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On Gaussian comparison inequality and its
application to spectral analysis of large
random matrices
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Recently, Chernozhukov, Chetverikov, and Kato (Ann. Statist. 42 (2014) 1564–1597) developed a new
Gaussian comparison inequality for approximating the suprema of empirical processes. This paper ex-
ploits this technique to devise sharp inference on spectra of large random matrices. In particular, we show
that two long-standing problems in random matrix theory can be solved: (i) simple bootstrap inference
on sample eigenvalues when true eigenvalues are tied; (ii) conducting two-sample Roy’s covariance test
in high dimensions. To establish the asymptotic results, a generalized ε-net argument regarding the ma-
trix rescaled spectral norm and several new empirical process bounds are developed and of independent
interest.

Keywords: extreme value theory; Gaussian comparison inequality; random matrix theory; Roy’s largest
root test; spectral analysis

1. Introduction

Spectral analysis of large random matrices plays an important role in multivariate statistical esti-
mation and testing problems. For example, variances of the principal components are functions
of covariance eigenvalues (Muirhead [34]), and Roy’s largest root test statistic is the spectral
distance between the sample covariance and its population counterpart (Roy [37]).

Asymptotic behaviors of sample covariance eigenvalues have been extensively studied in the
literature. When the dimension d is small and the population eigenvalues are distinct, Anderson
[2] and Waternaux [44] proved the asymptotic normality for sample eigenvalues. Fujikoshi [20]
established the Edgeworth expansion and showed that the convergence rate is of order O(n−1/2)

under various settings when d is fixed. For non-Gaussian data, Waternaux [44] and Fujikoshi
[20] illustrated the effects of skewness and kurtosis on the limiting distribution.

When d is large, Johnstone [24] revealed for Gaussian data that the largest sample eigenvalue,
after proper standardization, follows the Tracy–Widom law asymptotically (Tracy and Widom
[39]). Johnstone [25] further proved that the convergence rate to the Tracy–Widom law is of
order O(d−2/3), which is astonishingly fast. Despite these elegant properties, existing results rely
heavily on some simple Gaussian or sub-Gaussian assumptions (Bao, Pan and Zhou [4], Péché
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[35], Pillai and Yin [36]). Their applications to hypothesis testing and constructing confidence
intervals under more general settings are largely unknown.

Motivated by the covariance testing problem, the major focus of this paper is to study asymp-
totic behaviors of a particular type of spectral statistics related to the covariance matrix. Here
we are interested in the non-Gaussian setting with the dimension d allowed to grow with the
sample size n. Specifically, let X1, . . . ,Xn be n independent realizations of a d-dimensional
random vector X with mean 0 and covariance matrix � ∈ R

d×d . Denote the sample covariance
matrix by �̂ = n−1∑n

i=1 XiX
T
i . We shall derive the limiting distribution and establish bootstrap

confidence intervals for the following statistic

Q̂max := sup
‖v‖2≤1,‖v‖0≤s

∣∣∣∣√nvT(�̂ − �)v

vT�v

∣∣∣∣, (1.1)

where 1 ≤ s ≤ d is a prespecified integer-valued parameter representing the “degree of sparsity”.
The statistic Q̂max is of general and strong practical interest. By setting s = d , it reduces to the
conventional Roy’s test statistic

√
n‖�−1/2�̂�−1/2 − Id‖2, where ‖M‖2 denotes the spectral

norm of M. If s ≤ d − 1, we obtain a generalized version of Roy’s test statistic, allowing us to
deal with large covariance matrices.1

To study the limiting behavior of Q̂max in high dimensions, a major insight is to build the
connection between the analysis of the maximum eigenvalue and recent developments in ex-
treme value theory. In particular, by viewing the maximum eigenvalue as the extreme value of
a specific infinite-state stochastic process, the Gaussian comparison inequality recently devel-
oped in Chernozhukov, Chetverikov and Kato [14] can be used. New empirical process bounds
are established to ensure the validity of the inference procedure. In the end, bootstrap inference
follows.

Two interesting observations are discovered. First, in the low-dimensional regime (d/n → 0),
the results in this paper solve a long standing question on bootstrap inference of eigenvalues when
multiple roots exist (Beran and Srivastava [5], Eaton and Tyler [17]). The m-out-of-n bootstrap
(Hall, Härdle and Simar [21]) is known to be rather sensitive to the choice of m. In comparison,
the multiplier-bootstrap-based inference procedure used in this paper does not involve any tuning
parameter, and is fairly accurate in approximating the distribution of the test statistic. Secondly,
it is well known that Roy’s largest root test is optimal against rank-one alternatives (Kritchman
and Nadler [29]). Previously it was unclear whether such a result could be extended to high
dimensional settings. This paper demonstrates that such a generalization can be made.

1.1. Notation

Throughout the paper, let R and Z denote the sets of real numbers and integers. Let 1(·) be the
indicator function. Let v = (v1, . . . , vd)T and M = (Mjk) ∈R

d×d be a d dimensional real vector
and a d × d real matrix. For sets I, J ⊂ {1, . . . , d}, let vI be the subvector of v with entries

1The techniques built in this paper can also be exploited to study the non-normalized version of Q̂max, i.e.,

sup‖v‖2≤1,‖v‖0≤s |vT(�̂ − �)v|. We defer to Section 2 for more details.
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indexed by I , and MI,J be the submatrix of M with entries indexed by I and J . We define the
vector �0 and �2 (pseudo-)norms of v to be ‖v‖0 =∑j 1(vj �= 0) and ‖v‖2 = (

∑d
j=1 |vj |2)1/2.

We define the matrix spectral (�2) norm as ‖M‖2 = maxv ‖Mv‖2/‖v‖2. For every real symmetric
matrix M, we define λmax(M) and λmin(M) to be its largest and smallest eigenvalues. For any
integer 1 ≤ s ≤ d and real symmetric matrix M, we define the s-sparse smallest and largest
eigenvalues of M to be

λmin,s(M) = inf
v∈V(s,d)

vTMv and λmax,s(M) = sup
v∈V(s,d)

vTMv,

where

V(s, d) := {v ∈R
d : ‖v‖2 = 1,‖v‖0 ≤ s

}
(1.2)

is the set of all s-sparse vectors on the d-dimensional sphere S
d−1. Moreover, we write γs(M) =√

λmax,s(M)/λmin,s(M) for any positive definite matrix M. For any v ∈ R
d and positive definite

real-valued matrix M, we write

‖v‖M = (vTMv
)1/2

and vM = v/‖v‖M.

For any random vectors X,Y ∈ R
d , we write X

d= Y if X and Y are identically distributed.
We use c, C to denote absolute positive constants, which may take different values at each occur-
rence. For any two real sequences {an} and {bn}, we write an � bn, an = O(bn), or equivalently
bn � an, if there exists an absolute constant C such that |an| ≤ C|bn| for any large enough n. We
write an 	 bn if both an � bn and an � bn hold. We write an = o(bn) if for any absolute con-
stant C, we have |an| ≤ C|bn| for any large enough n. We write an = OP(bn) and an = oP(bn)

if an = O(bn) and an = o(bn) hold stochastically. For arbitrary positive integer n, we write
[n] = {a ∈ Z : 1 ≤ a ≤ n}. For any set A, denote by |A| its cardinality and supp(A) its support.
For any a, b ∈ R, we write a ∨ b = max(a, b).

1.2. Structure of the paper

The rest of this paper is organized as follows. Section 2 provides the main results and technical
tools involved. Sections 3 and 4 give two applications of the main results. In particular, Section 3
discusses the application to bootstrap inference of largest and smallest eigenvalues for spherical
distributions. Section 4 extends the main results to conduct the two-sample Roy’s largest root test.
In Section 5, we conclude the paper with a short discussion. The technical proofs are relegated
to Section 6.

2. Main results

Let X1, . . . ,Xn be independent and identically distributed (i.i.d.) realizations of X ∈ R
d with

mean 0 and covariance matrix �, and let �̂ be the sample covariance matrix. Define Q̂v and
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Q̂max to be the normalized rank-one projection and normalized s-sparse largest singular value of
�̂ − �, given respectively, by

Q̂v =
√

nvT(�̂ − �)v

vT�v
and Q̂max = sup

v∈V(s,d)

|Q̂v|.

We aim to derive the limiting distribution of Q̂max. Of note, when setting s = d and assuming
the positive definiteness of �, we have

Q̂max = √
n
∥∥�−1/2�̂�−1/2 − Id

∥∥
2,

which coincides with Roy’s largest root test statistic (Johnstone and Nadler [27], Roy [37]). The
statistic Q̂max is of strong practical interest. We shall discuss in Sections 3 and 4 two applications
based on its limiting properties stated below.

To derive the limiting distribution of Q̂max, we impose the following two assumptions.

Assumption 2.1. There exists a random vector U ∈ R
d satisfying E(U) = 0 and E(UUT) = Id ,

such that

X = �1/2U and K1 := sup
v∈Sd−1

∥∥vTU
∥∥

ψ2
< ∞.

Here ‖·‖ψ2 stands for the standard Orlicz norm with respect to the function ψ2(x) := exp(x2)−1
(van der Vaart and Wellner [42]).

Assumption 2.2. {Xi}ni=1 are independent realizations of X.

Assumptions 2.1 and 2.2 are mild and are regularly imposed in the literature. Note that the
sub-Gaussian condition in Assumption 2.1 can be easily relaxed at the cost of a more stringent
scaling constraint on (n, d, s) (Cai, Liu and Xia [8]). Assumption 2.2 can also be slightly relaxed.
Such relaxations are beyond the scope of this paper, and we will not pursue the details here.

With Assumptions 2.1 and 2.2 satisfied, the following theorem gives a Gaussian comparison
result regarding the limiting distribution of Q̂max. Below, for an arbitrary set A equipped with
a metric ρ, we call Nε an ε-net of A if for every a ∈ A there exists some a′ ∈ Nε such that
ρ(a, a′) ≤ ε. For each s ∈ [d], with slight abuse of notation, we write γs = γs(�) for simplicity.
By Lemma 6.1 in Section 6, for any ε ∈ (0,1), there exists an ε-net N0

ε = {vj : j = 1, . . . , p0
ε } of

V(s, d) equipped with the Euclidean metric, with its cardinality p0
ε = |N0

ε | satisfying logp0
ε �

s log(ed/εs).

Theorem 2.1. Let Assumptions 2.1 and 2.2 be satisfied and put ε1 = (nγs)
−1. Then, for any ε1-

net Nε1 of V(s, d) with cardinality pε1 = |Nε1 |, there exists a pε1 -dimensional centered Gaussian
random vector (G1, . . . ,Gpε1

)T satisfying E(GjGk) = E(RjRk) for 1 ≤ j, k ≤ pε1 with Rj =
vT

j (XXT − �)vj /v
T
j�vj , such that

sup
t≥0

∣∣∣P(Q̂max ≤ t) − P

(
max

1≤j≤pε1

|Gj | ≤ t
)∣∣∣≤ CK2

2
{γn(s, d) ∨ logpε1}9/8

n1/8
, (2.1)
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where C > 0 is an absolute constant, K2 := K2
1 + 1, and γn(s, d) := s log(γs · ed/s) ∨

s logn.

There are several interesting observations drawn from Theorem 2.1. First, as long as s log(γs ·
ed/s) ∨ s logn ∨ logpε = o(n1/9) for a properly chosen ε, the distribution of Q̂max can be well
approximated by that of the maximum of a Gaussian sequence. It is worth noting that no paramet-
ric assumption is imposed on the data generating scheme. Secondly, the result in Theorem 2.1,
though not reflecting the exact limiting distribution of Q̂max, sheds light on its asymptotic be-
havior. Following the standard extreme value theory, when s = 1 and the covariance matrix �

is sparse, Q̂max follows a Gumbel distribution asymptotically as d → ∞ (Cai, Liu and Xia [8]).
Thirdly, we note that when � = Id , the techniques used to prove Theorem 2.1 can be adapted to
derive the limiting distributions of extreme sample eigenvalues. See Section 3 for details.

The detailed proof of Theorem 2.1 is involved. Hence, a heuristic sketch is useful. A major
ingredient stems from a Gaussian comparison inequality recently developed by Chernozhukov,
Chetverikov and Kato [14].

Lemma 2.1 (Gaussian comparison inequality). Let X1, . . . ,Xn be independent random vec-
tors in R

d with mean zero and finite absolute third moments, that is, E(Xij ) = 0 and E(|Xij |3) <

∞ for all 1 ≤ i ≤ n and 1 ≤ j ≤ d . Consider the statistic Z := max1≤j≤d

∑n
i=1 Xij . Let

Y 1, . . . ,Y n be independent random vectors in R
d with Y i ∼ Nd(0,E(XiX

T
i )), 1 ≤ i ≤ n. Then,

for every δ > 0, there exists a random variable Z̃
d= max1≤j≤d

∑n
i=1 Yij such that

P
(|Z − Z̃| ≥ 16δ

)
� δ−2 log(dn)

{
D1 + δ−1 log(dn)(D2 + D3)

}+ n−1 logn,

where we write

D1 = E

[
max

1≤j,l≤d

∣∣∣∣∣
n∑

i=1

{
XijXil −E(XijXil)

}∣∣∣∣∣
]
, D2 = E

(
max

1≤j≤d

n∑
i=1

|Xij |3
)

,

D3 =
n∑

i=1

E

[
max

1≤j≤d
|Xij |3 · 1

{
max

1≤j≤d
|Xij | > δ

log(dn)

}]
.

In view of Lemma 2.1 and the fact that Q̂max is the supremum of an infinite-state process,
the proof can be divided into three steps. In the first step, we prove that the difference between
Q̂max and its “discretized version” is negligible asymptotically. This is implied by the following
generalized ε-net argument for the rescaled spectral norm. It extends the standard ε-net argument
(Vershynin [43]).

Lemma 2.2. For any v, ṽ ∈ V(s, d) with the same support, positive definite matrix �, and any
real symmetric matrix M, we have∣∣∣∣vT

�Mv�

∣∣− ∣∣̃vT
�Mṽ�

∣∣∣∣≤ 2γs‖v − ṽ‖2 sup
v∈V(s,d)

∣∣vT
�Mv�

∣∣.
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In the second step, we show that this discretized version of Q̂max converges in distribution
to the maximum of a finite Gaussian sequence. This can be achieved by exploiting Lemma 2.1.
Lastly, anti-concentration bounds (Chernozhukov, Chetverikov and Kato [15]) are established to
bridge the gap between the distributions of Q̂max and its discretized version. The complete proof
is provided in Section 6.

