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ABSTRACT

An ‘emergent constraint’ (EC) is a statistical relationship, across a model ensemble, between a

measurable aspect of the present day climate (the predictor) and an aspect of future projected climate

change (the predictand). If such a relationship is robust and understood, it may provide constrained

projections for the real world. Here, Coupled Model Intercomparison Project 6 (CMIP6) models

are used to revisit several ECs that were proposed in prior model intercomparisons with two

aims: (1) to assess whether these ECs survive the partial out-of-sample test of CMIP6 and (2) to

more rigorously quantify the constrained projected change than previous studies. To achieve the

latter, methods are proposed whereby uncertainties can be appropriately accounted for, including

the influence of internal variability, uncertainty on the linear relationship, and the uncertainty

associated with model structural differences, aside from those described by the EC. Both least

squares regression and a Bayesian Hierarchical Model are used. Three ECs are assessed: (a) the

relationship between Southern Hemisphere jet latitude and projected jet shift, which is found to

be a robust and quantitatively useful constraint on future projections; (b) the relationship between

stationary wave amplitude in the Pacific-North American sector and meridional wind changes over

North America (with extensions to hydroclimate), which is found to be robust but improvements

in the predictor in CMIP6 result in it no longer substantially constrains projected change in either

circulation or hydroclimate; and (c) the relationship between ENSO teleconnections to California

and California precipitation change, which does not appear to be robust when using historical

ENSO teleconnections as the predictor.
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1. Introduction

As we grapple to predict the future of the climate system, there are three sources of uncertainty

we must contend with: scenario uncertainty; internal variability; and model response uncertainty

(Hawkins and Sutton 2009; Lehner et al. 2020). Scenario uncertainty arises because we do not

know eactly how anthropogenic forcings will evolve in the future and is dealt with by considering a

range of future forcing scenarios that span the range of possible societal outcomes (e.g O’Neill et al.

2013). Internal variability arises because the Earth System internally generates its own variability

and, as our singular climate system evolves, the climate state we experience will be a combined

result of both anthropogenically forced change and this internal variability (e.g. Deser et al. 2012).

For the most part, this source of uncertainty is irreducible, but can nevertheless be quantified i.e.,

it is a certain uncertainty (Deser 2020). Finally, model response uncertainty arises because we are

attempting to predict the future with imperfect models. While model development and enhanced

computing capabilities are continually aimed at reducing this uncertainty, we must, at the same

time, come up with creative ways of either interpreting model response uncertainty (Shepherd et al.

2018) or reducing it (Hall et al. 2019).

“Emergent Constraints”, referred to as ECs hereafter, are a potential way to reducemodel response

uncertainty (Hall et al. 2019; Brient 2020). These are statistical relationships between the modelled

representation of a measurable aspect of the present day climate (the predictor) and some aspect

of future projected change (the predictand), with the expectation that the predictor and predictand

are linked somehow in a physically meaningful way. Most commonly, these constraints “emerge”

from multi-model ensembles such as the Coupled Model Intercomparison Project (CMIP, Taylor

et al. 2012; Eyring et al. 2016) but they can also be found, or tested, in perturbed physics ensembles

with an individual model (Kamae et al. 2016; Wagman and Jackson 2018).
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Since the potential of ECs was brought to the fore by Hall and Qu (2006) in their analysis of

snow-albedo feedbacks, they have been applied to climate sensitivity and cloud feedbacks (Caldwell

et al. 2018, and references therein), carbon cycle feedbacks (Cox et al. 2013; Wenzel et al. 2014),

ocean productivity (Kwiatkowski et al. 2017), sea ice loss (Boé et al. 2009; Massonnet et al. 2012),

and aspects of the large scale circulation and hydroclimate (Kidston and Gerber 2010; O’Gorman

2012; Simpson and Polvani 2016; Simpson et al. 2016; Li et al. 2017; Lehner et al. 2019; Chen

et al. 2020).

As embodied in the views of two recent perspective articles (Hall et al. 2019; Brient 2020), great

care must be taken in assessing the validity and usefulness of an EC, since spurious significant

relationships can be found within multi-model ensembles, purely by chance (Caldwell et al. 2014).

