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Abstract

We observe that Monte Carlo (SPICE) simulation provides the most
accurate and trustable statistical timing analysis, while the existing
SSTA method has completely ignored the effect of input statistics on
chip timing performance, and provides either accurate estimate nor
pessimistic bound of the actual chip timing performance statistics.
We propose signal probability (i.e., the logic one occurrence prob-
ability for a signal) based statistical timing analysis for improved
accuracy and reduced pessimism over the existing SSTA methods,
and improved efficiency over Monte Carlo (SPICE) simulation. Our
experimental results show that our proposed SPSTA computes mean
(standard deviation) of signal arrival times within 6.2% (18.6%),
while SSTA computes mean (standard deviation) of signal arrival
times within 13.40% (64.3%) of Monte Carlo simulation results;
SPSTA also provides signal probaiblity estimation within 14.28%
of Monte Carlo simulation results for the ISCAS’89 benchmark cir-
cuits.

1 Introduction

VLSI manufacturing process today observes increased variations on
layout geometries and circuit performance. Limitations on manufac-
turing equipments include: lithographic issues, e.g., optical prox-
imity, defocus, and lens aberration, which affect feature dimen-
sions, e.g., wire width or transistor channel length; the chemical
mechanical polishing (CMP) process which varies feature thickness
for different local layout density; and dopant variations in chemical
processes. On the other hand, aggressive VLSI designs induce in-
creased variations on system performance. Integration of increased
number of components in a single chip results in increased supply
voltage drop and temperature variation; higher operating frequen-
cies observe increased capacitive and inductive couplings on silicon
surface and through substrate; aggressive performance optimization
could result in a large number of near-critical paths with increased
probability of timing failure.

Statistical timing analysis has been proposed to capture the in-
creasingly significant timing variation and reduce pessimism in tra-
ditional timing analysis. (1) Traditional minimum/maximum based
timing analysis, which computes minimum and maximum delays
separately, and verifies timing requirements between either mini-
mum or maximum path delays, captures only die-to-die variations.
(2) Corner based timing analysis, which computes minimum and
maximum delays simultaneously, and allows timing verification be-
tween minimum and maximum path delays, captures intra-die varia-
tions. (3) Statistical static timing analysis (SSTA), which computes
delay distribution for each pin (block-based) or path (path-based),
provides “timing yield” or probability for a chip to meet timing re-
quirements.

Block-based SSTA [1, 25] represents signal arrival time vari-

ation at each pin as a probability distribution function (pdf). As-
suming symmetry or normality of signal arrival time distributions,
these probability distribution functions are computed based on sim-
ple formulas in a breadth-first netlist traversal, which is efficient, in-
cremental, and suitable for optimization. Path-based SSTA [18, 19]
provides more accurate statistical analysis on a set of near-critical
paths, e.g., in corner-based or Monte Carlo analysis, signal arrival
time at a pin could have different distributions in different paths,
where correlations due to path-sharing can be better captured. Tim-
ing criticality probabilities and correlations of the near-critical paths
are computed for signoff analysis.

Correlations come from (1) path-sharing in the presence of re-
convergent fanouts, and (2) dependence on common variational pa-
rameters. Correlated pdf’s can be propagated in conditional prob-
abilities [1]. Correlated parameters can be broke down into un-
correlated random variables in principle component analysis (PCA)
[14]. Layout geometrical variations are translated into performance
variations by sensitivity-based[3], interval-valued [10], or matrix-
perturbation-theory-based [9] analysis through interconnect model
order reduction [17].

Including more sources of variation into consideration has sig-
nificantly improved accuracy of statistical timing analysis. For ex-
ample, a statistical gate delay is subject to significant variation when
multiple inputs of the gate are switching at the same time [2]. Ne-
glecting this multiple-input switching effect could underestimate the
mean delay of a gate by up to 20% and overestimate the standard de-
viation of the delay of a gate by up to 26%. A signal switching at a
neighboring cross-coupled net injects a noise waveform and affects
the interconnect delay. It also alters the driver gate delay of the net
due to effective load capacitance variation. Neglecting this crosstalk
aggressor alignment effect could lead to dramatic differences in in-
terconnect/gate delay means and standard deviations [6, 7].