The asymptotic result in Theorem 2.1 is difficult to use in practice. To estimate the limit-
ing distribution of Q̂max empirically, bootstrap approximation is preferred. For any v ∈ V(s, d),
define

B̂v = 1√
n

∑n
i=1 ξi(v

TXiX
T
i v − vT�v)

vT�v
and B̂max = sup

v∈V(s,d)

|B̂v|, (2.2)

where ξ1, . . . , ξn are i.i.d. standard normal that are independent of {Xi}ni=1. We use the con-
ditional distribution of B̂max given the data to approximate the distribution of Q̂max. The next
theorem characterizes the validity of bootstrap approximation.

Theorem 2.2. Let Assumptions 2.1 and 2.2 be satisfied, and assume that γn(s, d) = s log(γs ·
ed/s) ∨ s logn = o(n1/9) as n → ∞. Then, there exists a sufficiently large absolute constant
C > 0 such that

P

{
sup
t≥0

∣∣P(Q̂max ≤ t) − P(B̂max ≤ t |X1, . . . ,Xn)
∣∣≥ C

γ
9/8
n (s, d)

n1/8

}
= o(1).

In other words, we have

sup
t≥0

∣∣P(Q̂max ≤ t) − P(B̂max ≤ t |X1, . . . ,Xn)
∣∣= oP(1).

The proof of Theorem 2.2 heavily relies on characterizing the convergence rates of sub-
Gaussian fourth-order terms. We defer this result and the detailed proof of Theorem 2.2 to Sec-
tion 6.

The rest of this section gives asymptotic results for the non-normalized version of Q̂max. To
this end, let Q̃v and Q̃max be the rank-one projection and s-sparse largest singular value of �̂−�,
given respectively, by

Q̃v = √
nvT(�̂ − �)v and Q̃max = sup

v∈V(s,d)

|Q̃v|.

Technically speaking, Q̃max is a simpler version of Q̂max. We show that, under an additional
eigenvalue assumption, Q̃max converges weakly to the extreme of a Gaussian sequence. In par-
ticular, the following condition assumes that the s-sparse (restricted) largest eigenvalue of � is
upper bounded by an absolute constant.

Assumption 2.3. There exists an absolute constant L > 0 such that λmax,s(�) ≤ L.
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We define, for any v ∈V(s, d),

B̃v = 1√
n

n∑
i=1

ξi

(
vTXiX

T
i v − vT�v

)
and B̃max = sup

v∈V(s,d)

|B̃v|, (2.3)

where ξ1, . . . , ξn are i.i.d. standard normal random variables independent of {Xi}ni=1. The fol-
lowing theorem gives the Gaussian approximation result for Q̃max.

Theorem 2.3. Let Assumptions 2.1–2.3 be satisfied and set ε2 = n−1. Then, for any ε2-net
Nε2 of V(s, d) with cardinality pε2 = |Nε2 |, there exists a pε2 -dimensional centered Gaus-
sian random vector (G̃1, . . . , G̃pε2

)T satisfying E(G̃j G̃k) = E(R̃j R̃k) for 1 ≤ j, k ≤ pε2 with

R̃j := wT
j (XXT − �)wj , such that

sup
t≥0

∣∣∣P(Q̃max ≤ t) − P

(
max

1≤j≤pε2

|G̃j | ≤ t
)∣∣∣≤ CLK2

2
δ

9/8
n (s, d)

n1/8
, (2.4)

where CL > 0 is a constant depending only on L, K2 = K2
1 + 1, and δn(s, d) := s log(ed/s) ∨

s logn. In addition, if (s, d, n) satisfies s log(ed/s) ∨ s logn = o(n1/9) as n → ∞, then there
exists an absolute constant C > 0 large enough such that

P

{
sup
t≥0

∣∣P(Q̃max ≤ t) − P(B̃max ≤ t |X1, . . . ,Xn)
∣∣≥ C

δ
9/8
n (s, d)

n1/8

}
= o(1). (2.5)

In other words, we have

sup
t≥0

∣∣P(Q̃max ≤ t) − P(B̃max ≤ t |X1, . . . ,Xn)
∣∣= oP(1).

Remark 2.1. By comparing Theorems 2.1 and 2.3, we immediately observe some difference be-
tween the properties of Q̂max and Q̃max. To ensure the validity of the multiplier bootstrap approx-
imation for Q̂max, we only require s log(γsed/s) ∨ s logn = o(n1/9), and thus allow λmax,s(�)

to grow quickly. In contrast, the bootstrap approximation consistency for Q̃max relies on CL, a
constant of the same order as λ2

max,s(�).

3. Application I: Bootstrap inference on largest and smallest
eigenvalues for spherical distributions

A direct application of Theorem 2.1 is on inferring extreme sample eigenvalues of spherical
distributions. A random vector is said to be spherically distributed if its covariance matrix is
proportional to the identity. Note that this definition is slightly different from its counterpart in
robust statistics, where a more stringent rotation-invariant property is required (Fang, Kotz and
Ng [19]).
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It is known that when multiple roots exist (i.e., the population eigenvalues are not distinct),
the sample eigenvalues are not asymptotically normal even under the Gaussian assumption (An-
derson [2]). Waternaux [44] and Tyler [41] showed that inference is even more challenging for
non-Gaussian data as the limiting distributions of the sample eigenvalues rely on the skewness
and kurtosis of the underlying distribution. Estimation of these parameters is statistically costly.
Bootstrap methods are hence recommended for conducting inference.

In the presence of multiple roots, Beran and Srivastava (Beran and Srivastava [5]) pointed out
that the nonparametric bootstrap for eigenvalue inference is inconsistent. The m-out-of-n boot-
strap (Hall, Härdle and Simar [21]) and its modification (Hall et al. [22]) are hence proposed to
correct this. The implementation, however, is complicated since tuning parameters are involved.

Based on Theorem 2.2, we show that a simple multiplier bootstrap method leads to asymptot-
ically valid inference for extreme eigenvalues, as stated in the next theorem.

Theorem 3.1. Suppose that Assumptions 2.1 and 2.2 hold. In addition, assume that � = σ 2Id

with σ 2 > 0 an absolute constant. Then, as long as d = o(n1/9),

sup
t

∣∣∣∣∣P{λmax(�̂) ≤ σ 2 + t
}− P

[
λmax

{
1

n

n∑
i=1

ξi

(
XiX

T
i − σ 2Id

)}≤ t

∣∣∣X1, . . . ,Xn

]∣∣∣∣∣= oP(1),

and

sup
t

∣∣∣∣∣P{λmin(�̂) ≥ σ 2 + t
}− P

[
λmin

{
1

n

n∑
i=1

ξi

(
XiX

T
i − σ 2Id

)}≤ t

∣∣∣X1, . . . ,Xn

]∣∣∣∣∣= oP(1).

Here {ξi}ni=1 forms an independent standard Gaussian sequence independent of the data.

Theorem 3.1 shows that the distributions of λmin(�̂) and λmax(�̂) can be consistently esti-
mated by those of their bootstrapped counterparts. Such an approximation is data adaptive, and
does not require any parametric or semiparametric (such as elliptical distribution) assumption on
the data generating scheme. Thus, such an inference procedure enjoys the distribution-free prop-
erty (Kendall and Stuart [28]). In addition, the implementation is simple, and does not involve
any tuning parameter.

Note that in Theorem 3.1, we allow the dimension to slightly increase with the sample size.
This is a more relaxed setting than that for the conventional bootstrap inference (Beran and
Srivastava [5]). Assumption 2.1 is required for the case that d increases. However, when d is
fixed, this assumption can be easily relaxed.

Finally, a comment on the scaling condition d = o(n1/9) could be instructive. In detail, we aim
to explore how sharp this condition is. For this, we generate n = 200,500, and 1000 data points
from the multivariate standard Gaussian X1, . . . ,Xn ∼ Nd(0, Id). We increase d from 2, 5, 10,
20, 50, to 100. Figure 1 illustrates the exact distribution of λmax(�̂) (denoted as “exact”) and its
multiplier-bootstrap and nonparametric bootstrap based counterparts (denoted as “m-boots” and
“n-boots”).

Figure 1 shows that, for n = 200, the multiplier-bootstrap-based approach well approximates
the exact distribution for d not greater than 10. For n = 500 and 1000, the dimension d can be as
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Figure 1. Density plots of three approximation distributions based on n = 200,500, and 1000 data points
(from top to bottom) randomly drawn from the standard Gaussian distribution. These three distributions
are: (i) the exact distribution of λmax(�̂) (solid, denoted as “exact”); (ii) the distribution from the multipli-
er-bootstrap method (dotted, denoted as “m-boots”); (iii) the distribution from the nonparametric-bootstrap
method (broken, denoted as “n-boots”). Within each graph, for each distribution, the curves correspond to
the settings d = 2,4,10,20,50,100 from left to right. The calculation is based on 40 000 replications.
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large as 20 and 50 to ensure reasonable approximation results. This indicates that the dependence
between n and d to guarantee efficient bootstrap approximation is almost linear, while we do need
d to be reasonably small compared to n. Also, Figure 1 shows that the nonparametric-bootstrap
method leads to an extremely biased estimate of the distribution of λmax(�̂).

4. Application II: Two-sample Roy’s largest root test

In multivariate analysis, tests for the equality of covariance matrices are of central interest (An-
derson [3]). High dimensionality brings new challenges, and many existing methods cannot be
used.

Let X1, . . . ,Xn and Y 1, . . . ,Ym be n and m independent realizations of centered random
vectors X ∈ R

d and Y ∈ R
d with covariance matrices �1 and �2. In this section, we aim to test

the hypothesis

H0: �1 = �2 versus H1: �1 �= �2

under the scenario where d is allowed to grow with n and m.
We first briefly review the literature on testing H0 in high dimensions. Johnstone and Nadler

[27] pointed out that the most common tests fall into two categories: the first is based on “linear
statistics” of the eigenvalues, and the second is based on extreme value statistics. In the high
dimensional setting, Chen, Zhang and Zhong [13], Li and Chen [30], Cai and Ma [10], among
many others, have proposed tests based on linear statistics. Asymptotic normality is established
even when d/n tends to infinity. Initiated by Jiang [23], another track of tests is developed based
on extreme values of the entries of the sample covariance matrix. Cai, Liu and Xia [8] studied the
problem of testing the equality of two unknown covariance matrices for possibly non-Gaussian
data in the “sparsity” scenario. Recently, Chang et al. [12] proposed a bootstrap procedure to
conduct inference for the test statistic considered in Cai, Liu and Xia [8] and relaxed the sparsity
assumption.

Though significant progress has been made in this area, there has not been much research
on Roy’s largest root type tests (Roy [37]), an important method in covariance testing. Such
tests are built on extreme eigenvalues and are optimal against low-rank alternatives (Kritchman
and Nadler [29]). Absence of the corresponding results in high dimensions is largely due to the
uncommon behavior of extreme eigenvalues. Built on the results derived in Section 2, we are
able to fill this gap. This is done via exploiting a sparse-PCA-type thinking which is advocated
by Iain Johnstone and many others (Cai, Ma and Wu [11], Johnstone and Lu [26], Ma [31]) in
dealing with large random matrices. The techniques we developed here generalize those in Cai,
Liu and Xia [8] and Chang et al. [12], and are of independent interest.

4.1. Method

The proposed test extends Roy’s largest root test to high dimensions. In detail, let �̂1 and �̂2 be
the sample covariance matrices given by

�̂1 = 1

n

n∑
i=1

XiX
T
i and �̂2 = 1

m

m∑
i=1

Y iY
T
i .
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Let s be a prespecified parameter characterizing the sparsity level we wish to balance. To guar-
antee valid inference, we recommend s to be chosen less than min(n,m)/10. Recall in (1.2) that
V(s, d) represents the set of all s-sparse vectors in the unit sphere Sd−1. Let Q̂v and Q̂max be the
normalized rank-one projection and normalized s-sparse largest singular value of �̂1 − �̂2:

Q̂v =
√

n + m

nm

vT(�̂1 − �̂2)v

vT(�̂1/n + �̂2/m)v
and Q̂max = sup

v∈V(s,d)

|Qv|.

The proposed test is multiplier-bootstrap-based. In detail, we define

B̂v =
√

n + m

nm

vT{∑n
i=1 ξi(XiX

T
i − �̂1)/n −∑m

i=1 ηi(Y iY
T
i − �̂2)/m}v

vT(�̂1/n + �̂2/m)v

and

B̂max = sup
v∈V(s,d)

|B̂v|,

where ξ1, . . . , ξn, η1, . . . , ηm are independent standard Gaussian random variables that are inde-
pendent of {Xi}ni=1 and {Y i}mi=1. Let B∗

1, . . . ,B∗
N be N realizations of B̂max (via fixing the data

and changing ξ1, . . . , ξn, η1, . . . , ηm) for some large enough N .2 Let qα be the corresponding
(1 − α)th quantile. The proposed test is

Tα = 1(Q̂max ≥ qα), (4.1)

and we reject H0 whenever Tα = 1.

Remark 4.1. Computing the extreme eigenvalues of large covariance matrices under sparsity
constraint involves a combinatorial optimization and is NP-complete in general. Several compu-
tationally feasible methods based on the recent developments in the sparse PCA literature can
be used to compute Q̂max approximately. The theoretical guarantees, however, remain unclear.
For example, a greedy search to shrink the candidate set (Moghaddam, Weiss and Avidan [33]),
followed by a second-step brutal search, may work well in practice. Recently, Berthet and Rigol-
let [6] proposed a computationally efficient method using convex relaxations to compute their
sparse eigenvalue statistic for sparse principal component testing. It is interesting to investigate
whether their method can be adapted to deal with the current problem. We leave this to future
work.

Remark 4.2. A “non-normalized” version of the test Tα , based on the restricted spectral gap
supv∈V(s) |vT(�̂1 − �̂2)v|, can be similarly defined and calculated using the truncated power
method (Yuan and Zhang [45]). However, boundeness on the restricted eigenvalue λmax,s(�1) is
required for the validity of the non-normalized test.

