response in the stable
phase, so that the population size grows as a power law of the ratio of the variance of the
interactions to the mutation probability. This is consistent with our simulations over a broad
range of σ and p:

Xtot ∼ Ytot ∼ (σ/p)η

We argue that this power law behavior is generic rather than a sign of criticality in the
Supplement. Moreover, by analyzing the deterministic equations, we are able to estimate
the transition point from the extinct phase to stability. We define an ‘eco-evolutionary
temperature:’

T ≡ paXtot

L
Ytot
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where a high temperature (T � 1) indicates stability. Using our scaling ansatz for the
population sizes, we get consistent values for the transition point (see Figure 4.3).

Taking the limit in which mutation decouples from birth (the µ-model, discussed in the
Supplement), we have that the beneficial mutation rate is given by µ ≈ paXtot

L
so that the

condition for stability is:
µYtot � 1

This condition defines the well-known clonal interference regime from population genetics
[6]. In turn, our results can be translated into the language of population genetics, indicating
that clonal interference is crucial for the long term stability of large, diverse predator-prey
populations. Despite the connection to clonal interference, we find that in the stable phase,
the behavior of the strain fitness distribution is inconsistent with traveling wave models that
are commonly associated with clonal interference in the literature [13, 6, 7] (see Supplement).
This is because the predator (prey) strain fitnesses are dependent on the composition of the
prey (predator) population, and as such are dynamic quantities that can vary over many
orders of magnitude.

4.6 Discussion
We have constructed a model of predator-prey coevolution on a high dimensional geno-
type space. Using the model, we have demonstrated that, contrary to common intuition,
highly disordered interactions serve to stabilize populations when mutations are sufficiently
frequent. While the population level dynamics are stable at long times, the strain level
abundances can strongly fluctuate on short timescales due to the presence of a so-called
Griffiths phase in finite populations. We have discussed the eco-evolutionary ‘phase dia-
gram’ of the model and have provided parameter combinations that might be able to serve
as indicators of eco-evolutionary resilience in predator-prey populations. In addition, with
limited assumptions, we show that stability corresponds with the well-characterized clonal
interference regime from population genetics. However, the population fitness distributions
can be qualitatively different from established “traveling wave" theory when the phenotypes
are highly diverse.

We expect that our qualitative results should hold for other mutational architectures
and for phylogenetically correlated phenotypes, so long as viable strains are sufficiently well-
connected (see Supplement). Furthermore, we expect that our qualitative results should
hold for other stochastic ecological model choices, including ones that incorporate burst
sizes, spatial structure, and other types of interactions. We also expect these results to be
relevant to specific model systems including intrahost immune-pathogen dynamics [24] and
epidemiological models of individuals’ immune response [37]. We leave these questions for
future work.

Finally, we comment on the fact that our theory relies on the asymptotic behavior of our
model. In that sense we expect that it should be widely applicable, though it is far from the
end of the story. This is primarily a model of microdiversity, but diversity exists at many
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scales, sometimes in intermediate (i.e. non-asymptotic) regimes where static phenomena like
pattern formation or dynamic phenomena like traveling waves might be the relevant phe-
nomenology in genotype space. Our model and simulations provide an exciting opportunity
and base from which to explore these possibilities.

We conclude with a remark. Population modeling in biology often seeks low to intermediate-
dimensional representations of dynamics, and in so doing brushes up against complexity and
potential instability. However, as we have shown, if we take the opposite perspective and
work with explicitly high-dimensional models there can be hope for emergent simplification.

4.7 Materials and Methods

Stochastic simulations

We simulated the model using a version of Gibson and Bruck’s ‘Next Reaction Method’
(NRM)[9], an exact stochastic simulation method with some performance advantages over
the more commonly used Gillespie Algorithm (GA)[10]. The GA has an O(n) time complex-
ity and while potentially faster in situations where the reaction propensities are multiscale
(whereby one might order the vector of propensities in a clever way), our system does not
exhibit clear multiscale behavior on long timescales. By exploiting data structures like pri-
ority queues and a reaction dependency graph, the NRM has a time complexity that scales
as O(log n) for a simulation with n reaction types. Therefore, it might provide substan-
tial speedups when there are many reactions with sufficiently sparse dependencies, as is the
case in our model. Since the NRM is an exact simulation scheme, there are no artefacts
due to time discretization or other more ad hoc approximations (such as extinction cutoffs)
and individual trajectories are guaranteed to be representative of the underlying stochastic
process.

In our simulations, we set the prey birth rates and predator death rates to unity. We do
not expect that slight departures from fixed birth and death rates will change our results
significantly. We draw the interactions from a log-normal distribution with mean µ and scale
σ. This choice guarantees that the total prey and predator populations will fluctuate around
1/µ individuals in the mean field.

We can motivate the choice of distribution physically, based on the picture of interactions
mediated by binding due to protein contacts. In this picture, binding events will depend on
the interaction energy of a pair of sequences of amino acids. For randomly drawn sequences,
this gives an interaction energy which is the sum of many identically distributed site-specific
energies, so that the interaction distribution is Gaussian with some mean in the long sequence
limit. The reaction rate can then be modeled as an Arrhenius law, so that the rates are
log-normally distributed around a mean rate. However, our qualitative results should be
independent of our particular choice of distribution so long as it has a well-defined mean and
variance.
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We varied the width of the interaction rate distribution (σ) and the mutation probability
(p) over many orders of magnitude. The maximal genome length we were able to achieve
was L = 10, due to memory constraints. We ran simulations for 2 × 106 reactions or until
either the predator or prey class goes extinct, whichever came first. For simulations where
strains are neutral with respect to each other (i.e. exchangeable, or σ = 0), 2×106 reactions
is sufficient to observe extinction with high probability.

Deterministic simulations

We also simulated the deterministic dynamics. For these deterministic simulations, we im-
plemented a 4th order Runge-Kutta scheme, with step size dependent on the number of
strains, as determined by the genome length, L. For sufficiently many strains, the scheme
was unstable unless prohibitively small step sizes were used. This can be understood from
the fact that as more and more strains are added, the derivatives become larger and larger
so that smaller step sizes are needed to maintain numerical stability. Due to these issues,
we were only able to simulate the deterministic model up to L = 8. Comparisons to the
stochastic model are discussed in the Appendix B.

