
UCLA
UCLA Electronic Theses and Dissertations

Title
Learning Bipedal Locomotion Using Central Pattern Generators and Deep Reinforcement 
Learning

Permalink
https://escholarship.org/uc/item/8t44962j

Author
Vinella, Avalon

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8t44962j
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Learning Bipedal Locomotion

Using Central Pattern Generators and Deep Reinforcement Learning

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Avalon Eleven Vinella

2024



© Copyright by

Avalon Eleven Vinella

2024



ABSTRACT OF THE THESIS

Learning Bipedal Locomotion

Using Central Pattern Generators and Deep Reinforcement Learning

by

Avalon Eleven Vinella

Master of Science in Computer Science

University of California, Los Angeles, 2024

Professor Demetri Terzopoulos, Chair

We present a biomechanics-based framework for the locomotion of a muscle-actuated

human model that is driven by Central Pattern Generators (CPGs). Our CPG system

directly generates the activation signals of 22 lower body muscles to reproduce the

oscillatory patterns of locomotive bipedal stepping. We employ a dual-module architecture

that trains a CPG Tuner network and a Reflex Controller to jointly adjust the muscle

signals during simulation in order to adapt to the challenges of 3D bipedal locomotion.

These modules are trained simultaneously using the Soft Actor-Critic (SAC) reinforcement

learning algorithm. Our CPG system achieves stable, realistic walking and we observe

promising results toward task-driven locomotion and adjustable gaits.
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CHAPTER 1

Introduction

Simulating locomotion is a pertinent problem in a wide array of fields, including computer

animation, robotics, and biomechanics. In particular, dynamic and autonomous bipedal

locomotion is an important skill for artificial humans, and there are various approaches to

effective locomotive controllers depending on the specific use case. This thesis considers

the problem of bipedal locomotion within the scope of biomimetically animating a

biomechanically simulated musculoskeletal model.

Deep Reinforcement Learning (DRL) is a highly suitable approach for the task of

learning locomotion, as it adopts an informed trial-and-error method inspired by natural

learning. A DRL model learns to execute a task through user-engineered rewards based

upon observations of the state at each step. For a dynamic human model, the DRL model

may control movement through several outlets, such as the joints or muscles. In our

case, we would also like to consider physiological systems that may contribute to or assist

human locomotion. Central Pattern Generators (CPGs) are spinal circuits that produce

rhythmic movements irrespective of cerebral control or peripheral movement feedback.

In simulated biomechanical systems, we can treat CPGs as a system of oscillators that

directly control muscle activation.

In this thesis, we utilize deep reinforcement learning to produce oscillation-based

bipedal locomotion of a biomechanical human model through the tuning of central pattern

generators.
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1.1 Motivation and Contributions

The problem of simulated locomotion is already a well-explored field, especially within

the context of deep learning. However, while the inclusion of CPGs in such models is less

prevalent, the physiological system offers several merits.

Our primary motivation in integrating CPGs into conventional reinforcement learning

techniques is to emphasize anatomical fidelity and biomechanical accuracy. Unlike simpler

articulated bodies driven by joint motors, a muscle-actuated model is meant to more

closely mimic the anatomical basis and dynamics of actual human movement. Thus, we

strive to generate locomotion using a physiologically rooted system. Our investigation not

only works to improve the learned gaits from a visual or aesthetic perspective, but also to

elucidate how the biological CPGs may contribute to human locomotion in real life.

An added benefit of using CPGs to enhance the realism of the simulation is improved

explainability. Pure mimic-based or reflex-based control will often operate upon a “black

box” paradigm in that, beyond how one formulates the reward mechanism, it is difficult

to determine what training data the model is leveraging to improve. By introducing an

additional layer of control via the CPG oscillators, through examination of the CPG

signals that determine the appropriate muscle activations, we can observe how the model

adjusts the CPG weights and parameters to activate muscles so as to best achieve its

goal. This gives us valuable insight into specific oscillatory patterns that are desirable

and most effective toward successful locomotion.

Lastly, using CPGs as a low-level muscle control mechanism yields the potential for

simple and user-accessible tuning and control of locomotion. As Chapter 2 and Chapter 6

will explore, CPG generated gaits can often be modified via a few simple parameters,

such as frequency and amplitude, rather than requiring additional resources to train a

new model to reproduce a different gait.

Our research develops previous work in the field of CPG-driven locomotion in multiple

novel directions. First, we use the CPG as a method of generating the action, not as a

target or reference pattern as some previous works do; the CPG directly drives the final
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locomotion of our musculoskeletal model. Similarly, we output muscle activation signals

rather than joint torques, which is closer to how a biological CPG would operate. Our

humanoid model is biomechanically-based and it simulates muscles on top of traditional

articulated dynamics. Our model is also generally more complex than the models used

in prior work, which often resemble simple quadrupeds. This raises additional issues of

balance and a larger action space, which make stable bipedal locomotion more challenging.

1.2 Overview

The remainder of this thesis is organized as follows:

Chapter 2 explores related work in the animation, robotics, and biomechanics fields.

Chapter 3 details the implementation of our learning-based CPG system.

Chapter 4 introduces our proposed dual-module locomotion controller, which is

comprised of a CPG Tuner and Reflex Controller, along with the method in which we

train them.

Chapter 5 specifies the simulation details of our experiments.

Chapter 6 reports experiments that we performed in formulating our models, including

phase regulation and task-driven training.

Chapter 7 further elaborates on our design decisions and compares our methods to

alternative approaches to tackling similar problems.

Finally, Chapter 8 presents our conclusions, the limitations of our work, and promising

avenues for further exploration.
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CHAPTER 2

Related Work

While various studies have demonstrated the existence of CPGs among certain quadrupedal

species, it has not yet been proven that they are also present in humans and, if so, how

they contribute to bipedal locomotion. Nevertheless, in simulated biomimetic systems,

schemes that integrate CPGs have shown advantages in ease of control and robustness

over purely reflex-based systems. To contextualize our work and justify the relevance of

CPGs, we review related studies on locomotion and CPGs from the domains of physiology,

robotics, and computer animation in both the biological and artificial contexts.