2In the sequel, for ease of presentation, we focus on the ideal case that we know the exact conditional distribution of
B̂max given the data. This is equivalent to setting N infinitely large. In practice, the accuracy of bootstrap by setting a
finitely large N is guaranteed by the Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky, Kiefer and Wolfowitz [16]).
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4.2. Theory

This section provides the theoretical properties of Tα in (4.1). First, we show that the size of the
test is well controlled. Secondly, we study the power and prove the minimax optimality for the
proposed test against “low-rank” alternatives.

To ensure the size consistency of Tα , we require the following two assumptions on the data

generating scheme. They are analogous to those in Section 2. Of note, we do not require X
d= Y .

Assumption 4.1. There exist random vectors U1,U2 ∈ R
d satisfying E(U i ) = 0 and

E(U iU
T
i ) = Id for i = 1,2, such that

X = �
1/2
1 U1, Y = �

1/2
2 U2, L1 := max

(
sup

v∈Sd−1

∥∥vTU1
∥∥

ψ2
, sup
v∈Sd−1

∥∥vTU2
∥∥

ψ2

)
< ∞.

Assumption 4.2. {Xi}ni=1 and {Y i}mi=1 are independent realizations of X and Y , respectively.
Moreover, the sample sizes are comparable, that is, n 	 m.

The following result provides the theoretical guarantee for the validity of the multiplier boot-
strap test Tα .

Theorem 4.1. Let Assumptions 4.1 and 4.2 be satisfied. Under the null hypothesis H0, we have

sup
t≥0

∣∣P(Q̂max ≤ t) − P(B̂max ≤ t |X1, . . . ,Xn,Y 1, . . . ,Ym)
∣∣= oP(1) (4.2)

whenever s log{γs(�1)ed/s} ∨ s logn = o(n1/9). Moreover, as n,m → ∞,

PH0(Tα = 1) = α + o(1)

uniformly in 0 < α < 1.

Next, we analyze the power of the test Tα and show that it is minimax rate-optimal. For this,
we consider the alternative class of matrices

M(λ) :=
{
(M1,M2) ∈R

d×d : λmax,s(M�)/λmin,s(M�) ≤ C,� = 1,2,√
n + m

nm
sup

v∈V(s,d)

∣∣∣∣ vT(M1 − M2)v

vT(M1/n + M2/m)v

∣∣∣∣≥ λ
√

s log(ed/s)

}
for some constant C > 0 independent of (n,m,d). The following two theorems illustrate the
power and minimax lower bound in differentiating two covariance matrices within some matrix
set M(λ).
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Theorem 4.2 (Power analysis). Suppose that Assumptions 4.1 and 4.2 hold. Further assume
that (n,m,d, s) satisfies s log(ed/s) logn = o(n). Then, for all sufficiently large λ > 0, we have

inf
(�1,�2)∈M(λ)

P(�1,�2)(Tα = 1) → 1, as n → ∞,

where P(�1,�2) represents the joint distribution of X1, . . . ,Xn, Y 1, . . . ,Ym with covariance ma-
trices �1 and �2.

Theorem 4.3 (Minimax lower bound). Assume that the conditions in Theorem 4.2 hold. Then,
for all sufficiently small λ > 0, we have

inf

α∈Tα

sup
(�1,�2)∈M(λ)

P(�1,�2)(
α = 0) ≥ 1 − α − o(1), as n → ∞,

where Tα = {
α : PH0(
α = 1) ≤ α} denotes the class of all α-level tests.

Remark 4.3. The scaling condition, s log(ed/s) logn = o(n), in Theorems 4.2 and 4.3, is
weaker than the corresponding one in Theorem 4.1. Accordingly, combining Theorems 4.1,
4.2, and 4.3, under Assumptions 4.1 and 4.2, the scaling condition in Theorem 4.1, and the
boundedness assumption on λmax,s(��)/λmin,s(��) for � = 1,2, the proposed test is minimax
rate-optimal.

Remark 4.4. The logn term in the scaling condition, s log(ed/s) logn = o(n), is required for
handling the multiplier-bootstrap-based statistic B̂max, which involves the cubes of sub-Gaussian
random variables. We tackle it via a truncation argument, which is also exploited in Cai and Liu
[7] and Cai, Liu and Xia [8]. Similar scaling conditions are also posed therein.

4.3. Empirical results

In this section, we compare the numerical performance of the proposed approach with two exist-
ing ones. Specifically, we consider the following tests.

• HXZ3: the proposed covariance test with s = 3;
• HXZ5: the proposed covariance test with s = 5;
• HXZ10: the proposed covariance test with s = 10;
• CZZW: the L∞-type bootstrap test proposed in Chang et al. [12];
• LC: the L2-type covariance test proposed in Li and Chen [30].

These five tests represent the three notable tracks in covariance testing problems. Specifically,
our proposed tests are more sensitive to low-rank alternatives, while CZZW and LC are more
sensitive to elementwise changes of the covariance matrix. To implement the proposed tests and
that of CZZW, we take the bootstrap sample size to be 1000.

We consider three settings for the structure of �1. Let O be a diagonal matrix with its diagonals
generated from a uniform distribution Unif(0.5,1.5). Set �1 = O�∗O, where �∗ = [�∗

jk] ∈
R

d×d is specified as follows:
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• long range: �∗
jk = 1(j = k) + 0.51(j �= k);

• short range: �∗
jk = 0.1|j−k|;

• isotropic: �∗ = Id .

To compare the power, we consider three types of alternatives:

• alternative 1: �2 = �1 + c1 · vSvT
S , where vS is sparse with the support size 5 and non-zero

entries all equal to 1/
√

5;
• alternative 2: �2 = �1 + c2D(1), where D(1) satisfies D(1)

12 = D(1)
21 = 1 and has 0 elsewhere;

• alternative 3: �2 = (Id + c3D(2))T�1(Id + c3D(2)), where D(2) satisfies D(2)
j+1,j = 1 for

j = 1, . . . , d − 1 and has 0 elsewhere.

We also generate n = m independent samples from Nd(0,�1) and Nd(0,�2) separately. Here
we set n = 20,500,1000 and d = 40,100. The values of c1, c2, c3 are specified as follows:

• long range: Set (c1, c2, c3) = (0.9,0.35,0.1) for d = 40, and set (c1, c2, c3) = (1.1,0.4,0.1)

for d = 100;
• short range: Set (c1, c2, c3) = (0.7,0.4,0.1) for d = 40, and set (c1, c2, c3) = (0.85,0.4,

0.1) for d = 100;
• isotropic: Set (c1, c2, c3) = (0.8,0.3,0.12) for d = 40, and set (c1, c2, c3) = (0.85,0.3,

0.1) for d = 100.

We repeat the simulation 5000 times. Tables 1–3 illustrate the size and powers (corresponding
to the three alternatives) for each combination of n and d . There are several noteworthy obser-

Table 1. (Long range) Comparison of the five competing tests under the null and alternatives 1 to 3 when
n = 200,500,1000 and d = 40,100. The results are computed based on 5000 replications

Empirical size Empirical power (alternative 1)

d n HXZ3 HXZ5 HXZ10 CZZW LC HXZ3 HXZ5 HXZ10 CZZW LC

40 200 0.031 0.022 0.000 0.073 0.109 0.230 0.342 0.284 0.108 0.102
500 0.046 0.036 0.013 0.055 0.095 0.802 0.911 0.931 0.358 0.146

1000 0.045 0.042 0.027 0.040 0.085 0.990 0.997 1.000 0.756 0.150

100 200 0.018 0.007 0.000 0.088 0.111 0.120 0.184 0.064 0.089 0.105
500 0.044 0.016 0.003 0.035 0.093 0.824 0.878 0.894 0.340 0.106

1000 0.043 0.029 0.018 0.048 0.108 0.993 0.996 0.995 0.770 0.122

Empirical power (alternative 2) Empirical power (alternative 3)

40 200 0.121 0.202 0.347 0.220 0.106 0.068 0.036 0.007 0.269 0.398
500 0.141 0.210 0.386 0.788 0.096 0.211 0.123 0.078 0.503 0.654

1000 0.120 0.203 0.431 0.999 0.089 0.537 0.505 0.353 0.854 0.923

100 200 0.042 0.071 0.147 0.252 0.123 0.044 0.003 0.000 0.200 0.369
500 0.079 0.097 0.158 0.847 0.118 0.170 0.100 0.028 0.550 0.671

1000 0.052 0.095 0.185 1.000 0.101 0.525 0.418 0.255 0.840 0.912
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Table 2. (Short range) Comparison of the five competing tests under the null and alternatives 1 to 3 when
n = 200,500,1000 and d = 40,100. The results are computed based on 5000 replications

Empirical size Empirical power (alternative 1)

d n HXZ3 HXZ5 HXZ10 CZZW LC HXZ3 HXZ5 HXZ10 CZZW LC

40 200 0.023 0.014 0.001 0.039 0.030 0.075 0.053 0.002 0.083 0.160
500 0.036 0.028 0.024 0.066 0.024 0.566 0.570 0.465 0.390 0.213

1000 0.048 0.028 0.032 0.050 0.020 0.936 0.932 0.943 0.848 0.426

100 200 0.007 0.001 0.000 0.039 0.127 0.021 0.035 0.001 0.033 0.209
500 0.030 0.020 0.005 0.044 0.034 0.362 0.333 0.186 0.223 0.206

1000 0.036 0.030 0.010 0.047 0.026 0.894 0.901 0.898 0.756 0.196

Empirical power (alternative 2) Empirical power (alternative 3)

40 200 0.041 0.020 0.004 0.179 0.070 0.027 0.009 0.002 0.154 0.364
500 0.104 0.132 0.081 0.701 0.021 0.183 0.192 0.106 0.470 0.730

1000 0.123 0.181 0.294 0.994 0.046 0.486 0.462 0.513 0.975 0.993

100 200 0.028 0.020 0.002 0.088 0.159 0.037 0.025 0.001 0.075 0.467
500 0.052 0.037 0.013 0.580 0.161 0.097 0.087 0.025 0.258 0.756

1000 0.080 0.098 0.107 0.981 0.169 0.199 0.215 0.168 0.759 0.990

Table 3. (Isotropic) Comparison of the five competing tests under the null and alternatives 1 to 3 when
n = 200,500,1000 and d = 40,100. The results are computed based on 5000 replications

Empirical size Empirical power (alternative 1)

d n HXZ3 HXZ5 HXZ10 CZZW LC HXZ3 HXZ5 HXZ10 CZZW LC

40 200 0.029 0.013 0.000 0.061 0.042 0.053 0.039 0.009 0.076 0.159
500 0.044 0.015 0.015 0.052 0.053 0.435 0.500 0.443 0.253 0.410

1000 0.042 0.044 0.029 0.050 0.061 0.872 0.920 0.939 0.763 0.854

100 200 0.015 0.001 0.000 0.036 0.058 0.035 0.005 0.000 0.062 0.099
500 0.039 0.016 0.006 0.060 0.040 0.430 0.455 0.322 0.250 0.238

1000 0.039 0.032 0.017 0.033 0.065 0.900 0.904 0.908 0.806 0.554

Empirical power (alternative 2) Empirical power (alternative 3)

40 200 0.038 0.017 0.006 0.461 0.097 0.025 0.007 0.001 0.091 0.269
500 0.120 0.169 0.198 0.990 0.288 0.075 0.066 0.070 0.289 0.729

1000 0.141 0.228 0.421 1.000 0.604 0.213 0.223 0.223 0.787 0.994

100 200 0.030 0.010 0.000 0.312 0.073 0.009 0.005 0.000 0.079 0.253
500 0.065 0.063 0.026 0.982 0.106 0.043 0.044 0.017 0.223 0.769

1000 0.079 0.135 0.189 1.000 0.207 0.160 0.146 0.079 0.820 0.999
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vations. First, empirical sizes of the proposed tests and CZZW are well controlled, while the size
of LC is inflated in the “long range” setting. This is as expected since the “long range” depen-
dence violates the assumptions in Li and Chen [30]. Secondly, regarding the empirical powers,
our proposed tests outperform those of CZZW and LC under alternative 1, which is in line with
Theorems 4.1 and 4.3; CZZW outperforms the others under alternative 2, and LC outperforms the
others under alternative 3, as expected. Finally, we see that HXZ5 performs the best on average
in alternative 1, while HXZ3 and HXZ10 perform similarly to HXZ5, and all outperform CZZW
and LC. Hence, for testing against low-rank alternatives, our proposed test is more favorable and
the choice of s is rather flexible as long as it remains at a moderate size.

5. Discussion

Spectral analysis for large random matrices has a long history and maintains one of the most
active research areas in statistics. Recent advances include the discovery of the Tracy–Widom
law, an important family of distributions that quantifies the fluctuation of sample eigenvalues.
A vast literature follows. However, more questions are raised than answered. In particular, no re-
sult has been promised for extensions to non-Gaussian distributions with a nontrivial covariance
structure. This paper fills this long-standing gap from a new perspective grown in the literature
of extreme value theory. The obtained results prove to work in many cases which for a long time
are known to be challenging to deal with.

Very recently, Fan and Wang [18] studied asymptotic behaviors of sample covariance eigenval-
ues under a pervasive assumption, that is, the largest eigenvalue grows quickly with the dimen-
sion. Under this assumption, they proved the asymptotic normality for the sample eigenvalues.
In comparison, our results are built on the normalized covariance matrix and are obtained in the
settings where the signals are not too strong. A natural question arises that whether a phase tran-
sition phenomenon occurs when signals change from weak to strong. In particular, how do the
asymptotic distributions of sample eigenvalues change with the growing magnitudes of extreme
eigenvalues? We conjecture that this problem may be related to the normal mean problem in
extreme value theory, and leave that question for future research.

6. Proofs

This section contains the proofs of the results in this paper.

6.1. Proof of the main results

6.1.1. Proof of Theorem 2.1

We first give an outline of the proof, which consists of three main steps. (i) In the first step, we
approximate Q̂max, the supremum over a continuous function space induced by V(s, d), by the
maximum over a discrete function space induced by Nε1 , for ε1 as in Theorem 2.1. (ii) In the
second step, we show that the above discretized version of Q̂max over Nε1 converges weakly to
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the maximum of a Gaussian sequence. (iii) Lastly, we employ the anti-concentration inequality
(Lemma 6.11) to complete the proof.

