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Abstract: Mass spectrometry is the most commonly used method for compound annotation in
metabolomics. However, most mass spectra in untargeted assays cannot be annotated with specific
compound structures because reference mass spectral libraries are far smaller than the complement of
known molecules. Theoretically predicted mass spectra might be used as a substitute for experimental
spectra especially for compounds that are not commercially available. For example, the Quantum
Chemistry Electron Ionization Mass Spectra (QCEIMS) method can predict 70 eV electron ionization
mass spectra from any given input molecular structure. In this work, we investigated the accuracy of
QCEIMS predictions of electron ionization (EI) mass spectra for 80 purine and pyrimidine derivatives
in comparison to experimental data in the NIST 17 database. Similarity scores between every pair of
predicted and experimental spectra revealed that 45% of the compounds were found as the correct
top hit when QCEIMS predicted spectra were matched against the NIST17 library of >267,000 EI
spectra, and 74% of the compounds were found within the top 10 hits. We then investigated the
impact of matching, missing, and additional fragment ions in predicted EI mass spectra versus ion
abundances in MS similarity scores. We further include detailed studies of fragmentation pathways
such as retro Diels–Alder reactions to predict neutral losses of (iso)cyanic acid, hydrogen cyanide, or
cyanamide in the mass spectra of purines and pyrimidines. We describe how trends in prediction
accuracy correlate with the chemistry of the input compounds to better understand how mechanisms
of QCEIMS predictions could be improved in future developments. We conclude that QCEIMS is
useful for generating large-scale predicted mass spectral libraries for identification of compounds
that are absent from experimental libraries and that are not commercially available.

Keywords: quantum chemistry; in silico prediction; mass spectra; QCEIMS

1. Introduction

Purines, pyrimidines, and their derivatives are critically important biochemicals to sus-
tain life. For example, adenine, cytosine, thymine, and guanine serve as building blocks for
DNA and RNA. Many derivatives, including methylpurines and methylpyrimidines, but
also hypoxanthine, xanthine, or pteridine derivatives, serve essential functions in multiple
metabolic pathways and extracellular processes. In humans, enzymatic pathways involving
the metabolism of purines and pyrimidines are key biological pharmaceutical targets, for ex-
ample, for anticancer [1–3], antiviral [4–6], antimicrobial [7,8] and anti-inflammatory [9,10]
purposes. The metabolites themselves are often used as biomarkers for identifying cancer
risk [11] and detecting oxidative DNA damage [12]. Given their critical roles in biologi-
cal systems, further modifications of purines and pyrimidines might exist for which no
chemical standards are available. To identify such molecules by mass spectrometry (MS),
reference spectral libraries must be extended to enable computational generation of puta-
tive structures, followed by accurate in silico MS spectra predictions. However, reference
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databases are difficult to curate because the spectra are highly sensitive to the type of
MS machine used. Less than 1% of all known small compounds covered in databases
such as PubChem have experimental mass spectra available in licensed libraries such as
Wiley or National Institute of Standards (NIST) [13–15] or public reference databases such
as MassBank of North America (MassBank.us), covering today over 650,000 spectra [16].
Utilizing ab initio-generated in silico spectra may help fill those gaps.

While rule-based [17–19] or machine-learning [20,21] approaches have been tested
extensively for computational generation of MS libraries, ab initio quantum chemistry
approaches have been made available more recently [22–25]. The Grimme group developed
the Quantum Chemical Electron Impact Mass Spectrum (QCEIMS) program that utilizes
Born–Oppenheimer molecular dynamics (BOMD) coupled with Boltzmann statistics and
isotopic distribution [23,26]. Briefly, QCEIMS samples the ground-state molecular geometry
and then calculates the molecular dynamics (MD) trajectories for 70 eV excited states over
sub-picosecond time scales while recording specific fragmentation reactions. The statistics
of many fragmentation trajectories are then summarized to yield a list of fragment ions
and their associated intensities [24]. While much theoretical work on QCEIMS has been
published in the past [27–34], currently only four purines and pyrimidines have been
investigated in detail [27]. Density function theory (DFT) has also been used for calculating
the partition coefficients in organic solvents [35]. Here we extended the work on QCEIMS
to cover many more systems, resulting in an in silico electron ionization (EI) mass spectral
library for 80 different purine and pyrimidine derivatives by QCEIMS calculations. To
examine the accuracy and usability of such QCEIMS predicted spectra, we compared these
standard compounds to existing experimental 70 eV EI mass spectra from the National
Institute of Standards (NIST 17) database. We further investigated the relationship of
structural characteristics to the accuracy of QCEIMS prediction within these classes of
particular biomolecules.

2. Results

The workflow of this study is depicted in Figure 1. Details are given in the methods
section.
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Figure 1. Overall workflow from selection of molecules to generating QCEIMS mass spectra.