2.1 Biomechanical Human Animation

In contrast to animating human models via the direct application of torque at joints,

biomechanical animation enables the dynamic generation of motion through the modeling

of contractile muscle forces that actuate the skeleton realistically. Human bodies are

highly complex, and realistic muscle-actuated models require both musculoskeletal detail

and sophisticated controllers to act as the motor center of the “brain”. In view of the

complexity of human anatomy, the problem of biomechanical human animation is often

broken into smaller musculoskeletal groups; previous works have focused specifically on the

face (Lee et al., 1995; Kähler et al., 2002; Sifakis et al., 2005), neck (Lee and Terzopoulos,

2006), upper body (DiLorenzo et al., 2008; Zhou, 2019; Zordan et al., 2004; Lee et al.,

2009), hands (Sueda et al., 2008; Tsang et al., 2005; Nierop et al., 2008), and legs (Wang

et al., 2012; Dong et al., 2002; Delp et al., 1990). A few researchers have successfully

animated the biomechanical structure of the entire body Nakamura et al. (2005); Si et al.
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(2015); Zhou (2019).

Control of physics-based human models take many approaches. Faloutsos et al. (2001)

developed composable controllers to perform a variety of dynamic full-body movements

by transitioning between key poses. Nakada et al. (2018) and Zhou (2019) leverage deep

neural networks to learn cooperating neuromuscular motor controllers for each of the 6

musculoskeletal complexes—torso, cervicocephalic, 2 arms, and 2 legs. Specifically in

the realm of locomotion, Song and Geyer (2015) used a reflex-based approach in which

a “spinal” layer responds to the body state and environment and a “supraspinal” layer

handles the gait control. Reinforcement learning is also a popular approach to the control

of muscle-actuated locomotion, which we will explore further in Section 2.3.

2.2 Central Pattern Generators

CPGs on their own are a compelling area of study as a potential source of locomotive

impulses inherent to some vertebrates. Minassian et al. (2017) explored the uncertain

existence and role of CPGs in human locomotion through the review of biological studies

and modeled biomechanical systems, providing arguments for and against their presence.

It is difficult to prove with certainty that the CPG circuits actually contribute specifically

to human locomotion; nevertheless, the authors posit that the stepping reflex demonstrated

by infants may be mediated by CPGs that are later adapted into the adult locomotion

system. This concept of a pipeline of locomotive development beginning with CPG signals

is analogous to our RL approach, inasmuch as we begin with a basic CPG system that

is iteratively tuned and combined with supporting systems to produce stable bipedal

locomotion. Most relevant to this work, the authors note that in comparing modeled

bipedal locomotive systems, those that used a CPG were more resistant to perturbation

and generally were simpler models in that the speed and gait was easily changeable

through the adjustment of a few parameters. Similarly, Ijspeert (2008) outlines the

benefits of using CPGs in robotics and further describes CPG design considerations. In

addition to the aforementioned stability, robustness, and ease of adjustment, he also
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highlights the scaling capabilities of CPG based systems, including the integration of

sensory feedback signals and learning algorithms.

Ijspeert (2001) and Ijspeert et al. (2007) thoroughly investigate the implementation of

CPG systems in simulated and physical salamander robots. They designed CPGs for the

body and limbs of an artificial salamander such that it could successfully swim in water

and trot on land subject to the tonic states of the muscle actuators and the external

forces. In addition to the limbs, the sinusoidal motion of the body also contributes to both

terrestrial and aquatic locomotion. Similar to an RL approach, they employ a genetic

algorithm to learn optimal CPG parameters according to a fitness function. Control is

realized by applying a “drive” to the system that modulates the oscillation frequency and,

in the robotic implementation, determines the type of gait.

Using a comprehensive biomechanical human model, Si et al. (2015) apply CPGs

to control the more complex problem of realistic simulated human swimming. Their

CPGs output the desired muscle lengths, which are then fed into a PD feedback loop

to synthesize the activation signal to achieve that length. Their virtual swimmer learns

to mimic various swimming styles using incremental locally weighted regression (ILWR)

to extract the fundamental frequency of key-framed reference swimming motions, as in

Gams et al. (2009). In this method, different swimming styles yield different learned

weights for the CPG parameters. Once learned, a higher-level voluntary controller can

easily switch between and alter the swimming style and speed of the model. However,

their external factors accounted only for the forces between the water and the deformable

skin and flesh of a body that floats rather stably; thus, their CPG controller alone will

not suffice for terrestrial locomotion, which requires continual adjustments for balance.

2.3 Locomotion Using Reinforcement Learning

Lee et al. (2019) use DRL to control the muscle actuators of a complex biomechanical model.

Notably, their scheme is able to simulate a fair number of muscles in the musculoskeletal

system. Essentially, they solve an underspecified inverse kinematics problem in which
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the muscle activations are determined based on the desired joint movements specified by

reference data; here, they utilize DRL to skip the computation of a complex dynamic

numerical system.

Peng et al. (2018) achieve physically-informed movements based upon kinematic data

through a task-oriented RL model. Their strategy utilizes a neural network that maps

pairs of body states and goals to a distribution over the action space. Their larger RL

model then learns which actions will best mimic motion-captured or key-framed reference

data while also achieving various task objectives, such as moving in specified directions or

traversing uneven terrain. This approach is not biomechanically based, but it nevertheless

demonstrates the success of applying RL to learn realistic movement.

2.4 Integrating CPGs and RL

Especially in the robotics field, there have been more explorations of the use of CPGs in

RL models. Bellegarda and Ijspeert (2022) use DRL to learn the oscillation parameters of

the CPG of a physical quadraped robot. A key experiment in their approach is the level

of sensory information that should be included in the model’s observation space. They

found that the overall position and velocity, foot contact, and CPG states were sufficient

to generate locomotion that was robust to significant perturbation. Unlike our work,

however, their CPG is not learned or adjusted over an episode, and is instead treated as

another observational body space.

More similar to our approach of learning a CPG, Campanaro et al. (2021) use CPGs

as actors in actor-critic RL feedback loops. They employ a multilayer perceptron (MLP)

model that processes sensory data to feed into the CPGs to generate natural and robust

gaits. The weights of the MLP and CPG are trained together to maximize symbiosis

within the system and encourage the best utilization of each component.
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CHAPTER 3

CPG Implementation and Control

As previously described, CPGs are spinal circuits that induce periodic motor patterns in

vertebrates. We utilize these oscillatory circuits to directly produce the muscle activation

signals that will actuate the simulated biomechanical human model.