Step I. Let ε ∈ (0,1) be an arbitrary number. We first employ the following lemma to connect
the supremum over a continuous function space induced by V(s, d) to the maximum over a
discrete function space induced by Nε .

Lemma 6.1. There exists an ε-net N0
ε of V(s, d) equipped with the Euclidean metric satisfying

that logp0
ε = log |N0

ε | � s log ed
εs

. Further, for any ε-net Nε of V(s, d), we have

Q̂max ≤ 2γsε · Q̂max + Mmax,ε,

where

Mmax,ε := max
v∈Nε

|Qv| = max
v∈Nε

∣∣∣∣√nvT(�̂ − �)v

vT�v

∣∣∣∣. (6.1)

Lemma 6.1 and the fact Q̂max ≥ Mmax,ε yield that, for any ε ∈ (0,1),

|Q̂max − Mmax,ε| ≤ 2γsε · Q̂max. (6.2)

Next we use Lemma 6.2 below to bound Q̂max. Note that, by Lemma 6.9, we have for any
v ∈ S

d−1 that ‖vTUUTv − 1‖ψ1 ≤ ‖(vTU)2‖ψ1 + 1 = ‖vTU‖2
ψ2

+ 1. Taking maximum over

v ∈ S
d−1 on both sides yields

sup
v∈Sd−1

∥∥vTUUTv − 1
∥∥

ψ1
≤ K2

1 + 1 = K2.

Lemma 6.2. For any t > 0, we have

P

[
Q̂max ≤ C12K2γ

1/2
n (s, d) + K2 max

{
2
√

2t,C11γn(s, d)
t√
n

}]
≥ 1 − 4e−t ,

where C11,C12 > 0 are absolute constants, K2 = K2
1 +1 and γn(s, d) = s log(γs ·ed/s)∨ s logn

are as in Theorem 2.1.

Using Lemma 6.2, it follows from (6.2) that for any t > 0 and ε ∈ (0,1),

P

(
|Q̂max − Mmax,ε| ≤ CK2γsε

[
γ

1/2
n (s, d) + max

{√
t, γn(s, d)

t√
n

}])
≥ 1 − 4e−t .

Taking ε = ε1 = (nγs)
−1 and t = logn, we deduce that

P

(∣∣∣Q̂max − max
v∈Nε1

|Qv|
∣∣∣≤ CK2

[
γ

1/2
n (s, d)

n
+ max

{√
logn

n
,γn(s, d)

logn

n3/2

}])
≥ 1 − 4

n
.

(6.3)
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Step II. For any ε ∈ (0,1), write Nε = {vj : j = 1, . . . , pε} for the ε-net Nε constructed in
Step I, and recall that for i = 1, . . . , n and j = 1, . . . , pε ,

Rij = vT
j (XiX

T
i − �)vj

vT
j�vj

.

It follows from (6.1) that

Mmax,ε = max
v∈Nε

|Qv| = max
1≤j≤pε

∣∣∣∣∣ 1√
n

n∑
i=1

Rij

∣∣∣∣∣.
The following lemma gives a Gaussian coupling inequality for Mmax,ε .

Lemma 6.3. For every δ > 0, we have

P

(∣∣∣Mmax,ε − max
1≤j≤pε

|Gj |
∣∣∣≥ 16δ

)
� K2

2

√
log(2pε) log(2pε ∨ n)

δ2n1/2
+ K2

0K2
2

log(2pε){log(npε + 1)}2 log(2pε ∨ n)

δ2n

+ K3
2
{log(2pε ∨ n)}2

δ3n1/2
+ K3

0 K3
2
(logpε){log(npε + 1)}3{log(2pε ∨ n)}2

δ3n3/2

+ K4
0K4

2
{log(pε + 1)}4{log(2pε ∨ n)}3

δ4n
+ logn

n
,

where Mmax,ε is as in (6.1), K0 is the constant in Lemma 6.13 with α = 1 and K2 = K2
1 + 1.

In view of Lemma 6.3, by taking ε = ε1 we have

P
(∣∣∣max

v∈Nε1

|Qv| − max
1≤j≤pε1

|Gj |
∣∣∣≥ 16δ

)
� K3

2
{log(2pε1 ∨ n)}2

δ3n1/2
+ K4

0 K4
2
{log(pε1 + 1)}4{log(2pε1 ∨ n)}3

δ4n
,

where pε1 = |Nε1 |. Putting {Gv}v∈Nε1
= {Gj }pε1

j=1, we have

P
(∣∣∣max

v∈Nε1

|Qv| − max
v∈Nε1

|Gv|
∣∣∣≥ 16δ

)
� K3

2
(logpε1)

2

δ3n1/2
+ K4

0 K4
2
(logpε1)

7

δ4n
.

(6.4)

Without loss of generality, assume that logpε1 ≥ γn(s, d) (the case when logpε1 < γn(s, d) can
be similarly dealt with by replacing all logpε1 below by γn(s, d)). Combining (6.3) and (6.4),
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we have

P

{∣∣∣Q̂max − max
v∈Nε1

|Gv|
∣∣∣≥ 16δ + CK2

(√
logpε1

n
+ logpε1

logn

n3/2

)}

� K3
2
(logpε1)

2

δ3n1/2
+ K4

0 K4
2
(logpε1)

7

δ4n
,

(6.5)

where C > 0 is an absolute constant.

Step III. Taking δ = K4
0 (logpε1 )5/8

K2n
1/8 , we deduce from (6.5) that there exists an absolute positive

constant C such that

P

{∣∣∣Q̂max − max
v∈Nε1

|Gv|
∣∣∣≥ CK4

0
(logpε1)

5/8

K2n1/8

}
� K2

2
(logpε1)

1/8

n1/8
+ K2

2
(logpε1)

9/2

n1/2
. (6.6)

By Lemma 6.11, we have

sup
x∈R

P

{∣∣∣max
v∈Nε1

|Gv| − x

∣∣∣≤ C13K
4
0
(logpε1)

5/8

K2n1/8

}
� K2

2
(logpε1)

9/8

n1/8
(6.7)

for some absolute constant C13 > 0. Note that, for every t > 0 and η > 0,∣∣∣P(Q̂max ≤ t) − P

(
max
v∈Nε1

|Gv| ≤ t
)∣∣∣

≤ P

(
max
v∈Nε1

|Gv| ∈ [t − η, t + η]
)

+ P

(∣∣∣Q̂max − max
v∈Nε1

|Gv|
∣∣∣> η
)
.

Taking η = C13
K4

0 (logpε1 )5/8

K2n
1/8 in the last display, we deduce from (6.6) and (6.7) that

sup
t≥0

∣∣∣P(Q̂max ≤ t) − P

(
max
v∈Nε1

|Gv| ≤ t
)∣∣∣� K2

2
(logpε1)

9/8

n1/8
+ K2

2
(logpε1)

9/2

n1/2
.

This completes the proof.

6.1.2. Proof of Lemma 2.2

Proof. Noting that

‖v� − ṽ�‖2
� = 2 − 2

vT�ṽ

(vT�v)1/2(̃vT�ṽ)1/2

= (v − ṽ)T�(v − ṽ) − {(vT�v)1/2 − (̃vT�ṽ)1/2}2

(vT�v)1/2(̃vT�ṽ)1/2
,

we have

‖v� − ṽ�‖2
� ≤ (v − ṽ)T�(v − ṽ)

(vT�v)1/2(̃vT�ṽ)1/2
≤ γ 2

s (�) · ‖v − ṽ‖2
2. (6.8)
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By the triangle inequality,∣∣∣∣vT
�Mv�

∣∣− ∣∣̃vT
�Mṽ�

∣∣∣∣≤ ∣∣vT
�Mv� − ṽT

�Mṽ�

∣∣
= ∣∣vT

�M(v� − ṽ�) + (v� − ṽ�)TMṽ�

∣∣.
It follows that ∣∣∣∣vT

�Mv�

∣∣− ∣∣̃vT
�Mṽ�

∣∣∣∣≤ ∣∣vT
�M(v� − ṽ�)

∣∣+ ∣∣(v� − ṽ�)TMṽ�

∣∣.
Using Lemma 6.8, we deduce that

∣∣∣∣vT
�Mv�

∣∣− ∣∣̃vT
�Mṽ�

∣∣∣∣≤ ∣∣∣∣( v�

‖v�‖2

)T

�

M
(

v� − ṽ�

‖v� − ṽ�‖2

)
�

∣∣∣∣ · ‖v� − ṽ�‖�

+
∣∣∣∣( v� − ṽ�

‖v� − ṽ�‖2

)T

�

M
(

ṽ�

‖̃v�‖2

)
�

∣∣∣∣ · ‖v� − ṽ�‖�

≤ 2‖v� − ṽ�‖� · sup
v∈V(s,d)

∣∣vT
�Mv�

∣∣.
(6.9)

Combining (6.8) and (6.9) gives∣∣∣∣vT
�Mv�

∣∣− ∣∣̃vT
�Mṽ�

∣∣∣∣≤ 2γs(�)‖v − ṽ‖2 sup
v∈V(s,d)

∣∣vT
�Mv�

∣∣,
as desired. �

6.1.3. Proof of Theorem 2.2

Proof. Based on the ε1-net N0
ε1

described in Lemma 6.1 and the corresponding p1-dimensional
Gaussian random vector (G1, . . . ,Gp1)

T introduced in the proof of Theorem 2.1 with p1 :=
p0

ε1
= |N0

ε1
|, we aim to show that

sup
t≥0

∣∣∣P( max
1≤j≤p1

|Gj | ≤ t
)

− P(B̂max ≤ t |X1, . . . ,Xn)

∣∣∣= oP(1).

In view of Theorem 2.1, it suffices to prove that

sup
t≥0

∣∣∣P( max
1≤j≤p1

|Gj | ≤ t
)

− P

(
max

1≤j≤p1
|B̂j | ≤ t

∣∣X1, . . . ,Xn

)∣∣∣= oP(1), (6.10)

where {B̂j }p1
j=1 = {B̂v}v∈N0

ε1
. In particular, we note that

sup
t≥0

∣∣∣P(B̂max ≤ t |X1, . . . ,Xn) − P

(
max

1≤j≤p1
|B̂j | ≤ t

∣∣X1, . . . ,Xn

)∣∣∣= OP

{
γ

9/8
n (s, d)

n1/8

}
,

via the proof of Theorem 2.1.
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By Lemma 6.19, we have,

sup
t≥0

∣∣∣P( max
1≤j≤p1

|Gj | ≤ t
)

− P

(
max

1≤j≤p1
|B̂j | ≤ t

∣∣X1, . . . ,Xn

)∣∣∣
� �

1/3
G

{
log(2p1)

}1/3{1 ∨ 2 log(2p1) ∨ log(1/�G)
}1/3

� �
1/3
G

{
log(2p1)

}2/3 ∨ �
1/3
G

{
log(1/�G)

}1/3{log(2p1)
}1/3

,

(6.11)

where p1 = |N0
ε1

| satisfies logp1 � γn(s, d) = s log(γs · ed/s) ∨ s logn and

�G := max
1≤j≤k≤p1

∣∣E(GjGk) −E(B̂j B̂k|X1, . . . ,Xn)
∣∣.

Next we bound �G. For 1 ≤ j ≤ k ≤ p1, we have

E(GjGk) = E

{
(vT

jXi )
2(vT

kXi )
2

‖vj‖2
�‖vk‖2

�

}
− 1.

By definition (2.2), we have, for j = 1, . . . , p1,

B̂j = 1√
n

n∑
i=1

ξi

{
(vT

jXi )
2

‖vj‖2
�

− 1

}
.

It follows that, for 1 ≤ j ≤ k ≤ p1,

E(B̂j B̂k|X1, . . . ,Xn)

= 1

n

n∑
i=1

{
(vT

jXi )
2(vT

kXi )
2

‖vj‖2
�‖vk‖2

�

}
− 1

n

n∑
i=1

{
(vT

jXi )
2

‖vj‖2
�

− 1

}
− 1

n

n∑
i=1

{
(vT

kXi )
2

‖vk‖2
�

− 1

}
− 1.

For simplicity, we define

Wij = vT
jXi

‖vj‖�
and Wik = vT

kXi

‖vk‖�
, i = 1, . . . , n,1 ≤ j ≤ k ≤ p1. (6.12)

In this notation, we have

�G = max
1≤j≤k≤p1

∣∣∣∣∣1n
n∑

i=1

{
(WijWik)

2 −E(WijWik)
2}+ 1

n

n∑
i=1

(
W 2

ij − 1
)+ 1

n

n∑
i=1

(
W 2

ik − 1
)∣∣∣∣∣

≤ max
1≤j≤k≤p1

∣∣∣∣∣1n
n∑

i=1

{
(WijWik)

2 −E(WijWik)
2}∣∣∣∣∣+ 2 max

1≤j≤p1

∣∣∣∣vT
j (�̂ − �)vj

vT
j�vj

∣∣∣∣.
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Further, define

�G,1 = max
1≤j≤k≤p1

∣∣∣∣∣1n
n∑

i=1

{
(WijWik)

2 −E(WijWik)
2}∣∣∣∣∣,

�G,2 = 2 max
1≤j≤p1

∣∣∣∣vT
j (�̂ − �)vj

vT
j�vj

∣∣∣∣.
The following lemma gives an upper bound for �G,1.

Lemma 6.4. For any M > 0, there exists an absolute positive constant C21 only depending on
M such that

P

[
max

1≤j,k≤p1

∣∣∣∣∣1n
n∑

i=1

{
(WijWik)

2 −E(WijWik)
2}∣∣∣∣∣≥ C21

√
logp1

n

]
= O
(
p−M

1

)
,

where p1 = |N0
ε1

|, Wij and Wik for 1 ≤ i ≤ n and 1 ≤ j, k ≤ p1 are defined in (6.12).

