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VII. GENERAL REMARKS 

, VII.A. Properties of Legendre Functionsl 

The Legendre functions, P (z) 
v 

and Q·(z) are solutions of 
'v ' 

the differential equation: 

If v = J (in this section J will always indicate a nonnegative 

integer) the PJ(z) reduce to polynomials. The first four P/s and 

Q 's are: 
J 

, 

, 

P3(x) . 1 3 
= -(5x - 3x) 2 

Qo(x), = ! .en 1 + x , 2 1 - x 

Ql(x) = ~.en ~-
2 1 - x 1 ; 

Q2(x) 1 2 1 + x L = 1+(3x - 1) .en 1 - x - x 2 , 

Q3(x) 1 3 1 ,+ x + g _ :2. x2 
= 4"(5x - 3x) .en 1 - x 3 2 



The P 's 
J 

· -2-

and QJ's have the symmetry properties: 

, 

For a continuous index, these generalize to 

Q, (-z) -irrv Q (z) (rm z < 0) = -e v v 

Q (-z) = ~e+invQ(z) (1m z > 0) v v 

P (-z) irrv 2 . 
Q,) z) (1m = e .. - Sl.n v:n: v If 

..,inv· ') 

Q,)z) P (~.z) L. (rm = e -:- sin Vr( v··· . :n: 

UCRL-18665 

, (7·6) 

, (7·7) 

z < 0) (7.8) 

z. > 0) (7·9) 

The sign of the index can be changed using the following relations: 

Qv(z) - Q_v_l(z)=ncot(nv) Pv(z)· 

~ (sin nv to) , 

When the argument is 0 or 1 

(7·10) 
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P (1) = 1 
v 

, 

, 

Q (0) 
v 

The Legendre functions can he expressed in terms of the hypergeometric 

functions, F(a,b; c; z), by 

1 

Q (z) 
v 

= 
n:2 T(v + 1) F(~ + 1 o , 

L rev + ~)(2z)v+1 

P (z) 
v 

= 
tan nv rev + 1) 
1. ,+1 3 

n2(2z)v rev + 2) 

For v = J, (7.16) reduces to 

1 

n2 r(J + 1) ( = - - F -J, 
(2z/+l 

F~ v v + 1 
+ 2' 2 

1 2- "z) J+1; 1; 

In conjunction with the hypergeometric series 

F(a, b; c; z) 

Izi < 1 

K z 
r(K + 1) 

v + L; L)' 2 2 z 

, 
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() _ rea + K) 
TK a - r(a) , (see Section III.A) , 

(7.15) and (7.16) give the asymptotic behaviorinz of the Legendre 

functions .. 

1 

) 
n2 rev + 1) 

Qv(z r--J 
(2z) v+1 r( v + ~2~) 

z-+oo 

p (z) tan nV rev + 1) 
~ 1 +1 ~ 

v n?(2z)v rev + ~2) 

when real 

when real 

z-+oo 

1 
v < --

2 

1 
v > .:-

2 

{
1 (v.+1)(v+2)L 0(1\} 

+ (4v + 6) . 2 + 4)' 
z z 

. v (or 
- (4v 

(7·19) 

(V+1)(V+2)L+0(1)} . 
(4v + 6) 2 4 ' z z 

(7· 20a) 

Equations (7.20) can be expressed more compactly as 

p.c Z),--/ ~~~: tl zv[ 1 - t : ~) z-2 + ... ] 
z-+oo 

-v-1 ( 1 2 r -- - v) -v-1 
+ V; rt-v) Z [

1 +~ v + 1)( v + 2) 
4v + 6 

2 . ] z +. • . • 



.J 

'In addition, the large v behavior of Q (z) is given by 
v 
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The derivative of p(z) with respect to v at v = ° is: v 

d 
- p·(z) I 
dv v v=o 

, /z - 1 
- 2 £n V~ , 

(1m z == 0, -1 < Re z ~ 1) 

Useful recursion relations are: 