Hall et al. (2019) put forth a framework whereby a proposed EC, based on a strong statistical

relationship, can become verified. This involves accompanying the EC with a plausible physical

mechanism, verifying that this mechanism is at work in the model ensemble, and assessing whether

the EC survives out-of-sample testing. Ensuring that a relationship survives out-of-sample testing

using another ensemble or, alternatively, using dedicated sensitivity experiments within a single

model (e.g. van Niekerk et al. 2017) helps to establish that the relationship is robust and is indeed

indicative of a true underlying physical relationship between predictor and predictand. Brient

(2020) also discusses the importance of accounting for the many uncertainties involved when

quantifying constrained future projections.

Prior EC studies address this issue of the quantification of future projected change with varying

degrees of rigour. Many studies stop short of providing a quantitative estimate for the future and,

instead, simply point out the constraining relationship and discuss how the observed predictor

compares to the model distribution to draw qualitative conclusions (Hall and Qu 2006; Trenberth

and Fasullo 2010; Fasullo and Trenberth 2012; Su et al. 2014; Tian 2015; Simpson and Polvani
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2016; Lipat et al. 2017). Others are more quantitative by using a linear regression combined

with the observed value of the predictor to project the future, but often without, or only a partial,

consideration of the uncertainties involved (Volodin 2008; Sherwood et al. 2014). Some do account

for uncertainty in the regression coefficients (Huber et al. 2010; O’Gorman 2012; Simpson et al.

2016) but neglect other potential sources of model spread that are not described by the EC, while

others quantify the uncertainty based on the residuals from the linear regression fit which may

be a more encompassing approach (Bracegirdle and Stephenson 2013; Cox et al. 2013), although

Bowman et al. (2018) highlights the importance of also incorporating observational uncertainty.

Brient (2020) provides a clear examplewhere failure to adequately account for uncertainties can lead

to overly constrained projections and, instead, opts to use a model weighting procedure to provide

a constrained distribution of future projected change - an approach that has been implemented by a

number of other studies with varying degrees of sophistication (Hargreaves et al. 2012; Massonnet

et al. 2012; Zhai et al. 2015).

Here, we revisit three ECs that relate to the large scale atmospheric circulation and regional

hydroclimate with two primary goals. The first is to assess whether these constraints, that were

previously found in CMIP5 models, still exist in CMIP6. While CMIP6 compared to CMIP5 may

not be a completely out-of-sample test, passing this test will improve confidence that the EC is

real and move it along the path toward the confirmed category (Hall et al. 2019). Our second goal

is to more rigorously quantify the extent to which these constraints can actually constrain future

projections, by proposing a new approach to adequately incorporate the variety of uncertainties that

are involved in the calculation. This approach involves linear regression, using either least squares

regression or a Bayesian Hierarchical Model, combined with sampling from large ensembles from

multiple models, to quantify the constrained future change via the EC.
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The three ECs to be assessed are: (1) the relationship between the climatological latitude

and future projected poleward shift of the Southern Hemisphere (SH) jet stream (Kidston and

Gerber 2010; Simpson and Polvani 2016, hereafter referred to as the SHJET constraint); (2) the

relationship between the climatological amplitude of intermediate scale stationary waves in the

Pacific/North American sector and future projected meridional wind change over North America,

with extension to North American hydroclimate (Simpson et al. 2016, hereafter referred to as the

VWIND constraint); and (3) the relationship between a model’s representation of El Niño Southern

Oscillation (ENSO) teleconnections to California precipitation and future projected California

precipitation change (Allen and Luptowitz 2017, herafter referred to as the CALP constraint).

Section 2 describes the model and observation-based datasets used and methods are outlined in

section 3. The SHJET, VWIND and CALP constraints are then assessed in sections 4, 5 and 6,

respectively. Discussion is provided in section 7 followed by conclusions in section 8.

2. Model and observation-based data

Monthly zonal wind (*), meridional wind (+), precipitation (?A), surface temperature ()B) and

surface air temperature ()2<) data from the CMIP5 and CMIP6 models summarized in Table 1 are

used, after interpolating fields to a common 1> grid using bilinear interpolation. For the SHJET and

VWIND constraint, we take the “Past” to be the period 1979-2014 under the “historical” forcing

scenario (CMIP5 historical members are combined with the corresponding RCP8.5 member to

extend the historical period out to 2014). We take the “future” to be 2070-2099 of the RCP8.5

scenario in CMIP5 (Meinshausen et al. 2011; Lamarque et al. 2011) and the SSP5-8.5 scenario in

CMIP6 (Kriegler et al. 2017) i.e., using the forcing scenario in each CMIP that reaches ∼8.5Wm−2

radiative forcing by the end of the century. For the CALP constraint, the linear trend in precipitation

7
Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-21-0055.1.Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 06/03/21 10:06 PM UTC



between 2006 and 2099 is considered, while both the 2006-2099 and 1948-2014 periods are used

to assess the representation of ENSO teleconnections.