3.1 Dynamical System Model

We formulate CPGs as nonlinear dynamical systems as in (Gams et al., 2009), since this

approach allows us to model the CPG after an existing oscillatory signal.

The trajectory of the system y represents the output signal of the CPG. The oscillation

of the system around an anchor point g is characterized as follows:

ż = Ω

(
αz(βz(g − y)− z) +

ΣN
i=1Ψiwir

ΣN
i=1Ψi

)
(3.1)

ẏ = Ωz (3.2)

Ψi = exp(h(cos(Φ− ci)− 1)). (3.3)

The intermediate variable z(t) describes the first-order derivative of the trajectory y, and

Φ is the phase of the signal. Here, Ω is the fundamental frequency; as we are modeling

stepping as a periodic motion, we can consider Ω as a constant
2π

T
, where T is the period

either extracted from the reference motion or specified by a goal task. As in (Gams et al.,

2009) and (Si et al., 2015), we set the positive constants αz = 8 and βz = 2 to ensure

critical damping such that we establish monotonic variation around the anchor point g.

N denotes the number of Gaussian-like periodic kernel functions Ψi of width h. Again,

8



we follow Gams et al. (2009) and Si et al. (2015) and use N = 25 and h = 2.5N for all

simulations, with ci equally spaced between 0 and 2.5π over N intervals. The amplitude

control parameter is r, which is initially set to 1.0.

3.2 CPG Learning

We desire a trajectory modeled after a reference pattern generated from the muscle

patterns of reflex-based locomotion. To this end, we initialize the weights wi of the CPG

system using Incremental Locally Weighted Regression (ILWR) (Vijayakumar and Schaal,

2000) to minimize the quadratic error

Ji =
P∑
t=1

Ψi(t)(ftarg(t)− wir(t))2, (3.4)

in reference to the target data

ftarg =
1

Ω2
ÿdemo − αz

(
βz(g − ydemo)−

1

Ω
ẏdemo

)
, (3.5)

formulated using the reference muscle activations ydemo.

As specified by Gams et al. (2009), locally weighted regression can be performed

in a batch or by incrementally minimizing Ji to accommodate an input signal stream.

We choose the latter in order to reduce the effects of noise and perturbations that may

be present in our reference signal. In this scheme, we perform incremental regression

using recursive least squares with a forgetting factor of λ; note that if λ = 1, batch and

incremental regression will learn the same weights wi. Depending on the reference data

we use, we set λ ∈ [0.95, 0.99], since a forgetting factor less than 1 encourages a bias

toward the most recently seen data.

Error Ji is minimized by iteratively updating the kernel weights as follows:

wi(t+ 1) = wi(t) + ΨiPi(t+ 1)r(t)er(t), (3.6)

9



Figure 3.1: One cycle of input data and the learned CPG generated activations for some
right side muscles in a 2D environment. Dashed lines indicate the target, while solid lines
are the corresponding learned trajectories.

where

Pi(t+ 1) =
1

λ

Pi(t)− Pi(t)
2r(t)2

λ

Ψi

+ Pi(t)r(t)2

 (3.7)

and

er(t) = ftarg(t)− wi(t)r(t). (3.8)

Here, Pi is the inverse covariance matrix as introduced by Söderström and Ljung (1983),

and er is the weight learning error, which evaluates how well the current weights approxi-

mate the target data. We begin regression with wi = 0 and Pi = 1.

In Figure 3.1, we see that the system captures the overall shape of different input

signals while smoothing noise in the data.

During RL training, the model will tune the CPG’s parameters using the modulation

signals φ and the vector ρ, where φ modulates the phase velocity to adjust the frequency

10



and each ρi will modulate amplitude and thereby the strength of the output signal.

The non-linear behavior of the CPG ensures smooth modulations, and we can modify

Equation 3.1 to include the modulators

ż = Ωtuned

(
αz(βz(g − y)− z) +

ΣN
i=1Ψiwiρir

ΣN
i=1Ψi

)
, (3.9)

where

Ωtuned = (1 + φ)× Ωoriginal. (3.10)

This dynamical CPG design allows for effective learning from reference signals as well as

smooth subsequent adjustments, which best suits our online training needs.
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CHAPTER 4

Learning Locomotion

Simply learning and reproducing a periodic signal via our CPG system is insufficient to

drive stable bipedal locomotion. The imitated reference signal is merely a starting point

to encourage our locomotion controller to emulate a stepping pattern, but it must be

further refined in order to adapt to time-dependent body states and environments. To this

end, we make use of deep reinforcement learning to iteratively improve our controller’s

performance and robustness.

4.1 Soft Actor-Critic

We employ a Soft Actor-Critic (SAC) DRL model as introduced by Haarnoja et al.

(2018) as the learning network for tuning our CPG. At its core, it operates utilizing an

actor-critic architecture in which an evaluation policy (the critic) iteratively judges a

value function (the actor) such that the actor is incentivized to converge to an optimal

function via stochastic gradient descent. The off-policy nature of SAC encourages diverse

behaviors and the actor’s broad exploration of the continuous action space by augmenting

the standard maximum reward learning objective with an entropy maximization term.

Appendix A presents the formulation and algorithmic details.

4.2 Dual-Module CPG and Reflex Control

We propose a learning network that consists of a dual-module architecture in which a

parallel CPG Tuner and Reflex Controller are trained and combined such that both are

12



Figure 4.1: The dual-module architecture of our locomotion controller. Our feature
extraction transforms the body state s into a latent space representation zs, which is then
fed to both the CPG Tuner and Reflex Controller. Φ is current phase of the CPG, g
is a goal presentation, and acpg are the current outputs of the CPG, which are muscle
activations. The CPG Tuner outputs adjustments φ and ρ to the signal’s frequency and
amplitude, respectively, while the Reflex Controller outputs muscle activations areflex.

actors within the SAC policy. We prefer to isolate the two controllers so that the user

is able to enforce balance between their contributions to the policy; in some cases, the

model may learn to rely solely on the reflex controller, which is undesirable. We want to

ensure that the CPG is being properly and effectively utilized in the network while being

supported by the reflex controller. The intention of this scheme is for the CPG to act as

the voluntary control over the locomotive patterns.