(Z2 - 1) dd P (z) == v z P (z) - v P l(z) 
z v' v v-

, 

, 

(2v +l)z Q (z) 
v (v + 1) Q l(z) + vQ 'l.(~) v+ v-

Heine's series is given by 

1 
z-:t 

, 

which converges in z for \ t + -Vt 2 - 1 \. < \ z + -V z2 - 1 \. Some 

useful integrals are:, 
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, 

1 J+l 1 sin rev 
2' " p) -z) P J ( z ) dz = re -r( v--J~)M(""'V-+~J~+ "":1'"'1") 

-1 

, 

2 oJK 
2J + 1 

, '1 ',', ' dz i ' f
' +1 

= "" 2' 
z' - z , -I 

, 

'f' ",+1 l. 
2' 

dz' 1
-1 Q (-z') dz' 

P (z') - ~ sin (rev) ---"oov ----
v re 

-1 -co 
z - z' z - z' 

";'.' 
. .. . 

VII.B. ' Review bf R~gge Pol~~,in the scatterin$ of Spinless 

Equal-Mass PartiCles2 

Consider the p,artial- wave expansion for the amplitude of the 

scattering of spinless equal-mass parti?les, [defining a(J,s) = aJ(s) 

in (1. 20) ] 

f(s, t) 

We assume that f(s,t) satisfies an unsubtracted dispersion relation, 

and D (s, z) u the discontinuities across the cuts in 

'; 
;! 
,I 

I' 
Ii 
i' 
II 

Ii 
:1 

:1 
II 
11 
Ii 
I! 
II 
11 

~ II 
11 

.Ii 
I 
I 

II 
I· 
il 
'\ 1. 
i 
" 
Ii 

Ii 
H 
J 
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the t and u channels, respectively. Then 

f(s, t) = ~ f ~ 
, ,to ,z' - z 

11-00 

+-
n: 

, "uO 

D ( c Z I )dz' '-', u 

z' - z 

(7.32 ) 

From (7.31) we have 

1
+1 

a(J, s) = ~ 
-1 

, 

which can be manipulated, using (7.4), (7.29), and (7.32) to yield 

a(J, s) Zl)+ (_l)J D (s, z')J 
u 

The factor (_l)J in (7.34) is ill-suited for analytic continua.tion so 

we define the amplitudes of definite signature 

In (7.34) and (7.35) Zo = min(lzt I, Iz I)· o uo The physical amplitude 

is then given in terms of the definite signature amplitudes by 

f( s, z) 
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In view of (7.4), 

+ a (J, s) a(J, s) for even J , 

for odd J 

It is convenient to refer to t.hese~ as the "physical" values of J 

for the partial wave amplitudes of definite signature. 

Taking the analog of (7.31), the partial wave expansion, for 

the amplitudes of definite signature is 

+ f-(s, t) 

We write this sum as a contour integral over the contour, C, shown 

in Fig. 7.1 

+ f-(s, t) = 
1 
2i J dJ(;~J + 1) 

C 

+ 
a,-(J, s) PJ(-z) 

sin nJ 
(7.39) . 

h · . t 1 2 . Up to t H p'om . s > 11.1 • To get the t-channel asymptotic 

behavior ( I Z I ~ 00) we want s < O. s 
(See Fig. 7.2.) If the lowest 

(u, t) singularities occur 'at (uo , to) we can rewrite (7.35) as 

dt t ). ( .) ()J 2 QJ(l + 2 [Dt s,t ± Du s,t , 
2q 2q 

(7. 40 ) 
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where 
2 1 2 

q = 4 (s - 4~.), 
2t 

z = 1 + ------:::-2 ' 
s.- 4~ 

We 

now define· 

The new quantities gJ± are real in the int~rval 4~2 - T < s < 4~2 

because on the cut -1 < Re z < +1 we have from (7. 6), (7.7), 

Q (z) = -2l[Q (z + ie) + Q (z - ie)J 
v v v 

, 

so that t 2J 
QJ(l + ~)/q is real on the interval 

2q 
is real analytic in s except for cuts: 

2 . 
4~ < s < 00. Finally, we have 

= 

-~ T <q2< 0 and 

2 
-00 < s < 4~ - T; 

and the deformation of the contour in Fig. 7.1 gives contributions from 

Regge poles in gJ±(s) and a background integral along Re J = - ~ . 