To quantify the influence of internal variability on uncertainty in both the predictor and pre-

dictand, we use initial condition large ensembles (LEs) from five models run under the RCP8.5

scenario: CanESM2, 50 members; CESM1-CAM5, 40 members; CSIRO-Mk3-6-0, 30 members;

GFDL-CM3, 20 members; and MPI-ESM, 100 members (Deser et al. 2020).

For observed * and + we use ERA5 (Hersbach et al. 2020), ERA-Interim (Dee et al. 2011),

MERRA2 (Gelaro et al. 2017) and JRA-55 (Kobayashi et al. 2015) reanalyses. For )B we use

HadISST (Rayner et al. 2003), ERSSTv3b (Smith et al. 2008) and ERSSTv5 (Huang et al. 2017) and

for ?A we use CRUTS (Harris et al. 2014) and GPCC (Schneider 2018) station-based observations.

3. Emergent constraints methodology

The essence of an EC is a relationship (typically linear) between a model’s representation of a

present day quantity (G) and its projected future change (Δ) in a quantity (H) i.e., using a linear fit

ΔH(8) = U+ VG(8) + n (8), (1)

where U and V are the regression coefficients, n (8) are the residuals of the fit and 8 refers to

individual model data points (8=1...#) after averaging over the ensemble members available (see

the schematic example in Fig. 1a). The measured (G, ΔH) for a given model may differ from the

true (Ḡ, ΔH̄) due to internal variability given the limited ensemble size for each model. We will use

¯(.) throughout to refer to the “true” values, absent internal variability. The residuals (n) will have

a component that results from internal variability (n�+ ) and a component that arises from other

inter-model differences in ΔH̄ that are not described by the emergent constraint, which we will refer
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to as X. If the effects of internal variability could be neglected, then

ΔH̄(8) = U+ VḠ(8) + X(8) (2)

The variance in modelled ΔH values, f2(ΔH), can be partitioned into a component that is

explained by the EC (f2
��

) and the remainder (f2
n ). f2

n then consists of components due to internal

variability (f2
�+
) and other inter-model differences that are not explained by the EC (f2

X
) i.e.,

f2(ΔH) = f2
�� +f

2
�+ +f2

X . (3)

wherewe have assumed n , X and n�+ are normally distributed such that n ∼N(0,f2
n ), X ∼N(0,f2

X
)

and n�+ ∼ N(0,f2
�+
). Combining the EC (1) with the observed value of G for the real world (G� ,

with (.)� referring to the Earth), the future change for the real world (ΔH� ) can be predicted via

ΔH� = U+ VG� + n�+ + X. (4)

The first two terms on the right refer to the component predicted by the EC, the third term represents

the ΔH that could arise due to internal variability in one realization and the final term refers to the

other contributions to the forced change in the real world that are not explained by the EC.

Each component on the right of (4) is uncertain. With only a finite number of models, with finite

ensemble sizes, U and V are not known exactly. G� may deviate from Ḡ� due to observational error

and internal variability (Fig. 1b), n�+ is an irreducible uncertainty, and we may not know the role

of other forced responses in the real world, not described by the EC (X), although this uncertainty

has the potential to be reduced through additional emergent constraints as they are discovered. A

further assumption is made that the process representation within the models is close enough to
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that of the real world, that the real world ΔH̄ will depend on Ḡ in a similar way (Williamson and

Sansom 2019).