Through these multiple-input switching and cross-coupling ef-
fects, as well as other effects such as supply voltage drop and induc-
tance coupling, we observe that delay of a gate or an interconnect
in a VLSI circuit is strongly affected by the occurrence and the tim-
ing of switching activities in other neighboring or distant nets. This
strongly suggests that input statistics and circuit status have a sig-
nificant effect on chip timing performance and performance varia-
tion. Existing SSTA approaches have completely ignored this effect,
which need serious review.

Static timing analysis seeks to bound the statistical timing per-
formance, by finding the best and worst cases, e.g., at 3σ points. The
current SSTA method includes process variation effects and finds a
best case timing distribution and a worst case timing distribution
(Fig. 1). Such a method has serious problems. (1) The purpose of
statistical timing analysis is to reduce the pessimism in static timing
analysis through improved accuracy. (2) The input statistics has the
most significant effect on timing performance variation. The pro-
cess variations are secondary effects on chip timing performance.
(3) The effect of process variations on chip timing performance has
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Figure 1: A VLSI timing performance distribution (solid curve),
which is captured by STA at ±3σ points (dotted lines), and by SSTA
in two best/worst case distributions (dashed curves). The actual chip
performance distribution (solid curve) and the SSTA distributions
(dashed curves) share the same ±3σ points.

to be computed for a given input vector, because for each input vec-
tor the effect of process variations is different. (4) SSTA computes
the effect of process variations on chip timing performance based on
an artificial input vector, which deviates from and cannot bound the
actual chip timing performance statistical distribution. For example,
the probability for two signals to arrive at about the same time to
activate crosstalk coupling effect cannot be accurately estimated in
SSTA, it can only be assumed, e.g., as it always happens in worst
case analysis. The resultant timing distribution has no actual mean-
ing, is inaccurate, and cannot bound the actual timing distribution. It
provides no other information on the actual chip timing performance
distribution than the ±3σ points, which are achievable by even STA
(Fig. 1).

In real life, manufactured chips are tested dynamically, i.e., by
given test vectors for a required fault coverage. Dynamic simula-
tion gives more accurate results than static methods, especially for
VLSI circuits in the presence of significant crosstalk coupling, sup-
ply voltage drop, and other DSM/nanometer effects. Such accuracy
improvement is much needed for statistical timing analysis. As a
result, we strongly suggest that statistical timing analysis cannot be
static. Any accurate and meaningful statistical timing analysis has
to be dynamic, by including the effect of input statistics.

Monte Carlo (SPICE) simulation provides the most accurate and
trustable statistical timing analysis results. For efficiency improve-
ment over Monte Carlo (SPICE) simulation, we look into the power
estimation literature, where a spectrum of probabilistic techniques
can be found, which compute signal transition occurrence proba-
bilities in a circuit, e.g., based on signal probabilities [13], transi-
tion densities [12], probabilistic waveform simulation [15], or BDD
based computation with potential correlation consideration [5].

In this paper, we introduce signal probability in probabilistic
power estimation to statistical timing analysis, and propose signal
probability based statistical timing analysis (SPSTA) for improved
accuracy and reduced pessimism over the existing SSTA methods,
and improved efficiency over Monte Carlo (SPICE) simulation. We
propose to compute signal transition temporal occurrence probabil-
ity (top) function, which is a generalization of signal arrival time
probability density function and signal toggling rate, and replace
the MAX operation in SSTA by a WEIGHTED SUM operation. We
present two statistical timing analysis methods: moment and cor-
relation computation based and polynomial of variational variable
based. We summarize the advantages of SPSTA over SSTA. Our
experimental results show that our proposed SPSTA computes mean
(standard deviation) of signal arrival times within 6.2% (18.6%),
while SSTA computes mean (standard deviation) of signal arrival
times within 13.40% (64.3%) of Monte Carlo simulation results;
SPSTA also provides signal probaiblity estimation within 14.28%
of Monte Carlo simulation results for the ISCAS’89 benchmark cir-
cuits.

The rest of the paper is organized as follows. We introduce
statistical static timing analysis, and statistical power estimation as
background in Section 2. We present signal probability based statis-
tical timing analysis, including its variables, operations, two abstrac-
tion methods, and summary of advantages in Section 3. We present
our experimental results in Section 4, and conclude in Section 5 with
ongoing research directions.