Re 

we 

1 
-2I 

,,, 
-..L.V-

+ I + [2 O)c -(s) + IJ 

K 
(pales) 

So far we have restricted ourselves to the region 

1 The line Re J 
1 is a natural boundary J >. .... - - - '2 .,. 2 

+ express r-(s, t) in terms of P/s. From (7.21) we 

UCRL-18665 

sin 1lJ 

as long as 

see that the 

asymptotic behavior of PJ(z) changes rather completely for 

ReJ < - ~ , so that it is useless to push the contour further to the 

left with the integrand in its pre~ent form, since the integral will 

become, asymptotically, very large. 

To proceed, we follow Mandelstam3 and write 

f(s, t) = 

00 

1 
+-

1l 

00 

.~ (_l)J-l 2J a(J - ~, s) 

J=O 

." QJ--l(Z) -;. 2 ":C_l)J-l 2J a(J - ~"s) QJ_~(Z) 
J=O 

This particular addition and subtraction is chosen, because, 

as observed by Mandelstam,(7.10) implies that the functions 

l 

ii 
" 

ii 
I: 

v, r 
II 
i, 
ji 
I: 
i: 

~ i' 

Ii 
Ii 
i: 

Ii 
Ii 
I'! 
Ii 

,~. l 
! 
i 
I 

I 
J"~ I 
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1 - - Q (z) tan ~J 
~ -J-l 

, 

have the property that RJ(z) = PJ(Z) for positive integral J, while 

the asymptotic expansion of RJ(z) for large z contains only the 

first term in (7.21).4 

Now the first two sums in (7.45) can be transformed in the 

same way as before, with PJ(-z)/sin nJ as 
RJ(-Z) 

cos nJ = - .. J 
s~n n 

in (7.44) replaced by 

The new result for the 

amplitude is 

f(s, t) 

+ L 
K 

(poles) 

The functions -R
J

( -z)/sin lrJ have poles at negative half-

integral J = -N -~, with residues N-l/ 2 (-1) . ~ .. ·~~~(z). As we 

move .. the contour back behind Re J = to Re J.= ... L, where 

-N - ~ < -L < -N + ~ , (7.47) becomes 
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t:(s, t) 
1 

-21" J -L+ioo 

dJ(2J +1) a(J, s) RJ(-z)/sin ~J 

-L-ioo 

+ L (2OX(s) + 1) I3K(s) ROX(s)(-z)/sin l1OX(s) 

K 

[poles - Re OK > -L.J 

N-I 
1\ 

+ - L n: 
J=O 

, 

where the last sum arises from the poles at half-integral. negative J 

mentioned above, and we have used QJ = Q-J-l for half-integral J. 

If the partial-wave amplitudes satisfy Mandelstam symmetry3 

for J half integral, a( -J - ~, s) = a'(J -~,s) 'and the last sum 

cancels against part of the next to last sum leaving L. (The 
J=N 

pole at J = -~ is cancelled by the 2J + 1 factor.) If Mandelstam 

symmetry is not satisfied" there will be fixed poles at negative half-

integral 3 J < -- . - 2 

A similar phenomenon must occur for the sum over Regge poles 

in (7.48). Either 13
K 

= 0 when ~ = half-integer, £! trajectories 

occur in pairs (a; a') about 

integer), with 

J = 

13 = 13 ' K K 

and at ~ = JO (a half-, 
at this point. 