Both modules have access to a latent space representation of the body state, as well

as a goal representation. To most simply encourage a locomotive motion, we provide the

model a reference motion sequence, which we generated using the reflex-based controller

introduced by Song and Geyer (2015) in a 2D environment (further details are provided

in Chapter 5).

This SAC actor outputs a concatenation of the outputs of the CPG Tuner and Reflex

Controller, as detailed in the following sections.
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4.2.1 CPG Tuner

The CPG Tuner network outputs changes to the signal’s frequency φ and amplitude

ρ as described in Section 3.2. In cases where the signals for individual muscles should

be learned separately, the signals will share a fundamental frequency, but will allow for

independent tuning of their respective amplitudes.

At the beginning of training, the CPG kernel weights are randomly initialized. Over

the length of the episode, the model learns to adjust the CPG weights and parameters

to best maximize the reward function. At each training checkpoint, which occurs at

user-specific intervals, the learned CPG weights at the end of the preceding episodes are

averaged to serve as the new initial weights; this will effectively learn better initial weights

to make more efficient use of each episode’s learning.

4.2.2 Reflex Controller

The Reflex Controller additionally sees the current CPG’s output signals in its observation

space, which it utilizes to output muscle activations based on how the bipedal model

should reflexively respond to the environment in order to maintain balance. Its behavior

is learned directly by the SAC policy; over the course of training, it learns how to keep

the CPG-driven skeleton from falling or otherwise failing.

4.3 Reward Design

The key to the reinforcement learning approach is the design of the reward function; the

model can only properly learn given the right components that lead to reward or penalty.

We carefully choose what we consider to be a successful or failed attempt at locomotion

and evaluate the model’s performance appropriately. A core piece of our reward is the

mimicking of the reference sequence; the model is rewarded on its similarity in position

and velocity to the reference. We crucially penalize the model for early termination; that

is, falling, or straying too far from the reference sequence. In our scheme, these two
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factors are the main drivers toward locomotion. Unlike other DRL approaches, we do not

expressly reward the model for moving in the horizontal plane. We also include penalties

to enforce smoothness, such as joint constraints and action regularization. The resulting

reward function for each training step for our base model is then formulated as

r = wmrm + wclippclip + wsmoothpsmooth + wearlypearly, (4.1)

where pclip penalizes activation outputs outside of the rang [0, 1], psmooth is a consolidations

of penalties associated with the regularization of the total action space, pearly is the penalty

for early termination, and the mimic reward is defined as

rm = wqrq + wuru + were, (4.2)

where rq is the reward for joint positional and rotational similarity, ru for joint positional

and angular velocity similarity, re for positional similarity of the end effectors, and wq,

wu, and we are their associated weights.

4.4 Fine-Tuning

We train a baseline model with the reward function as described in Section 4.3. The

training session is intended to teach the model what the overall pattern of locomotion

should look like and how the CPG tuner and reflex controller should be adjusted to

achieve that motion. In practicality, however, we do not want the model to replicate only

the reference sequence; instead, we would like to be able to extrapolate the reference

movement to achieve similar but altered gaits. To achieve this, we modify the reward

function in a fine-tuning process that continues after a significant number of training steps.

The particulars of varying the fine-tuning reward functions are explored in Chapter 6.
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CHAPTER 5

Simulation

To conduct our muscle-driven experiments, we primarily use OpenSim (Delp et al., 2007),

an open source software system for biomechanical modeling, simulation, and analysis.

This chapter summarizes the practical details of our implementation, including the models

and simulation methods.

5.1 OpenSim

The OpenSim API was specifically developed for the simulation and analysis of biome-

chanical motion and thus adequately suits our needs for muscle-driven dynamics. We

modify the OpenSim-compatible Gymnasium learning environment used in the 2017–2019

NeurIPS “Learn to Move” competitions (Towers et al., 2023; Kidziński et al., 2018) in

concert with the Stable Baselines3 implementation of SAC (Raffin et al., 2021).

5.1.1 Biomechanical Model

OpenSim uses a custom model format, in which external and internal forces are pre-

specified within the model file. We use a simplified model presented by Kidziński et al.

(2018), which simulates a total of 22 lower body muscles (11 for each side of the body)

and 14 rotational degrees of freedom at the joints. Appendix B provides descriptions of

each included muscle. For simplicity, the upper body of our model is arm-less and does

not articulate. Muscles are modeled as Hill-Type actuators that connect bones and exert

a spring-type force at its attachment points as in Thelen (2003). Joint constraints are

also represented as rotational spring forces that limit rotation beyond realistic thresholds.
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Figure 5.1: Front and back views of our OpenSim model created by Kidziński et al. (2018),
with 22 muscle actuators in the lower body and 14 degrees of freedom.

Each episode of simulation initializes the model using the same initial pose, which is taken

from a timestep of the reference sequence that we determined to be the most conducive

to our CPG signal. After sampling poses from the reference data, our chosen initial pose

induced the longest lasting locomotion using only the unmodulated CPG outputs.

5.1.2 Muscle Control and Simulation

We tune a CPG system in which each muscle has its own corresponding CPG signal,

as previously detailed in Chapter 3. Every muscle is activated according to a linear

combination of the outputs of the CPGs and Reflex Controller, both of which are direct

muscle activations.
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At each step, we perform forward dynamics based on the activations of each muscle

to drive the skeleton. Once each muscle is actuated, the musculotendinous forces are

calculated according to the Hill-Type model, the specifics of which are provided in

Appendix C. Once the internal and external forces are calculated, Runge-Kutta-Merson

integration is used to update the joints and bone rigid bodies as appropriate. We use an

integration accuracy of 5e-5 and a step size of 0.01.

5.1.3 2D vs 3D Environments

We employ two models in our OpenSim trials; one that restricts movement in the

lateral plane, and one that does not. The restricted 2D environment ensures that the

biomechanical model will not turn or lean to the sides. This increases the likelihood

of the model staying upright, thus making locomotion easier. We perform some of our

experiments in this 2D space to examine how various factors affect the CPG, and later

develop our controllers in the more challenging 3D environment.