2 Background

2.1 Statistical Static Timing Analysis (SSTA)

SSTA takes into account process and environmental variations in
VLSI designs, and represents timing properties of a circuit as sta-
tistical variables, e.g., in the form of probability density functions.1

There are two basic operations in SSTA (Fig. 2).

2.1.1 SUM

The output signal arrival time t0 of an interconnect is given by the
summation of the input signal arrival time t1 and the delay d of the
interconnect.

t0 = t1 +d

cd f (t0 = τ) =
Z

τ1+τ2≤τ
pd f (t1 = τ1)pd f (d = τ2)dτ1dτ2

pd f (t0 = τ) =
Z ∞

0
pd f (t1 = τ1)pd f (d = τ− τ1)dτ1 (1)

For pd f (t1) and pd f (d) in normal distributions, pd f (t0) is also
a normal distribution, which mean and standard deviation are given
as follow.

µ(t0) = µ(t1)+µ(d)

σ2(t0) = σ2(t1)+σ2(d)+2cov(t1,d) (2)

2.1.2 MIN/MAX

The MIN(MAX) operation is required for the output signal arrival
time of a multiple-input gate, when the output signal arrival time
t0 of a gate is given by the earliest(latest) of input signal arrival
times t1 and t2 (plus gate delay). Whether a MIN or a MAX op-
eration needs to be taken depends on the logic of the gate and the
direction of the input signal transitions. For example, the output
rising(falling) signal arrival time of an AND gate is given by the
MAX(MIN) of the rising(falling) input signal arrival times, and the
output rising(falling) signal arrival time of an OR gate is given by
the MIN(MAX) of the rising(falling) signal arrival times.

For a MAX operation, the output signal arrival time pdf and cdf
are given as follow.

t0 = MAX(t1,t2)

cd f (t0 = τ) = cd f (t1 = τ)cd f (t2 = τ)
pd f (t0 = τ) = cd f (t1 = τ)pd f (t2 = τ)

+ pd f (t1 = τ)cd f (t2 = τ) (3)

For pd f (t1) and pd f (t2) in normal distributions, the result of
the MAX operation pd f (t0) is not a normal distribution. Its mean
and standard deviation are given as follow.

µ(t0) = µ(t1)Q+µ(t2)(1−Q)+θP

σ2(t0) = (µ2(t1)+σ2(t1))Q+(µ2(t2)+σ2(t2))(1−Q)

+ (µ(t1)+µ(t2))θP−µ2(t0) (4)

1Probability density functions extend to joint probability density functions in the

presence of correlations, e.g., for the equations in this section.
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Figure 2: Two basic operations SUM and MAX in SSTA.

where

θ2 = σ2(t1)+σ2(t2)−2cov(t1,t2)

λ = (µ(t1)−µ(t2))/θ

P =
1√
2π

exp(−λ2

2
)

Q =
1

2
(er f (

λ√
2
)+1)

Taking the MIN operation is similar, e.g., by MIN(t1,t2) =
−MAX(−t1,−t2).

SSTA have such MIN/MAX operations inherent from static tim-
ing analysis, i.e., input vector oblivious worst case timing analysis.
They are the most computationally expensive operations in SSTA,
and introduce pessimism. In the following, we propose a new oper-
ation, WEIGHTED SUM, by taking into account input signal statis-
tics, e.g., in terms of signal probabilities as in power estimation lit-
erature.

2.2 Signal Toggling Analysis in Statistical Power Estimation

Power consumption estimation techniques include two categories:
simulation based and statistical power estimation [13]. Statistical
power estimation techniques achieve significant efficiency improve-
ment than simulation based methods based on statistical characteri-
zation of circuit switching activities, e.g., by signal probability.

2.2.1 Signal Probability

Definition 1 Signal probability P(y) of a net y is the occurrence
probability for the net y to be of logic one.