Dynamical mean-field theory calculations

We employ dynamical mean field theory, a tool from the statistical physics of disordered
systems, to analyze the dynamics of the predator and prey population sizes in the ergodic
eco-evolutionary chaos phase. This technique has successfully been used for analyzing eco-
logical scenarios without coupled evolutionary dynamics [31, 29]. Our calculations appear
in Appendices C and D.
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4.8 Supporting Information (SI)

Appendix A: Model choices

Predator-prey vs. generalized Lotka-Volterra models

It is reasonable to model an ecological system as a generalized Lotka-Volterra model (GLVM),
with complex interlocking foodwebs, but it is less clear how this type of landscape would fit
in to an eco-evolutionary system of the sort that we present, which models fine-scale within-
species diversity. Within a random GLVM architecture, by allowing for mutations between
strains, it would be possible for a prey individual to give birth to its own predator. This type
of process is unlikely on the relatively short timescales represented by our model. Studying
a model in which the sign of a mutant’s interactions can differ from its parent’s is certainly
interesting theoretically, but care would need to be made to model this in a way that is
biologically relevant. It would certainly be interesting to understand the eco-evolutionary
process for more explicitly modeled interactions, which is conceptually possible.

The form of the interactions

We can motivate the interactions in our model through the lens of receptor-ligand binding
kinetics. This can be cast as a string matching problem whereby the ‘right’ pairs of strings
have a low energy (and a high interaction rate) and the ‘wrong’ pairs of strings have a large
binding energy (and low interaction rates). A model of the form we present would be able
to simulate an evolution experiment given deep binding assay data with Kd measurements
for pairs of predator and prey types. These sorts of experiments are increasingly common
with mutagenesis of single proteins. There are also some examples of mutagenesis of pairs
of interacting proteins.
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Appendix B: Heuristic derivation of the phase boundary
We analyze the boundary between the unstable and stable phases by appealing to heuristic
arguments. We start with clonal predator and prey populations and work in the small p� 1
regime so that mutations are rare. Without mutation, it has been shown [27, 28] that the
time to extinction of a predator prey model scales with the fixed point population sizes:

Text ∼ N3/2
s N

−1/2
l

where Ns is the smaller (i.e. predator) population size and Nl is the larger (i.e. prey)
population size. For simplicity (and consistent with our simulations), we assume that these
population sizes are approximately equal so that:

Text ∼ N

We can then compare this timescale to the timescale on which a strongly beneficial mutation
arrives, Tmut.

We call the probability that a mutation is strongly beneficial q(µ, σ, L), which depends
on the mean of the interaction distribution, the width of the interaction distribution, and the
genotype length L. Since N is set by µ, in general q will have some implicit N dependence,
but we make the ansatz that this dependence is weak. In general q might be a complicated
function, but we can conclude q should increase with both L and σ. In the limit σ = 0, there
are no beneficial mutations so that q = 0. Similarly for L = 0. In the σ → ∞ and L → ∞
limits, q will approach 1, but potentially slowly.

We call the turnover rate of the population λ, which is the number of births per individual
over the period we are concerned with, and is included so that we have the correct units. If
we approximate the arrival of mutations as a homogeneous Poisson process, we have:∫ Tmut

0

Npλqdt ∼ 1

We can justify this assumption by averaging over the period of oscillation of the dynamics.
When these timescales are comparable, we have a condition on critical boundary between

extinction and stability:
T ≡ pqλN2 ∼ 1

Importantly, we see that the critical mutation probability decreases with the population size
so that for larger populations more ‘biologically relevant’ pc would be expected. We return
to this result in a later section and put this expression in terms of model parameters.
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Appendix C: Qualitative agreement between stochastic
and deterministic simulations
We simulated the deterministic dynamics with random coefficients so that extinction is
excluded. We fix L = 8, p = 1, a = s = 10−3 and vary σ. We find that the determinis-
tic simulations qualitatively agree with the stochastic simulations. First we find apparent
damped oscillations to a fixed point for large σ. As we increase σ, the population size of the
predator and prey at the fixed point increases as a power of σ. We find that the population
size grows approximately as a power law Xtot ∼ Ytot ∼ ση, with η ≈ 1/2. This power differs
from the one we find in the stochastic simulations (η = 1/4). We expect that this is primarily
due to demographic fluctuations, which induce a so-called ‘Griffiths phase’ in the stochastic
simulations. The Griffiths phase is also the root cause of the apparent chaos in the stochastic
simulationsWe discuss this in a later section.

Figure 4.4: A.) Damped oscillations for a random deterministic simulation. Notice that the
total population size is larger than that which would be expected from the neutral case,
Ytot = 500, Xtot = 1000. B.) for fixed L = 8 and p = 1, the final abundance increases with
the variance of the interactions. The characteristic exponent is different from the stochastic
case.
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Appendix D: Dynamical mean field theory (DMFT) and
analysis of the stable phase

DMFT equations for the total population sizes

Since there is agreement between stochastic and deterministic simulations, we work with the
deterministic case to simplify our analysis and understand the mechanism of stabilization
and the origin of power law growth in population size. We work in the case where bi =
dk = 1. Since we are concerning ourselves with the mean-field limit, we have that there
are no extinctions in this setting. Formally, we work in the thermodynamic limit so that
2L → ∞, but we leave in these factors for clarity about scaling and the relative size of
different parameters. We have that the mean field equations for the total abundances are
given by:

dXtot

dt
=

∑
i

Xi

1− (a+ s)Ytot −
2L∑
k=1

(δaik + δsik)Yk + hi(t)


dYtot
dt

=
∑
k

Yk

−1 + aXtot +
2L∑
i=1

δaikXi + hk(t)


where we have split the interactions into mean and fluctuating components:

aik = a+ δaik

sik = s+ δsik

We have also added response fields hi and hk for convenience, which we will later set to 0.
We can use the lens of dynamical mean-field theory to understand the properties of these
quantities. The essence of dynamical mean field theory is that the sums over interactions:∑

k

(δaik + δsik)Yk and
∑
i

δaikXi

can be averaged over and treated self-consistently in the many-strain limit. In the language
of statistical physics, the interactions are decoupled and replaced with an effective noise and
‘self-interaction.’ The dictionary for the mapping (which has been derived in other many
other contexts [8, 31, 29, 22]) is that:

∑
i

δaikXi → σa2
L/2ηi(t)− σ2

a2
L

∫ t

0

RX(t, t′)Yk(t
′)dt′

∑
k

(δaik + δsik)Yk → (σa + σs)2
L/2ηi(t) + σ2

a2
L

∫ t

0

RY (t, t′)Xi(t
′)dt′
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where we use the natural scaling suggested in [29] and carefully keep track of 2L prefactors.
The first terms are zero-mean noises with correlation:

ηi(t)ηi(t′) = 2−L
∑
k

Yk(t)Yk(t
′)

ηk(t)ηk(t′) = 2−L
∑
i

Xi(t)Xi(t
′)

which is demanded by self-consistency. This term determines the invasion properties of the
different strains (i.e. it contributes to their fitness while rare).