Another challenge of the 3D space is the reduced usefulness of the reference sequence,

which is recorded in the 2D space. Simply mimicking the reference will not produce

stable locomotion in this approach, so it is essential that the model learns and relies on

an effective CPG pattern. The model may also need to rely more heavily on the reflex

controller to maintain stability.
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CHAPTER 6

Experiments and Results

Our experiments are conducted as fine-tuning trials in the OpenSim framework, in which

we continue training on top of a pretrained baseline model as described in Section 4.4.

The training and testing environment runs for ten seconds of simulation time, and we

simultaneously run ten instances during training.

6.1 Baseline Model

We evaluate the experimental results reported in this chapter relative to the performance

of a baseline model, which was trained for 14.8 million training steps. We reference its

muscle activations, CPG phase, and footsteps in Figure 6.1 for comparison. Note that

the left and right footsteps are uneven, where the left foot typically maintains contact

with the ground for longer. This model does not consistently walk upright for the entire

testing episode.

6.2 Time-Aware vs Timeless

In our initial formulation, we gave the RL model access to time observations. However,

after removing this access, we found remarkable improvements in generating a steady gait.

We believe that the model was learning a sequence of poses based on the observed time

and ignoring the CPG information, which ultimately made the biomechanical locomotion

model less robust and unable to walk more than a few steps without falling. Making a

timeless model ensures that it is predicting muscle activations based on the body and
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(a)

(b)

(c)

Figure 6.1: 10 seconds of simulation in the evaluation environment of the baseline 3D
model. (a) The muscle activations of the right and left lower body muscles. (b) The
CPG’s phase, as well as φ, the frequency tuning variable. (c) The occurrence of each
footstep within cycles of the CPG.
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CPG states instead of abstract markers.

6.3 Phase Regulation

As the baseline model continues to step forward within an episode, we observed that the

CPG would slowly fall out of phase with its expected fundamental frequency, generally

via a slight increase in frequency that compounds over the episode. It is unclear whether

this stems from similar behavior in the reference motion or from another source. However,

in the 2D environment, we are able to mitigate this deviation by adding an appropriate

penalty to the reward function. When the CPG approaches the end of a cycle, it is

penalized according to the distance from the expected phase based on its initialized phase.

Note that it is not necessarily desirable to limit the entirety of the cycle to the expected

phase, as different phases of the stepping motion may benefit from taking more or less

time. With this penalty, the resulting phase is much more similar to the expected phase,

ensuring that the basic oscillatory property of the CPG is well utilized, as shown in

Figure 6.2a.

However, it must be certain that the CPG signal does not fall out of phase with the

expected cycles of the model’s footsteps. If this were to occur, the muscle activations

supplied by the CPG would no longer be appropriate for the model’s current locomotion

phase, and the model will ultimately fall. Thus, we additionally penalize the angular

distance of the stepping’s phase from the CPG’s phase. The isolated effects of this penalty

are shown in Figure 6.2b. This will encourage more stable locomotion over longer episodes.

The combination of the two penalties, however, seemed both to shift the CPG phase

away from the expected period and to generate rougher phase patterns (Figure 6.2c).

Additionally, we noted that in our 3D experiments, the time dependent phase regulation

did not have a strong impact on the CPG output signals, which were more inconsistent.

We believe this indicates that due to the increased challenge of balance in the lateral

direction, the model either prioritizes the output of the reflex controller over the CPG

signal or fluctuates the signal’s frequency too much for the regulation to have a distinct
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(a)

(b)

(c)

Figure 6.2: CPG phase, modulator φ, and footsteps using (a) time-based phase regulation,
(b) footstep-based phase regulation, and (c) a combination of the two.
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impact. In our later 3D experiments, we thus employ only the footstep-based phase

matching.

In practice, we also found that the first contact of the right foot does not occur when

the CPG’s phase is zero, but instead slightly later. This may be due to the initial, more

irregular modulations that occur at the very beginning of simulation during which the

CPG and reflex networks are adjusting from the initial pose. This is acceptable in terms

of realism, as the right step can include the “pre-swing” motion before contact. We

therefore define the phase “start” to be 0.1 in our later experiments.

6.4 Task Driven Locomotion

Ultimately, we would like our model to be able to emulate slightly different gaits depending

on user input. In these cases, we include goal-driven terms in our reward function such that

our model can adjust CPG parameters in order achieve different speeds and directions.

As the model must move further away from its reference sequence in order to realize

these velocity-based goals, we must significantly modify the reward function to increase

generalizability.

First, the reward for matching the end effector positions is heavily diminished. These

positions are described in global space and will necessarily differ when the velocity of the

model is changed. Nevertheless, we found that excluding them from the reward function

entirely resulting in the model adopting non-stepping and non-cyclical motions to achieve

specific velocities, such as jumping forward. Therefore, we instead lower their impact

on the reward. Similarly, we ignore global positions and translational velocities in the

goal sequence, which effectively removes the pelvis translational position from the mimic

reward. To support turning, we ignore the yaw of the pelvis. We also partially disable

early termination and its corresponding penalty, as it partly judges based on the difference

of joint and end effector positions compared to the reference sequence.

To support different speeds, we also sample the reference sequence by aligning the
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phase of its footsteps to the phase of the CPG, rather than time-based indexing. This

modification not only assists in task-driven locomotion, but generally makes our model

more robust, as perturbations that might disrupt the model’s normal stepping will not

throw it out of sync with the reference motion.

Finally, we include the reward for reaching the desired velocity. For our purposes,

we only care about movement in the horizontal plane; the height of the body is free to

change as it does in natural human gaits. The current body state is compared the task

defined in the observation space, and it is appropriately rewarded for its similarity:

rtask = exp(−wtask(∥vt − vgoal∥2)
2), (6.1)

where the y component of vt has been set to 0.

We separately examine trials in which the trajectory of the goal velocity is changed and

its speed. Potential explanations and implications of these results are further discussed in

Section 7.1.

6.4.1 Turning

We note that in our baseline, the model will drift toward the left side, seemingly due to

a consistent imbalance in the length of the left and right footsteps. We find that when

we set the goal velocity to be straight ahead (forward in the x direction), this issue is

mitigated, as the model is incentivized to travel forward.