Given the signal probabilities for the inputs of a Boolean func-
tion, one can compute the signal probability for the output of the
function. For example, for a two-input AND gate y = x1 · x2, apply-
ing basic probability theory gives P(y) = P(x1)P(x2) (Fig. 3). In
general, for a Boolean function y = f (x1, ...,xn), if the inputs xi are
independent, the signal probability P(y) of the output y is given by

P(y) = P(x1)P( fx1)+P(x̄1)P( fx̄1) (5)

where fx1 = f (1,x2, ...,xn) and fx̄1 = f (0,x2, ...,xn) are cofactors of
f with respect to x1. By representing a Boolean function in a binary
decision diagram (BDD), such computation takes linear time in term
of the BDD size. Computing signal probabilities for all nodes in a
netlist takes a single traversal of the netlist.

2.2.2 Signal Toggling Rate

Definition 2 Signal toggling rate ρy is the expected number of sig-
nal togglings per unit time for a net y.

y
ρ

x1
ρ

x2
ρ= 0.4       + 0.8 

P(x ) = 0.8

P(x ) = 0.4

1

2

P(y) = 0.32

Figure 3: Signal probability and signal toggling rate computation
for an AND gate.

Statistical power estimation computes signal toggling rate fy at
the output of a logic gate based on the Boolean difference function
as follows (Fig. 3) [12].

ρy = ∑
i

P(
∂y

∂xi
)ρxi

(6)

The Boolean difference function enables a signal propagation path
from an input xi to the output y and is given by

∂y

∂xi
= y |xi=1 ⊕y |xi=0 (7)

where ⊕ denotes the exclusive-or operation. Given signal probabil-
ities in (5) in a netlist, Boolean difference probabilities in (7) and
signal toggling rates in (6) can be computed efficiently in a single
traversal of the netlist.

3 Signal Probability Based Statistical Timing Analysis (SP-
STA)

In this section, we introduce signal probability in statistical power
estimation to statistical timing analysis and compute signal transi-
tion temporal occurrence probabilities for more accurate statistical
timing analysis.

3.1 Variable: Signal Transition Temporal Occurrence Proba-
bility

Definition 3 Signal transition temporal occurrence probability
(t.o.p.) ϕ(y) = f (t) is the time domain occurrence probability for
a signal to take transition for net y.

Signal transition temporal occurrence probability gives time do-
main distribution of signal toggling rate, while the signal toggling
rate concept in power estimation is the average of signal transition
temporal occurrence probability in time domain.

Signal transition temporal occurrence probability also differs
with signal arrival time probability density function, in that the time
domain integral of signal arrival time probability density function
equals one, based on the assumption of static timing analysis that
there is always a signal transition occurrence in a net in a clock cy-
cle, while the integral of signal transition temporal occurrence prob-
ability gives signal toggling rate, which may not be one (e.g., see
Fig. 4). A signal transition temporal occurrence probability function
can be normalized to unit integral to give a signal arrival time pdf.
Therefore, the results of signal probability based statistical timing
analysis, in the form of signal transition temporal occurrence prob-
ability, include both signal arrival time pdf’s, and signal toggling
rates. This implies that signal probability based statistical timing
analysis gives more information than static timing analysis, and the
additional signal toggling rate estimates help in power consumption
and supply voltage degradation estimation (which in turn could af-
fect timing).
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Figure 4: The results of the MAX and the WEIGHTED SUM opera-
tions for an AND gate with two inputs both of 0.9 signal probability,
and of signal arrival times t1 and t2 in symmetric distributions with
the same mean but different deviations.

3.2 Operation: WEIGHTED SUM

Signal transition temporal occurrence probability functions are com-
puted in the same way as signal toggling rates, i.e., by weighted
summation based on signal probabilities.

ϕ(y) = ∑
i

P(
∂y

∂xi
)ϕ(xi) (8)

The result of a WEIGHTED SUM operation would be signifi-
cantly different than that of a MAX operation. For symmetric input
signal arrival time distributions, the result of a WEIGHTED SUM
operation is still symmetric, while the result of a MAX operation is
non-symmetric (Fig. 4).

It turns out that the MAX operation is applicable only for the
signal arrival time of a non-controlled value at the output of a gate,
e.g., for the arrival time of a logic one at the output of an AND gate.
A MIN operation is needed for the signal arrival time of a controlled
value at the output of a gate, e.g., for the arrival time of a logic
zero at the output of an AND gate. Combining the results of the
MIN and the MAX operations gives a symmetric signal arrival time
distribution at the output of the gate, as is given by a WEIGHTED
SUM operation. Furthermore, the MIN and the MAX operations
give accurate output signal arrival times only when multiple inputs
are switching at the same time, in other cases their results are bounds
of the actual signal arrival times. A four-value logic based statistical
timing analysis gives more accurate results as follows.