The second term is the linear response when Xi gets large. Intuitively this accounts for
the fact that when Xi large, it will perturb the Yk (which will result in births, either of Yk
or its mutational neighbors), which will in turn feed back on Xi (thus altering its growth
rate). Similarly Yk at high abundance will deplete their preferred prey and start to decline.
The intuition is that, without mutation, feedback effects result in effective time-dependent
carrying capacities for the predator and prey populations. Although, as we will see in the
next section, sufficiently strong mutation must change this intuition. The response functions
are given (once again, due to self-consistency) by:

RY (t, t′) =
δYk(t)

δhk(t′)

∣∣∣∣
hk=0

= 2−L
∑
k

δYk(t)

δhk(t′)

∣∣∣∣
hk=0

RX(t, t′) =
δXi(t)

δhi(t′)

∣∣∣∣
hi=0

= 2−L
∑
i

δXi(t)

δhi(t′)

∣∣∣∣
hi=0

where these derivatives are in the functional sense.
Summing over all strains in the stable phase (where all strains might be seeded by muta-

tion, so none go extinct indefinitely), we have the DMFT equations for the total population
sizes:

dXtot

dt
=

∑
i

Xi

(
1− (a+ s)Ytot − (σa + σs)2

L/2ηi(t)

− σ2
a2
L

∫ t

0

RY (t, t′)Xi(t
′)dt′ + hi(t)

)
dYtot
dt

=
∑
k

Yk

(
− 1 + aXtot + σa2

L/2ηk(t)

− σ2
a2
L

∫ t

0

RX(t, t′)Yk(t
′)dt′ + hk(t)

)
We can rewrite these equations, setting the response fields to zero now that they are no
longer needed:
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dXtot

dt
= Xtot

(
1− (a+ s)Ytot − (σa + σs)2

L/2 〈η(t)〉X(t)

− σ2
a2
L

〈∫ t

0

RY (t, t′)X(t′)dt′
〉
X(t)

)
dYtot
dt

= Ytot

(
− 1 + aXtot + σa2

L/2 〈η(t)〉Y (t)

− σ2
a2
L

〈∫ t

0

RX(t, t′)Y (t′)dt′
〉
Y (t)

)
The angle brackets denote the (grand canonical) average:

〈O(t)〉Y (t) =
1

Ytot(t)

∑
k

Ok(t)Yk(t)

which is (formally) different from the overline (microcanonical) average:

O = 2−L
∑
k

Ok

We finally assume we are in a statistically steady state so that correlation and response are
only a function of time differences:

ηi(t)ηi(t′) ≡ Ci(t− t′), RI(t, t
′) ≡ RI(t− t′)

We must make one more key observation in order to make progress, namely that in an
(ergodic) steady state, the equivalence of ensembles holds and so the above averages are in
fact equivalent in a statistical description of the dynamics (i.e. in the thermodynamic limit
or when we average over realizations of disorder). It should also hold in the long time limit
of a sufficiently large system (2L � 1) 1. In the thermodynamic limit (2L → ∞), this is
asymptotically exact. Furthermore, we expect that demographic stochasticity accelerates the
approach to this limit, since its net effect is to homogenize the long time strain abundance
distributions. Incidentally, the canonical ensemble (where Ytot and Xtot are fixed to begin
with, as in [29, 8, 25]) should provide an equivalent statistical description in this limit.
Starting from the canonical perspective is a fruitful avenue to get insight into the individual
strain dynamics. In this picture, we surmise that the population size will determine whether
the short time dynamics are chaotic or not.

1It should also be true that for sufficiently large system size, a particular realization of the disorder is
similar to the average. The condition for this is that we should have L � 1 in the p model to sufficiently
homogenize the mutation terms. In the µ model this is not an issue since mutation is homogeneous from
the model definition. However, this is irrelevant in the present work since we are averaging over disorder,
although understanding the variability of particular realizations would be an interesting topic for future
work.
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An equivalent formulation of this property is that in the large 2L limit, when averaged
over realizations over disorder, the long time averages of Xi and Yk are homogeneous in
i and k. This follows from the fact that the strain labels are arbitrary and exchangeable
when we draw random interaction rates. However, in the stochastic simulations, this can
only hold in the stable phase when the parameter combination T ≡ pqλN2 is sufficiently
large and are technically only truly realized over long times (since temporary extinction is
possible and in fact frequent). This is an important, but subtle, point since although the
total population sizes follow an almost deterministic trajectory, the individual strains can
still fluctuate wildly with constant extinction and re-colonization by mutation. In this sense
T acts like a temperature, facilitating diffusion across the interaction landscape, which is
why we use the suggestive naming (i.e. to stretch our analogies a bit further, the stable
phase could be called an eco-evolutionary gas/paramagnet). In a later section we will more
concretely define T in terms of the model parameters.

With this in hand, averaging over disorder and replacing angle bracket averages with
overline (microcanonical) averages, we have the following closed equations for the total pop-
ulation sizes:

dXtot

dt
= Xtot

(
1− (a+ s)Ytot − σ2

a

∫ t

0

RY (t− t′)Xtot(t
′)dt′

)
dYtot
dt

= Ytot

(
−1 + aXtot − σ2

a

∫ t

0

RX(t− t′)Ytot(t′)dt′
)

We have used that the ηi and ηk have zero mean and are anyway irrelevant to the total
population size in the thermodynamic limit (they end up with prefactors of 2−L/2). To
belabor the point: although we have interchanged the types of averages, we should not
confuse this statement with the statement that the strain abundances Xi(t) and Yk(t) are
homogeneous across i and k at a given time or for a particular realization of the disorder
(which they are certainly not), but rather that they are homogeneous when averaged over
disorder and averaged over long times. On average, the population as a whole does not ‘see’
the strain variations.

Fixed point of the DMFT equations

From this we obtain the fixed point equations:

0 = 1− (a+ s)Ytot − σ2
aχYXtot

0 = −1 + aXtot − σ2
aχXYtot

where we have defined the susceptibilities:

χX ≡
∫ ∞

0

RX(τ)dτ, χY ≡
∫ ∞

0

RY (τ)dτ
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We can solve these equations to get the fixed point:

Ytot =
a− σ2

aχY
a(a+ s) + σ4

aχXχY

Xtot =
(a+ s) + σ2

aχX
a(a+ s) + σ4

aχXχY

From these expressions we can observe a few interesting things. First, in the σa = 0 case, we
recover the standard fixed point for non-disordered interactions, as expected. However, at
first glance, these expressions seem to indicate that the predator population size decreases
as σa increases.2 But this is in direct contradiction to our observations from stochastic and
deterministic simulations!