.,' 

.. 
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As first shown by Gribov and pomeranchuk,5,4 the third 

Mandelstam double spectral function Ptu gives rise to fixed singu

larities at J = wrong signature negative integers in a(J, t). That 

this is a possibility can be seen frbm the Froissart-Gripov definition 

(7.35) and the fact that QJ(z) has poles at negative integers. As ' 

we see easily from (7.10), near J = -N, 

PN_l(Z) 

J + N 

, '. 
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VIII. J-PLANE BEHAVIOR OF VENEZIAN0
6

.MODEL FOR 10t ~ 101 

Independent of experimental comparisons, the Veneziano functions 

have educational value as textbook examples of scattering amplitudes 

containing infinite families of Regge poles. They can be; used to 

illustra~e many of. the elementary properties discussed in Section VII. 

For example, the Froissart-Gribov partial-wave amplitudes associated with 

Veneziano functions can be calculated explicitly and their properties 

investigated in detail. 

VIII.A. Partial Fraction Expansions 

Throughout Section VIII we will remain in the t-channel unless 

'otherwise noted. In order to partial wave analyze our .expressions for 

the t-channel amplitudes we will need the two basic Mittag-

Leffler expansions: 

00 

F [x" y J - '""'. o ., L 
K=l 

r(K + y) 
r(K) r(y) 

1 
x - K 

valid for Re y < 0, and, defining T 1 - x - y 

00 

, 

=\ 
~ 

1 1 
+ i(l - T) - K + -v + i(l - T) 

(8.1) 

which converges absolutely for Re T < 1. 

In making a partial fractions expansion of a function as in 

(3.1) and (8.1), we are simply expressing it in terms of poles. Care 

I 
( 

j 

1 
1 

:\ 
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must be taken to insure that we are not neglecting an entire function. 

We will show below that (3.1) and (8.1) are valid as they stand and 

will indicate briefly how they can be modified to extend their range 

of validity in y and T, respectively. 

To prove (3.1) we use Gauss' theorem for the hypergeometric 

function7 

F(a,b; c; 1) rtc) r(c - a - ~~ 
r c - a) r(c , (8.2) 

which holds for Re [c - a - b J > O. We remind the reader that F 

satisfies the hypergeometric equation 

z(l - z)u" + [c - (a + b + l)zJu' - abu 

and is defined by the hypergeometric series, 

F(a,b; c; z) K z 

The series converges for Izl < 1. Forlzl - 1 the series is 

(a) divergent for Re(a + b - c) ~ 1 

(b) absolutely convergent for Re(a + b - c) < 0 

(c) conditionally convergent for 0 ~ Re(a + b - c) < 1, the 

point z = 1 being excluded. 

To verify (3.1) we note that 

(8.4) 
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1 
x - K 

(by 8.4) = r(l + y) r(l - x) F(l + y, 1 _ x,' 2 _ x,' 1) 
r(2 - x) r(y) 

(by 8.2) 

whenever Re y < O. 

= (_ ) r(l - x) rC-y) y r(l - x - y 

Verification of (8.1) is more involved since both sets of 

poles have been simultaneously exhibited. 

In the notation of (8.1) we write 

FO[X, yJ = T B[-v + ~(l + T), + v +~(l+T)l •. · (8.6) 

Making use of the integral representation of the Beta function 

, (8·7) 

~ 

and of the hypergeometric function 

I 

I 

I 
1 

I 
~ i 

I 
, I 



F(a,b; c; z) 

we have, 

-17-

-r.:-' -rr'-l("""c~) ---b-) i:t tb-l.,(l - ,t)C-b-l (1 = reb) r(e 

B[-v+!(l + T), v + ~(l + T)J 

UCRL-18665 

) -a tz , 
(8.8) 

! + ":""r,..--'-'-...,....,~--+-...t.J.~F(T + 1, v + !(l + T); v + !(l + T) + 1; -1) 

1 
rh + 1) 

r( 1" + 1 + n) 
r(n + 1) 

(-1) n { __ -...;:l~' ..--;_ + 
-v + !(l + 1") + n v + !(l 

and letting. K = n + 1, (8.1) follows. From the properties of F at 

1 } 
+ 1" )+l'J. " 

z = -1 listed above, we see the series in .(8.1) is absolutely convergent 

for Re 1" < 0, and conditionally convergent for' 0 < Re T < 1. 