To investigate the accuracy of QCEIMS calculations, we generated in silico EI mass
spectra of 80 compounds (14 pyrimidines and 66 purines) and compared these to ex-
perimental EI mass spectra using mass-weighted dot product (Wdot) similarity scores.
QCEIMS calculations were computationally intensive but could be performed on modern
hardware for tens to hundreds of small molecules in reasonable overall time. One of the
main factors that affects the computational costs using QCEIMS is the size of the molecules,
because the individual simulations scale is O(N2) to O(N3) with basis set size [36], and the
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number of simulations is proportional to the number of atoms, making the overall scaling
O(N3) to O(N4) with respect to molecular size. In the dissociation MD step, the software
runs 25 trajectories per atom. We previously found that the default number is reasonable
for estimating the frequency of reactions occurring at a given internal excess energy and
yields good ion statistics mimicking experimental mass spectra [34]. Our pyrimidines and
purines ranged in molecular size from 12 to 22 atoms. For the 80 molecules examined
here, 3293 CPU hours were used in total, with an average of 41.6 h per mass spectrum
(Figure S1).

We first evaluated the quality of generated QCEIMS spectra on three levels: (a) overall
scores and scores in different purine and pyrimidine subclasses, (b) accuracy in identifying
the correct molecule when searching the QCEIMS spectra against the large NIST 17 library
of over 267,000 molecules, (c) analyzing the number of ions that were found in both experi-
mental spectra and in QCEIMS spectra versus ions that were only detected in experimental
or in QCEIMS spectra. From this data, it became clear that QCEIMS still underperforms
in specific fragmentation reactions with ions that were either observed in the experiment
but not predicted, or vice versa. Hence, we finally investigated in detail the trajectories
of typical neutral losses and retro Diels–Alder reactions that are typically observed for
purines and pyrimidines to better understand how to improve QCEIMS.

2.1. Overall Similarity Scores and Investigation of Structural Subclasses

For over 25 years, mass-weighted dot product (Wdot) scores have been used to quan-
titatively evaluate the similarity of experimental against library mass spectra for small
molecules [15], usually outperforming simple cosine scores. Wdot scores above 850 are
considered good matches whereas those below 600 are characterized as poor matches.
Across all 80 tested molecules, we found an average Wdot score of 656 for the QCEIMS
predicted spectra. This overall acceptable score, however, showed large ranges in qual-
ity, ranging from scores as low as 100 to a nearly perfect score of 978 (Figure 2). Indeed,
the Wdot scores showed a bimodal distribution, whereas the simple cosine scores were
more equally distributed across poor and high quality scores (Figure 2). To investigate if
substructures were significantly impacting overall Wdot scores and to explain especially
the bimodal distribution, we manually categorized the purine and pyrimidine deriva-
tives into 12 groups (Figure 3b). Purines were classified into adenines (6-aminopurines),
or xanthines (2,6-dihydroxypurines) with additional functional groups such as methyl-,
amino-, hydroxy-, or aza-derivatives (Figure 3a). Pyrimidines showed the highest average
Wdot scores, possibly impacted by their smaller molecular size compared to others. Next,
adenines and xanthines demonstrated high average similarity scores, while hypoxanthines,
lumazines, guanines, and methylpurines showed comparatively lower scores. Yet even
within these subgroups the similarity scores often varied widely and were not clearly
related to particular substructure motifs.
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Next, we constructed similarity score matrices of all 80 molecules to examine pairwise
molecule relationships, comparing both predicted and experimental spectra. All simi-
larity scores are given in Table S1. The similarity scores were computed for all pairs of
80 input molecules. Diagonal cells directly give the similarity scores matching in silico
spectra to NIST 17 experimental spectra for each molecule (Figure 4a), with the best scores
labeled blue and poorest scores labeled red. All other cells represent comparisons to other
molecules. Many direct QCEIMS/NIST 17 comparisons were indeed found as the highest
similarity scores in each row. Hence, if such spectra were not already present in the NIST 17
library, generating QCEIMS spectra would have been useful for successful identifications
in untargeted metabolomics. However, some subclasses like lumazines (group 8) produced
QCEIMS spectra that showed highest Wdot scores to compounds of another subclass, here
xanthines (group 5), as indicated by a blue block of similarity scores (Figure 4a). In addition,
some compounds in a specific subgroup showed higher Wdot scores to other compounds in
the same subgroup, for example, for methylpurines (group 2, Figure 4a). Yet a simple com-
parison of NIST 17/NIST 17 spectra (Figure 4b) showed that many experimental spectra
also showed high similarity scores to compounds of the same structure subgroup or even
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other structure subgroups. Indeed, the same Wdot score matrices were found in the NIST
17/NIST 17 matrix (Figure 4b) as in the QCEIMS/NIST 17 matrix (Figure 4a), for example,
between subgroups (hypoxanthines versus guanines, i.e., group 6 versus 7, Figure 4b) and
within subgroups (methylpurines group 2, amino/hydroxy-purines group 3). A substantial
number of off-diagonal similarity scores in the NIST17/NIST 17 matrix (Figure 4b) were
found at Wdot scores >600 (light to dark blue colors), showing that experimental GC-MS
studies also face the possibility of misidentifications due to the high number of structurally
similar compounds. Hence, even if QCEIMS calculated spectra were almost identical to
the corresponding experimental ones, the two matrices in Figure 4a,b would likely be
indistinguishable. Hence, the fact that these two matrices show remarkable resemblances
showcases the ability of QCEIMS to accurately predict mass spectra.
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2.2. Validating QCEIMS Spectra by Matching against Large Libraries