The key to understanding this discrepancy is that in the stable regime the susceptibilities
must be such that χY is negative and χX is positive when defined as we have above. 3 This
can be understood intuitively to be a result of mutation, which changes the nature of the
feedback. Mutation has not entered into the total population size dynamics up to this point
although it crucially enters into the individual strain dynamics (which are needed to precisely
determine the susceptibility in the first place). We can get a handle on this intuition in the
strong mutation regime (p ∼ 1). In this regime, some large fraction of predator births (which
only occur due to predation interactions) result in random mutation. So when predator Yk’s
favorite prey Xi is at high abundance, much of Yk’s consumption results in growth of its
mutational neighbors. These mutational neighbors in turn are unlikely to prefer the same
prey (if the interactions are sufficiently uncorrelated). So at the end of the feedback loop
Xi gets a net boost in growth rate since it’s preferred predator has been net depleted. Prey
mutations do not feed back on the response χX in this way since they do not depend on the
interactions. 4

2This is actually a version of the classic May result when there is no mutation. When σa gets too large,
the predators go extinct. The prey do not go extinct in our model because in the absence of predators they
grow exponentially.

3Note that the change of sign of carrying capacity due (separately) to quenched disorder, diffusion and
demographic noise has been reported in the context of a generic model of directed percolation [20]. Since all
three are at play in the full stochastic model and strong diffusion (mutation) occurs even at the deterministic
level, we expect that a similar effect is at play here. Care would need to be taken in checking this and a full
renormalization group analysis of the strain level equations would need to be carried out to verify this.

4N.B. In similar models with mutation rates, µ, which exhibit regular diffusion in genotype space (versus
mutation probabilities, p, which exhibit nonlinear diffusion, see below strain level DMFT equations), there
should also be a stable ergodic phase but only if µ is sufficiently large. More specifically the important
ingredient is that the predator-specific µ is sufficiently large (i.e. Lµ−1 should be comparable to the timescale
of the interactions) that it makes χY negative. In phage-bacteria systems this may in fact be the case since
phage and viruses generally have significantly higher mutation rates than microbes. In the end we argue that
the p-model is more true to the underlying biology than the µ-model. However, the µ-model might be more
readily compared to existing data, since what is typically measured is the rate rather than the probability.
A more direct and detailed comparison of the two models is an interesting avenue for future work but is
beyond the scope of the present study.
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Once we see this, we can also begin to understand why the population size increases
with σa from self-consistency requirements. For the fixed point expressions to be valid,
they are required to be positive. We see for fixed large but finite 2L, as we increase σa,
the susceptibilities χY and χX must become sufficiently small to compensate so that the
following constraint must be satisfied:

|χXχY | <
a(a+ s)

σ4
a

However, the χi should not become arbitrarily small since at least some of the interactions
are quite large in the intermediate regime 22L � σ4

a � a(a+ s) where linear response is still
a valid approximation. Therefore we make the scaling ansatz for the asymptotic expansion
of the susceptibilities:

|χXχY | ∼
a(a+ s)

σ4
a

− c
(
p

σa

)η

where c is a constant and the quantity in brackets is a dimensionless expansion parame-
ter. This scaling form can be thought of as a bound on how large the magnitude of the
susceptibilities can be and remain self-consistent.

So as we increase σa while keeping 2L and a fixed, we expect the population size to
diverge:

Xtot ∼ Ytot ∼ σηa

This is borne out in our stochastic simulations with a value for the exponent η ≈ 1/4 and in
the above deterministic simulations η ≈ 1/2. Furthermore, we expect the stationary state
population size to decline with p:

Xtot ∼ Ytot ∼ p−η

which also agrees with stochastic simulations. For deterministic simulations at long times,
any p > 0 will result in a fixed point.

Moreover we see that this expansion agrees with simulations even for relatively weak
disorder (a/σ2 < 1). We make the argument that this power law is generic (i.e. non-
universal) in a later section. An important ingredient for better understanding the precise
behavior of the susceptibilities (and their scaling) is a detailed description of the strain-level
dynamics which requires a more careful and technical analysis than that presented here.
This analysis will require the full machinery of reaction-diffusion processes [4].

Finally, we note that while the mean of the ‘lossy’ interactions, s, affects the location
of the fixed point, the variance σs is irrelevant. These interactions do not form a closed
loop between predator and prey, so there is no feedback, which is where the variance comes
in at the population level. However, the variability of these interactions will contribute to
the stochastic dynamics and may shift the location of the transition to the stable phase. In
addition the sik (and σs) will certainly be relevant in the short time strain level dynamics.



CHAPTER 4. ECO-EVO FEEDBACK IN PREDATOR-PREY COMMUNITIES 152

Stability of the fixed point

We can perform a linear stability analysis of the equations:

dXtot

dt
= Xtot

(
1− (a+ s)Ytot − σ2

a

∫ t

0

RY (t− t′)Xtot(t
′)dt′

)
dYtot
dt

= Ytot

(
−1 + aXtot − σ2

a

∫ t

0

RX(t− t′)Ytot(t′)dt′
)

We focus on ω = 0 mode which is maximally unstable, and which simplifies our analysis
since this allows us to set the responses to their τ =∞ values, χi [25]. A simple calculation
leads us to the stability eigenvalues:

λ± =
−1±

√
1− 4 [(a+s)+σ2

aχX ][a+σ2
a|χY |]

a(a+s)−σ4χX |χY |

2

where we have the discriminant:

[(a+ s) + σ2
aχX ] [a+ σ2

a|χY |]
a(a+ s)− σ4

aχX |χY |
> 0

since, importantly, the denominator must be greater than 0 for the sake of self-consistency.
Therefore the total population size of a collection of predator-prey pairs is a stable focus
although the dynamics of a single predator-prey pair is a neutrally stable limit cycle. In the
limit of strong disorder, the complex component of the stability eigenvalue grows so that the
frequency of the oscillatory component increases. Interestingly, even for weak disorder we
have that the mean field population size fixed point is a focus with eigenvalues:

λ± ≈
−1± 3i

2

whereas the non-zero fixed point of the equivalent neutral predator prey model has pure
imaginary stability eigenvalues:

λneutral± = ±i
so that disorder is a singular perturbation at the deterministic level. Despite the deterministic
stability, there are potentially large transient initial fluctuations and also metastable states
which are observed in simulations.

