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nx scattering. The first two parts are contained in

UCRL-18637 and UCRL-1866k.



VII.

VII.A.

VII.B.

Equal-Mass Particles

VIII.

VIII.A.
VIII.R.
VIII.C.
VIII.D.
VIII.E.
References .

Figure Captions.

General Remarks

-iii-

Partial Fraction Expansions

Fixed Poles in the J-Plane .

Prdperties of Legendre Functions . .

.

TABLE OF CONTENTS - PART III

Froissart-Gribov Partial Wave Amplitudes

Location of Moving Poles in the J-Plane .

Asymptotic Behavior of g(t) . . . . .

-

J-Plane Behavior of Veneziano Model for nax — nx

.

UCRL~18665

Review of Regge Poles in the Scattering of Spinless

1k
1k

21

. 23

25
28

. 34
. 36



-1- - UCRL-18665

VII. GENERAL REMARKS

VII.A. Properties of Legendre Func.tionsl

The Legendre functions, Pv(z) and Qﬁ(z), are solutions of

the differential equation:

%; [(l - 28 %%] vy +lw = 0 . (7.1)

If v =J (in this section J will always indicate a nonnegative

integer) the PJ(z) reduce to polynomials. The first four P.'s and

J
QJ's are:

Po(x) = l b
Pl(x) = x ,
Py(x) = 335 -1)

1, 3 ‘
Po(x) = 505%x7 -3x) . (7.2)
Q) = Zm L,
Q@) = Fmpti-1,
(x) = F3 -1) mrtEX.2x

1 1 D
a(x) = % -3) X+ 2-2% L (7.3)



The PJ's and QJ's have the symmetry properties:
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PJ(-,é>. =(1)JPJ(z) | , - (7.4)

QJV(-z) = ('--1)‘1.+l Q‘J(‘z'v) (7.5)
For a continuous index, tﬁesé éeneralizé to

Qv(-z)= -e"-.i'nvv Qv(é) (Imz < O) s (7.6)

Q,(-z) = —e i o@(z) (Im z>0) , '(7-_7)

PV(-Z?' = iei“v - % sin vj-QV(Z) (Im z<0) , (7-8)

P (-2) = -e“i"”‘-i—)‘-,slin"-_v}rQ,V(z) (n 2> ) (7.9)

The sign of the index_can'be'changed using the'following relations:

QV(Z) —‘Q_v_1(z)"=  %'c°F(;9) P?(i),. .

 ;'-fj {(Sip‘nv #.0) ; -

B(z) =7 () .

When the argument is O vor 1

(7.10)

'(7-11)

T T Stiere

T g

o masirag e

o
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) =1, (7.12)
@ = () (“) ‘ (1:15)
q,(0) - —1%- (; - cos nv) r(" : l) r(g) C(7.14)

The Legendre functions canvbe expressed in terms of the hypérgeometric

functions, F(a,b; ¢; z), by

1 ‘
- g2y o+ 1) "y v 1 3.1 ‘
Q (z) = - —— Fl5+tl,5+35v+35i—=5),
v ' P(V + %)(gz)lﬂ”l 2 2 2 2 22
(7.15)
o (v + 1 1 10~
- n2(2z) r(v +5) z .

' _2zvrv'+l'-<l—v. v.1 .1
+ S—L-Lrv+l F O ’-V'E’E‘V, '—2"> . (7.16)

For v =4J, (7.16) reduces to

P_(z) = ﬁﬂJ—}-ﬁ F(—J, JHl; 1; =—=2 . (7.17)
J (22)J L 7N 2.

vin conjunctioh with the hypergeometric series

- 22 1 (a) T (b) K - |
F(a, b5 5 2) = Z S TR (7.18)

| ko £ SR '
.‘zl <1
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: ['la + K .
TK(a) = —ifrgy—l s (see Section III.A) ’ (3.3)

(7.15) and (7.16) give the asymptotic behavior in z. of the Legendre

rfunctioﬁs._,
1 B
72 v + 1) 1 (v + 1)£y + 2)‘__ o
R rz:: )V+l (v +2) M U B (—E)
(7.19)
; tan «y (v + 1) LV*‘J;)(V*;)l_ 1. ,
?V(z)'f\'/ ﬂ%(ez)vi-l P(V + %) L+ ( v + 6) 22 * O(zj:) ’