Some limitations on the use of partial fraction expansions is 

now evident from their derivation. When we use the expression (3.1) 

for FO(X'y) in terms of the poles in one variable there are, no poles 

explicitly present in the other variable. These poles appear in a 

region where the series diverges. By examining the asymptotic form 

of the terms in (3.1), we can isolate the divergence, recapture the 

) , 
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first pole and calculate its residue. The large K asymptotic expan-

Si0rl of r(x -!- K)/r(KL [cf'(:~.lli)J, can be combined willI 

1 (Ixl < IKI) , (S.lO) 
x - K 

to give 

1 
~ - RYT 

00 , } \."""' '1 '-1 -2 f:r {if + 2Y(Y - l)if . + o(if ) 

, (S.ll) 

1 
~ - fGJ {(I - y) + [ty(y -1) + xl (2 -y) + .• -} 

(S.12) 
-".~ , -

The first Riemann zeta function has a pole at y = 0 which is cancelled 

by the zero of l/r(y) at that point. The second zeta function has a 

pole at y = 1 with the residue 

(S.13) 

This is exactly the residue we would find for this pole in the Mittag-

Leffler expansion (3.1) for FO(x,y) in the y variable. In order to 

get a series which does not diverge for y > 1 we must subtract this 

, divergence, and therby analytically continue the sum. If we let 

y == P + a where P is a positive integer, and a < 1. we have 

ji 

11 
II 
II 
iI 

I] 
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r(l - x) r(l - P - a) 
r(l - x - P - a) 

r(l- x) r(1 - a) 
= c p( x) r (1 - x - a) 

== ~ r~K + a) cp(x) 
L r K) rCa) x - K 
K=l 

where, suppressing the a dependence, 

P -1 

= 11 (1 x ) +--a + n 
n=O 

00 

r(l - x) r(l - y) 
r(l - x - y) 

\ 
L 
K==l 

a polynomial of degree P .- 1, is the subtraction.term necessary 

for the series (8.17) to be valid for Re y< P+l. In an analogous 

fashion we analyze rex) f(Y - x) ,letting y = P + a r(y) 

rex) rep + a - x) 
r(P + a) 

00 

\ (-It rea + n) Cp(-X) 

L r(n + 1) rea) x + n 
n=O 

f -It rCa + n) cp(-x) 
r n + 1) r(a) . x - a - n 

, 
(8.14) 

(8.15 ) 

(8.16) 

(8.18) 

(8.19) 



-20- UCRL-18665 

The first P - 1 terms of the second sum in (8.19) have no poles. If we let 

P-l 
cp(-x) 

L ( -It r~a + nl (8.20) E (x) = r(n + 1) rCa) 
, 

P x - a - n 
n=O 

we have 

<Xl 

cp(-x) 
r~x2 r~y- xl ~ . (_l)n r{a + n} 

r(y) = 
n= r(n + 1) rea) --x + n 

co 

~ (_l}p+m rCa + P + m) 
- L rem + P + 1) r{a) (8.21) 

n=O 

Writing 

_ (_l)n r(y + n) _1_ + e _l)n rea. + n) .{cp(-X) - c(n,)} 
- r(n +.1) r(y) •. x + n r(n + 1) rea) x +n· , 

'. :;>,' " (8.21a) 
and similarly for the s~con~~mn\ri~{8.2i) ,'we have 

1 
x + n 

(l)n{ r(y+n) 'i +Dllex)j 
- , rC n +1) rC y ) -x t ,a + n n 

where D~, Dn" are polynomials defined by (8.21a). 

+ E (x) , 
p 

(8.22) 

.' 
\':. 
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Identifying 

. 1 
x-+-v+-(l.+T) 

2 

y -+ (i + T) , 

we have the result which extends the validity of (8',1) into the 

region Re T < P + 1. For most applications, however, we will be 

content to use (3.1) and (8.1) as they stand by rest'ricting our 

attention to regions in which they hold. 