The stability results are consistent with simulations of the deterministic dynamics, which
show that the total population size is a stable node for a broad range of σa. However, in the
stochastic simulations, we see that oscillatory fluctuations persist due to a form of stochastic
resonance in which the stochasticity (birth-death noise) has frequency components that are
comparable to the frequency of the damped oscillations.
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Comment on the τ -dependence of the response

In order for our assumptions about the response and its scaling for to hold in the previous
sections, it must be sufficiently sharply peaked and importantly, integrable. A function with
an exponential cutoff will give us the right properties:

RI(τ) = fI(τ, p, ξI)e
−τ/ξI

where ξI are the correlation times:

ξX =
a+ s

σ2
a

ξY =
a

σ2
a

These are natural timescales that we can construct from the parameters in our model. We
also have the functions fI which should be such that:

fX(0, 1, 0) = 1

fY (0, 1, 0) = −1

and:

fX(0, 0, 0) = 1

fY (0, 0, 0) = 1

Qualitatively, we expect that fY is a step-like function in p, where ξ sets the location of the
step.

As the variance increases, the correlation time decreases so that the response is more
and more sharply peaked (and in the limit it becomes a delta function). In the limit, we
get the right leading order scaling for the susceptibilities. This also justifies our stability
analysis in the σ2

a � a limit. Importantly, we can in principle check this by measuring
the correlation function of Ytot and Xtot which will decay exponentially with these predicted
timescales, although this is made difficult by the observed resonance in the stochastic model.
We will come back to the time-dependence of the response when we discuss the stochastic
simulations and the emergence of generic power law behavior in Griffiths phases.
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Appendix E: DMFT for strain level dynamics and
estimating the phase boundary redux
We have the strain level DMFT equations:

dXi

dt
= Xi

(
1− (a+ s)Ytot − (σa + σs)ηi(t)− σ2

a

∫ t

0

RY (t, t′)Xi(t
′)dt′

)
+
p

L

∑
j∈Si

(Xj −Xi)

dYk
dt

= Yk

(
−1 + aXtot + σaηk(t)− σ2

a

∫ t

0

RX(t, t′)Yk(t
′)dt′

)
+
p

L
aXtot

∑
l∈Sk

[
Yl(t)− Yk(t)

]
+
p

L

∑
l∈Sk

[
σa2

L/2(ηl(t)Yl(t)− ηk(t)Yk(t))

− σ2
a2
L

∫ t

0

RX(t, t′) (Yl(t
′)Yl(t)− Yk(t′)Yk(t)) dt′

]
where the additional terms are the disorder averaged mutation operators. The first of these
terms is much larger than the others since it is proportional to the total prey population size.
We have included the L dependence although technically in DMFT L has already been sent
to infinity (and the sums have some limiting form as infinite dimensional diffusion operators).
Unfortunately, we cannot strictly use the equivalence of ensembles as we did for the total
population size if we are interested in the strain dynamics since the diffusion sums are only
over L terms (2L is technically our large parameter). In addition, the complicated form of
these reaction-diffusion equations (with nonlinear diffusion with memory for the predators)
resists obvious solution.

However, we can use these dynamics to more precisely estimate the phase boundary be-
tween stable eco-evolutionary chaos and extinction. Note that due to the inherent stochas-
ticity of the population dynamics (i.e. strains fluctuate to extinction and are repopulated),
there is more smoothing of the distribution of abundances in the fully stochastic mean-field
equations than in the deterministic one, so while the dynamics of a particular realization are
by no means homogeneous, we can use homogeneous equations to estimate timescales.

There are two timescales that are important to compare, as in our heuristic description.
First is the extinction timescale, text and the second is the mutation or diffusion timescale,
tD. We expect that the transition between the extinct state and eco-evolutionary chaos is
first order because the extinction timescale differs as we approach the transition from both
directions in, for instance, σa [12]. This is due to the fact that approaching the transition
point from the left, depending on the initial conditions, we move along a neutrally stable
limit cycle or divergent chaos (both of which rapidly wander or decay to extinction), whereas
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the right side of the transition is asymptotically stable at the population level and takes
exponentially more time to go extinct due to stochastic effects.5 This hypothesis will be
difficult to check directly because in the model, noise, diffusion and disorder are all strong
(and so in finite systems, the transition is ‘smeared out’). We discuss aspects of this smearing
and the Griffiths phase phenomenon in a later section.

If we approach from the right (from the ergodic phase), the population size sets the
extinction timescale. We observe that the predator population is more likely to go extinct
first (since it is the smaller population size) so that this is the relevant population to focus on.
It can be established that text scales as Ytot for a stable fixed point subject to demographic
fluctuations [26]. We have that the diffusion timescale is:

tD =
l2D
〈DY 〉

The averaged diffusion constant can be approximated by 〈DY 〉 ≈ paXtot
L

in the thermody-
namic limit. The distance lD is can be understood as how far in genotype space a focal type
Yk needs to mutate to reach a beneficial genotype. In the thermodynamic limit this distance
is just lD = 1. So the condition for these timescales being comparable is:

paXtot

L
Ytot ∼ 1

This gives a result that is consistent with our heuristic derivation above. Using the scaling
forms of the population sizes, we have that Xtot = c1σ

1/4
a and Ytot = c2σ

1/4
a so that the critical

sigma for the simulations in Fig. 3 is:

σc =

(
1

pac1c2

)2

≈ 2.5× 10−4,

which is consistent. We also note that the boundary slightly undershoots the apparent
transition point in the simulations, which also makes sense since we neglect the (negative)
response term in our estimate of the diffusion constant.

For the simulations with fixed σ = 0.1 and varying p, we notice anomalously long lived
metastable states where small sets of predator and prey exist at finite abundance for long
times. This is due to initial conditions and ‘lucky’ sets of predator and prey strains that can

5N.B. We can make an alternate argument for why the transition should be 1st order. Grassberger and
Janssen conjectured that any active-inactive state transition should fall under the directed percolation (DP)
universality class [14, 16]. Our transition is an active-inactive state transition so it should fall under DP. In
p, we expect that the transition is second order. In σ, we expect that the transition is first order. Above
the critical dimension, there can exist a 1st order transition [14] (when the carrying capacity is the control
parameter, as is effectively the case in our model). Our model (d = 2L) is well above dc = 4 so this is
still consistent with a first order transition. It is interesting to note that the single locus dynamics (L = 1)
are below the critical dimension and the two-locus dynamics (L = 2) are at the critical dimension. So the
transition might only be 2nd order in these cases.
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evade extinction due to the random nature of the interactions. Understanding the nature
(specifically the connectivity and scale of the interactions) of these metastable states is an
interesting avenue for future work and might be extremely relevant in real predator prey
systems. Nevertheless, we can still estimate the location of the transition to get:

pc ≈ 4× 10−4

which is also consistent.
These estimated phase boundaries are plotted in Figure 3 in the main text.