3.3 Extension to Four-Value Logic

We extend SPSTA to the four-value logic, i.e., based on logic one
’1’, logic zero ’0’, rising signal transition ’r’, and falling signal
transition ’ f ’ (Table 1). This is needed because we need to sep-
arate rising signal transition arrival time distributions with falling
signal transition arrival time distributions, which are propagated by
different MIN/MAX computations for a multiple-input gate, as in
static timing analysis. Different MIN/MAX computations for the
rising/falling signal transitions spread the rising and the falling sig-
nal transitions in different directions, and lead to increased signal
transition time distribution deviation. One must separate the rising
and the falling signal transitions to take this spreading effect into ac-
count in statistical timing analysis. Separating the rising and falling
signal transitions also filters out the glitches which result from si-
multaneous rising and falling signal transitions at the inputs of a
gate. Glitches are not counted by a MIN/MAX operation, but are
included in a WEIGHTED SUM operation based on the two-value
logic. Moving to four-value logic allows identification of glitches.

In a four-value logic, we extend (5) and compute signal proba-
bilities for logic one ’1’, logic zero ’0’, rising signal transition ’r’,
and falling signal transition ’ f ’, respectively, as follow.

Pcd = 1−Pncd −Pr −Pf

Table 1: Four-value logic AND and OR operations with MIN/MAX
signal arrival time computation.

AND 0 1 r f OR 0 1 r f

0 0 0 0 0 0 0 1 r f

1 0 1 r f 1 1 1 1 1

r 0 r r (MAX) 0 r r 1 r (MIN) 1

f 0 f 0 f (MIN) f f 1 1 f (MAX)

Pncd = ΠiPnc(i)

Pr = Πi(Pnc(i)+Pinv( f )(i))−Pncd(i)

Pf = Πi(Pnc(i)+Pinv(r)(i))−Pncd(i) (9)

where cd is the controlled value, ncd is the non-controlled value, nc
is the non-controlling value, and inv is the inversion of the gate. For
example, for an AND gate, 0 is the controlling and the controlled
value, and 1 is the non-controlling and the non-controlled value,
there is no inversion inv(r) = r, inv( f ) = f , and the four-value logic
signal probabilities are given as follow.

P0(y) = 1−Pr(y)−Pf (y)−P1(y)

P1(y) = ΠiP1(xi))

Pr(y) = Πi(P1(xi)+Pr(xi))−P1(y)

Pf (y) = Πi(P1(xi)+Pf (xi))−P1(y) (10)

In the four-value logic, the output signal transition temporal
occurrence probability is given by a combination of WEIGHTED
SUM and MAX operations, e.g., applying a WEIGHTED SUM
operation based on the input signal probabilities, and applying the
MAX operation for a multiple input switching scenario.

ϕr(y) = ∑
R

Πxi∈RPr(xi)Πxi /∈RPnc(xi)ϕr(Maxxi∈R(xi))

ϕ f (y) = ∑
F

Πxi∈F Pf (xi)Πxi /∈F Pnc(xi)ϕ f (Maxxi∈F(xi)) (11)

where R ⊆ {xi} is a set of rising inputs, and F ⊆ {xi} is a set of
falling inputs. For example, for a two-input AND gate, the rising
signal transition top function is given by

ϕr(y) = Pr(x1)P1(x2)ϕr(x1)

+ P1(x1)Pr(x2)ϕr(x2)

+ Pr(x1)Pr(x2)ϕr(MAX(x1,x2)) (12)

The runtime is O(2k) to compute signal transition temporal occur-
rence probabilities for a k-input gate, and is linear to the circuit size,
i.e., the computation can be done in a single netlist traversal.

3.4 Computing Moments and Correlations

Statistical properties of signal transition temporal occurrence prob-
ability in a circuit can be represented by statistical moments, e.g.,
means, standard deviations, skewnesses, etc., and correlations. Sta-
tistical theory gives the moments and the correlations of a linear
function as follows.