We further validated the quality of our QCEIMS spectra by comparing the in silico
spectra against all compounds in large databases. This validation is similar to researchers
matching experimental data against libraries to identify compounds in untargeted analyses.
Ideally, the in silico spectra will give the correct structure as the top hit in library searches,
similar to the use of libraries against experimental spectra. However, as we showed above,
the large number of structurally similar compounds may lead to lower score accuracies.
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Researchers will usually stop searching below the top 10 matching hits based on practical-
ity [37–39] Therefore, we used the same schema here to evaluate the practical quality of our
80 QCEIMS spectra of purines and pyrimidines. Of 80 QCEIMS spectra 36 indeed ranked
as top hits when searching the spectra against the NIST 17 library of more than 267,000
spectra in total (Table 1). Of our QCEIMS spectra 58% ranked within the top 3 matched
molecules, and 74% of our in silico spectra identified the correct molecule within the top
10 hits (Table 1). These results showed that QCEIMS spectra can be useful in experimental
settings, but not in all cases. Interestingly, 11 QCEIMS spectra were not even matched
within the top 100 compound hits when searched for in the NIST 17 library. Examples of
good hits within the top 3 scores are 6-methyluracil, 2,6-dihydroxy-7-methylpurine, and
3,5,7-trimethyl-5H-pyrimido [4,5,-E] [1,2,4] triazine-6,8-dione, whereas adenine, 2-purinol,
and pyrido[4,3-d]pyrimidine-2,4(1H,3H)-dione were found at lower ranks than the top
10 hits (Table S1). When we compared these three poor performing examples, we found that
Wdot score similarities were reasonably high, ranging between 874 and 940. The failure in
assigning the correct structures to these QCEIMS spectra was a result of the large number
of molecules with even higher Wdot scores owing to high structural similarity with the
target compounds. Conversely, even for some of the excellent top-scoring hits, for instance,
6-cyanopurine, 2-aminopurine, and 7-methylguanine, we found low Wdot similarity scores,
<600, of only 73, 139, and 127. Hence, the usability of QCEIMS spectra is not only depen-
dent on the overall achieved Wdot scores when matched to experimental spectra but also
related to the uniqueness of the spectra themselves as well as the investigated chemical
structures being distinguishable from other molecules within a mass spectral library or an
experimental GC-MS sample.

Table 1. Ranking the number of correct structure identifications when matching 80 QCEIMS purine
and pyrimidine spectra molecules against the full NIST 17 library.

Top 1 Top 2 Top 3 Top 4 Top 5 Top 10 Top 100 Out of Range Total

Cumulative
Number of
Molecules

36 45 46 49 52 59 69 11 80

Cumulative
Percentage 45% 56% 58% 61% 65% 74% 86% 14% 100%

Cumulative
Wdot

Average
713 711 702 702 701 712 708 326 656

2.3. Matching, Missing, Extra Fragment Ions Versus Ion Abundances

This validation of QCEIMS spectra was based on classic Wdot similarity scores that
combine information from the presence and abundance of ions across a spectrum. We
therefore continued our assessment of the quality of QCEIMS spectra by computing the
Jaccard index, which essentially is the ratio of intersection and union of two different data
sets and allows estimating the similarity of two data sets. When the Jaccard index is 1, the
two data sets are identical, and when it is 0, they are completely different. The Jaccard
index was calculated for each molecule to determine the percentage of matching and
missing peaks as well as extra fragment ions that were generated by the QCEIMS process
but that were not found in the experimental spectra. We used a 2% cut-off threshold for
experimental fragment ions to account for the problem of correctly finding low-probability
reactions in the statistics of QCEIMS trajectories. On average, 65% of all fragment ions in
experimental spectra were correctly predicted by QCEIMS, ranging from 40 to 100% for
different precursor ions (Figure 5). We did not observe a clear pattern for the percentage of
correctly predicted fragment ions or the number of additional QCEIMS fragment ions based
on our structure classification. When we increased the threshold to a 20% ion abundance
cut-off, we found an expected increase in the number of correctly predicted ions to an
average of 88%, but again without a preference for one compound class over another
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(Figure S2). This high number of correctly predicted ions meant that, for the most part,
QCEIMS trajectories correctly reflected experimentally observed fragmentation reactions,
especially for reactions that were frequently found and therefore led to abundant ions.
When calculating the Jaccard similarity score for all compounds and testing the Spearman-
rank correlation of the Jaccard similarity to overall Wdot or cosine similarity scores, we
found significant trends at r = 0.33 with p < 0.0025 for Wdot and r = 0.30 with p < 0.0065 for
cosine similarity. However, we did not find a correlation of Jaccard scores to the hit-rank
when comparing QCEIMS spectra to overall NIST 17 searches as given above. We propose
that this is because the Jaccard scores do not take ion abundances into account. Jaccard
similarity scores ranged between 0.27 to 0.88 but were not found to be statistically different
between structure classes. This finding supported the notion that accuracy of QCEIMS
predictions did not depend on structural similarities of molecules (at least, according to
conventional classification), but instead, that the accuracy of QCEIMS predictions must
be accounted for by differences in the simulation trajectories that were specific to each
individual molecule. We therefore continued detailed investigations into fragmentation
reactions for specific pathways across molecules.
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2.4. Detailed Studies of Fragmentation Pathways
2.4.1. Abundance of Molecular Ions in QCEIMS Predictions