Z—p00

(7.20a)

when real v < -%

P (z) N @Zl r(v + ;) 1 - V('i - l L + O(%I) , (7.20b)

- 2. 2
gyoo (v + 1) 'z

when real v > ‘%

Equations (7.20) can be‘expresséd more compactly as

L N . _ | |
L2V (A - ) z"v1 [1 + (V +h%)1(~v6+_2) + ] . (71.21)
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In addition, the large v behavior of Q (z) is given by
' v

(z)/\_/

ivl—aw 2v(z 2

Y exp [-arctvzgy + %)][ 1 +.O(%>] . (7.22)

The derivative of PV(Z) with respect to v at v = O .is:

.%; P&(z) - = 2 m\f% é L ,
(Im z =0, -1<Re 2 <1) . - (7.23)
Useful recursioq relations are: o
(ZF-10E2G) = var(a)-ve () ,

]

.(2v + 1)z Pv(z)v (v + 1) Pv;l(z) + v Pv;l(zj ,

2

(2" - l) - q (2)

vea(a) - va, ()

(2v + 1)z Q,(z) (v +1) Q,,(2) + vlg;;l(z) . (7.24)

Heine's series is given by

L - Z (2K + 1) Py(t) qlz) o (7,-25.)

which converges in z for |t + Vi2 -1 < |z + V2.2 -1 |. Some

useful integrals are:
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PV(Z) QJ(-.Z')dZ = (J - v)(ﬁ' T v+ 1) -, v ' (7.26)
1 | '
P,(-2) Py(z)dz = % - J%?t s ey B (7.27)

-0

VII.B. ' Review of Regge Poles in the Scattering of Spinless

Equal-Mass Pai"ti(:les2

Consider the partial’wave‘expanéibn for the amplitude of the
scattering of spinless equal-mass particles, [defining a(J,s) = aJ(s)
in (1.20)]

[e]

(e, 6) - ) (1D aln, ) Re) . (13D

J=0

We assume that -f(s,t)A satisfies an unsubtracted dispersion relation,

with Dt(s, z) and Du(s, z) the discontinuities across the cuts in

;o (7.28)

S
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the t and u channels, respectively. Then

| ® p. (s, z')az' “® p.(s, z')dz’
£(s, t) = = ‘//f.- t’ + E-JZ/. n .
' ” "2t0 2z -z 7 ‘o 2R
(7.32)
Frdm.(7.3l) we have
+1 ‘
a(d, s) = 3 az P (2) (s, ) , (7-33)

-1

which can be manipulated, using (7.4), (7.29), and (7.32) to yield

=]

1

a(s, ) - az' Q(z')[D,(s, 2') + (-1)7 D (s, 2')]

%0 (1)

The factor (—l)J in (7.34) is ill-suited for analytic continugtion so
‘we define the amplitudes of definite signature

00

2=

2%, ) - az' Qy(z')[D(s, 2') £ D(s, 2)] . (7.35)

In (7.34) and (7.35) 2z, = min(|zto|;vlzuo|). - The physical amplitude

is then given in terms of the definite,signature amplitudes by

£s, 2) = M£'(s,2) + £ () + £ (02) - (s . (7.36)
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In view of (7.4),

a+(J, s) = a(J, s) for even J , ~
a (J, s) = a(J, s) for odd J . ' (7.37) .

It is convenient to refer to these as the "physical' values of J
for the partial wave amplitudes of definite signature.
Taking the analog of (7.31), the partial wave expansion, for

the amplitudes of definite signafure is

e, 1) = ) (e 1) 2t 5) By(a) (7.38)

J=0

We write this sum as a contour integral over the contour, C, shown

in Pig. 7.1

2(s, 5) 7y(-2)

sin nJd

(s, t) = - -é—l de(EJ + 1) . (7.39) g
Z _

"Up to this pbint'.s > hpe. _To get the t-channel asymptotic
behavior ([zsl > ®) we want - s §ZO. (See Fig. 7.2.) If the lowest
(u, t) singularities occur at (ugs ty) we can rewrite (7.35) as
at

;g? QJ(l + ;gﬁ)[Dt(S}t)_i Du(syt)] ’