ϕ̄y = ∑
i

P(
∂y

∂xi
)ϕ̄xi

σ2(ϕy) = ∑
i

P2(
∂y

∂xi
)σ2(ϕxi

)

+ 2∑
i, j

P(
∂y

∂xi
)P(

∂y

∂x j
)cov(ϕxi

,ϕx j
)
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cov(ϕy,ϕk) = ∑
i

P(
∂y

∂xi
)cov(ϕxi

,ϕk)

corr(ϕy,ϕk) =
cov(ϕy,ϕk)

σ(ϕy)σ(ϕk)
(13)

The runtime of these moments and correlations computation is linear
to the circuit size and the computation can be finished in a single
netlist traversal.

3.5 Higher-Order Correlations and Exact Signal Probability

A higher-order covariance, e.g., a n-th order covariance of n + 1
variables is defined as follows.

cov(x0, ...,xn) = E(Πi(xi − x̄i)) (14)

Given these higher-order covariances, the signal probability of a
Boolean function is computed based on simple Boolean and poly-
nomial derivations. For example,

P(x1x2) = P(x1)P(x2)+cov(x1 ,x2) (15)

based on the definition of covariance

cov(x1,x2) = E((x1 − x̄1)(x2 − x̄2)) (16)

and

P(x̄1x2) = P(x2)−P(x1x2)

P(x1 +x2) = P(x1)+P(x2)−P(x1x2) (17)

based on set theory.
Combined with symbolic simulation which computes Boolean

functions for each node in the circuit, e.g., based on Binary Decision
Diagrams (BDDs), signal probabilities are then computed for each
node in a circuit. This method takes into account the correlations
due to reconvergent fanout nets, which is not taken into account by
the method in Section 2.2.1.

However, a large number, e.g., O(n2) first-order correlations,
and much more higher-order correlations are needed to compute ex-
act signal probabilities in a netlist of n nodes. Truncating higher-
order moments and correlations gives an accuracy-efficiency trade-
off.

3.6 Symbolic Analysis

The second category of methods compute circuit properties (e.g.,
signal probabilities, signal arrival times) in closed form expres-
sions of design parameters and variational parameters which repre-
sent process and environmental variabilities. Such methods include:
polynomial computation [8], affine arithmetics [10], and probabilis-
tic interval analysis [20].

Variational delays are obtained by derivation of closed-form for-
mulas [10, 20], or by sampling analysis and regression [8, 6].

This approach avoids the run time and memory space consum-
ing moment and correlation computation. However, another dimen-
sion of accuracy-efficiency tradeoff is introduced in truncating the
higher-order polynomial terms.

3.7 Comparing SPSTA and SSTA

There are several significant advantages of signal probability based
statistical timing analysis (SPSTA) over statistical static timing anal-
ysis (SSTA).

1. SPSTA aims to capture the exact circuit performance statistics.
SSTA is a mixture of accurate characterization and worst case
analysis, which is inconsistent, and provides neither accurate
analysis nor bounds of performance statistics.

2. SPSTA takes into account statistical characterization of circuit
inputs and compute signal probabilities for statistical circuit
performance, which as we observe depends on the inputs and
the operation mode of the circuit. SSTA does not take any
input statistics or circuit operation mode into account.

3. SSTA is significantly pessimistic. Current SSTA tools com-
pute two signal arrival time pdf’s as min/max signal arrival
time distributions for each timing node, as in static timing
analysis. However, such min/max signal arrival time pdf’s are
corners in essence, corners cannot be enumerated, and the re-
sultant probabilities are not timing yield.

4. SSTA pessimism due to worst case analysis does not guar-
antee any bound of the actual signal arrival time distribution.
Pessimistic timing analysis could lead to larger deviations and
less correlations of signal arrival times. Less correlations lead
to optimistic estimation, for example, underestimation of sup-
ply voltage variation, crosstalk coupling and multiple input
switching effects. These effects eventually offset SSTA results
and do not guarantee any bound of timing performance. SP-
STA is more accurate in computing correlations hence circuit
performance statistics.

5. SPSTA computes occurrence probability for a rising or falling
signal transition as well as its timing distribution. Such an
occurrence probability is an integral part in statistical timing
analysis, e.g., in estimating the probability for a chip to meet
its performance requirement.