Weighted dot product similarity scores (Wdot) place higher weights on large m/z
values than on lower m/z values in mass spectral comparisons. Hence, Wdot scores are
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highly impacted by the abundance of molecular ions in QCEIMS predictions. As we
saw a large discrepancy between Wdot and cosine similarities, we first investigated the
fraction of molecular ions that did not fragment under the QCEIMS conditions studied here.
In principle, aromatic molecules should show less fragmentation compared to aliphatic
molecules because of the well-known stabilizing effect of aromaticity. All purine and
pyrimidine molecules investigated here therefore shared this high probability of molecular
ion survival, owing to the delocalized π electron system of the pyrimidine and imidazole
rings, ranging from 0 to 100% intensity. Indeed, for all 80 molecules, NIST 17 experimental
spectra presented molecular ions, and theoretical QCEIMS spectra correctly predicted
the presence of all 80 molecular ion peaks. Experimentally, for 61 molecules, molecular
ions were found as the most abundant (base peak) ions in the electron ionization mass
spectra. However, only for 42 of these molecules was the molecular ion abundance correctly
predicted by QCEIMS (within ±2%), including 23 molecules that were correctly predicted
with molecular ions at base peak intensity. When we increased the window of predicted
accuracy to 10%, we found an increase to 46 out of 80 molecules with accurately predicted
molecular ion intensities. The molecular ion abundances of methylpurines, amino- and
hydroxypurines, adenines, and guanines were accurately predicted by QCEIMS as base
peak ions. For 24 molecular ions, intensities were underestimated by an average of 33%
(ranging from 3 to 79, Table 2), 12 molecular ion peaks were overestimated by QCEIMS
by an average of 40% difference (ranging from 6 to 98%, Table 2). Surprisingly, although
pyrimidines showed the highest average similarity score of all tested structure subgroups
(group 1 in Figure 3), for half of the tested pyrimidines the molecular ion peak abundance
was underestimated, and only one was overestimated, meaning that for pyrimidines,
other fragment ions were predicted remarkably well, unlike for other substructure classes.
In contrast, lumazines had the worst Wdot scores when comparing QCEIMS predicted
to NIST 17 experimental spectra (group 8 in Figure 3), possibly because four of the eight
lumazine compounds also performed very poorly in the QCEIMS prediction of the intensity
of molecular ions (Table 2). These examples showed that prediction of the abundance
of molecular ions was not the only cause of poor Wdot similarity scores. To further
investigate details of the reasons for poor mass spectral predictions in QCEIMS of purines
and pyrimidines, we investigated specific reactions across all molecules in detail.

2.4.2. Retro Diels–Alder Reaction and Loss of Isocyanic- or Cyanic Acid (NCOH, HNCO,
43 u)

One of the most prominent fragmentation reactions in purine and pyrimidine molecules
is the retro Diels–Alder reaction (rDA) reaction, a well-known concerted rearrangement
type of fragmentation mechanism. Here, the cyclohexene unit-like molecules fragment to
form diene and dienophile (ene) products (Figure 6a). In the MD trajectories, we observed
the pyrimidine ring undergoing rDA fragmentation with both σ-bonds breaking on the fs
time scale, which essentially is a concerted step as previously studied [27]. First, the N1–C2
bond was broken to open the ring, followed by a N3–C4 bond breakage (atom positions
as numbered in Figure 6b) that resulted in neutral losses of either cyanic acid (N≡COH,
43 u) or isocyanic acid (HN=C=O, 43 u). This neutral loss of 43 u yielded ion signals at
m/z 83, 83, 84, 87, 98 in the mass spectra of molecules 1- and 6-methyluracil (Figure 6b;
spectra P1; P2 in Figure S3). The same rDA and HNCO losses were observed for molecules
associated with spectra P3, P4, and P7 (Figure S3). In comparison, 3,6-dimethyluracil
and 1,3-dimethyluracil contained an additional methyl-group at the N3 position. Conse-
quently, the QCEIMS trajectories led to analogous rDA reactions but lost methyl-isocyanate
(Figure 6c, CH3-N=C=O, 57 u) instead of HNCO (spectra P5, P6, Figure S3).
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Table 2. Differences in the relative abundances of the molecular ions (as percent of the base peak in
each mass spectrum) comparing 80 QCEIMS spectra in the 12 subclasses of purines and pyrimidines
to molecular ions of NIST 17 experimental spectra.