The effect of correlations on the transition

Correlations in interactions space enter into the diffusion length described in the previous
section. In the limit of no correlations (which we primarily discuss in this work), this length
is 1 in the thermodynamic limit (there is always a beneficial mutation one step away). In
fact, for any finite correlation length, in the thermodynamic limit lD = 1. In the case of
perfectly correlated interactions, this length is infinite – there are no beneficial mutations to
be found no matter how far one mutates. This corresponds to the neutral case in our model,
in which there is rapid extinction.

However, in real systems (where we may not be sufficiently far into the thermodynamic
limit or where correlations might be long-ranged), this length is probably some finite value
in between – i.e. there are certainly correlations in interaction space, but there are still large
jumps that are accessible by few mutations [19, 5]. This can be ameliorated specifically in
viral systems, because even if there are correlations in interaction space, they can compensate
by increasing their burst size, or by having a sufficiently wide burst size distribution. This
will contribute to the diffusion constant and bring the diffusion time down. An intuitive
way to think about this case is that a single birth event can sample interaction space deeply
enough to overcome barriers set by correlations.
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Appendix : Simulations on correlated landscapes
We simulated a simple version of the model with phylogenetic correlations by explicitly
modeling the binding energies between predator and prey. We considered two cases.

The first case we consider is one in which the interaction energy is additive:

Ea
ik =

L∑
α=1

εα(iα, kα)

We draw the εα(iα, kα) from normal distributions so that the mean and variance of the rates,
aik = eE

a
ik , are fixed to be a and σ2, respectively (on average). The sik interactions were

defined similarly. As σ grows, closely related neighbors become more and more uncorrelated
(a single step mutation can be large) so that we see the same transition and same qualitative
behavior as the uncorrelated model.

We note that in this additive random model, fewer random variables are drawn in defining
the interaction landscape (4L vs 22L) so that there is a higher variance among realizations.
This is a general property of defining finite correlated landscapes. Furthermore, if we look
at the strain level dynamics, we see that they are quite different. For a finite sample, strains
are no longer “almost exchangeable," and there are clear “winners" which persist at high
abundance for long times (i.e. it makes sense to consider fitness in this model). However,
this does not change the population level dynamics since enough high fitness types (typically
those predator-prey pairs with small interactions and high population size) exist at a time
so that there is still a stabilizing effect due to intraspecific competition.

The second case we consider is an energy with ‘pairwise’ correlations:

Ea
ik =

L∑
α,β=1

εα,β(iα, iβ, kα, kβ)

We draw the εα,β(iα, iβ, kα, kβ) from normal distributions so that the mean and variance of
the rates, aik = eE

a
ik , are fixed to be (on average) a and σ2, respectively. The sik interactions

were defined similarly. When comparing this to the additive model, we see that there are
still some “winners," which stay at high abundance for long times. However, the gap between
them and the low frequency types has closed a fair amount.

We note that in the additive and pairwise random models, fewer random variables are
drawn in defining the interaction landscape (4L vs 16L2 vs 22L) so that there is a higher
variance among realizations of the random interactions. This is a general property of finite
correlated landscapes. Furthermore, if we look at the strain level dynamics, we see that they
are quite different. For a finite sample, strains are no longer “almost exchangeable," and
there are clear “winners" which persist at high abundance for long times (i.e. it could make
sense to define a scalar fitness in this model). However, this does not change the population
level dynamics since enough high fitness types (typically those predator-prey pairs with small
interactions and high population size) exist at a time so that there is still a stabilizing effect
due to intraspecific competition.
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We could increase the number of random draws by using more complicated correlation
structure. But for our purposes, since we see the same phenomenonlogy (e.g. stabilization)
in the additive and pairwise models, we expect it to be present for less-correlated (i.e. higher
order) models. These less-correlated models might include, for instance, NK models with
N = L and 1 < K < L− 1. Our additive, pairwise and uncorrelated models are the K = 0,
K = 1 and K = L−1 cases, respectively. Other models that might be interesting to consider
include the “Rought Mt Fuji" model [23] and the Gaussian model of Agarwala and Fisher
[2]. However, for the latter, a new simulation scheme would need to be implemented since
ours depends on declaring the interaction landscape ahead of time.

We note that there is interesting transient behavior encoded in the model, especially
when initialized with a single strain. We see that populations can take a long time to reach
the steady state and are much more likely to go extinct by chance when initialized this way.
This is similar to what was seen with the fixed σ, p-varying simulation results in the main
text. Furthermore, it is interesting that the final (stable) population sizes reached in the
correlated models are typically much larger than those reached in the uncorrelated model.
This is likely due to the fact that individual types can have much smaller interaction rates in
the correlated model than those drawn from an uncorrelated distribution. We leave exploring
the details of the additive and other correlated models (especially their asymptotic behavior
on infinitely large genotype spaces) as an interesting avenue for future work.
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Figure 4.5: Population dynamics on additive landscape for a = 10−3, σ = 1, p = 0.1. We
see similar behavior as the uncorrelated case, where at long times the population seems to
go to a fixed point much higher than the fixed point associated with the average interaction
strength. However, since it is difficult to control the mean and variance of a finite sample of
such a highly correlated landscape, there is a relatively high variance of the populations’ final
abundances. Populations were initialized with some fraction of strains at finite abundance
with total abundance near their deterministic fixed point values. Occasionally, there is
extinction due to initial transients. However, this only happened once out of 20 simulations.
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Figure 4.6: Strain dynamics on additive landscape for a = 10−3, σ = 1, p = 0.1. Note
that in this case several strains go extinct but several persist for long simulation times with
relatively small abundance fluctuations.

Figure 4.7: Population and strain dynamics on pairwise landscape for a = 10−3, σ = 1,
p = 0.1. Note that in this case there is stabilization but much fewer strains are extinct at
the end of the simulation. This can be understood by the fact that interactions are more
‘high-dimensional’ in the pairwise case.
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Appendix F: Apparent chaos as a Griffiths phase

Figure 4.8: Fraction of active (Yk > 0) predator strains in stochastic simulations at the
final timepoint. As is the case in Griffiths phases in generic nonequilibrium and quantum
systems, only a fraction of sites are active even though in the deterministic dynamics all
sites are active. The fitted power law exponent is different than that obtained for the total
population size.