By Lemma 6.4, there exists an absolute positive constant C21 depending only on M such that

P

(
�G,1 ≥ C21

√
logp1

n

)
= O
(
p−M

1

)
. (6.13)

Turning to �G,2, by Lemma 6.2, there exists a constant C > 0 depending only on K2 such that

P

[
�G,2 ≥ C

{
γ

1/2
n (s, d)

n1/2
+ γn(s, d)

logn

n

}]
≤ 4

n
. (6.14)

Combining (6.13) and (6.14), we have with probability greater than 1 − O(p−M
1 ),

�
1/3
G

{
log(2p1)

}2/3 ≤ C
{log(2p1)}2/3γ

1/6
n (s, d)

n1/6
. (6.15)

Since x �→ x log(1/x) is non-decreasing for 0 < x ≤ e−1, we have with probability greater than
1 − O(p−M

1 ),

�
1/3
G

{
log(2p1)

}1/3{log(1/�G)
}1/3 ≤ C

{log(2p1)}2/3γ
1/6
n (s, d)

n1/6
. (6.16)

Putting (6.11), (6.15), and (6.16) together, we conclude that

P

{
sup
t≥0

∣∣∣P( max
1≤j≤p1

|Gj | ≤ t
)

− P

(
max

1≤j≤p1
|B̂j | ≤ t

∣∣X1, . . . ,Xn

)∣∣∣≥ C
γ

5/6
n (s, d)

n1/6

}
= O
(
p−M

1

)
.

This proves (6.10).
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Finally, using Theorem 2.1, we deduce that for any M > 0, there exists a constant CM > 0
depending only on M and K1 such that

P

[
sup
t≥0

∣∣P(Q̂max ≤ t) − P(B̂max ≤ t |X1, . . . ,Xn)
∣∣≥ CM

{
γ

9/8
n (s, d)

n1/8
+ γ

5/6
n (s, d)

n1/6

}]
� p−M

1 .

This completes the proof. �

6.1.4. Proof of Theorems 2.3 and 3.1

Theorems 2.3 and 3.1 can be proved based on similar arguments used in the proofs of Theorems
2.1 and Theorem 2.2. The details are hence omitted.

6.1.5. Proof of Theorem 4.1

Proof. To begin with, we introduce the following notations. Define

Qv =
√

nm

n + m

vT(�̂1 − �̂2)v

vT�2v
, Qmax = sup

v∈V(s,d)

|Qv|, and Mmax = max
v∈N0

ε3

|Qv|,

where ε3 := {mγs(�2)}−1.
We divide the proof into three main steps. (i) First, using the discretized version Mmax as a

bridge, we show that Qmax converges weakly to the maximum of a Gaussian sequence. (ii) Next
we show that the difference between Qmax and the test statistic Q̂max is negligible asymptoti-
cally. (iii) Finally, we show that the Gaussian maximum can be approximated by its multiplier
bootstrap counterpart. The technical details are stated as lemmas with their proofs deferred to
Section 6.2.

Lemma 6.5. Let Assumptions 4.1 and 4.2 be satisfied. Under the null hypothesis H0 : �1 = �2,
we have the following two assertions hold.

(i) We have

P

[
Qmax ≤ C31L2

{
γ

1/2
m (s, d) + (logm)1/2 + γm(s, d)

logm√
m

}]
≥ 1 − 4

n
− 4

m
, (6.17)

where C31 > 0 is an absolute constant, γm(s, d) := s log{γs(�2)
ed
s

}∨ s logm, and L2 := L2
1 +1.

(ii) Let N0
ε3

= {uj }p3
j=1 be an ε3-net with ε3 = {mγs(�2)}−1 and p3 = |N0

ε3
|. Then, there exists

a p3-dimensional Gaussian random vector (G1, . . . ,Gp3)
T satisfying

E(GjGk) = n

m(n + m)

m∑
i=1

E(RijRik), 1 ≤ j ≤ k ≤ p3, (6.18)
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with

Rij :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m

n

uT
j (XiX

T
i − �2)uj

uT
j�2uj

− uT
j (Y iY

T
i − �2)uj

uT
j�2uj

, if 1 ≤ i ≤ n,

−uT
j (Y iY

T
i − �2)uj

uT
j�2uj

, if n + 1 ≤ i ≤ m

(6.19)

(here, without loss of generality, we assume n ≤ m) such that

P

[∣∣∣Qmax − max
1≤j≤p3

|Gj |
∣∣∣≥ C32

K4
0 γ

5/8
m (s, d)

L2m1/8

]
� L2

2
γ

1/8
m (s, d)

m1/8
+ L2

2
γ

9/2
m (s, d)

m1/2
, (6.20)

where C32 > 0 is an absolute constant and K0 is the constant in Lemma 6.13 by taking α = 1.

Lemma 6.6. Let Assumptions 4.1 and 4.2 be satisfied. Under the null hypothesis H0 : �1 = �2,
we have, as n,m → ∞,

P

[
|Q̂max −Qmax| ≤ C33L2

√
nm

n + m

{
γ

1/2
m (s, d)√

m
+ γm(s, d)

logm

m

}2]
≥ 1 − 4

n
− 4

m
,

(6.21)

where C33 > 0 is an absolute constant.

Lemma 6.7. Let Assumptions 4.1 and 4.2 be satisfied. Under the null hypothesis H0 : �1 = �2,
we have, as n,m → ∞,

sup
t≥0

∣∣∣P( max
1≤j≤p3

|Gj | ≤ t
)

− P(B̂max ≤ t |X1, . . . ,Xn,Y 1, . . . ,Ym)

∣∣∣= oP(1).

Combining (6.20) and (6.21) we deduce that there exists an absolute constant C > 0 such that

P

[∣∣∣Q̂max − max
1≤j≤p3

|Gj |
∣∣∣≥ C

K4
0 γ

5/8
m (s, d)

L2m1/8

]
� L2

2
γ

1/8
m (s, d)

m1/8
+ L2

2
γ

9/2
m (s, d)

m1/2
.

Using arguments similar to those used in the proof of Theorem 2.1, we deduce that

sup
t≥0

∣∣∣P(Q̂max ≤ t) − P

(
max

1≤j≤p3
|Gj | ≤ t

)∣∣∣� L2
2
γ

9/8
m (s, d)

m1/8
+ L2

2
γ

9/2
m (s, d)

m1/2
.

This, together with Lemma 6.7 yields that

sup
t≥0

∣∣P(Q̂max ≤ t) − P(B̂max ≤ t |X1, . . . ,Xn,Y 1, . . . ,Ym)
∣∣= oP(1),

which completes the proof. �
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6.1.6. Proof of Theorem 4.2

Proof. It is equivalent to proving that for λ > 0 sufficiently large,

inf
(�1,�2)∈M(λ)

P(�1,�2)(Q̂max ≥ qα) = 1 − o(1). (6.22)

First, we claim that qα = OP{√s log(ed/s)}. To see this, it suffices to show that

B̂max = OP

{√
s log(ed/s)

}
.

It suffices to show

sup
v∈V(s,d)

∣∣∣∣
√

n + m

nm

vT{∑n
i=1 ξi(XiX

T
i − �̂1)/n −∑m

i=1 ηi(Y iY
T
i − �̂2)/m}v

vT(�1/n + �2/m)v

∣∣∣∣
= OP

{√
s log(ed/s)

}
,

since, by exactly the same argument as in the proof of Lemma 6.6, the difference between

sup
v∈V(s,d)

∣∣∣∣
√

n + m

nm

vT{∑n
i=1 ξi(XiX

T
i − �̂1)/n −∑m

i=1 ηi(Y iY
T
i − �̂2)/m}v

vT(�1/n + �2/m)v

∣∣∣∣
and

sup
v∈V(s,d)

∣∣∣∣
√

n + m

nm

vT{∑n
i=1 ξi(XiX

T
i − �̂1)/n −∑m

i=1 ηi(Y iY
T
i − �̂2)/m}v

vT(�̂1/n + �̂2/m)v

∣∣∣∣
is of order OP{√s log(ed/s)}. It then reduces to show

sup
v∈V(s,d)

∣∣∣∣∣vT

{
1

n

n∑
i=1

ξi

(
XiX

T
i − �̂1

)− 1

m

m∑
i=1

ηi

(
Y iY

T
i − �̂2

)}
v

∣∣∣∣∣
= OP

{√
s log(ed/s)

m

}
,

since we have, for any v ∈ V(s, d),∣∣∣∣vT{∑n
i=1 ξi(XiX

T
i − �̂1)/n −∑m

i=1 ηi(Y iY
T
i − �̂2)/m}v

vT(�1/n + �2/m)v

∣∣∣∣
� n ·
∣∣∣∣∣vT

{
1

n

n∑
i=1

ξi

(
XiX

T
i − �̂1

)− 1

m

m∑
i=1

ηi

(
Y iY

T
i − �̂2

)}
v

∣∣∣∣∣.
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This is due to the fact that �1,�2 ∈ M(λ) and m 	 n. Then, we can further write

P

[
sup

v∈V(s,d)

∣∣∣∣∣vT

{
1

n

n∑
i=1

ξi

(
XiX

T
i − �̂1

)− 1

m

m∑
i=1

ηi

(
Y iY

T
i − �̂2

)}
v

∣∣∣∣∣≥ C41

√
s log(ed/s)

m

]

≤ P

{
H1 ≥ C41

4

√
s log(ed/s)

m

}
+ P

{
H2 ≥ C41

4

√
s log(ed/s)

m

}

+ P

{
H3 ≥ C41

4

√
s log(ed/s)

m

}
+ P

{
H4 ≥ C41

4

√
s log(ed/s)

m

}
,

where

H1 := sup
v∈V(s,d)

∣∣∣∣∣1n
n∑

i=1

ξiv
T(XiX

T
i − �1

)
v

∣∣∣∣∣,
H2 := sup

v∈V(s,d)

∣∣∣∣∣ 1m
m∑

i=1

ηiv
T(Y iY

T
i − �2

)
v

∣∣∣∣∣,
H3 := sup

v∈V(s,d)

∣∣∣∣∣1n
n∑

i=1

ξiv
T(�̂1 − �1)v

∣∣∣∣∣, and

H4 := sup
v∈V(s,d)

∣∣∣∣∣ 1m
m∑

i=1

ηiv
T(�̂2 − �2)v

∣∣∣∣∣.
We bound H1, H2, H3, and H4, respectively. Without loss of generality, we only need to consider
H1 and H3. For H1, define ξ i = ξiI (|ξi | ≤ τ

√
logn) for some sufficiently large τ > 0. Using the

standard ε-net argument, it can be shown that (using Lemma 5.4 in Vershynin [43])

P

{
H1 ≥ C41

4

√
s log(ed/s)

m

}

≤
(

d

s

)
9s · P
{∣∣∣∣∣1n

n∑
i=1

ξiv
T(XiX

T
i − �1

)
v

∣∣∣∣∣≥ C41

8

√
s log(ed/s)

m

}

and

P

{∣∣∣∣∣1n
n∑

i=1

ξiv
T(XiX

T
i − �1

)
v

∣∣∣∣∣≥ C41

8

√
s log(ed/s)

m

}

≤ n max
1≤i≤n

P
(|ξi | > τ

√
logn
)+ P

{∣∣∣∣∣1n
n∑

i=1

ξ iv
T(XiX

T
i − �1

)
v

∣∣∣∣∣≥ C41

8

√
s log(ed/s)

m

}
.
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Similar to Lemma 6.4, define Vi := ξ iv
T(XiX

T
i − �1)v and, by Markov’s inequality, we have

for any t > 0,

P

{
1

n

n∑
i=1

ξ iv
T(XiX

T
i − �1

)
v ≥ C41

8

√
s log(ed/s)

m

}

≤ exp

{
−C41

8
t
√

ms log(ed/s)

} n∏
i=1

E exp(tVi).

Taking t =√s log(ed/s)/m, it follows

P

{
1

n

n∑
i=1

ξ iv
T(XiX

T
i − �1

)
v ≥ C41

8

√
s log(ed/s)

m

}

≤ exp

(
−C41

8
s log(ed/s) + s log(ed/s)

m

n∑
i=1

E

[
V 2

i exp

{√
s log(ed/s)

m
|Vi |
}])

.

Similar to (6.45), we get H1 = OP{√s log(ed/s)/m} as long as s log(ed/s) logn = o(n). Fur-
thermore, using the fact

H3 ≤ sup
v∈V(s,d)

∣∣vT(�̂1 − �1)v
∣∣ · 1

n

n∑
i=1

|ξi | = OP

{√
s log(ed/s)/m

}
,

we deduce that H3 = OP{√s log(ed/s)/m}. Putting together the pieces, we conclude that qα =
OP{√s log(ed/s)}.

Secondly, we study Q̂max. As in Lemma 6.6, we bound Q′
max instead, where

Q′
max :=

√
n + m

nm

vT(�̂1 − �̂2)v

vT(�1/n + �2/m)v
.

This is, again, because the difference between them is of order OP{√s log(ed/s)}. Note that

Q′
max ≥
√

n + m

nm
sup

v∈V(s,d)

∣∣∣∣ vT(�1 − �2)v

vT(�1/n + �2/m)v

∣∣∣∣− (H5 + H6),

where

H5 :=
√

n + m

nm
sup

v∈V(s,d)

∣∣∣∣ vT(�̂1 − �1)v

vT(�1/n + �2/m)v

∣∣∣∣,
H6 :=

√
n + m

nm
sup

v∈V(s,d)

∣∣∣∣ vT(�̂2 − �2)v

vT(�1/n + �2/m)v

∣∣∣∣.
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Equation (6.22) then follows from the fact that H5 + H6 = OP{√s log(ed/s)}. This completes
the proof. �

6.1.7. Proof of Theorem 4.3

Proof. Define the class of rank one perturbations of the identity matrix as follows:

H(λ) :=
{

M = Id + λ

√
s log(ed/s)

n
vvT : v ∈V(s, d)

}
.

Then, it suffices to prove the conclusion with M(λ) replaced by all �1 ∈ H(λ) and �2 = Id .
Let λ be sufficiently small. For any two distributions F and G, we write F ⊗ G to represent
the product measure of F and G. In particular, we use F⊗n to denote the product distribution
of n independent copies of F . Recall that the minimax risk is lower bounded by the Bayesian
risk. Define P

0
μλ

= E{Nd(0, Id + λ
√

s log(ed/s)/nvvT)⊗n ⊗ Nd(0, Id)⊗m} to be the mixture
alternative distribution with a prior distribution on v with v taking values uniformly in V(s, d):

P
0
μλ

(A) :=
∫

A

dNd

(
0, Id + λ

√
s log(ed/s)

n
ssT

)⊗n

· dNd(0, Id)⊗m dS(s),

where A ∈ R
(n+m)d and S denotes the uniform measure on V(s, d) with respect to the Haar

measure.
Define P

0
(�1,Id )

to be the probability measure of Nd(0,�1)
⊗n ⊗ Nd(0, Id)⊗m. In particular,

let P0
(Id ,Id )

be the probability measure of Nd(0, Id)⊗(n+m). Note that, for any measurable set

A ⊂R
(n+m)d , the measure P

0
μλ

satisfies

sup
�1∈H(λ)

P
0
(�1,Id )

(
Ac
)≥ P

0
μλ

(
Ac
)
.