6. In summary, SPSTA achieves more accurate, consistent, and
complete statistical timing analysis than SSTA.

4 Experiment

In the following experiments, we implement three timing analyzers:
SPSTA, SSTA, and a logic simulator for Monte Carlo simulation,
and compare their resultant signal arrival time means and standard
deviations for ISCAS’89 benchmark circuits. We implement SP-
STA based on the four-value logic and the equations in Section 3.3.
Our implemented SSTA separates rising and falling signal transition
arrival times, and computes their means and standard deviations for
each timing node by either the MIN or the MAX operation, based
on the logic of the gate and the input signal transition directions.
For Monte Carlo simulation, we implement a four-value logic (i.e.,
logic one 1, logic zero 0, rising signal transition r, and falling signal
transition f ) simulator. We assign the four logic values and signal
arrival times for the rising and the falling signal transitions to the
primary inputs and the flip-flop outputs, and propagate them through
the netlists. We do not count glitch, so a rising and a falling signal
transition for an AND gate give logic zero at the output. We take the
MIN or the MAX computation for signal arrival times based on the
logic of the gate and the signal transition directions.

The ISCAS’89 benchmark circuits are assumed to have unit de-
lay for each gate, and zero delay for each net. In the first part of the
experiment, we assign logic one, logic zero, rising signal transition,
and falling signal transition with equal occurrence probabilities to
the primary inputs and the flip-flop outputs of the benchmark cir-
cuits. The rising and the falling signal transitions are in standard
normal distributions. Therefore, the primary inputs have 0.5 sig-
nal probability, 0.5 mean signal toggling rate, and 0.25 variance of
signal toggling rate. In the second part of the experiment, we as-
sign 15% logic one, 75% logic zero, 2% rising signal transition, and
8% falling signal transition to the primary inputs and the flip-flop
outputs. The rising and the falling signal transitions are in stan-
dard normal distributions. Therefore, the primary inputs have 0.2
signal probability, 0.1 mean signal toggling rate, and 0.09 variance
of signal toggling rate. In both cases, we keep the primary inputs
and the flip-flop outputs independent to each other, such that there
is zero covariance of signal toggling rate between any two primary
inputs, and we assign to each primary input and flip-flop output a
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mean signal transition temporal occurrence probability in the stan-
dard normal distribution ϕ̄i(t) = N(0,1).

Table 2 shows the means, the standard deviations, and the oc-
currence probabilities of signal transitions in the most critical tim-
ing paths, and Table 3 gives the runtimes, for SPSTA, SSTA, and
10,000 runs of Monte Carlo logic simulation, respectively. We have
the following observations.

1. SSTA conducts the MIN and MAX operations respectively for
the rising and falling signal transitions in a signal propagation
path, and does not provide a bound of critical path delay. SSTA
results are also independent of primary inputs and flip-flop out-
puts statistics.

2. SPSTA takes primary inputs and flip-flop outputs statistics into
account, and gives more accurate mean delay estimation than
SSTA in most of the test cases, compared with Monte Carlo
logic simulation results.

3. SPSTA estimates of signal arrival time variations are much
more close to Monte Carlo simulation results. SSTA estimates
of signal arrival time variations are much smaller, e.g., the
MIN and MAX operations result in smaller standard devia-
tions for the output than the inputs of a gate.

4. SPSTA gives accurate signal probabilities and signal transition
occurrence probabilities. SSTA does not provide such estima-
tions.

5. We implemented SPSTA without consideration of signal cor-
relations. Signal correlations as well as the MIN/MAX compu-
tations contribute to the difference between the SPSTA results
and the Monte Carlo simulation results in Table 2.

6. SPSTA and SSTA are far more efficient than Monte Carlo sim-
ulation.

5 Conclusion

Input vector oblivious worst case analysis in SSTA is inconsistent
with statistical analysis and leads to pessimism and inaccuracy. We
propose signal probability based statistical timing analysis, by tak-
ing circuit inputs statistics into account. Our experimental results
show that our proposed SPSTA computes mean (standard deviation)
of signal arrival times within 6.2% (18.6%), while SSTA computes
mean (standard deviation) of signal arrival times within 13.40%
(64.3%) of Monte Carlo simulation results. SPSTA also provides
signal probaiblity estimation within 14.28% of Monte Carlo simu-
lation results for the ISCAS’89 benchmark circuits.
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