T ' . (7.10)

ai(J) s) =

W

o1
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. . , ‘
where q2 = % (s - hu?), z =1+ “'g“"ﬁ" T = mln(uo, to). We
, s. - ly .
now define
* at J
=z _ . S ll-
gJ (S) = qQJ . (7' l)

gJi are real in the interval hug -T<s< hpg

because on the cut -1 < Re z < +1 we have from (7.6), (7.7),

The new quantities

a(z) = Ha(z+ic)va(z-10] , (7.42)

so that QJ(l + ———)/q is real on the interval -% T <.q2-< 0 and

' . 2q .
‘gJi(s) is real analytic in s except for cuts: -wo < s < huz - T3

M“Q < s <o . Finally, we have

]

+ , t 27 & t
a (J, s) P_(1 + ———i) qa " g, (s) P (E + ———:)-
’ J qu J J 2q2

(-q ) & (S) PJ<1:_-;;—> ’
‘ _ ' (7.43)

and the deformation of the contour in Fig; 7.l:givéé contributions from

Régge poles in th(s) and a background integral along Re J = -

nOf i
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Lo | (-¢)? Pj(il-——ﬁg
ar { (27 + 1) &;"(s) 2

sin nd

g &
> Loo

» P *(s) (El -t
+ K 2 + : ’
+ E [2 o *(s) + 1] : —3= 5, (s) . (7.4b)
o simaog(s) T
(poles)

. So far we have restricted ourselves to the region
Re J > - % . The line Re J = - % is & natural boﬁndary as long as
we express fi(s,_t). in terms of P 's. From (7.21) we see that the
asymptotic behavior of PJ(z) changes rather cbmpletely for
Re J < - % , So that it is useless to push the contour further to the

left with the integrand in its present form, since the integral will

~become, asymptotically, very large.

b

To proceed, we follow Mandelstam” and write
o _ : o
£(s, t) = zz: (25 + 1) a(d, s) Py(2) +‘% ‘ZE: (1)’ 25 a(3 - 3, s)
: J=0 . ©J=0
. ‘;; : :
' 1 , J-1 1. : '
g-1(2) -2 p (D)7 T erald - 5,08) Qp(2) : (7.45)
' J=0 ' ~

This particular addition and subtraction is chosen, because,

as observed by Mandelstam,(7.10) implies that the functions
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Ry(z) = -2Q;,(2) tan 7 S (1)

have the property that RJ(z) = PJ(;) for positive integral J, while
the asymptotic expansion of RJ(z) for large 2z contains only the
first term in (7.21).h | | |

Now the first two sums in (7.45) can be transformed in the

same way as before, with PJ(—z)/sin xJ as in (7.44) replaced by

. R._(-z)
. L _ . J
PJ(-z)/s1n g - QJ(-z)/n €os nJ = - T The new result for the
amplitude is
-%+ioo .
f(s, t) = - %T as(ag + 1) a(d,s) RJ(-z)/sin nd
,—%- ico ’

¥ Z (éog{(S) * l) Bx(s) Ral'{('s).(-z.)/Si‘n. 70t (s)
(po?es) '

1 J-1 :
- = E (-1)77 27 a(3 - 3,,8) Q;_1(2) . (7.57)
. . 2 : .
J=0 ' .

The functions -RJ(-z)/sin nJ have poles at negative half-

integral J = -N - %, with residues (—l)N-l/n?:‘ U 1(z). As we
N , AR S .

move -the contour back behind Re J = -3, “to Ré Jo= = L,  where

N =-2<-L<-N+32, (7.47) becomes
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v ‘ =L+ico )
£(s, t) = - %E a7(27 +1) e(J, ) Ry(-2)/sin =3

-L-iew

Z (2a(s) + 1) Byls) Ry (4)(-2)/otn sox(s)

[poles - Re o > -L.]

1 . J-1 |
- = ) ()T erad - 4 s) QJ_%_(Z)
22;
g;l
1 J=-1 1
= :(-1) | 25 a(-3 - 3, 8) Q;a(z) (7.148)

&y
i
O

where the last sum arises from the poles at half 1ntegral negative J

mentioned above, and we have used QJ = Q?J—l for half 1ntegral J.
If the partial-wave amplitudes satisfy Mandelstam symmetry3
for J half integral, a(-J -3, s) = a(‘ %,'s) and the last sum

cancels against part of the next to last sum leavxng e ii'; (The
pole at J = -3 is cancelled by the 2J + 1 .factof:) iIf'Mandelstam _

symmétry is not satisfied, there will be fixed poles at negative half-

\N

‘integral J < -5 .