Also by the definition of the probability measure, we have

1 = P
0
μλ

(A) + P
0
μλ

(
Ac
)
.

Due to the triangular inequality, we have

P
0
μλ

(A) ≤ P
0
(Id ,Id )(A) + ∣∣P0

μλ
(A) − P

0
(Id ,Id )(A)

∣∣.
Putting A = {
α = 1}, we deduce that

inf

α

sup
�1∈H(λ)

P
0
(�1,Id )(
α = 0) ≥ 1 − α − sup

A:P0
(Id ,Id )

(A)≤α

∣∣P0
μλ

(A) − P
0
(Id ,Id )(A)

∣∣
≥ 1 − α − 1

2

∥∥P0
μλ

− P
0
(Id ,Id )

∥∥
TV,

(6.23)

where ‖P0
μλ

− P
0
(Id ,Id )

‖TV denotes the total variation distance between the two probability mea-

sures P0
μλ

and P
0
(Id ,Id )

.
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To finish the proof, we introduce another distance measurement over distributions. Let the
χ2-divergence between two probability measures P1 and P2 be defined as

χ2(P1 ‖ P2) =
∫ (

dP1

dP2
− 1

)2

dP2.

In view of the proof of Proposition 2 in Cai, Ma and Wu [9], there exists a function g :
(0,1/36) �→ (1,∞) with g(0+) = 1 such that

χ2(
P

0
μλ

‖ P0
(Id ,Id )

)≤ g(β0) − 1,

where β0 tends to zero as λ → 0. Using the Pinsker’s inequality (see, for example, Lemma 2.5
in Tsybakov [40])

χ2(
P

0
μλ

‖ P0
(Id ,Id )

)≥ 2
∥∥P0

μλ
− P

0
(Id ,Id )

∥∥2
TV,

we deduce from (6.23) that

inf

α

sup
�1∈H(λ)

P
0
(�1,Id )(
α = 0) ≥ 1 − α − o(1).

This completes the proof. �

6.2. Proofs of the supporting lemmas

6.2.1. Proof of Lemma 6.1

Proof. For any ε ∈ (0,1) fixed and I ⊆ [d] subject to |I| = s, let Ss−1
I

⊆R
d be the unit Euclidean

sphere whose support is I. Further, let N0
I,ε

denote an ε-net of Ss−1
I

with respect to the Euclidean

metric ρE satisfying |N0
I,ε

| ≤ (1 + 2/ε)s . Due to the decomposition

V(s, d) = {v ∈ S
d−1 : |v|0 = s

}= ⋃
I⊆[d]:|I|=s

{
v ∈ S

d−1 : supp(v) = I
}= ⋃

I⊆[d]:|I|=s

S
s−1
I

,

we can construct an ε-net of (V(s, d), ρE) by N
0
ε :=⋃

I⊆[d]:|I|=s N
0
I,ε

. Then, it is straightforward
to see that

p0
ε = ∣∣N0

ε

∣∣≤ (d
s

)(
1 + 2

ε

)s

.

Using the binomial coefficient bound (
d

s

)
≤
(

ed

s

)s

,

we get

logp0
ε � s log

ed

εs
.
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Next, we prove the second assertion. For every v ∈ V(s, d) with support I and its ε-net NI,ε ,
we can find some ṽ ∈ NI,ε satisfying that supp(v) = supp(̃v) and ‖v − ṽ‖2 ≤ ε. By Lemma 2.2,
we have ∣∣∣∣vT

�(�̂ − �)v�

∣∣− ∣∣̃vT
�(�̂ − �)̃v�

∣∣∣∣≤ 2γs‖v − ṽ‖2 · sup
v∈V(s,d)

∣∣vT
�(�̂ − �)v�

∣∣
≤ 2γsε · sup

v∈V(s,d)

∣∣vT
�(�̂ − �)v�

∣∣.
Therefore, we have

sup
v∈V(s,d):supp(v)=I

∣∣vT
�(�̂ − �)v�

∣∣≤ 2γsε · sup
v∈V(s,d)

∣∣vT
�(�̂ − �)v�

∣∣+ max
v∈NI,ε

∣∣vT
�(�̂ − �)v�

∣∣.
Taking maximum over I ⊆ [d] with |I| = s on both sides yields

sup
v∈V(s,d)

∣∣vT
�(�̂ − �)v�

∣∣≤ 2γsε · sup
v∈V(s,d)

∣∣vT
�(�̂ − �)v�

∣∣+ max
v∈Nε

∣∣vT
�(�̂ − �)v�

∣∣.
Together, the last two displays imply Q̂max ≤ 2γsε · Q̂max + Mmax,ε . This completes the proof.

�

6.2.2. Proof of Lemma 6.2

Proof. We follow a standard procedure. First, we show concentration of Q̂max around its expec-
tation EQ̂max. Next we upper bound EQ̂max. To prove the concentration, we define for every
v ∈ V(s, d) that

gv(Xi ) = vTXiX
T
i v

vT�v
− 1.

By Lemma 6.12, there exists an absolute constant C11 > 0 such that for every t > 0,

P

[
Q̂max ≤ 2EQ̂max + max

{
2σv

√
t

n︸ ︷︷ ︸
J1

,C11
t√
n

∥∥∥ max
1≤i≤n

sup
v∈V(s,d)

∣∣gv(Xi )
∣∣∥∥∥

ψ1︸ ︷︷ ︸
J2

}]

≥ 1 − 4e−t ,

(6.24)

where σ 2
v := supv∈V(s,d)

∑n
i=1 Eg2

v(Xi ). We first bound J1 and J2, starting with J1. Under As-
sumption 2.1, we have

σ 2
v ≤ n · sup

v∈V(s,d)

E

{(
vTXiX

T
i v

vT�v
− 1

)2}
≤ 2n sup

v∈Sd−1

∥∥vTU iU
T
i v − 1

∥∥2
ψ1

≤ 2K2
2n, (6.25)
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and hence σv ≤ K2
√

2n. For J2, using a similar argument as in the proof of Lemma 6.1, we
deduce that for every 0 < ε < (2γs)

−1,

sup
v∈V(s,d)

∣∣∣∣vTXiX
T
i v

vT�v
− 1

∣∣∣∣≤ (1 − 2γsε)
−1 max

v∈N0
ε

∣∣∣∣vTXiX
T
i v

vT�v
− 1

∣∣∣∣.
By taking ε = ε4 := (4γs)

−1, we have∥∥∥ max
1≤i≤n

sup
v∈V(s,d)

∣∣gv(Xi )
∣∣∥∥∥

ψ1
=
∥∥∥∥ max

1≤i≤n
sup

v∈V(s,d)

∣∣∣∣vTXiX
T
i v

vT�v
− 1

∣∣∣∣∥∥∥∥
ψ1

�
∥∥∥∥ max

1≤i≤n
max
v∈N0

ε4

∣∣∣∣vTXiX
T
i v

vT�v
− 1

∣∣∣∣∥∥∥∥
ψ1

,

where N
0
ε4

is an ε4-net of V(s, d) with properties in Lemma 6.1. Using Lemma 6.13, we have∥∥∥ max
1≤i≤n

sup
v∈V(s,d)

∣∣gv(Xi )
∣∣∥∥∥

ψ1
�
(

s log
ed

ε4s
+ logn

)
sup

v∈V(s,d)

∥∥∥∥vTXiX
T
i v

vT�v
− 1

∥∥∥∥
ψ1

.

It follows that ∥∥∥ max
1≤i≤n

sup
v∈V(s,d)

∣∣gv(Xi )
∣∣∥∥∥

ψ1
� K2
{
s log(γs · ed/s) + logn

}
. (6.26)

Combining (6.24), (6.25), and (6.26) gives

P

[
Q̂max ≤ 2EQ̂max + K2 max

{
2
√

2t,C11γn(s, d)
t√
n

}]
≥ 1 − 4e−t , (6.27)

where we recall that γn(s, d) = s log(γs · ed/s) ∨ s logn.
Now we bound the expectation EQ̂max. Here we use a result that involves the generic chaining

complexity, γ2(T ,ρ), of a metric space (T ,ρ). See Definition 2.2.19 in Talagrand [38]. We refer
the readers to Talagrand [38] for a systematic introduction. Note that

sup
v∈V(s,d)

∥∥vT
�Xi

∥∥
ψ1

= sup
v∈V(s,d)

∥∥(�1/2v�

)T
U i

∥∥
ψ1

≤ K1,

and ∥∥(v� − ṽ�)TXi

∥∥
ψ2

= ∥∥(v� − ṽ�)T�1/2U i

∥∥
ψ2

≤ K1‖v� − ṽ�‖�,

for any v, ṽ ∈V(s, d). It follows from Lemma 6.14 and Lemma 6.15 that

EQ̂max = √
nE

{
sup

v∈V(s,d)

∣∣∣∣∣1n
n∑

i=1

(
vT

�Xi

)2 − 1

∣∣∣∣∣
}

� K2
1

{
γ2
(
V(s, d),‖ · ‖�

)+ γ2(V(s, d),‖ · ‖�)2

√
n

}
.

(6.28)
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By Lemma 6.16, we have

γ2
(
V(s, d),‖ · ‖�

)
� E

{
sup

v∈V(s,d)

(
vT

�Z
)}

, (6.29)

where Z
d= Nd(0,�). Similar to the proof of Lemma 6.1, we have

E

{
sup

v∈V(s,d)

(
vT

�Z
)}≤ 4

3
E

{
max
v∈N0

ε4

(
vT

�Z
)}

≤ 2
(
log
∣∣N0

ε4

∣∣)1/2 � γ
1/2
n (s, d),

(6.30)

where ε4 = (4γs)
−1. Together, (6.28), (6.29), and (6.30) imply that

EQ̂max � K2
1 γ

1/2
n (s, d). (6.31)

Combining (6.27) and (6.31), we deduce that

P

[
Q̂max ≤ C12K2γ

1/2
n (s, d) + K2 max

{
2
√

2t,C11γn(s, d)
t√
n

}]
≥ 1 − 4e−t .

This completes the proof. �

6.2.3. Proof of Lemma 6.3

Proof. Recall that

Mmax,ε = max
1≤j≤pε

∣∣∣∣∣ 1√
n

n∑
i=1

Rij

∣∣∣∣∣,
and ERij = 0 for i = 1, . . . , n and j = 1, . . . , pε . Moreover, define Rij = −Ri,j−pε for j = pε +
1, . . . ,2pε and put Ri = (Ri1, . . . ,Ri,2pε )

T for i = 1, . . . , n. Let G = (G1, . . . ,Gpε ,−G1, . . . ,

−Gpε)
T be a (2pε)-dimensional Gaussian random vector satisfying

E(GjGk) = E(RijRik), 1 ≤ j ≤ k ≤ pε.

Applying Lemma 2.1 to {Ri}ni=1 and G, we have, for any δ > 0,

P

(∣∣∣∣∣ max
1≤j≤pε

∣∣∣∣∣ 1√
n

n∑
i=1

Rij

∣∣∣∣∣− max
1≤j≤pε

|Gj |
∣∣∣∣∣≥ 16δ

)

� D1
log(2pε ∨ n)

δ2n
+ (D2 + D3)

{log(2pε ∨ n)}2

δ3n3/2
+ logn

n
,

(6.32)
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where we put

D1 = E

[
max

1≤j,k≤2pε

∣∣∣∣∣
n∑

i=1

{
RijRik −E(RijRik)

}∣∣∣∣∣
]
,

D2 = E

(
max

1≤j≤2pε

n∑
i=1

|Rij |3
)

,

D3 =
n∑

i=1

E

[
max

1≤j≤2pε

|Rij |31
{

max
1≤j≤2pε

|Rij | > δn1/2

log(2pε ∨ n)

}]
.

Note that, for i = 1, . . . , n,

E

(
max

1≤j≤2pε

R4
ij

)
≥ δn1/2

log(2pε ∨ n)
E

[
max

1≤j≤2pε

|Rij |31
{

max
1≤j≤2pε

|Rij | > δn1/2

log(2pε ∨ n)

}]
,

we have

D3 ≤ log(2pε ∨ n)

δn1/2

n∑
i=1

E

(
max

1≤j≤2pε

R4
ij

)
.

Hence, we deduce from (6.32) that

P

(∣∣∣∣∣ max
1≤j≤pε

∣∣∣∣∣ 1√
n

n∑
i=1

Rij

∣∣∣∣∣− max
1≤j≤pε

|Gj |
∣∣∣∣∣≥ 16δ

)

� D1
log(2pε ∨ n)

δ2n
+ D2

{log(2pε ∨ n)}2

δ3n3/2

+ D4
{log(2pε ∨ n)}3

δ4n2
+ logn

n
,

(6.33)

where

D4 :=
n∑

i=1

E

(
max

1≤j≤2pε

R4
ij

)
.

Next we bound D1, D2, and D4, starting with D1. By Lemma 6.17,

D1 �
√

log(2pε) max
1≤j≤2pε

(
n∑

i=1

ER4
ij

)1/2

+ log(2pε)
{
E

(
max

1≤i≤n
max

1≤j≤2pε

R4
ij

)}1/2

=√log(2pε) max
1≤j≤pε

(
n∑

i=1

ER4
ij

)1/2

︸ ︷︷ ︸
D11

+ log(2pε)
{
E

(
max

1≤i≤n
max

1≤j≤pε

R4
ij

)}1/2

︸ ︷︷ ︸
D12

.

(6.34)
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For D11, using Lemma 6.9, we deduce that

ER4
ij ≤ 4!‖Rij‖4

ψ1
= 4!
∥∥∥∥vT

j�
1/2U iU

T
i �

1/2vj

vT
j�vj

− 1

∥∥∥∥4
ψ1

.