The above argument about the transition is analogous to the ferromagnetic (unstable
phase) to paramagnetic (stable phase) transition in models of magnetism. A well-known
effect in magnetism is that with disorder, there is a continuous region above the transition
point known as a Griffiths phase. In magnetism, a Griffiths phase is one in which a system
does not fully fall into a paramagnetic or ferromagnetic phase. Rather, it is dominated by
macroscopic ‘rare regions’ that relax slowly. This effect has been demonstrated to extend to
classical nonequilibrium and quantum models.

We can understand the Griffiths phase phenomenon intuitively in the case of our model.
For fixed population sizes Xtot and Ytot and for fixed number of genotypes 2L, when 2L &
Xtot ∼ Ytot there are more possible genotypes than can exist at once at finite abundance,
given stochastic effects and variance in a given finite realization of the disordered interactions.
This means only a subset will exist at finite abundance at a given time, although in the long
time limit the average abundances should approach the ones obtained from the deterministic
model. In a real predator-prey system, we expect genotype space to be fairly large (much
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larger than any reasonable population size) so that only a subset of all possible genotypes
may exist at a given time.

The presence of a Griffiths phase does not change our arguments for the location of the
transition. However, there should be a second transition where the Griffiths phase gives way
to the deterministic expectation. This can happen two ways – by increasing the population
size (i.e. having a−1 � 2L so all genotypes have average abundance greater than zero) or
by increasing σ. In practice, population sizes are much smaller than genotype space. The
only reason we choose such relatively large a is because of computational constraints. We
simulated a population with a = 10−5, so a population of ∼ 105 > 2L ≈ 103 individuals.
We see that the strains stabilize and look less like the Griffiths type phase. Furthermore,
no strain is extinct for very long. With better optimized simulations, and more computing
power, simulating populations up to 107 should be feasible using our method.

Figure 4.9: Population and strain dynamics on pairwise landscape for a = 10−5, σ = 10−4,
p = 0.1. Note the remarkable correspondence between the population dynamics of the
different realizations of the disorder.

The other way we might escape a Griffiths phase is by increasing σ. We note that
as σ gets larger (for fixed L), the validity of linear response becomes more suspect since
perturbations are no longer necessarily small. Furthermore, once σ gets sufficiently large,
some rate parameters can become so large to be physically unrealistic models of predator
and prey interactions. So for all intents and purposes the Griffiths phase may well extend
over a sufficiently large region of the phase diagram that the deterministic dynamics are not
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Figure 4.10: Population and strain dynamics on pairwise landscape for a = 10−5, σ = 10−4,
p = 0.1. Note that while some strains still float near extinction, most of them are pulled
away from zero. However in real systems, since 1/a � 2L, this is unlikely to be a realistic
scenario.

representative of any real (i.e. stochastic) system over short times. However, even if this is
the case, the deterministic dynamics will still be representative of long time averages.

Finally we comment that the Griffiths phase phenomenon is the likely cause of the dis-
crepancy between the exponent in the stochastic and deterministic dynamics. Generic power
laws are common in Griffiths phases due to exponentially large active domains lasting for
exponentially distributed times. The convolution of these two factors can lead to a generic
exponent. We expect that in the stochastic model, strains are present for exponentially
distributed times so that the response must be averaged over these in addition to being
averaged over disorder, leading to a different power than in the deterministic model.



CHAPTER 4. ECO-EVO FEEDBACK IN PREDATOR-PREY COMMUNITIES 164

Figure 4.11: Entropy of the (A) predator and (B) prey populations divided by log 2L as
a function of σ. This approaches unity as σ increases, as the ‘rare regions’ start to span
the system and the stochastic dynamics approach the deterministic dynamics. The prey
population distribution approaches 1 more slowly since diffusion in prey genotype space is
much weaker.

Appendix G: Steady population dynamics belie complex
strain dynamics
Previous studies have shown that related eco-evolutionary (or epi-evolutionary) models can
be mapped onto so-called traveling wave models of population genetics in certain parameter
regimes [37]. Using our simulations, we can also access the strain dynamics. So it is natural
then to ask whether such a mapping exists for the predator-prey model under consideration.

An essential ingredient of traveling wave models of evolution is that there be a large
influx of mutations of fixed effect size so that multiple mutations compete with each other or
even accumulate within lineages. Qualitatively speaking (in the case of beneficial mutations
– these models have also been analyzed in the context of Muller’s ratchet/deleterious muta-
tions), a beneficial mutant grows relative to the rest of the population as low fitness clones
are purged and new beneficial mutants are seeded. These processes balance to generate an
approximately Gaussian wave profile which travels at fixed speed in fitness space [6, 13].

In order to compare our model with traveling wave models, we define the prey and
predator fitness:

gpreyi (t) ≡ bi −
∑
k

(aik + sik)Yk

gpredk (t) ≡ −di −
∑
i

aikXi

so that the prey fitness is bounded from above:

gpreyi (t) ≤ bi
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and the predator fitness is bounded from below:

gpredk (t) ≥ −di

In the absence of predators, the prey population grows exponentially and in the absence of
prey, the predator population decays exponentially. We also neglect the mutational term,
which we are assuming to be relatively small (consistent with the case in Fig 4.12).

Figure 4.12: Abundance, mean fitness, and standard deviation of the fitness distribution in
the stable regime and in the unstable regime. In the unstable regime, the dynamics of the
fitness distribution is smooth, whereas in the stable regime it is intermittent. This is markedly
different from traveling wave models of adaptation, where a stable fitness distribution forms.

We plotted the mean and standard deviation of the fitness distribution over time (Fig.
4.12). In the unstable weak selection regime, the mean and standard deviation smoothly
oscillate, while in the strong selection regime the mean and standard deviation show spiky,
almost intermittent behavior, with spikes corresponding to the invasion of highly fit types.
However these spikes are sufficiently short that they do not distort the total population size
by much.

From this, we can readily see that the population fitness distribution does not have a
limiting shape which stands in stark contrast to the traveling wave picture. In our model,
we see that the most fit genotype will typically have very high fitness, potentially orders of
magnitude larger than the mean fitness. This is due to the fact that the fitness of a prey
(predator) type depends on the predator (prey) population linearly. If a prey (predator)
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has an anomalously small (large) interaction with a common predator (prey) type, it will
have a relatively large fitness. However, this advantage is only transient as this highly fit
type quickly gets pulled into the bulk of the fitness distribution and typically goes extinct as
the environment changes. Because of this ‘leapfrog’ character, it is difficult to project these
high-dimensional dynamics down onto the low-dimensional space of traveling wave models
as Yan, et al did for a related model [37].