no

A similar phenomenon must occur for the Sum oVer Régge poies _
in (7.48). Either Bx = 0 when ’aK = half-integer, or trajectories -’
occur in pairs (@, a') about J = -3, and at % = Jy (a half-

\

integer), Q' = =dy -1, with Bx = By' at this point.
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. As fifst shown by Gribov and Pomeranchuk,5’h the third
Mandelstam double spectral function pt; gives rise to fixed singu-
larities at J = wrong signature ﬁegative integers in a(J, t). That
this is a possibility can Ee seen from the Froissart-Gribov definifion
(7.35) and the fact that Qj(z) has poles at negative integers. As

we see easily from (7.10), near J = -N,

P .(z)

q(z) ~ == . (7.49)
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VIII. J-PLANE BEHAVIOR OF VENEZIANO6”MODEL FOR g — st

:Indépendent of experimental qpmparisons, the Veneziano functions
ha&e.edqcatiopal vglue asvtéxtbook examﬁles of séattering amplitudes
‘containinéiingipite families of Regge poles. They can be.used to
illﬁstraﬁe maﬁy of_the elementary properties discussed in Section VII.
For.examplez the Froissart-Gribov partial-wave émplitudes associated with
Veneziano functions can be calculated explicitly and their properties

investigated in detail.
. . N

VIII.A. Partial Fraction Expansions

Throughout Section-VIII we will remain in the t-channel unless
‘otherwise noted. 1In order to partial wave analyze our expressions for
the t-channel amplitudes we will need the two basic Mittag-

Leffler expansions:

00

R I i S
: K=1

1
~

valid for Re y < 0, and, defining 7 =1 =-x-y v = %(x.- V),

NiH

K . (-1 X px + | 1 ] i
Folx, yl = ;i; F%T) é(K) = Y e I +35(l -1) ~K[’
(8.1)

which con#erges absolutely for Re 7 < 1.
In making a partial fractions expansion of a function as in

(3.1) and (8.1), we are simply expressing it in terms of poles. Care
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must be taken to insure that we are ﬁot neglecting an entire function.
We Wwill show below that (3.1) and (8.1) are valid as they stand and
will indicate briefly how they can pe modified to'extend their range
of validity in y and 1, respectively.

To prove (3.1) we use Gauss' theorem for the hypergeometric

7

function

F(a,b; c; 1) = ;%gl_Féi ;Ti . §§ y (8.2)

whichholds for Re [¢ - a - b] > 0. We remind the reader that F

satisfies the hypergeometric equation

z(1 - z)u" + [e - (a +b +1)zJu'" -abu = 0 , (8.3)

and is defined by the hypergeometric serieét

> 1 (a) T, (b)
F(&,b; C, Z) = Z TKI({C) F(g n I)- _ ZK . (8.)4)
. K=0 . . o

The series converges for |z| < 1. For ]zl-: 1 the series is
(a) divergent for Re(a +b - ¢c) > 1
(v) absolutely confergent for Re(a +b =-¢) <O
| (c) conditionally convergent for O < Re(a.+ b - c¢) <1, the
point 2z = 1 being excluded. | |

To verify (3.1) we note that
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. (K +y) 1 _ . F(m + 1 ) y '(m +1 - # .
Agz; rk) r{y) x-x ~ ZE; r(y)+r(m++yij'('l) ?%2 +2 - x% ’

(8.5) .

(by 8.14) o - F(%(g ¥)X§(;(;)X) F(L+y, 1-x;2-x; 1)

(-y) r(l - x) r(-y)

(vy 8.2) N ORE—)

L]

FO[X’ y] b

whenever Re y < O.
Verification of (8.1) is more involved since both sets of
Poles have been simultaneously exhibited.