While we cannot know the true values of any of the uncertain parameters, we can model them as

probability distribution functions (PDFs), based on the information we have, to determine a PDF

for ΔH� (depicted schematically in Fig. 1c) which reflects the added information from the EC. The

idea is then that this probability distribution will be more constrained than what would be derived

from the model ensemble directly. For each constraint, distributions for ΔH� will be derived using

two different types of least squares regression and a Bayesian Hierarchical Model, now described.

a. Ordinary and Total Least Squares regressions (OLS and TLS)

For both OLS and TLS, U and V are determined by minimizing a loss function that depends

on the squared residuals and our estimate of internal variability in the form of the standard

deviation (fG or fΔH, which will depend on model ensemble size) and assuming that Ḡ and ΔH̄ are

represented by normal distributions with these standard deviations centered on G and ΔH. Section

3c below describes how fG and fΔH are estimated. OLS and TLS only differ in the method used

to derive U and V. For OLS, all errors are assumed to be in the dependent variable ΔH. A

weighted approach allows for a different fΔH for each model by finding the U and V that minimize∑#
8=1

(
(ΔH(8) −U− VG(8))/fΔH (8)

)2. For TLS, errors in the G direction (fG) are also accounted for

by instead minimizing
∑#
8=1 (ΔH(8) −U− VG(8))

2 /(fΔH (8)2 + V2fG (8)2).

To decompose the intermodel variance according to (3), f2
��
= f2(ΔH) −f2

n since the variance

in ΔH consists of variance explained by the EC (f2
��

) plus the variance of the residuals (f2
n ). The

internal variability component f2
�+

is estimated via f2
�+
= V2f2

G +f2
ΔH

1 and f2
X
is then estimated as

1This can be shown by considering ΔH̄ and Ḡ to deviate from the measured ΔH and G by amounts nΔH and nG due to internal variability i.e.,
ΔH (8) + nΔH = U+ V (G (8) + nG ) + X (8) . Rearranging gives ΔH (8) − U− VG (8) = n (8) = VnG − nΔH + X (8) , so f2

n can be partitioned according to
f2
n = V

2f2
G + f2

ΔH
+ f2

X
where (V2f2

G + f2
ΔH

) represents the contribution due to internal variability (f2
�+

)
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the remainder of f2
n . While this procedure does not guarantee that f2

X
is positive, as it needs to be,

we find that f2
�+

is less than f2
n in all cases.

To provide a constrained future projection for the real world, PDFs for each of the parameters

on the right hand side of (4) are constructed. A PDF of 1000 U, V combinations is determined by

bootstrapping # models from the # available, with replacement, and recalculating the regression

fit. A PDF of Ḡ� is estimated using a variety of observational products as described in section 2 (to

account for observational error) and then modelling Ḡ� as a normal distribution centered on each

observed value with standard deviationfG (to account for the uncertainty due to internal variability)

i.e., we assume that the observed G� is the most likely true value Ḡ� , an assumption that, of course,

cannot be tested in the context of the single observational record. Internal variability will also

play a role in the Future - Past difference, so to account for this combined with the other forced

contributions that are unrelated to the EC (ΔH�+ + X� ) 1000 values are sampled from a normal

distribution with variance f2
n − V2f2

G , which is equivalent to f2
ΔH
+f2

X
(footnote 1). Combining all

permutations of these samples, gives 1 billion values of ΔH� according to (4) that represent our

constrained distribution for the real world (Fig. 1c).

The real world forced response (ΔH̄� ), absent internal variability, can be estimated by applying

a similar procedure but without the internal variability component i.e., ΔH̄� = U + VG� + X� . To

sample X� we estimate the variance of X by f2
X
= f2

n −f2
�+

and then 1000 values of X� are sampled

from a normal distribution with this variance.

b. The Bayesian Hierarchical Model (BHM)

The BHM fits the regression model (2) by modelling the “true” Ḡ and ΔH̄ (uncontaminated by

internal variability) as probability distributions based on G, ΔH, fG and fΔH, and the correlation

between the internal variability uncertainties (AGΔH).
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The BHM is described in more detail in the Appendix, so here we summarize how its output is

used to decompose the variance in ΔH via (3) and to estimate the constrained distribution of ΔH� .

A product of the BHM is 1000 estimates of (U, V,f2
X
, X2
G), where X2

G is the standard deviation of Ḡ

i.e., the spread across the ’true’ values of the predictor in the climate models. For each of these

1000 estimates, the variance explained by the EC is given by f2
��
= V2X2

G , the variance explained

by inter-model differences in the forced response not described by the EC is given by f2
X
, and

the variance explained by internal variability is given by f2
ΔH
(1− A2

GΔH
). The fraction of variance

explained by each component is estimated from each BHM sample separately and then the mean

over the 1000 estimates is displayed.