Mol
ID

Molecular
Weight

Experimental
Abundance

(%)

QCEIMS
Abundance

(%)

Abundance
Difference

(%)

Average
Difference

(%)

Pyrimidines

5 126 82 32 −50

30.3%

16 140 64 98 +34

17 140 100 71 −29

19 141 100 91 −9

41 154 100 65 −35

42 154 80 57 −23

43 155 100 97 −3

81 170 100 41 −59

Xanthines

39 153 94 100 +6

39.8%

75 168 27 100 +73

100 180 100 57 −43

106 181 25 67 +42

132 195 14 49 +35

Hypoxanthines

28 150 100 83 −17

30%31 150 70 100 +30

52 164 100 57 −43

Lumazines

65 166 2 100 +98

42%
96 180 100 64 −36

121 192 100 79 −21

128 194 100 87 −13

Quinazoline-
diones

86 177 60 26 −34

19.7%115 190 100 87 −13

120 192 100 88 −12

Remycins

92 179 66 19 −47

37.5%

105 181 1 49 +48

123 193 24 40 +16

125 193 63 27 −36

126 193 100 31 −69

147 207 14 23 +9

Pyridopyrimidine-
(1H,3H)-diones

47 163 100 82 −18

20.4%

50 163 88 100 +12

116 191 100 84 −16

117 191 100 54 −46

118 191 100 90 −10

Others

70 167 11 89 +78

62.3%
74 168 100 59 −41

80 170 100 21 −79

122 192 49 100 −51
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tiple pathways to yield HNCO from a variety of fragmentation pathways, including open-
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of fragmentation pathways are given for xanthine (Figure 7). This detailed investigation 
of trajectories and comparison of the resulting QCEIMS spectrum to the experimentally 
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Figure 6. Retro Diels–Alder reactions in electron ionization fragmentation. Top: QCEIMS, bottom:
experimental spectra. (a) Mechanistic example of a retro Diels–Alder fragmentation. (b) Analysis of
QCEIMS trajectories for 6-methyluracil marking the neutral loss of isocyanic acid (43 u, pink circle,
yielding m/z 83). (c) Analysis of QCEIMS trajectories for 1,3-dimethyluracil marking the neutral loss
of methyl-isocyanic acid (57 u, pink circle, yielding m/z 83).

The rDA reaction pathway was previously reported for EI-MS spectra of purines like
xanthine (X1) [40] and uric acid (X4) [41]. Our MD simulations confirmed that the rDA
reaction opens the pyrimidine region of the purine ring while the imidazole ring remains
connected, resulting in the neutral loss of HNCO (Figures 7 and S3). However, it is not only
the rDA reaction that leads to this neutral loss. For xanthine, QCEIMS predicted multiple
pathways to yield HNCO from a variety of fragmentation pathways, including opening up
the imidazole ring before the release of HNCO (Figure 7). These alternative pathways give
rise to losses of HNCO and fragment ions m/z 109, 110, 123, 125, 137, for mass spectra X1, X2,
X3, X4, and X5, respectively (Figure S3). Examples of these different types of fragmentation
pathways are given for xanthine (Figure 7). This detailed investigation of trajectories and
comparison of the resulting QCEIMS spectrum to the experimentally observed spectrum
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also gave insights into which specific ions were incorrectly predicted. For example, ions
m/z 72 and m/z 80 resulted multiple times from a two-step reaction in which the opening of
both rings without neutral loss occurred first, followed by fragmentation. These trajectories
were not verified by the experiments. However, the direct rDA leading to m/z 109 as well as
trajectories to m/z 54 and m/z 81 were consistent with experimental observations (Figure 7).
This example showed the benefit of detailed comparisons that may be useful to improve
QCEIMS.
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Figure 7. Analysis of QCEIMS trajectories for xanthine marking multiple dissociation pathways (a–d)
to lose isocyanic- or cyanic acid (HNCO/NCOH, 43 u, noted by pink circles). Note: none of the
trajectories predicted the direct neutral loss of 43 u from the molecular ion to yield m/z 109. Mass
spectrum insert: Top: QCEIMS, bottom: experimental spectrum.

The loss of HNCO was also the primary reaction for most lumazine derivatives
(Figure S4 for the lumazine trajectory, Figure S3 for mass spectra L1–L8). Similar to xanthine
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trajectories, lumazine derivatives tended to undergo multiple dissociation pathways to
yield HNCO neutral losses rather than only the rDA reaction. Some of their MD simulations
showed a carbon monoxide loss from the pyrimidine ring of lumazine before the loss of
HNCO while the pyrazine ring was connected. Some trajectories showed the loss of HNCO
and CO in reverse order, and additional trajectories showed simultaneous loss of both
fragments while the pyrazine ring remained intact, or losses of both HNCO and CO after
both rings were broken. For benzouracil, the neutral loss of HNCO occurred after an
initial loss of carbon monoxide (CO, 28 u) and not through an rDA fragmentation reaction
(Figure S4).