In the notation of (8.1) we write
Fo[x’ y] = 1 B[-v + %(l + T), +y +%(1+T)].(8.6)
Making use of the integral representation of the Beta'functioh 

L
2711 - )7L ae

B(x’ y)

1

(1 +¢) XY {;x'l s at (8.7)
. .

and of the hyperge&metric function
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b= ~b= -
at £°7ha - )0l (1l )

F(a,b5 5 2) = f(b)r§?g —r
BRLY .
(8.8)

we have

Bl-v+3(1 + 1), v +3(1 + 1)]

v o1
r(-v +3
T
2

(1 . : .
Fv T 20 v 7D b v+ 3L 0)s v+ 30+ 1) 415 )

r(v + 2@ +.7)) - -
o r{v + %(f T 1) + 1)'F(T +1, v+ 3(L+1); v+ +1)+1; -1)

n=0

1 ZYI‘(T+1+n) (-1)" 1 1
_l) + - ) s
C(t + 1) r(n+1) v +31+1)+n v+I1+T)|

(8.9)

énd letfing: K=n+1, (8.1) follows. From the.properties of F at
z = -1 listed above, we see the seri;s.ih_(871> is absolutely coﬁvergent
for Re 1< 0, and conditionally convéfgénﬁ,foriiO»<fRe_Ti{ 1.

Some limitations on the use of partial f;éétion expansions is
now evident from their derivation. When we ﬁseifhe;expfégéiqn (3.1)
for fb(x,y) iiﬁterms of thé‘p§lgs‘in oné variab;e there are no poles
explicitly preéént in the other variable,. These poles;appear inha
regién where>the éeries diverges. By examiﬁing the astﬁﬁotic‘form

of the terms in (3.1); we can isolate the divergence, recapture the
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first pole and calculate its:fesidue. The large X asymptotic expan-

sion of

—~
q
+
~—
\\
—~
=
~—
-
[
(@}
)
~~
N
ko
N
[

i, can be combined wilh

o . n v ‘
I %ZG) (x| < kD » = (8.10)

to give

Fo(i,y).,z - 5%57 Z{: <33'+ 2y(y - l)Ky ok )}

=
{l
}.J

‘i(f{xfl v XK 4—O(K 3)} ‘j,‘. | (8.11)

Fooy) ~ - Fey {cu -y) Dyl - 1)+ x) g2 - y) o
R o (8.12)

The first Riemann zeta function has a pole at y = O which is cancelled
by the zero of 1/r(y) at that point. The second zeta function has a

pole at y = 1 with the residue
res(?o(x,y5>ly=l = x . v (8.13)

This is ekactly the residue we would find for this pole iﬁ the Mittag-
Leffler expansion:(j.l) for Fo(x,y) in the & variable. In.ofder to
get a series which does not diverge for y > 1 wé muét subtract this

" divergence, and therby analytically continue the sum. " If we let

Yy =P +a where P 1is a positive integer, and a < 1, we have
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P - x) r(l - a)

r(l1 -x)r{l -Pp -a)

r{(l-x-P - a) cp(x) r(1 ~-x-a) ’

(8.14)

v S - o o(K + a) cp(x)

_ ' T r(g) r(a) x - K ’
} K=1 - (8.15)
where, suppressing the a dependence,
P-L |

ept) =TT Gt | (8.16)

n=0 _ '

Tl - x - y) r(Ky r(y) x

f‘(l -0 r(l-y) _ ZL {F(K +y) % -+ DK(X)} . (8.17)

F(a + K) cpl(x)- c(K)
D (%) = P%a5+F(K)'{ = = (8.18)

a polynomial of degree P - 1, is the subtraction.term necessary

for the series (8.17) to be valid for Re y<P+l. In an analogous

fashion we andlyze PLX)FI{:&))’ - %) , letting y =P + a

(1) r(a+n) Spi)

o) rE e - x)

(P + a) = F(n + 1) T(a) .
: : | | . -ln a + -C (—x. | .
i Z I"%n 3 1) ‘I‘Q(a) n)' X -a -n o (8.19)

n=0
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The first P - 1 terms of the second sum in (8.19) have no poles. If we let

- ()" rasn) Cpl
EP(X) = Z rin + 1) r(a) x-8a-~-n "’ (8.20)

we have

r(x) Fly - x) _ ZE; (-1)®  r(a +n) Spt"X)
ry) -

r(n+1) r(a) X +n

i Z{: (-1)P"  pa+rpem “pIF) + Ey(x) . (8.21)

(m+ P + 1) r(a) X-y-nm
n=0

Writing

(-l)n r(a + n) vCP(—,X)
P(n +1) x +n_

c_(-x) ~c(n)
1 v
- () ﬂg(_—}?itflx)*w) et (O ;)EI),(&){ R

SN RN (8.21a)
and s1m11arly for the second sum'ln »'-(8 21), ‘we have ’

s § ool 2o )

n : + n 'A.' o l e " | .
+ Z (-1) {ﬂg({ 1) %(y) -X.+ & +n * Dy (x)} ¥ EP(x) ’
n=0 ! N
, : (8.22)

where DI;, Dn" are polynomiéls defined by (8.21a).
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Identifying
, N | .
X = =y + E(l'+ Ty, : . (8.23a)
yol+m (8.230)

we have the result which extends the validity of (8.1) into the
region Re T < P + 1. For most applications, however, we will be
content to use (3.1) and (8.1) as they stand by restricting our

attention to regions in which they hold.