Turning proves to be a more difficult task. Given that the mimic sequence only moves

in one direction, the mimic reward is heavily reduced if the goal direction is changed,

as the end effector positions are referenced globally. Still, the model will adjust toward

other directions along the horizontal plane. For example, when the goal velocity is set

to [1.5, 0.0, -1.5], the model will shift toward the right, as shown in Figure 6.3. It is

noteworthy that the model does not turn to align its pelvis toward the goal direction,

but rather adjusts the width of its footsteps such that the model “sidesteps” toward the
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Figure 6.3: Horizontal position of the biomechanical model over an episode with a goal
velocity of [1.5, 0.0, -1.5].

Goal speed Achieved speed (mean) Distance from goal speed

3D Baseline (no task) 1.410 -
0.5 1.332 0.832
1.0 1.377 0.377
1.5 1.476 0.024
2.5 1.519 0.981

Table 6.1: Resulting speeds of models trained to achieve a specific speed in the forward
direction, averaged over a testing episode.

correct direction; in order to move to the right, the left footstep are narrower and the

right footsteps are wider. This is demonstrated by the muscle activation in Figure 6.4a

and Figure 6.4b, in which the right abductors contract more than the left abductors, and

vice versa for the adductors. Figure 6.4c also reveals that the right footsteps take longer,

which confirms these observations.

At more extreme angles, the model ultimately ignores the goal direction in favor of

increasing the mimic reward.

6.4.2 Speed Changes

Our model is more resistant to changes in speed than changes in direction. Table 6.1

reports the achieved average speeds of locomotion compared to the goal speed. While the
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(a)

(b)

(c)

Figure 6.4: The muscle activations of the (a) right side, (b) left side, and (c) CPG phase
and footsteps of the biomechanical model with a goal velocity of [1.5, 0.0, -1.5].
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speeds are shifted slightly toward the desired trajectory, the changes are minimal. The

further the goal speed is from the baseline speed, the less correct the final model will be.
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CHAPTER 7

Discussion

7.1 Generalizability

Our locomotion controller depends on reference motion sequences during locomotion,

which ultimately reduces its generalizability in terms of the range of motions it can produce.

We saw some success in changing directions and speeds in Section 6.4; however, they are

hardly as extensive as we believe a CPG-driven locomotion controller is capable of. The

greatest impediment to our expected results is likely the dependence on a reference motion

sequence, as it limits the types of behavior that will be well-rewarded during training

despite our reward modifications. A few approaches and adjustments to the current

fine-tuning methods that may improve performance require further experimentation.

First, an appropriate balance of rewards and penalties must be found. This could

potentially be learned by another network for efficiency. In our experiments, rewarding

the goal task too heavily or removing the mimic reward encouraged the model to utilize

the CPG less and forgo a stepping pattern altogether. On the other hand, a low task

reward meant the model would not vary too far from the learned trajectories of the

reference data. The most straightforward way to amend the issue would then be to find

better-balanced weights that encourage the continued use of the CPG while modifying it

in an appropriate manner.

Another possible solution might be to restrict the model in some way that preserves

the overall shape of the CPG signal. Perhaps this could be introduced as a penalty that

compares the proposed trajectory with the original learned signal. This might allow

our CPG tuner to learn more mappings for more extreme yet stable modulations of its
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parameters while observing the general activation patterns in the original gait. On the

other hand, this may make the model less robust against environmental perturbations

that would otherwise require unexpected changes in the CPG signal in order to maintain

stability.

Lastly, we could consider a more brittle approach that involves adjusting the raw

reference motion data such that it matches the desired task trajectory. This would require

no adjustment to our current reward function or architecture. However, this is a rather

undesirable option as it both adds overhead to the task-driven model and undercuts the

value of the CPG as a robust source of locomotive control signals.

In exploring the generalizability of our model, we furthermore consider an alternative

method of adjusting the gait that does not involve retraining or fine-tuning the model.

7.1.1 Zero-shot Gait Changes

Several publications on CPG modeling explore the ability to achieve varying velocities

of a type of gait only by changing the high-level CPG parameters of frequency and

amplitude. We explore how our model handles this approach by manually adjusting the

CPG’s parameters at test time. This exploration comes with the caveat that our reflex

controller is fairly brittle in that it was trained to mimic one specific gait; in many of

these experiments, it is not able to adjust to the potentially unseen states created by an

altered CPG signal. Were it trained with a variety of CPGs or reference sequences, it

may be able to better support the direct modulation of CPG parameters.

By manually adjusting the frequency, we would expect a change in speed. In the

timesteps before the reflex controller fails and the model falls, we sometimes observe

shorter footsteps in terms of the amount of time the heels remain in contact with the

ground during a step. As shown in Figure 7.1, it does not consistently adjust the speed

as expected; nevertheless, there seems to be somewhat of a correlation between the

frequency and speed, particularly when comparing the maximum velocities. For example,

multiplying the fundamental frequency by 1.5 slows the model down in terms of its average
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Figure 7.1: Achieved velocities of trained models tested with modulated frequencies. Both
the mean velocity over the episode and the maximum velocity are reported.

Frequency multiplier 0.5 0.75 1.0 1.25 1.5 1.75 2.0

Episode length 4.0 3.7 10.0 4.0 7.0 9.1 4.7

Table 7.1: The episode lengths of models with modulated frequencies, which estimate
the amount of time the model performed standard stepping motions before falling or
otherwise failing.

speed, whereas most other multipliers greater than 1 will increase the speed. We also note

that if the frequency is too low, the CPG tuner is not able to match the footstep cycle to

the CPG; when using 0.5 as the multiplier, two cycles of footsteps occurred during one

CPG cycle instead of just one. This may explain why higher frequency trials tended to

last longer before falling down, as is reported in Table 7.1.