2.4.3. Loss of Hydrogen Cyanide (HCN, 27 u)

A dominant fragmentation process predicted and experimentally observed for purines
and pyrimidines is the loss of hydrogen cyanide (HCN, 27 u). This reaction occurred in 89%
of the tested purines and in 57% of the pyrimidines. For example, the HCN loss has been
studied before for adenine [30] and was reproduced by our QCEIMS calculations. The only
molecular classes that did not undergo a HCN neutral loss were pyridopyrimidines and aza-
purine derivatives. For the aza-purine derivatives, the carbon atom that would have formed
the HCN was substituted with a nitrogen atom, preventing HCN formation from taking
place. Yet, HCN was also the most observed neutral loss for the class of hypoxanthines. For
7-methyl- and 3-methyl-hypoxanthine (spectra HX1 and HX2, Figure S3), the majority of
trajectories leading to HCN losses occurred via C4–N9 and N7–C8 bond cleavages. These
cleavages caused the imidazole ring to open while leaving the pyrimidine ring intact,
producing fragment ions at 123 m/z for both methyl-hypoxanthines. When compared
to the experimental spectra, only the m/z 123 peak of HX2 was correctly predicted, but
interestingly, this peak was not present in the experimental spectra of HX1 (Figure S3).
Instead, the experimental spectra of HX1 showed a peak at 96 m/z (M-54), which was
absent in the QCEIMS predicted spectrum but might have originated from two subsequent
losses of HCN. Again, such detailed investigation of differences between predicted and
experimental spectra may improve future versions of the QCEIMS.

2.4.4. Retro Diels–Alder Reaction of Guanines and Loss of Cyanamide (CN2H2, 42 u)

The neutral loss of cyanamide (CN2H2, 42 u) from molecular ions has been observed
experimentally in guanines and adenines [42], resulting in fragments m/z 109 for guanine
and m/z 123 for methylated guanines. This neutral loss was hypothesized to occur via an
rDA reaction [42]. We confirmed this hypothesis via QCEIMS trajectories that correctly pre-
dicted the presence of these neutral losses for several guanines (spectra G1-G6, Figure S3),
although the abundance of these fragment ions was significantly underestimated. For
instance, the guanine QCEIMS prediction yielded seven trajectories that resulted in the loss
of CN2H2, corresponding to five different dissociation pathways (Figure 8). Two pathways
were observed multiple times in the simulations. The first pathway was the loss of HNCO
by cleaving N1-C2 and C5-C6 bonds, which was followed by a N3-C4 bond cleavage
that resulted in a CN2H2 loss (Figure 8a–d). The imidazole ring was not affected by this
reaction. The pathway in Figure 8b proceeded by breaking N3-C2 and C4-C5 bonds to
open both rings. This reaction was followed by cleavages that resulted in either a neutral
loss of CN followed by a loss of NCOH (Figure 8(b1)) or a direct neutral loss of NCOH
(Figure 8(b2)). Several fragments predicted by QCEIMS were not experimentally observed,
for example, m/z 29 for [C=OH]+ in Figure 8(b2,d) possibly because such ions would have
too high potential energy. Destabilizing such unreasonable fragments might be a good way
to improve QCEIMS in future developments.
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the direct neutral loss of 42 u from the molecular ion to yield m/z 109. Mass spectrum insert: Top:
QCEIMS, bottom: experimental spectrum.

3. Discussion

Quantum chemistry predictions for electron ionization mass spectra (QCEIMS) have
only been performed for the past eight years [28]. We here show that QCEIMS predic-
tions overall yielded reasonable or even excellent match scores to experimental spectra.
Nevertheless, we also found a number of molecules with poor QCEIMS accuracy. Our
detailed investigations of MD trajectories showed several examples such as HNCO, NCOH,
and CN2H2 for which neutral losses were correctly predicted. However, we also found
examples involving CN2H2 for which neutral losses were greatly underpredicted in fre-
quency and that even yielded chemically and energetically very unlikely fragmentation
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structures. If QCEIMS spectral libraries are constructed to be used in identification of
unknown compounds in GC-MS experimental data, it is important to understand which
molecules yielded the highest likelihood of giving correct QCEIMS predictions and which
molecules might have lower prediction accuracies.

With such a priori information one could build confidence models for quantum
chemistry based on in silico generation of mass spectra. Unfortunately, neither our overall
similarity scores of classes of purines and pyrimidines nor our detailed investigations of
QCEIMS trajectories yielded such simple heuristic rules. However, other parameters were
not explored, such as the rigidness of the starting molecules or the predicted fragments, or
the number of rotatable bonds. When comparing QCEIMS predicted versus experimental
spectra, the mass spectral similarity scores indicated significant variation across different
molecules within the same structure subclasses. Yet, analyses of QCEIMS trajectories for
different molecules within each subclass were surprisingly consistent. While we found mass
spectral similarities to be impacted by the prediction of molecular ion abundances, QCEIMS
simulations appeared to be unable to reproduce the large variations within a subgroup
that were observed in experiments. We also examined other possible classifications, such
as the number of rotational bonds, the number of isomers within the NIST 17 database,
and the types of attached chemical groups, yet we did not find clear associations of such
classifications with the accuracy of QCEIMS predictions.