VIII.B. Froissart-Gribov Partial Wave Amplitudes 

We consider the t-channel amplitudes 

(8.23a) 

(8.23b) 

00 (-l)K TK (T) 

L -K] 
t gL 1 1 

A2 (v,;-) = r(K) 1 + 1 + -(1 - T) - K -v + -(1 - T) K=l 2 2 . 

A1
t

'(v,T) = 
t TK(T+ !) [ 

g r(K) 1 (_ 
K=l v + - .L 2 

gf 
R:r 

(8·31) 

1 1 

'i) - K] 1 
- T) - K -v + -(1 -2 

(8.32) 

+ -~-=------:---1 1 
- K -v + ~(1 - T) -'K· 

.J 

, 

, 
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As discussed in VIII.A., we can find regions in T where these expres-

sions can be used to give us the discontinuities D (T,z) s 

in (7.32). From (7.34) and (7.35) we can then compute the Froissart-

Gribov partial wave amplitudes' corresponding to (8.31)-(8.33). We have 

(8·34) 

00 

2 g L 
. K=l 

Corresponding to, a( v, T) 
" .. -:;t·~.,~\'-, '-,- . 

in (8.33) we find the partial-wave amplitudes 

cos 9t 

~ 2g t 
K=l 

In computing 

O· ' .. , 

C 2K -'1) 
QJ 1 + T 

we have introduced 2\1 z = - which is 
T 

if I-L =0, -2 1 
b ~ 1 BeV, and a = 2 

",i 
j 
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VIII.C. Location of Moving Poles in the J-Plane 

Regge poles appear as divergences of the sums, (8.35) and (8.37), 

which define the partial-wave amplitudes. The I = 1 Regge poles can 

be found by examining the large K behavior of the sum and of (8.37). 

Letting a == T + ~, and using (3.11t), (7.15, 7.16) we have 

. ....., 1 1 
1 r(J + 1) ~ + _ a(a _ l)~- + •.• 

00 { } [~/TJJ r(J + ~) reT + ~) f: . 2 

f -J-l (" · lK - J 

.. ) '1 -J-2 
+ 1) -(a - 2) K + ... 

2 2 
, (8.40 ), 

which can be summed to give a series of Riemann zeta functions, ~(z). 

We have 

00 

~(z) = L K-
z 

'. K=l 

".'; .... -

",,,: 

00 

'" _g_ 1. r (.J +' i) '., '\' b (J, a) ~ (n + J - a) 
2-Y; (4/r)J r(J + ~) r(a) S n 

(8.41) 

(8.42) 

Since the only singularity of, Uz) is a simple pole of unit residue 

at z = 1, poles occur in (8.42) at J = a, d- 1,0-2,···. 

In principle we can compute any number of Regge residues, but 

in practice the procedure of combining the two asymptotic expansions 

becomes cum~ersome very quickly. The first two residues are 
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= -g-
21{; 

a(~)-a 

r(a + ~) 

-g-

8-V; 

, 

- 1) - a( T -

2 

(8.44) 

These residues are of the form predicted for linearly rising 

12 trajectorie.sby Mandelstam. In addition to the threshold factor 

(~) -a __ q2a, (8 4 ) t h t· in . 3 , note the zeros which appear a t e nega 1ve 
T 

half-:integers as they must, due to Mandelstam symmetry and the absence 

of compensating trajectories. 3 

. If we apply the same methods to (8.35) we find that there are, 

as expected, no I = 2 Regge poles. Although (8.35) converges 

absolutely only for J > T we can use 

£ (_I)K K- z = (21- z 1) ,(z) , 
K=l 

to verify the absence of moving poles. The conditional convergence of 

(8.35) caused by the factor (_l)K eliminates the kind of pol'es 

appearing in (8.40). 

.' 
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VIII.D. Fixed Poles in the J Plane 

As noted above in (7.49) the QJ(z) have poles at negative 

integral J. Let us see whether these appear in our Froissart-Gribov 

amplitudes. 