This gives ER4
ij ≤ 4! supv∈Sd−1 ‖vTU iU

T
i v − 1‖4

ψ1
= 4!K4

2 and hence

D11 ≤ (4!K4
2 n
)1/2 = 241/2K2

2

√
n. (6.35)

To bound D12, by Lemmas 6.9 and 6.13, we have

E

(
max

1≤i≤n
max

1≤j≤pε

R4
ij

)
≤ 4!
∥∥∥ max

1≤i≤n
max

1≤j≤pε

|Rij |
∥∥∥4

ψ1

≤ 4!K4
0

{
log(npε + 1)

}4
max

1≤i≤n
max

1≤j≤pε

‖Rij‖4
ψ1

≤ 4!K4
0

{
log(npε + 1)

}4 sup
v∈Sd−1

∥∥vTUUTv − 1
∥∥4

ψ1

= 4!K4
0 K4

2

{
log(npε + 1)

}4
,

which further implies

D12 ≤ 241/2K2
0K2

2

{
log(npε + 1)

}2
. (6.36)

Combining (6.34), (6.35), and (6.36) yields

D1 � K2
2 (log 2pε)

1/2√n + K2
0 K2

2

{
log(npε + 1)

}2 log(2pε). (6.37)

For D2, it follows from Lemma 6.18 that

D2 = E

(
max

1≤j≤pε

n∑
i=1

|Rij |3
)

� max
1≤j≤pε

n∑
i=1

E|Rij |3︸ ︷︷ ︸
D21

+(logpε)E
(

max
1≤i≤n

max
1≤j≤pε

|Rij |3
)

︸ ︷︷ ︸
D22

. (6.38)

By Lemma 6.9, we have E|Rij |3 ≤ 3!K3
2 and hence

D21 ≤ 3!K3
2 n. (6.39)

Further, in view of Lemma 6.13, we have

D22 ≤ 3!K3
0

{
log(npε + 1)

}3 max
1≤i≤n

max
1≤j≤pε

‖Rij‖3
ψ1

≤ 3!K3
0K3

2

{
log(npε + 1)

}3
. (6.40)

Together, (6.38), (6.39), and (6.40) yield that

D2 � K3
2 n + K3

0K3
2

{
log(npε + 1)

}3 logpε. (6.41)
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For D4, using Lemmas 6.9 and 6.13, we deduce that

E

(
max

1≤j≤2pε

R4
ij

)
= E

(
max

1≤j≤pε

R4
ij

)
≤ 4!
∥∥∥ max

1≤j≤pε

|Rij |
∥∥∥4

ψ1

≤ 4!K4
0

{
log(pε + 1)

}4 sup
v∈Sd−1

∥∥vTUUTv − 1
∥∥4

ψ1

= 4!K4
0K4

2

{
log(pε + 1)

}4
.

Consequently, we have

D4 � K4
0 K4

2

{
log(pε + 1)

}4
n. (6.42)

Finally, putting (6.33), (6.37), (6.41), and (6.42) together, we obtain

P

(∣∣∣∣∣ max
1≤j≤pε

∣∣∣∣∣ 1√
n

n∑
i=1

Rij

∣∣∣∣∣− max
1≤j≤pε

|Gj |
∣∣∣∣∣≥ 16δ

)

� K2
2

√
log(2pε) log(2pε ∨ n)

δ2
√

n
+ K2

0 K2
2

log(2pε){log(npε + 1)}2 log(2pε ∨ n)

δ2n

+ K3
2
{log(2pε ∨ n)}2

δ3
√

n
+ K3

0 K3
2
(logpε){log(npε + 1)}3{log(2pε ∨ n)}2

δ3n3/2

+ K4
0 K4

2
{log(pε + 1)}4{log(2pε ∨ n)}3

δ4n
+ logn

n
,

as desired. �

6.2.4. Proof of Lemma 6.4

Proof. Define Wik = Wik1(|Wik| ≤ τ {log(p1 + n)}1/2) for some sufficiently large τ . Then, for
some constant C22 > 0,

P

{
max

1≤j,k≤p1

∣∣∣∣∣1n
n∑

i=1

(WijWik)
2 −E(WijWik)

2

∣∣∣∣∣≥ C22

√
logp1

n

}

≤ np1 max
1≤i≤n,1≤k≤p1

P
[|Wik| > τ

{
log(p1 + n)

}1/2]
+ P

{
max

1≤j,k≤p1

∣∣∣∣∣1n
n∑

i=1

(WijWik)
2 −E(WijWik)

2

∣∣∣∣∣≥ C22

√
logp1

n

}
.

Using Cauchy-Schwarz inequality, we deduce that, for any η > 0,∣∣E(WijWik)
2 −E(WijWik)

2
∣∣≤ (EW 4

ij

)1/2 · [E{W 4
ik · 1(|Wik| > τ

{
log(p1 + n)

}1/2)}]1/2

≤ (EW 4
ij

)1/2
(n + p1)

−τ2η/4 · [E{W 4
ik exp
(
ηW 2

ik/2
)}]1/2

.
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By the elementary inequality x2ex ≤ e2x , x > 0, we have, for any η > 0,∣∣E(WijWik)
2 −E(WijWik)

2
∣∣≤ (EW 4

ij

)1/2
(n + p1)

−τ2η/4 · 2η−1{
E exp
(
ηW 2

ik

)}1/2
.

Under Assumptions 2.1 and 2.2, for any η ∈ (0,K−2
1 ), there exists a constant C23 > 0 such that∣∣E(WijWik)

2 −E(WijWik)
2
∣∣≤ 2C23η

−1(n + p1)
−τ2η/4.

Hence, for all sufficiently large τ , n, and p1, we have

2C23η
−1(n + p1)

−τ2η/4 ≤ C22

2

√
logp1

n
.

It follows that

P

{
max

1≤j,k≤p1

∣∣∣∣∣1n
n∑

i=1

(WijWik)
2 −E(WijWik)

2

∣∣∣∣∣≥ C22

√
logp1

n

}

≤ np1 max
1≤i≤n,1≤k≤p1

P
[|Wik| > τ

{
log(p1 + n)

}1/2]
︸ ︷︷ ︸

F1

+ P

{
max

1≤j,k≤p1

∣∣∣∣∣1n
n∑

i=1

(WijWik)
2 −E(WijWik)

2

∣∣∣∣∣≥ C22

2

√
logp1

n

}
︸ ︷︷ ︸

F2

.

For F1, we have, for any η ∈ (0,K−2
1 ), M > 0, and sufficiently large τ ,

F1 ≤ np1(n + p1)
−τ2η max

1≤i≤n,1≤k≤p1
E
{
exp
(
ηW 2

ik

)}= O
(
p−M

1

)
.

To bound F2, it suffices to show that, for any M > 0, there exists an absolute constant C24 > 0
depending only on M such that

P

{
1

n

n∑
i=1

(WijWik)
2 −E(WijWik)

2 ≥ C24

√
logp1

n

}
= O
(
p−M−2

1

)
. (6.43)

Define Wijk = (WijWik)
2 −E(WijWik)

2 for 1 ≤ i ≤ n and 1 ≤ j, k ≤ p1. By Markov’s inequal-
ity, we have for any t > 0,

P

[
1

n

n∑
i=1

{
(WijWik)

2 −E(WijWik)
2}≥ C25

√
logp1

n

]

≤ exp(−C25t
√

n logp1)

n∏
i=1

E exp(tWijk).
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Using inequalities ex ≤ 1 + x + x2e|x| and 1 + x ≤ ex for x > 0, we deduce that

P

{
1

n

n∑
i=1

(WijWik)
2 −E(WijWik)

2 ≥ C25

√
logp1

n

}

≤ exp(−C25t
√

n logp1)

n∏
i=1

[
1 +E
{
t2W 2

ijk exp
(
t |Wijk|

)}]

≤ exp

[
−C25t

√
n logp1 +

n∑
i=1

E
{
t2W 2

ijk exp
(
t |Wijk|

)}]
.

Taking t = ητ−2
√

(logp1)/n gives

P

{
1

n

n∑
i=1

(WijWik)
2 −E(WijWik)

2 ≥ C25

√
logp1

n

}

≤ exp

[
−C25

η

τ 2
logp1 + η2 logp1

τ 4n

n∑
i=1

E

{
W 2

ijk exp

(
η

τ 2

√
logp1

n
|Wijk|
)}

︸ ︷︷ ︸
F3

]
.

(6.44)

Using Cauchy–Schwarz inequality, we have

F3 ≤ {E(W 4
ijk

)}1/2
[
E

{
exp

(
2η

τ 2

√
logp1

n
|Wijk|
)}]1/2

.

According to Assumption 2.1, for any η ∈ (0,K−2
1 ) and sufficiently large n and p1 satisfying

that {log(p1 + n)}2 logp1 = o(n), there exists a constant C26 > 0 depending on K1, η, and τ

such that

E

{
exp

(
2η

τ 2

√
logp1

n
|Wijk|
)}

≤ C26. (6.45)

Consequently, there exists a positive constant C27 depending on K1, η, and τ such that

F3 ≤ C27. (6.46)

Combining (6.44) and (6.46), we obtain that for η ∈ (0,K−2
1 ) and sufficiently large τ , n, and p1,

P

{
1

n

n∑
i=1

(WijWik)
2 −E(WijWik)

2 ≥ C25

√
logp1

n

}

≤ exp

(
−C25

η

τ 2
logp1 + C27

η2

τ 4
logp1

)
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for any C25 > 0. Therefore, for any M > 0, there exists a constant C24 > 0 depending only on
M such that (6.43) holds. Similarly, it can be shown that

P

{
1

n

n∑
i=1

(WijWik)
2 −E(WijWik)

2 ≤ −C24

√
logp1

n

}
= O
(
p−M−2

1

)
.

By taking C22 = 2C24, we get F2 = O(p−M
1 ), which completes the proof. �

6.2.5. Proof of Lemma 6.5

Proof. Similar to Lemma 6.1, we have, for any ε ∈ (0,1),

Qmax ≤ 2γs(�2)ε ·Qmax +Mmax. (6.47)

Of note, we have

Qmax ≤
√

m

n + m
sup

v∈V(s,d)

∣∣∣∣√nvT(�̂1 − �2)v

vT�2v

∣∣∣∣︸ ︷︷ ︸
Qmax,1

+
√

n

n + m
sup

v∈V(s,d)

∣∣∣∣√mvT(�̂2 − �2)v

vT�2v

∣∣∣∣︸ ︷︷ ︸
Qmax,2

.

Using Lemma 6.2, we deduce that, for any t > 0,

P

(
Qmax,1 ≤ CL2

[
γ

1/2
n (s, d) + max

{√
t,

t√
n
γn(s, d)

}])
≥ 1 − 4e−t , (6.48)

and

P

(
Qmax,2 ≤ CL2

[
γ

1/2
m (s, d) + max

{√
t,

t√
m

γm(s, d)

}])
≥ 1 − 4e−t , (6.49)

where C > 0 is an absolute constant, L2 = L2
1 + 1, γn(s, d) = s log{γs(�2)

ed
s

} ∨ s logn, and
γm(s, d) = s log{γs(�2)

ed
s

} ∨ s logm. It follows that, for any t1, t2 > 0,

P

(
Qmax ≤ CL2

[
γ

1/2
n (s, d) + γ

1/2
m (s, d) + max

{√
t1,

t1√
n
γn(s, d)

}
+ max

{√
t2,

t2√
m

γm(s, d)

}])
≥ 1 − 4e−t1 − 4e−t2 .

Taking t1 = logn and t2 = logm gives

P

[
Qmax ≤ C31L2

{
γ

1/2
m (s, d) +√logm + logm√

m
γm(s, d)

}]
≥ 1 − 4

n
− 4

m
,
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which proves (6.17). Combining (6.17) and (6.47), and taking ε = ε3 = {mγs(�2)}−1, we obtain

P

(
|Qmax −Mmax| ≤ CL2

[
γ

1/2
m (s, d)

m
+ max

{√
logm

m
,

logm

m3/2
γm(s, d)

}])
≥ 1 − 4

n
− 4

m
.

(6.50)

Recalling the definition of Rij in (6.19), we have

Mmax =
√

nm

n + m
max

1≤j≤p3

∣∣∣∣uT
j (�̂1 − �̂2)uj

uT
j�2uj

∣∣∣∣=√ n

m(n + m)
max

1≤j≤p3

∣∣∣∣∣
m∑

i=1

Rij

∣∣∣∣∣,
where Mmax is as in the proof of Theorem 4.1. Moreover, there exists a p3-dimensional Gaussian
random vector (G1, . . . ,Gp3)

T satisfying

E(GjGk) = n

m(n + m)
E

(
m∑

i=1

RijRik

)
, 1 ≤ j ≤ k ≤ p3,

such that for every δ > 0,

P

(∣∣∣Mmax − max
1≤j≤p3

|Gj |
∣∣∣≥ 16δ

)
�
(

n + m

n

)3

L3
3

{log(2p3 ∨ m)}2

δ3{m(n + m)/n}1/2

+
(

n + m

n

)4

K4
0 L4

3
{log(p3 + 1)}4{log(2p3 ∨ m)}3

δ4{m(n + m)/n}

� L3
2
{log(2p3 ∨ m)}2

δ3m1/2
+ K4

0 L4
2
{log(p3 + 1)}4{log(2p3 ∨ m)}3

δ4m
,

where L3 := (m/n + 1)L2. It follows that

P

(∣∣∣Mmax − max
1≤j≤p3

|Gj |
∣∣∣≥ 16δ

)
� L3

2
γ 2
m(s, d)

δ3m1/2
+ K4

0 L4
2
γ 7
m(s, d)

δ4m
. (6.51)

Taking δ = K4
0 γ

5/8
m (s,d)

L2m
1/8 , it follows from (6.50) and (6.51) that

P

[∣∣∣Qmax − max
1≤j≤p3

|Gj |
∣∣∣≥ C32K

4
0
γ

5/8
m (s, d)

L2m1/8

]
� L2

2
γ

1/8
m (s, d)

m1/8
+ L2

2
γ

9/2
m (s, d)

m1/2
.