VIII.B. Froissart-Gribov Partial Wave Amplitudes

We consider the t-channel amplitudes

t 1 1
A2 (v,T) = g Z F(K)K T + T
- . = v+s(l-T)-K -v+ 5(1_- T) - K
(8.31)
o1
A ¥, 1) . Tl + 3) 1 A 1
J - .
' k=1 Fe) v 21 -m) -Kkeve 31 - ™ -K
(8.32)
E o 1
, ot 1t Te(T + 5)
a(v,'r) = 3 Ao + 3‘ A2 = g ) _—I"—(ET_-
=1

1 o 1
v+ =1 - T) =K -v+ 21 -1 -x
27 2 ¥

(8.33)
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As discussed in VIII.A., we can find regions in 1T where these expres-
sions can be used to give us the discontinuities DS(T,z) and Du(T,z)
~in (7.32). From (7.34) and (7.35) we can then compute the Froissart-

Gribov partial wave amplitudes corresponding to (8.31)-(8.33). We have

ay (@) = 0, ) (8.34)
- : | jfL ()" 1) 2K - 1 -
a,"(J,7) = 2g A GO Q__T(\l + __-r_> ) (8.35)
: ' K=1 : '
o () =0, | o (8.36)
S
& (3,m) = 2 ZEZV—EFZKj—ngJ (%) (8-37)

) K=1

Corresponding to -a(v,T) in (8.33) we find the partial-wave amplitudes

.
+ . éx<%.;»%5" oK -1 -
aq (J,7) = ng TR Q2 > = a (7,71)
K=1 . '
| - (8.39)

t

In computing a;” we have iritroduced z = %Y- which is

A1 ¥ g

cos 6, if w =0, b=l BeV—e‘, and a =




-23- ‘ UCRL-18665

- VIII.C. Location of Mbving Poles in the J-Plane

| | Regge poles appear as divergences of thg.sums,.(8.35) and (8.37),
which define the partial-wave amplitudes. The I = 1 Regge poles can
be fouhd by exemining the large K behavior of the sum and of (8.37).

Letting a = T + l, end using (3.14), (7.15, 7.16) we have

2
a,. (J,1) ~ . L rg+1) Z{: (k% + x a(a - l)Kq-l+'f'
1 eV‘ (/717 1 +3) (v + D) ¢
R E I B R Sk ST SN CR T

which can be sumﬁedﬂto:give a'seri§s of Riemann zeta functions, C(z).

C('z_),_% I (8.41)
'\;i;   £§1> .
We have E P
“(7,7) ~ 1 rg1) b_(3,0) C(n +J -q)
1 v 5/ o+ D) p(a) Z

(8.42)

Since the only singularity dft:ﬁ(é) nié>éﬁ§;ﬁ§}e pole of unit reéidue
at 2z = 1, poles occuf in”(8.h2) at j  j ; A  a)ZQV- 1, -2,

Iﬁ principle we can cbmpute any number of Regge residues, but
invpréctice‘the procedure of combining the.two asjmptotic expansions

becomes cumbersome very quickly. The first two residues. are
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. afz )-oc - . : '
(3 =0a) gylr) = . | (8.43)

ew/’ rla +2)

i sl

@ =a-1) py(7) = j«m sa(e - 1) -agT;q
. ) . ¢ ,+§ .

( )-a+l

8‘f r(o + —-)

Thesé-residues‘are of the form predicted for lineariy rising
trajectories by Mandelstam.;L In addition to the threshold factor
L b - 20 h
(=)

= =g, 1in (8.43), note the zeros which appear at the negative

| half-integers as the& must, due tc Mandelstam symmetfy and the absence
of compensating trajectories.5

If we apply the same methods to (8 35) we find that there are,
.bas'ekfécted, no I =2 Regge poles Although (8. 35) converges

absolutely only for J > T we can use

2{: (1" = @) (=), (8s)

to verify the absence of moving poles. vThe conditionél convergence of
(8.35) caused by the factor (-l)K eliminates the kind of poles

appearing in (8.10).