The BHM provides a ready formalism for sampling the various uncertainties already described

for OLS and TLS. To quantify the constrained distribution for the forced response, the 1000 (U, V,

f2
X
) combinations are combined with 1000 estimates of Ḡ� (sampled in the same way as OLS and

TLS). The constrained distribution of the forced response ΔH̄ is given by U+ VḠ� +N(0,f2
X
), where

N(0,f2
X
) represents a random sample from a normal distribution with zero mean and variance f2

X
.

Combining the 1000 estimates of (U, V,f2
X
) with 1000 estimates of Ḡ� and 1000 samples from

# (0,f2
X
) gives 1 billion values of ΔH to form the constrained distribution.

To construct the constrained distribution for the forced response plus internal variability, equation

A10 is used, where each of the 1 billion ΔH values derived above are combined with AGΔH
fΔH
fG
(G� −

Ḡ� ) and a random sample from a normal distribution with variance equal to f2
ΔH
(1− A2

GΔH
), where

Ḡ� is the actual observed value and G� are the 1000 estimates sampled from the PDF, corresponding

to an assumption that the most likely value of Ḡ� is that which we have observed.
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c. Estimating fG , fΔH and AGΔH.

The above procedures rely on estimates of the uncertainty due to internal variability on G and

ΔH as represented by fG and fΔH. For OLS and TLS, it is assumed that the PDFs of Ḡ and ΔH̄ are

Gaussian and centered on G and ΔH, with standard deviations fG and fΔH, respectively. For BHM,

the correlation between these uncertainties due to internal variability (AGΔH) is also incorporated by

assuming a bivariate normal distribution centered on G and ΔH (equation A8).

Therefore, we need to estimate values of fG , fΔH and AGΔH and this must necessarily account for

the number of ensemble members available for a given model since the more ensemble members

there are, the smaller fG and fΔH will be. Ideally, we would also want to account for the fact that

different models may have different representations of internal variability and, therefore, different

values of fG and fΔH. But, as will be described individually for the constraints discussed below,

attempts at quantification of fG and fΔH for models with a small number of members, or for the

single realization of the real world, yield highly uncertain results. Instead, we opt to neglect inter-

model differences in the representation of internal variability and make use of the 5 LEs described

in section 2 to estimate fG and fΔH and, therefore, assume that the internal variability estimated

from the five LEs is representative of that of the CMIP archive as a whole and of the observations.

The validity of this will be discussed for each EC.

For a CMIP model with =? and = 5 ensemble members for the past and future, respectively, fG

and fΔH are estimated by sub-sampling =? and = 5 members (with replacement) from the Past and

Future periods of each LE and repeating 1000 times. The LE ensemble mean is then subtracted

from the mean of each sub-sample. The ensemble mean G and ΔH for each LE will be much closer

to the true Ḡ and ΔH̄ for that model than the subsamples when =? and = 5 are small, so these 1000

anomalies can be considered to represent 1000 deviations from the true Ḡ and ΔH̄ that could arise
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due to sampling of internal variability with only =? and = 5 members. When =? or = 5 =1, these

1000 samples give no more information than would be obtained by using the individual members

that make up the LE, but we follow the same procedure to allow all members from the LE to be

used, while giving equal weighting to each LE.

The 1000 values for each LE are pooled together to give 5000 anomalies from the “truth” that have

been sampled from 5 different models, each with their own representation of internal variability.

The values of fG and fΔH are then given by the standard deviation across these 5000 anomalies and

AGΔH is simply the correlation between the LE sub-samples used to calculate fG and fΔH. Thus, fG ,

fΔH and AGΔH are assigned to each model depending on the model ensemble size and the variability

from the five LEs. The fG for the observed value is calculated in the same way, using =?=1.

4. The Southern Hemisphere jet shift constraint (SHJET)

The SHJET constraint relates a model’s past SH jet latitude (q>) to its future projected SH jet

shift (Δq) under anthropogenic forcing. Kidston and Gerber (2010) first showed that, in the CMIP3

ensemble, in the annual mean, a model with a lower latitude SH jet stream, exhibited a larger

poleward shift by the end of the 21st century under anthropogenic forcing. A similar relationship

was found by Son et al. (2010) for a model’s poleward jet shift in response to ozone depletion.