This completes the proof. �
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6.2.6. Proof of Lemma 6.6

Proof. Write �̂ = (m�̂1 + n�̂2)/(n + m). By definition, we have

|Q̂max −Qmax|

=
∣∣∣∣ sup
v∈V(s,d)

∣∣∣∣
√

nm
n+m

vT(�̂1 − �̂2)v

nm
n+m

vT( �̂1
n

+ �̂2
m

)v

∣∣∣∣− sup
v∈V(s,d)

∣∣∣∣
√

nm
n+m

vT(�̂1 − �̂2)v

vT�2v

∣∣∣∣∣∣∣∣
≤
√

nm

n + m
sup

v∈V(s,d)

∣∣∣∣vT(�̂1 − �̂2)v

vT�̂v
− vT(�̂1 − �̂2)v

vT�2v

∣∣∣∣ (6.52)

≤
√

nm

n + m
sup

v∈V(s,d)

∣∣∣∣vT(�̂1 − �̂2)v

vT�2v

∣∣∣∣ sup
v∈V(s,d)

∣∣∣∣vT�2v

vT�̂v

∣∣∣∣
×
{

m

n + m
sup

v∈V(s,d)

∣∣∣∣vT(�̂1 − �2)v

vT�2v

∣∣∣∣+ n

n + m
sup

v∈V(s,d)

∣∣∣∣vT(�̂2 − �2)v

vT�2v

∣∣∣∣}.
Combining (6.48) and (6.49), and taking t1 = logn and t2 = logm, we have

P

[
sup

v∈V(s,d)

∣∣∣∣ vT�̂v

vT�2v
− 1

∣∣∣∣≤ C34L2

{
γ

1/2
m (s, d)√

m
+ logm

m
γm(s, d)

}]
≥ 1 − 4

n
− 4

m
,

where C34 > 0 is an absolute constant, γm(s, d) = s log{γs(�2)
ed
s

} ∨ s logm, and L2 = L2
1 + 1.

It follows that, for all sufficiently large m,

P

(
sup

v∈V(s,d)

∣∣∣∣vT�2v

vT�̂v

∣∣∣∣≤ [1 − C34L2

{
γ

1/2
m (s, d)√

m
+ logm

m
γm(s, d)

}]−1)
≥ 1 − 4

n
− 4

m
.

This, together with (6.17), (6.48), (6.49), and (6.52), proves (6.21). �

6.2.7. Proof of Lemma 6.7

Proof. Define Bmax = supv∈V(s,d) |Bv|, where

Bv =
√

nm

n + m

vT{n−1∑n
i=1 ξi(XiX

T
i − �2) − m−1∑m

i=1 ηi(Y iY
T
i − �2)}v

vT�2v

and ξ1, . . . , ξn, η1, . . . , ηm are independent standard Gaussian random variables that are indepen-
dent of {Xi}ni=1 and {Y i}mi=1. As in Lemma 6.5, we have for 1 ≤ j ≤ k ≤ p3,

E(GjGk) = n

m(n + m)
E

(
n∑

i=1

RijRik +
m∑

i=n+1

RijRik

)

= m

n + m
E

{
(uT

jXi )
2(uT

kXi )
2

‖uj‖2
�2

‖uk‖2
�2

− 1

}
+ n2

m(n + m)
E

{
(uT

jY i )
2(uT

kY i )
2

‖uj‖2
�2

‖uk‖2
�2

− 1

}
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+ n(m − n)

m(n + m)
E

{
(uT

jY i )
2(uT

kY i )
2

‖uj‖2
�2

‖uk‖2
�2

− 1

}

= m

n + m
E

{
(uT

jXi )
2(uT

kXi )
2

‖uj‖2
�2

‖uk‖2
�2

− 1

}
+ n

n + m
E

{
(uT

jY i )
2(uT

kY i )
2

‖uj‖2
�2

‖uk‖2
�2

− 1

}
.

Putting {Bj }p3
j=1 = {Bv}v∈N0

ε3
, we have, for j = 1, . . . , p3,

Bj =
√

nm

n + m

[
1

n

n∑
i=1

ξi

{
(uT

jXi )
2

‖uj‖2
�2

− 1

}
− 1

m

m∑
i=1

ηi

{
(uT

jY i )
2

‖uj‖2
�2

− 1

}]
.

It follows that

E(BjBk|X1, . . . ,Xn,Y 1, . . . ,Ym)

= m

n + m

1

n

n∑
i=1

{
(uT

jXi )
2

‖uj‖2
�2

− 1

}{
(uT

kXi )
2

‖uk‖2
�2

− 1

}

+ n

n + m

1

m

m∑
i=1

{
(uT

jY i )
2

‖uj‖2
�2

− 1

}{
(uT

kY i )
2

‖uk‖2
�2

− 1

}
.

Define

�G = max
1≤j≤k≤p3

∣∣E(GjGk) −E(BjBk|X1, . . . ,Xn,Y 1, . . . ,Ym)
∣∣.

Similar to the proof of Theorem 2.2, it can be shown that with probability greater than 1 −
O(p−M

3 ),

�
1/3
G
{
log(2p3)

}1/3{log(1/�G)
}1/3 ≤ �p3,m,

where �p3,m → 0 as p3,m → ∞. By Lemma 6.19, we have

sup
t≥0

∣∣∣P( max
1≤j≤p3

|Gj | ≤ t
)

− P

(
max

1≤j≤p3
|Bj | ≤ t

∣∣X1, . . . ,Xn,Y 1, . . . ,Ym

)∣∣∣= oP(1).

Then, using Lemma 6.1 and Lemma 6.6, we deduce that

sup
t≥0

∣∣∣P( max
1≤j≤p3

|Gj | ≤ t
)

− P(B̂max ≤ t |X1, . . . ,Xn,Y 1, . . . ,Ym)

∣∣∣= oP(1),

as desired. �

6.3. Auxillary lemmas

In the sequel, we define R
+ and Z

+ to be the sets of positive real values and integers. The
following two lemmas are elementary, yet very useful, in the proofs of the above results.
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Lemma 6.8. For any v ∈ S
d−1, we have

‖v�‖� = 1 and

(
v

‖v‖2

)
�

= v� .

Proof. By definition, it is straightforward that ‖v�‖� = 1, and(
v

‖v‖2

)
�

= v

vTv

/{ vT�v

(vTv)2

}1/2

= v

(vT�v)1/2
= v�,

as desired. �

Lemma 6.9. For α ∈ [1,∞), define the function ψα(x) = exp(xα) − 1, x > 0. The Orlicz norm
for a random variable X is given by

‖X‖ψα := inf

{
C > 0 : E

{
ψα

( |X|
C

)}
≤ 1

}
.

Also, define the Lp (p ≥ 1) norm of a random variable X by ‖X‖p = (E|X|p)1/p . Then, for
every p ∈ Z

+ we have

‖X‖p ≤ (p!)1/p · ‖X‖ψ1 .

Proof. Note that for every p ∈ Z
+ and x ∈R

+, xp ≤ p! · ψ1(x). Then, we have for any C > 0,

E

( |X|p
Cp

)
≤ p! ·E

{
ψ1

( |X|
C

)}
.

The conclusion thus follows immediately. �

The following lemma is from Vershynin [43].

Lemma 6.10. Let (�,ρ) be a metric space. For every ε > 0, a subset Nε(�) of � is called
an ε-net of � if for every ω ∈ �, there is some ξ ∈ Nε(�) such that ρ(ω, ξ) ≤ ε. The minimal
cardinality of an ε-net �, if finite, is called the covering number of � at scale ε, and is denoted
by N(�,ρ, ε). The unit sphere S

d−1 equipped with the Euclidean metric satisfies that for every
0 < ε ≤ 1, N(Sd−1, ρ, ε) ≤ (1 + 2/ε)d .

The following anti-concentration lemma is Theorem 3 in Chernozhukov, Chetverikov and
Kato [15] and is used in the proofs of Theorems 2.1 and 4.1.

Lemma 6.11. Let (X1, . . . ,Xd)T be a centered Gaussian random vector in R
d with σ 2

j :=
E(X2

j ) > 0 for all 1 ≤ j ≤ d . Define σ = min1≤j≤d σj , σ = max1≤j≤d σj , and ad =
E{max1≤j≤d(Xj/σj )}.
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(i) If σ = σ = σ , then for every ε > 0,

sup
x∈R

P

(∣∣∣ max
1≤j≤d

Xj − x

∣∣∣≤ ε
)

≤ 4ε

σ
(ad + 1).

(ii) If σ < σ , then for every ε > 0,

sup
x∈R

P

(∣∣∣ max
1≤j≤d

Xj − x

∣∣∣≤ ε
)

≤ Cε
{
ad +√1 ∨ log(σ/ε)

}
,

where C > 0 is a constant depending only on σ and σ .

The following lemma from Adamczak [1] is used in the proof of Lemma 6.2.

Lemma 6.12. Let X1, . . . ,Xn be independent random variables taking values in a measurable
space (S,B), and let F be a countable class of measurable functions f : S → R. Assume that
for i = 1, . . . , n, Ef (Xi ) = 0 for every f ∈ F and ‖ supf ∈F |f (Xi )|‖ψ1 < ∞. Define

Z = sup
f ∈F

∣∣∣∣∣
n∑

i=1

f (Xi )

∣∣∣∣∣ and σ 2 = sup
f ∈F

n∑
i=1

Ef 2(Xi ).

Then, for every 0 < η < 1 and δ > 0, there exists a constant C = C(η, δ) such that for all t ≥ 0,

P
{
Z ≥ (1 + η)EZ + t

}
≤ exp

{
− t2

2(1 + δ)σ 2

}
+ 3 exp

{
− t

C‖max1≤i≤n supf ∈F |f (Xi )|‖ψ1

}
,

and

P
{
Z ≤ (1 − η)EZ − t

}
≤ exp

{
− t2

2(1 + δ)σ 2

}
+ 3 exp

{
− t

C‖max1≤i≤n supf ∈F |f (Xi )|‖ψ1

}
.

The following lemma is Lemma 2.2.2 in van der Vaart and Wellner [42] and is used in the
proofs of Lemma 6.2 and Lemma 6.3.

Lemma 6.13. For any α ∈ [1,∞), there exists a constant K0 > 0 depending only on α such that∥∥∥ max
1≤i≤n

Xi

∥∥∥
ψα

≤ K0ψ
−1
α (n) max

1≤i≤n
‖Xi‖ψα .

The following lemma is Theorem A in Mendelson [32] and is used in the proof of Lemma 6.2.
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Lemma 6.14. Let F be a class of mean-zero functions on a probability space (Rd,μ,P), and
let X1, . . . ,Xn be independent random variables in R

d distributed according to P. Then, there
exists an absolute constant C > 0 such that

E

{
sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

f 2(Xi ) −Ef 2

∣∣∣∣∣
}

≤ C

{
sup
f ∈F

‖f ‖ψ1

γ2(F,ψ2)√
n

+ γ 2
2 (F,ψ2)

n

}
.

The complexity parameter γ2(F,ψ2) of F is the γ2 functional with respect to the ψ2 norm. See
Talagrand [38] for its definition and properties.

The following two lemmas are Theorem 2.7.5 and Theorem 2.4.1 in Talagrand [38] on generic
chaining, and are used in the proof of Lemma 6.2.

Lemma 6.15. If f : (T ,ρ) �→ (U,�) is surjective and there exists a constant C > 0 such that

�
(
f (x), f (y)

)≤ Cρ(x, y),

for any x, y ∈ T . Then, we have

γα(U,�) ≤ CK(α)γα(T ,ρ),

where K(α) is an absolute constant depending only on α.

Lemma 6.16. For any metric space (T ,ρ) and centered Gaussian process {Xt }t∈T , there exist
universal constants C > c > 0 such that

cγ2(T ,ρ) ≤ E

(
sup
t∈T

Xt

)
≤ Cγ2(T ,ρ).

The following two lemmas are Lemma 1 and Lemma 9 in Chernozhukov, Chetverikov and
Kato [14] and are used in the proof of Lemma 6.3.

Lemma 6.17. Let X1, . . . ,Xn be independent centered random vectors in Rd with d ≥ 2. Then,
there exists a absolute constant C > 0 such that

E

[
max

1≤j,k≤d

∣∣∣∣∣1n
n∑

i=1

{
XijXik −E(XijXik)

}∣∣∣∣∣
]

≤ C

[√
logd

n
max

1≤j≤d

{
1

n

n∑
i=1

E
(
X4

ij

)}1/2

+ logd

n

{
E

(
max

1≤i≤n
max

1≤j≤d
X4

ij

)}1/2
]
.

Lemma 6.18. Let X1, . . . ,Xn be independent random vectors in R
d with d ≥ 2 such that Xij ≥

0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ d . Then

E

(
max

1≤j≤d

n∑
i=1

Xij

)
� max

1≤j≤d

n∑
i=1

E(Xij ) + (logd) ·E
(

max
1≤i≤n

max
1≤j≤d

Xij

)
.
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The following lemma is Theorem 2 in Chernozhukov, Chetverikov and Kato [15] and is used
in the proofs of Theorem 2.2 and Lemma 6.7.

Lemma 6.19. Let X = (X1, . . . ,Xd)T and Y = (Y1, . . . , Yd)T be centered Gaussian random
vectors in R

d with covariance matrices �X = (σX
jk)1≤j,k≤d and �Y = (σY

jk)1≤j,k≤d , respectively.

Suppose that d ≥ 2 and σY
jj > 0 for all 1 ≤ j ≤ d . Define

ad = E

{
max

1≤j≤d

(
Yj/σ

Y
jj

)}
and � = max

1≤j,k≤d

∣∣σX
jk − σY

jk

∣∣.
Then

sup
x∈R

∣∣∣P( max
1≤j≤d

Xj ≤ x
)

− P

(
max

1≤j≤d
Yj ≤ x

)∣∣∣≤ C�1/3(logd)1/3{1 ∨ a2
d ∨ log(1/�)

}1/3
,

where C > 0 is an absolute constant depending only on min1≤j≤d σY
jj and max1≤j≤d σY

jj . In

particular, we have ad ≤ (2 logd)1/2 and

sup
x∈R

∣∣∣P( max
1≤j≤d

Xj ≤ x
)

− P

(
max

1≤j≤d
Yj ≤ x

)∣∣∣≤ C′�1/3{1 ∨ log(d/�)
}2/3

,

where C′ > 0 is an absolute constant depending only on min1≤j≤d σY
jj and max1≤j≤d σY

jj .
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