CRISE

L4}
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VIII.D. Fixed Poles in the J Plane

As noted above in (7.49) the QJ(z) have poles at negative
integral J. Let us see whether these appear in our Froissaft-Gribov
amplitudes.

The I = 2 poles, from (7.49) and (8.35) have residues

00

YQ(N)' : Z (- 1) T (%) - (l-f o : 1) ’ (6.50)

K=1

while the I =1 poles have residues

| | Q‘V,Tv(f;-l-) o ) |
rl(N) = 2}: LF(ETE— Py 1(1 + 2K T_l) . (8.51)

s

In (8.50) énd‘zé.5lj the péiésfhavejpositions J = -N.
(N =1,2,- )

In fact, Yl(N) The proof goes as follows. Set
a =T+ % , and choosea <»-N i Then (8 51) converges and if it is
zero for o < -N, analytlc contlnuatlon tells us it is zero everywhere.
(There can never be a barrier of s1ngular1t1es because the zeta function
has only a single pole.) | |

The sum in (8. 51) is zero for a< —N Define (for a < -N)

KN 1 7 (oc) o
‘F(a, N, P) = ———F-G{-)-— . ‘ < (8.52)
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By induction it follows easily that

Tpy (@)
F(a, l:_P) @ + 1) T(P) ’ . - __(8'53)
and ﬁe then have
Pa+l '
Now
= K T, (o)
F(a) 2, P) = "IT('KT— = cx[F(oz+l, 0, P)"F(a, 0, P)] s
K=1 (8.55)
and therefore
11 Fla, 2, P) ~ P*% L 0 (a+2<0) . (8.56)
P o .

This procedure can be extended,ﬁo‘arbitrary N, which gives

us the required result.
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Similarly, we define, to study (8.50),

L=l

. o | _' (_l)K TK(X) -1 | -
4 " G(x) N, P) = I"(K), . (857)

K=1

Just as for the F's above, tue study of G(x, N, P) can be reduced

to that of G(x, 1, P), but here G(x, 1, w) # 0. In fact we have

X sin nx
, ©) = ES0TX

G(x, (1) B(=x, m +1 +x) ,  (8.58)

Ik

=
i
H

X sin T[X

mO

i e e s

_ xsin nx[ (-l. _ t)-x-l k(l.+ t)-l ,

(8.59)
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Using the result

1

a-1 b-1 -b-a - I'(a) r(b -a
t (1L - t) (L+t)  Tat = O 2 ,

(8.591)
we get

, ~(x+1) '

G(x, 1, ©) = =x2 . (8.592)

Therefore the I = O and I = 2 amplitudes contain fixed poles,
whose residues are functions of T1. The poles manifest themselves in

the amplitudes a +=_and a

0

2+ odd integer (wrong signature) values of

J, and hence from (7.36) ‘and the symmetry properties of the PK(z)
we can see.they give no contribution_fo the asymptotic behavior of the

physical amplitudéshlB.

VIII.E. Asymptotic Behavior of g(t)

If we'ﬁsgvthé Stirling approximation for r(z), (8..43) yields

&, (8.60)

and as T goes to = along a wedge neaf the negafive real axis we
get an exponential blpﬁup;: Sindé :@O(T) is an analytic function of
T, and has an infinite:étriné 6fsgéf§éi§i Q = -%, -% ces Carlson's
theorem tells us this exponenfial bloﬁﬁp must occur, as_pointed out by

Jones and Teplitz.13
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Jones and Teplitz remark thét in a theory with infinitely
rising trajectories.one. of the following set of assumptions,
c§nsidered~in a related context by Khuri,lh must-fail:

| (1) The.amplitude A(s,t) ig analytic in the cut s plane

‘and is bounded for fixed t by
1
5-€
£f(s) = c exp(|s|?27); (8.61)

(ii) A(s,z) 1is bounded by f(s) for fixed z;

(iii) The Sommerfeld-Watson transformation of the partial-
wave amplitudes a(J,s) exists, and a(J,s) is bounded by f(s)
for fixed J; '

(iv) a(s). and >6(s) are analytic with a single cut from

s = hpe to o, as) is polyncmial bounded, and B(s) is bounded.

by f(s).