The I = 2 poles, from (7.49) and (8.35) have residues 

while the I = 1 poles 

00 

(N) 
2[ Yl = 

K=l 

,', 

(_l)K TK('r) 

r(K) 

have residues 

(, 2K - 1,) 
PN-l ~ + T 

TK(T + ~) 
PN_l(l+ 

2K - 1) r(K) T 

, 

In (8.50) and U3.5l) the poles have positions J = -N. 

(N=1,2,'" .) 

(8.51 ) 

In fact, . Y leN) = O. The proof goes as follows. Set 

1 a == T + 2" and choose a < '~N. Then '( 8.51) converges and if it is 

zero for a < -.N, analytic continuation tells us it is zero everywhere. 

(There can never be a barrier of singularities because the zeta function 

has only a single pole.) 

The sum in (8.51) is zero for ex < -N. Define (for a < -N) 

P ~-l T (a) 
F(a, N,P) [' K 

(8.52) = r(K) 
K=l 



-26- UCRL-18665 

By induction it follows easily that 

F(a, 1, p) = (a + 1) rep) , 

and we then have 

lim... F(a, 1, p)= 
l"-+ 00 (a + 1) rea) -+ 0 

Now 

p 
\ K TK(a) 

F(a, 2, p) = ~ r(K) 
K=l' 

= a[F(a + 1, 0, p) - F(a, 0, p)] , 

(8·55) 

and therefore 

1 i~-+ 00 F (a, 2, p) '" pa+
2 

-+ 0 (a + 2 <. 0 ) 

This procedure can be extended. to arbitrary N, which gives 

us the required result. 
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Similarly, we define, to study (8.50), 

G(X, N, p) 
(_l)K T (x) KN-l 

K 
r(K) . 

UCRL-18665 

Just as for the F's above, tLe study of G(x, N, p) can be reduced 

to that of G(x, 1, p), but here G(x, 1, 00) f O. In fact we have 

G(x, 1, 00) = 

= 

x sin rrX 
rr 

00 

L 
K==l 

K (-1) B(-X, m + 1 + x) 

00 

L 
m=O 
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Using the result 

t a - l (1 _ t)b-l (1 + t)-b-a dt = 

we get 

G(x, 1, 00) 

rea) reb) 
rCa + b) 

UCRL-18665 

, 
(8.591) 

(8.592) 

Therefore the I = 0 and I = 2 amplitudes contain fixed poles, 

whose residues are functions of T. The poles manifest themselves in 

the amplitudes and odd integer (wrong signature) values of 

J, and hence from (7.36) and the symmetry propert ies of the P K( z) 

we can see they give no contribution to the asymptotic behavior of the 

phys ical amplitudes .18 

VIlLE. Asymptotic Behavior of @(t) 

If we use the Stirling approximation for r(z), (8.43) yields 
.• ~. ... i.··. . 

~ "'. 

'" e 

4 
-o:£n(-) e (8.60) 

and as T goes to 00 along a wedge near the negative real axis we 

get an exponential blowup> Since . t30 (T) is an analytic function of 
,' ..... . 

'1', and has an infinite string ofierosat 0: = -~, -~ ••• Carlson's 

theorem tells us this exponential blowup must occur, as pointed out by 

Jones and Teplitz. 13 
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Jones and Teplitz remark that in a theory with infinitely 

rising trajectories. one. of the following set of assumptions, 

considered in a related context by Khuri,14 must fail: 

(i) The o.mplitude A(s,t) is ana.lytic in the· cut 13 plane 

and is bounded for fixed t by 
1 

f(S) = c exp(lsI2-E); (8.61) 

(ii) A(s,z) is bounded by f(s) for fixed z; 

(iii) The Sommerfeld-Watson transformation of the partial-

wave amplitudes a(J,s.) exists, and a(J,s) is bounded by f(s) 

for fixed J; 

(iv) exes) and B(S) are analytic with a single cut from 

s = 4~2 to 00, exes) is polynomial bounded~ and 13(s) is bounded 

by f(s). 