One of the parameters that could be explored further is the tautomeric structure of the
pyrimidines and purines as an input structure for QCEIMS models. QCEIMS methods can
distinguish tautomers that consequently produce different spectra as evidenced by cytosine
and guanine tautomers [27]. Calculated spectra may significantly depend on the tautomeric
input structure, particularly for bonds that are involved in prototrophic shifts [27] (in-
tramolecular proton transfers). While we did not explicitly investigate tautomers here,
we found that lumazines showed significant fragmentations of neutral water losses from
molecular ions that could be easily explained by tautomeric structures with hydroxyl
groups. Such tautomeric hydroxyl groups were not part of our input structures; hence, the
observed neutral water losses are indirect evidence supporting the need to systematically
include tautomers. This large effect of tautomers on the performance of QCEIMS predic-
tions might explain the strange bimodal distribution of weighted dot product similarity
scores that we found for a range of compound classes, distinguishing well-performing from
poorly performing compounds within each structure class. Future studies could investigate
whether tautomers of the poorly performing structures could yield better MS similarity
scores. However, exploring all possible isomers was computationally too expensive to be
conducted here. An alternative reason for bimodal distributions of weighted dot product
scores in molecular structure classes could be that when QCEIMS does not accurately
predict the abundance of the molecular ion, it is heavily penalized by the mass-weighted
dot product score, more than when using the cosine similarity score. Thus, investigating the
molecular ion prediction of QCEIMS was necessary. While we found for both pyrimidines
and lumazines that the incorrect prediction of the abundance of molecular ions (ranging
from 98% overestimation to 79% underestimation) significantly contributed to the lowered
weighted dot product scores, other factors such as tautomerism undoubtedly contributed
as well.

Another possible source of error is the semiempirical model used for simulating the
fragmentation trajectories, although OM2/OM3 is among the most accurate choices for
semiempirical models. It is possible that running some fragmentation trajectories using
ab initio methods such as hybrid density functional theory (DFT) methods, for example,
could result in more accurate mass spectra, but we have not evaluated this possibility.
Such studies could inform future efforts to improve the accuracy of theoretically predicted
EIMS spectra.

Low dot product score mass spectral similarities occurred as a result of an inaccurate
prediction of ion abundances, an overprediction of fragmentation reactions (thus creating
false ions), and/or lack thereof (absent ions).
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An overprediction of fragmentation reactions was not the main reason for the low
score because the number of falsely predicted new ions (cut at 2% abundance) was low
with an average of three ions per spectrum (see Figure S5 for more detail). Instead, low dot
product scores were caused by an insufficient prediction of ions to be generated. While the
overall fraction of the correctly predicted presence of fragment ions in each spectrum was
reasonable with a 65% average, an underestimation of fragmentation ions also led to lower
ion intensities and thus, lower dot product score matches. Overall inaccurate ratios of ion
abundances may also be caused by underestimating the stability of fragment ions, leading
them to undergo further fragmentation in QCEIMS.

Both purines and pyrimidines are known to undergo retro Diels–Alder reactions.
Compared to purines, mass spectra of pyrimidines contained fewer fragment ions with
moderate to high relative intensities. QCEIMS predictions reproduced these spectra very
well, especially for the primary fragment dissociation reactions that led to abundant frag-
ment ions. Consequently, QCEIMS predictions of pyrimidine spectra yielded better MS
similarity scores than for any other class of molecules investigated here. Most likely, this
performance is due to their simpler structures with only one aromatic ring. Conversely,
purines have more degrees of freedom in possible fragmentation pathways because they
are composed of two ring structures. Purines fragmented in more complex patterns, yield-
ing experimental mass spectra with many more ions in varied intensities in addition to
clusters of fragment ions, possibly because of hydrogen-rearrangements and use of a wide
number of low frequency fragmentation pathways. However, QCEIMS predicted extra
peaks that were not observed in multiple experimental mass spectra of purine-related
compounds, demonstrating the difficulty of correctly following the high number of tra-
jectories in QCEIMS. Nevertheless, QCEIMS was able to predict many of these complex
fragmentation patterns in purines. Overall, we observed better QCEIMS performance for
smaller and simpler structures. However, within each class of compounds, a high variance
of QCEIMS performance was noted. Outliers with very low scores were not only found for
purines but also for pyrimidines.

Despite the high variance of MS similarity scores of QCEIMS predicted spectra and
outliers, 59 out of 80 molecules were ranked within the top 10 hits and more than half
were correct in the top 5 hits when the QCEIMS predicted spectra were used to identify
the molecules searching against the NIST 17 library (Table 1). Moreover, 45% of the
molecules were correctly identified by matching their calculated spectra to NIST 17 library
spectra as the top choice (Table 1). These data confirmed results previously reported
for smaller molecules [33]. However, compounds used in our report were larger and
more complex. We also showed that the use of QCEIMS predicted spectra for compound
identification was directly related to the number of structurally similar molecules in the
NIST 17 library. In such cases, we advise using secondary lines of evidence to further rank
the most likely structure candidates, such as retention time or biological likelihood [43,44].
Correspondingly, if hits are constrained to very small libraries, false discovery rates may
appear very good, while false negative hits would increase. Hence, the discovery of
unexpected molecules predicted by methods like QCEIMS would be limited if based on
biology- or literature-based constraints. Calculating QCEIMS spectra of novel compounds,
possibly even for novel molecular classes, could become feasible in the identification of an
unknown compounds in non-targeted analyses.