Let us recheck (i), using the partial fractions expansion

(3.1). We have with P <|x|<P + 1

0
. 'K + x 1
Lim z HK) T(x) 7 -K
X~y =00 K:l
fixed y
P 00
- 1lim Z . N r(K + x) 1
P oo L, ) T T(x) ¥-X
: ‘K=1 K=pP+1 _ ‘
. ZP £ 1 Z
= lim . 7—)- : + llm
rxK) y - Z ) Yy - K
Poe %3 Pow T34
K : ‘
. X 1 - v
= lim . . 8.62
Po » r'{K y - K ( )
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The incomplete [I' function satisfies

| o = n _on B é
r(a, x) = e L gt = ZE: é?%%71557‘ . (8.63) Yo

If we set -y =-1+ @, analytically continuing to Re & < 0, we have

|
|
iny ¥ | | XL 1 ' | 2
- -x) = — 6h)
. K= -
and using lim v(1 4ﬁy,.-x) = I'(l - y) we get the limit we want
) X— =~c0. . ) ) )
. w )
S P(K+x) 1 Co tiny _ '
) Ry e e
fixed y K=l ' : ' (8.65)

~which matches with (3.19).
~ Let us répeaf tﬁé célculation; switching x..and y

(PLx<K<P+1) (y < 0)
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13 r(K +y 1L _ 1im r(K + y) 1
o T(K)r{y) x - K ~ JT{OT(y) x - K
X 0 Py 0
_ K=1 _ P+l
fixed y

00, ' o]
L. -
(—i T— (—)S = lim v L L F(y, L+1, P)
K é K Pes :
= =O
. o
. L y‘L"l
r(K +y) x ~ . K
- 1i - + = -1
pam L } L CON (D A A Z t(y)
. : P+l L=O

S O

r(y) Yy -L ¥y I(y) » Y5 s x_‘.; - I'(y) sin ay ’
1L=0 o , - '

' (8.66)

~which matches (8.65).'15 '
Let us check the fixed z bound (ii).

We have, with x =a(s), w=oa(), y=oalt), 7=

g



=32 UCRL-18665

< (211')-1/'; z 2‘\ 1/
= e E_l;l

2 o
exp {v[(1+1/2)In(1+1/2)

- Fplxw) -
. YV~+=o0
fixed z

+(-14 1/z)1n(-i+ 1/z) - 2/z ln'(Z/z)]}._

{0

(8.67)

Therefore.thé fixed z-bound is Vio-lated.

Now for the fixed J bounds of (iii).

' 1A
Near z = 17

a(z) ¥ Slog(zz -5 -v-ylvr1) ,  (8.69)

' (V # -1, =2,:+)
" where
W2) = Lieera) , @)

17

" and'the Euler-Mascheroni constant is”

¥ = lim ‘_ EE: %' - logm = 0.57721566u9,(.

4 z— 1

(1) = lim _{C(z) -z%'l} o | . (8,71)

We rewrite (8.%5) and (8.37) as (P TP + 1) . v
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Z (-1 1 (7)
+
8, (J, ) = 2 1];:mw Z T
2K - 1
o (v 25 )

~ - T - l '
= 2 % ﬁ—ﬁ——~—~ -%— log (%—-) -y -V¥(J+1)

+

1“(1(_\
K=1 L
) ) 1
S : gfl)K K" W/_I(l + J) (LK ~J-
+ lim 2 I‘(ﬂ . <
P- o I(J + f

K=P+1.

"'\fl‘l+J)< >Jl< )J_lT

r(J + ;))-) r(r)

2

+ terms containing G(T, 1, «) . (8.72)

The first term on the RHS of (8.72) gives no trouble with the
vhigh T bound. For the second term, however, we need to consider the

asymptotic behavior of

' K . -X v : -
g(x) = § (=x)7/P(K) = -xe = . | (8.7%)
K=1
This violates (iii) for T — -o. The same difficulty occurs for
8, (J, T) as T — 4o in (8.37).

The authors have profited from discussions with S. Mandelstam.
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FIGURE CAPTIONS
Fig. 7.1. Contour for Sommerfeld-Watson transform.
ifig. 7(?; ‘Analytic‘cohtinuation of partialfwave amplifudes down' to

nearest t or u channel singularities.
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