Let us recheck (i), using the partial fractions expansion 

(3.1). We have with P <Ixl< P + 1 

lim 

x~ -00 

fixed y 

t 
K=l 

lim (t = 
P~ 00 .. K=l 

'p 
K x 

1 
y - K 

+ bl) ftK + x) 
r K) r(x) y 

00 

1 lim L lim L = "RKY + 
P~ 00 

Y - K P-+ 00 K=l K=P+l 

P K 
lim L x 1 

= rm --P-+ 00 
y - K 

K=l 

1 
- K 

KX 1 
RXT y - K 

(8.62) 
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The incomplete r function satisfies 

,(cx, x) ~x e-t t U- 1 dt (8.63) 

If we set -y = -1 + cx, analytically contihuing to Re a < 0, we have 

and using lim ,(1 .... y, -x) 
x~ -co. 

lim 
x~ -co 

fixed y 

which matches with (3.19). 

1'(1 - y) we get the limit we want 

1 
rv e - i rry xY r ( 1 _ y) 

y - K 

Let us repeat th~ calculation, switching x and y 

(p ~ x ~ P + 1) (y < 0) 

(8.64) 

, 

t, 
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P 

lim(t + 2:+J ~f~);{~l lim ~ rfK + Y~ 1 1 - = -r K)r(y x - K P-+ 00 
X - K 

x-+ 00 K=l fixed y 

= lim 
P-+ 00 

p 

L~ 
K=l 

+ lim 
P-+ 00 L 

K=P+l 

r(K + y) 
r(K) r(y) 

(-Db CRY lim 
p~ 00 

-L-l x F(y, L + 1, p) 

- lim 
P--) 00 

which matches (8.65).15 

y r(y) F(l, -y; 1 - y; x) ~ 
x-+ 00 

Let us check the fixed z bou~d (ii). 

We have, with x = a(s), w = a(u), y = a(t), 

Y-TJ -l K . 
r(y) 

-iny v 
n e X" 

r(y) sin nY 

(8.66) 
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, , 2 1/2 r '\1 / 2 , ' 
FO(x. w) V-+oo .;:. (:) ::v J exp {v({ 1 + 1/z)ln( 1 + 1/z) 

fixed z 

+(-1+1/z)ln(-1+1/z) - 2/z1n(2/z)]}. 

Therefore the fixed z-bound is violated. 

where 

Now for the fixed J bounds of (iii). 

lh 
Near z = 1--

, 1 1 1 
Q (z) ~ -- log(~z - -2') - Y - *(v + 1) , v 2 ~ 

(v :f -1, -2,"') 

d 
dz log r(z) 

andtheEuler-Mascheroni constant isl7 

Y=lim(,~~ m~ 00 L., 
n=l 

lim 
z~l 

log ~ ~ 0.5772156649 .•.. 

{(z) -Z~l } 

We rewrite (8.35) and (8.37) as (p~ T ~ P + 1) 

(8.67) 

(8.69) 

tJ 
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= 2 lim (t 
p~ co K=l +~) 

(_l)K TK(T) 

r(K) 

= 

= K=P+l 

{ 1 (2K - 1) -2' log 2,. 

, 

-y; r(l + J) (;K )-J-l 
r(J + ~) 

1 
J - ,. 

+ terms containing G(T, 1, co) 

The first term on the RHS of (8.72) gives no trouble with the 

high 1" bound. For the second term, however, we need to consider the 

asymptotic behavior of 

00 

g(x) L K (-x) /r(K) -x -x e 

K=l 

This violates (iii) for ,. -> -00. The same difficulty occurs for 

'I'he authors have profited from discussions with S. Mandelstam. 
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FIGURE CAPTIONS 

" 
Fig. 7.1. Contour for Sommerfeld-Watson transform. 

Fig. 7.2. Analytic continuation of partial-wave amplitudes down to 

nearest t or u channel singula.rities. 

~I 
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Fig. 7.2 
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