Besides prediction accuracy, the computational cost of QCEIMS is a crucial concern for
practical applications. On average, QCEIMS took 41.6 h to calculate one mass spectrum for
a system with fewer than 23 atoms. For different chemical classes, computing times varied
from 30.8 h for a smaller xanthine to 63.5 h for a larger quinazolinedione (Figure S1). Com-
putational costs are directly related to the dissociation steps in MD for which the software
propagates the number of simulations by 25x the number of atoms in the system. However,
most calculations could be performed in parallel except for the starting ground-state MD.
While in silico spectra can be computed on personal workstations, the use of computer
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clusters to parallelize the computations on multiple nodes is advantageous, especially if
predicting spectra of large numbers of molecules (thousands or more) is desired.

4. Methods
4.1. Selection of the Sample Molecules and Preparation of Their 3D Structure

To test the performance of QCEIMS predictions, we selected experimental 70 eV mass
spectra of 80 different underivatized purines and pyrimidines from the NIST 17 database.
The molecules were selected via a Chem Axon substructure search. We generated three-
dimensional molecular structures of all 80 compounds with Avogadro2 [45] and then
performed a coarse minimization for geometry optimization using the Universal Force
Field (UFF). The molecular structures were converted to Mol (*.mol) and TurboMol (*.tmol)
coordinate files for input into the QCEIMS software using OpenBabel (v2.3.90) [46].

4.2. QCEIMS Calculation

We used the 2013 release for the QCEIMS algorithm to produce all in silico electron
ionization (EI) MS spectra [23]. QCEIMS calls other software programs as part of its
overall procedure of EI-MS prediction. First, QCEIMS used the semiempirical program
MNDO99 [47] with the orthogonalization-corrected method OM2 [48] to perform energy
minimization of the input structure, followed by a ground state MD simulation that is
initially equilibrated to 500 ± 50 K in the constant temperature (NVT) ensemble, followed
by 50 ps of energy-conserving (NVE) dynamics using the velocity Verlet algorithm. From
the NVE trajectory, snapshots at regular intervals of 1 ps were selected as the initial positions
and velocities for fragmentation simulations. In order to approximate the internal excess
energy (IEE) resulting from electron scattering with a typical electron kinetic energy of
70 eV, the neutral molecule was ionized by removing one electron from the HOMO, then the
initial velocities were scaled such that the total kinetic energy matched a sample taken from
a Poisson distribution with an average value of 0.6 eV per atom [23]. This process often led
to fragmentation of the molecular ion. After the velocity scaling, a number of production
runs equal to 25× the number of atoms in the molecular ion were simulated in the NVE
ensemble with 0.5 fs time steps. The QCEIMS program analyzed each simulation trajectory
to identify fragmentation events. Following fragmentation, charges were assigned to ions
by estimating the ionization potential of each fragment at the PBE0-D3/SV(p) level of
theory followed by Boltzmann weighting; these DFT calculations used the Orca software
(version 3.0.0) [49]. Calculations were submitted via a Slurm workload manager to a
compute cluster consisting of up to three Intel Xeon E5-2669A (2.40 GHz, 88 threads) nodes
with 128 gigabytes of RAM, using 64 cores and 8 GB per QCEIMS calculation.

4.3. Analysis and Evaluation of Mass Spectra

Trajectories from the QCEIMS calculations were investigated via the Visual Molecular
Dynamics software (VMD) [50]. Mass spectra were matched to experimental EI spectra by
calculating the weighted dot product and cosine similarity scores [15], see Equations (1)–(3):

Cos =
ΣIL IU√
ΣI2

LΣI2
U

× A, (1)

Weighted Dot =
ΣWLWU√
ΣW2

LΣW2
U

× A, (2)

W =
[

Peak Intensity]0.6[Mass]3. (3)

Here, I refers to un-weighted intensities, and W refers to weighted intensities calcu-
lated according to Equation (3). The subscript U refers to the calculated values, the subscript
L refers to the empirical data, and the summation is over the union of all computed (U) and
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experimental (L) peaks. The scaling factor A is 1000. The weights m and n for calculating W
were chosen as 0.6 and 3.0 [15].

5. Conclusions

QCEIMS calculations work sufficiently well to be used for small molecule fragmen-
tation predictions of aromatic and ring-structure compounds. Similarity scores of >600
were routinely achieved, and few erroneous fragment ions were predicted. Further im-
provements in QCEIMS software may include a more systematic approach to the potential
energy surface. In addition, tautomeric structures need to be comprehensively predicted as
input into molecular ensembles. Computational times averaged at approximately 41 h per
compound using a 44 core CPU node for molecules with fewer than 23 atoms, meaning
that QCEIMS can be deployed for large arrays of computed molecular structures if cloud
computing resources are used.
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