Amplitude modulation less directly affects gait style, as it determines the magnitude

of the muscles’ activations. Theoretically, this would only change the amount of energy

exerted during the stepping and the overall stiffness of the muscles but would not have

a particularly strong visual effect. Considering that our baseline model already applies
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Amplitude multiplier Mean velocity Max velocity

0.5 1.18 1.65

0.75 1.12 1.72

1.0 1.16 1.79

1.25 1.20 1.69

1.5 1.05 1.71

1.75 1.19 1.82

2.0 1.26 2.25

Table 7.2: Achieved velocities of trained models tested with modulated amplitudes. Both
the mean velocity over the episode and the maximum velocity are reported.

maximum activation to certain muscles during some phases of the step, increasing the

amplitude throws the relative muscle activities out of balance and causes the model to

fail almost immediately; thus, we only report results for reducing the amplitude during

test time. The models in all such trials lasted for the entire ten second episode.

While amplitude modulation is intuitively less useful in designing gait trajectories,

it does reveal which muscles the reflex controller employs the most to maintain stable

locomotion. For example, although the activation signals from the CPG should all be

less than 1 when the amplitude is manually scaled down, we observe that the hip flexor

group consistently reaches maximum activation in all trials. We also notice in Table 7.2

that the model’s velocity is impacted by amplitude variation, as the maximum velocity

achieved tends to increase with the amplitude multiplier. This makes sense, as gaits with

overall lower muscle activity would be unable to achieve higher speeds.

As we only learn one signal for the lower body activations, we are unable to easily

adjust each side independently; this behavior might result in turning, but our proposed

model does not offer such flexibility.
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7.2 Usefulness of the CPG

In several of our experiments, we have observed that the model learns a bias toward the

reflex controller’s output rather than effectively tuning and utilizing the CPG. Naturally,

this leads to a question of the usefulness of the CPG in the first place, given that many

have achieved successful biomechanical locomotion without it. We argue that despite

some obstacles, CPGs still offer many benefits in biomechanical locomotion. First, in

many of these cases, we cannot be sure if the undesirable results are due to a fundamental

unsuitability of employing CPGs, or simply a problem of getting trapped in local optima

during learning. When we encounter such an issue, we are generally able to reformulate

our rewards and architecture to avoid them. Second, stable, extendable, and adaptable

locomotion would be much more difficult to achieve just from a single reference sequence;

we see this even in our own results in Section 6.4 and Section 7.1.1. Still, we are able to

facilitate small modifications to the reference gait, which would likely be more difficult

without a CPG. CPGs allow for an analysis of fundamental stepping patterns that

enables the model to extrapolate beyond the original reference data. Lastly, the main

motivation behind our approach is to attain physiological realism. Other DRL policies

may outperform our model in terms of successful persistent locomotion, but might not

necessarily produce the realistic gaits without excessive motion data to mimic.
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CHAPTER 8

Conclusion

8.1 Contributions

In this work, we proposed a dual-module deep reinforcement learning architecture that

employs Central Pattern Generator oscillator systems and a reflex-based controller to

produce locomotion in a biomechanical human model. We train a CPG using an existing

oscillatory signal extracted from a reference synthesized motion sequence. Unlike some

related efforts in the literature, the CPG is the backbone of our locomotive control and

produces the muscular activation signals used to drive the model. During the online Soft

Actor-Critic learning loop, a CPG tuning module adjusts high-level CPG parameters

to adapt to the environment. The CPG output signals are then supported by a reflex

control module that prevents the model from losing balance. Each network is trained in

combination to learn efficient generation of stable bipedal locomotion that is able to walk

forward for the entirety of our test episodes.

While our model cannot boast the generalizability and controllability of some CPG-

based systems, it shows limited but promising results toward task-driven locomotion and

may show greater success after further experimentation and development. Nevertheless,

bipedal locomotion is a complex problem, and our efforts have yielded solid results in

learning one type of gait using our architecture, which can surely be scaled to increase

the range of its output.
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8.2 Future Directions

This research has provided a proof of concept toward the feasibility of CPG-based bipedal

locomotion. Many improvements can be made to our current method and results, including

computational optimization and the increased complexity and biological accuracy of the

model. In regard to the CPG system, we could train multiple CPG systems for different

lower-body muscle groups, including the separation of the left and right sides. This might

allow us to achieve a more diverse set of gaits with easier user control. Using models

with more articulation, especially in the upper body, would be another natural next step

to enhance the realism of our model. We might also consider training different CPGs

for other bipedal gaits, such as jogging or running, which likely vary too greatly from

walking to reuse the CPG signals learned in our work.

As discussed in Section 7.1, task-driven locomotion via either fine-tuning or zero-shot

CPG adjustments would be a promising route of further investigation, as it would bolster

the robustness of the model and increase its generalizability, both of which are properties

of the CPG that should be thoroughly exploited.
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APPENDIX A

SAC Learning Algorithm

As described by Haarnoja et al. (2018), SAC explores a continuous action space as a

Markov decision process (S,A, p, r), where S is the continuous state space and A is the

action space. The probability of transitioning from a state st ∈ S to state st+1 ∈ S

via action at ∈ A is p : S × S × A → [0,∞). The reward r : S × A → [rmin, rmax] is

determined per transition to state s using action a.

Stochastic policies are favored by augmenting the objective function, which is usually

the expected sum of rewards, with the expected entropy H of the policy π(at|st) over

ρπ(st), the state marginal:

J(π) =
T∑
t=0

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))] , (A.1)

where α is a temperature parameter that control the overall stochasticity of the optimal

policy.

Rather than explicitly performing alternating evaluations and policy improvements,

SAC alternates between optimizing the Q-function, the learned mapping of expected

rewards given an action in a state and the policy, using stochastic gradient descent; these

are approximated by functions parameterizing the state value function Vψ(st), a soft

Q-function Qθ(st, at), and an tractable policy πϕ(at|st).

The state value function, approximating the soft value, is optimized to minimize the

squared residual error

JV (ψ) = Est∼D

[
1

2

(
Vψ(st)− Eat∼πϕ [Qθ(st, at)− log πϕ(at st)]

)2]
(A.2)
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with the estimated gradient

∇̂ψJV (ψ) = ∇ψVψ(st)(Vψ(st)−Qθ(st, at) + log πϕ(at|st)), (A.3)

where D is the distribution of previously sampled states and actions. Note that a function

approximator for the state value is not strictly required, but its inclusion can stabilize

training.