Instead, we can describe these dynamics in the language of eco-evolutionary feedback. We
have established that without sufficient phenotypic variation, either the predator population
or both populations will go extinct. However, when there is sufficient variation accessible
by mutation, a prey which is anomalously free from predation will be born and will rise
exponentially at its growth rate bi. As it rises, its strongest predator will also start to rise
at the point where aikXi ∼ dk. The two focal types will then peak and start to decline,
according to the coupled equations:

Ẋi ≈ Xi(bi − (aik + sik)Yk)

Ẏk ≈ Yk(−dk + aikXi)

Eventually Xi reaches low enough abundance (and likely goes extinct because there are suffi-
ciently many weakly interacting predators) that Yk declines at rate dk until it is also extinct.
This whole process happens on a timescale such that as the populations are declining, a new
highly fit prey type is seeded. This results in the observed ‘breathing’ fitness distribution
that spreads across genotype space in potentially complex ways. A further investigation of
the population genetic characteristics of our model is an interesting avenue for future study.
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Appendix H: Relation between the p-model and the
µ-model
In the main text, we describe a model in which mutations are coupled to births so that they
naturally occur on the same timescale as births. However, traditional population genetic
analysis has assumed that mutation occurs sufficiently rarely that it occurs independently
of the underlying birth-death process. The key operational difference is that this results in
different classes of diffusion in mutational space.

The constant rate mutational operator is given by:

µ

L

∑
j∈S〉

(Xj −Xi)

whereas the mutation probability operator is significantly more complicated and depends on
the form of the interactions. For an interaction with a rate given by Fi( ~X)Xi which results
in a birth (and thus a potential mutation), the appropriate diffusion operator is given by:

p

L

∑
j∈S〉

(Fj( ~X)Xj − Fi( ~X)Xi)

In a situation where there is sufficient homogeneity, we can make the identification:

µ =
p〈Fi〉
L

In terms of our model, this is simply:

µ =
paXtot

L
Ytot

which we report in the main text.
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Appendix I: Relation to spatio-temporal chaos in models
with immigration
Mutation-selection dynamics can be thought of as a type of immigration-selection process,
though the two processes differ in some key respects. The mutational picture can be mapped
onto a high dimensional spatial landscape, where genotypes correspond to islands and mu-
tation acts as migration. However, interactions happen across islands, instead of being
localized to a single site. Furthermore, mutation is inherently different from migration in
the sense that mutation can be coupled to the interactions (as we have described in the pre-
vious appendix). In situations where mutation is frequent and the population size fluctuates,
mutation cannot be simply be decoupled from the population dynamics. When mutation
is sufficiently rare (that it can be approximated as regular diffusion), the mapping to spa-
tial models is consistent. In fact, we expect a correspondence between the Grifiths phase
behavior in our model and the stable spatiotemporal chaos phase in [29, 30]. However, for
many large natural populations (microbes, etc) this mapping would be consistent since the
product µN � 1. This is the clonal interference regime (as mentioned in the main text) and
would lead to the stable phase described here.
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Chapter 5

Conclusions

In this dissertation, we have examined two classes of eco-evolutionary models and have
simulated and analyzed their long term dynamics. In both cases, we found important sim-
plification and distinct phases by looking at high-dimensional limits. Exploiting such limits
has been a key thread in the development of physics over the past centuries. However,
there is much more work to do on the models presented here before these models might be
elevated to the level of sophistication and predictive power that statistical mechanics and
thermodynamics possess. Importantly, despite ongoing progress, there is still a fairly wide
experimental gap that must be bridged before a ‘unified theory’ of eco-evolutionary dynam-
ics might be reasonably proposed. With the development of sequencing and gene editing
technologies this sort of direct and quantitatively predictive role for ‘top-down’ theory [3] in
evolving biological systems seems tantalizingly close.

However, it is reasonable to ask whether such a theory is possible or even desirable. While
many biological systems have key large parameters (population size, genome size, etc) and
so can be thought to reside in simplified ‘asymptotic’ regimes, much of the interesting and
beautiful phenemona in biology reside in the particular details, or in the meso-scale. To
spin off Phil Anderson’s famous assertion [1], whereas in condensed matter physics ‘more is
different,’ in biology one might also say that different is more. A few examples to demonstrate
what I mean. Consider the accidental discovery of antibiotics on a contaminated plate [2].
Or the revolutionary biotechnologies discovered to be already existing within the proteome of
bacteria [4]. We need only watch a nature documentary to feel a sense of awe at the natural
world. Any sufficiently coarse-grained model of population evolution will inherently miss the
heterogeneity and difference that makes biology so rewarding to study, both personally and
scientifically. In studying biology, in some sense we hope to be surprised.

As such, while we develop physics style models of biological processes, it is crucial to step
back and consider the big picture, and what our goals might be. Biological models quite
obviously play a different role than physics models, where something like the Standard Model
precisely constrains what one might expect to observe at the Large Hadron Collider. This is
in some sense strictly impossible in a biological system – wholly new biological discoveries can
be made every day if one simply looks closely enough! Instead modeling can serve a different



CHAPTER 5. CONCLUSIONS 173

role, demonstrating or enumerating the seemingly infinite spectrum of possibilities. And this
is no less important. By enumerating possibilities, biological models can serve as illumination
(cf Dobzhansky) and inspiration – both in the concrete sense of laying the groundwork for
future scientific inquiries (e.g. future experiments) but also in a more abstract humanistic
sense.

It is fitting then to close by discussing the quote that opens this dissertation. In Ursula
K LeGuin’s science fiction classic The Word for World is Forest [5], Raj Lyubov is a type of
extraterrestrial anthropologist tasked with studying the humanoid inhabitants of the planet
Athshe. He is struck by the integrated lifestyle that the Athsheans possess with their diverse,
forested world (which stands in contrast with the barren Earth in this story). In the course of
the novel, the planet Athshe, though primitive by the humans’ standards, is nonetheless able
to resist subjugation by technologically advanced human invaders through interconnection
and interdependence. In a sense, the Athsheans are made strong and made whole by diversity.
In this dissertation, we considered, in various forms, the crucial and potentially strongly
beneficial effects that diversity generation might have on the dynamics of model ecosystems.
On our Earth, as we develop our natural lands, homogenize the genetic stock of our crops
and continually confront the prejudices within our societies, it seems like an opportune time
to consider the importance of diversity.
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