The soft Q-function is trained to minimize the soft Bellman residual

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ(st, at)− Q̂(st, at)

)2
]

(A.4)

with the gradient

∇̂θJQ(θ) = ∇θQθ(at, st)(Qθ(st, at)− r(st, at) + γVψ̄(st+1)), (A.5)

where

Q̂(st, at) = r(st, at) + γEst+1∼p
[
Vψ̄(st+1)

]
(A.6)

and Vψ̄ is a target value network such that ψ̄ is an exponentially moving average of value

network weights. This network also stabilizes training.

Lastly, the policy parameters are learned through minimizing the Kullback-Leibler

divergence as follows:

Jπ(ϕ) = Est∼D

[
DKL

(
πϕ(·|st)

∥∥∥∥exp(Qθ(st, ·))
Zθ(st)

)]
. (A.7)

Since the Q-function is the target density, Equation A.7 is reparameterized using a

neural network transformation

at = fϕ(ϵt; st), (A.8)

where ϵt is a noise vector sampled from some fixed distribution N . Furthermore, the
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Algorithm 1: Soft Actor-Critic

1 Initialize parameter vectors ψ, ψ̄, θ, ϕ
2 for each iteration do
3 for each environment step do
4 at ∼ πϕ(at|st)
5 st+1 ∼ p(st+1|st, at)
6 D ← D ∪ {(st, at, r(st, at), st+1}
7 end
8 for each gradient step do

9 ψ ← ψ − λV ∇̂ψJV (ψ)

10 θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, 2}
11 ϕ← ϕ− λπ∇̂ϕJπ(ϕ)
12 ψ̄ ← τ ψ̄ + (1− τ)ψ̄

13 end

14 end

partition function Zθ is independent of ϕ and can thus be omitted. We then have that

Jπ(ϕ) = Est∼D,ϵt∼N [log πϕ(fϕ(ϵt; st)|st)−Qθ(st, fϕ(ϵt; st))] , (A.9)

with the approximated gradient

∇̂ϕJπ(ϕ) = ∇ϕ log πϕ(at|st) + (∇at log πϕ(at|st)−∇atQ(st, at))∇ϕfϕ(ϵ; st). (A.10)

Here, πϕ is defined implicitly in terms of fϕ.

Algorithm 1 is the final SAC optimization algorithm, in which we alternate between

sampling the environment and performing stochastic gradient descent. Note that it employs

two Q-functions with the parameters θi for i ∈ {1, 2} that are trained independently, the

minimum of which is used for the state value and policy gradients. This mitigates positive

bias during policy improvement and speeds up training (Hasselt, 2010; Fujimoto et al.,

2018).
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APPENDIX B

Biomechanical Model Details

The OpenSim model we use, provided by Kidziński et al. (2018) as described in Chapter 5,

includes 11 symmetric lower body muscles, which are detailed in Table B.1 with their

corresponding functions. Note that some are not individual muscles, but rather muscle

groups that are modeled as a singular muscle with the same functionality.

Muscle Name Variable Primary Functions

Hip abductors HAB Hip abduction (away from the vertical midline)

Hip adductors HAD Hip adduction (toward the vertical midline)

Short head of the biceps femoris BFSH Knee flexion

Gastrocnemius GAS Knee flexion and ankle extension (plantarflexion)

Gluteus maximus GLU Hip extension

Biarticular hamstrings HAM Hip extension and knee flexion

Hip flexors HFL Hip flexion

Rectus Femoris RF Hip flexion and knee extension

Soleus SO Ankle extension (plantarflexion)

Tibialis anterior TA Ankle flexion (dorsiflexion)

Vasti VAS Knee extension

Table B.1: Muscles in the biomechanical OpenSim model with their functions and variable
names as they appear in plots.
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APPENDIX C

Hill-Type Muscle Actuators

The prevailing model for biomechanical muscle simulation is the Hill-type actuator model,

first introduced by Hill (1938), which models muscle as a uniaxial contractile actuator.

The total force enacted by a skeletal muscle attached to bones via tendons is the sum

of an active contractile force due to muscle activation and a passive nonlinear elastic

restoring force. This can be modeled as an contractile element (CE) in line with a series

element (SE), combined with a parallel element (PE). The former pair reflect the active

muscle contraction and passive deformation, respectively, while the latter represents the

passive tendon deformation.

Thelen (2003) provides the following implementation of the Hill-type musculotendinous

actuator that is used in our OpenSim model. To calculate the length of the muscle, we

solve for and integrate the muscle fiber velocity

l̇CE =
(
0.25 + 0.75 a(t)

)
Vmax

fCE − a(t)fAL

b
, (C.1)

where a(t) is the muscle activation, Vmax is the maximum contraction velocity, and fAL

is the active force length curve, which is chosen to be a Gaussian function. The active

muscle force

fCE = a(t)fAL(lCE)fV (l̇CE), (C.2)

is that produced by the contractile element, where lCE and l̇CE are the length and velocity

of the muscle fibers. Denominator b in Equation C.1 is a piecewise continuous parameter

that differs from the muscle shortening (fCE ≤ a(t)fAL) to the muscle lengthening
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(fCE > a(t)fAL) states:

b =


a(t)fAL + fCE/Af fCE ≤ a(t)fAL;

(2 + 2/Af )
(
a(t)fALFlen − fCE

)
Flen − 1

fCE > a(t)fAL,

(C.3)

where Flen describes the maximum normalized muscle force that can be generated when

the muscle is lengthening. The OpenSim implementation further adds linear extrapolation

in the cases of concentric (fCE < 0) and eccentric (fCE > 0.95Flen) contractions to ensure

that the force velocity curve is invertible.

The force velocity function fV in Equation C.2 describes the shape of the force velocity

curve, which is calculated using the standard muscle equilibrium equation

cosϕ
(
a(t)fAL(lCE)fV (l̇CE)− fSE(lCE)

)
− fPE(lT ) = 0, (C.4)

where lT denotes the tendon length, fSE and fPE are the forces of the series and parallel

elements, respectively, and ϕ is the pennation angle, describing the angle between the

tendon, which is representative of the overall direction of the muscle, and the muscle

fibers. Solving for fV yields

fV (l̇CE) =

fSE(lT )

cosϕ
− fPE(lCE)

a(t)fAL(lCE)
. (C.5)
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