Simpson and Polvani (2016), SP2016 hereafter, then revisited the conclusions of Kidston and

Gerber (2010) in the CMIP5 archive and showed that the constraint was still present, but that it

was actually marked by a strong seasonality, with the strongest correlation between q> and Δq

occuring during the SH winter. This seasonality also called into question the previously proposed

hypothesis for why the SHJET constraint exists, namely that it is related to intermodel spread in

eddy-feedback strength as identified through the Southern Annular Model (SAM) timescale, since

the inter-model spread in SAM timescale primarily occurs in the summer. So, this constraint still
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lacks explanation, but given that it has already been found in multiple model ensembles, we already

have some confidence that it is robust to quasi out-of-sample-testing. Indeed, Curtis et al. (2020)

have already shown that the SHJET constraint is still present in CMIP6 over May to October. Here,

we will draw the same conclusion but with a focus on the JJA season and further quantify the

constraint on the future poleward shift of the SH jet that we may expect to see in the real world.

The jet latitude is defined as the latitude of the maximum 700hPa zonal mean * in the SH,

determined by finding the maximum of a quadratic fit using 700hPa zonal mean zonal wind at three

grid points on the 1◦ grid: the gridded maximum and the two adjacent grid points. The predictor

for this constraint is the 1979 to 2014 JJA jet latitude (q>) and the predictand is the JJA Future

(2070-2099)−Past (1979-2014) jet shift (Δq), both expressed in degrees North.

Fig. 2a reproduces the CMIP5 results of SP2016. A negative correlation between q> and Δq

exists - models with lower latitude jets, exhibit larger future poleward jet shifts. Furthermore, many

of the models are biased equatorward relative to the reanalyses, suggesting that they may predict

too large a poleward jet shift. Fig. 2b now shows Δq versus q> for the CMIP6 models. A negative

correlation is still present in CMIP6 and it is still significant (Fig. 3c).

In CMIP6, the across-model variance in q> is reduced (Fig. 3a), although the variance in Δq

is similar (Fig. 3b). As would be expected under these circumstances, the fraction of variance

explained by the EC has reduced in CMIP6 and it is the inter-model spread in other aspects of

the forced response, not explained by the EC that is explaining relatively more of the variance.

Depending on the method used, the EC explained 60.7 to 62.4% of the variance in CMIP5 and

explains 25.1 to 25.6% of the variance in CMIP6 (Fig. 3d)2. For this EC, the choice of method

affects the partitioning of variance explained between internal variability and the X component

(Fig. 3d) with less variance explained by internal variability in the BHM. This is due to the high

2Note that the variance explained here does not necessarily correspond to the square of the correlation coefficient shown in Fig. 3c because it
reflects the variance explained across a single member from each model as opposed to across model ensemble means
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correlation between errors in q> andΔq. There is a negligible contribution from inter-model spread

in the globally averaged warming (Figs. 3d black hatching on gray bars and see figure caption for

method).

While the EC explains less variance in CMIP6, the relationship between q> and Δq is still

significant (Fig. 3c) and this still holds after crudely accounting for model inter-dependence by

first averaging over models from the same modelling center (supplemental Fig. 1). Furthermore,

the U and V regression parameters are not particularly sensitive to the method used and agree

between CMIP5 and CMIP6 within the uncertainties (Figs. 3e and f). This is further demonstrated

in Fig. 2c where the CMIP5 BHM U and V are used to predict the CMIP6 Δq. This works

reasonably well and indicates that we could have predicted 31.56% of the CMIP6 inter-model

spread in ensemble mean Δq, based only on knowledge of the CMIP6 q>’s and the CMIP5 EC.

We can actually predict more of the CMIP6 variance with the CMIP5 regression coefficients than

with those derived from CMIP6 itself, but this is likely just due to random chance.

Figures 4a,b indicate the extent to which CMIP6 can be considered an out-of-sample test com-

pared to CMIP5 by showing the correlation between Δq in a CMIP6 model and Δq in its CMIP5

predecessor using 22 models that are directly related (Table 1). The correlation between Δq in

the CMIP5 and CMIP6 models is not significant, although the correlation for q> in isolation is

slightly higher and marginally significant (supplemental Fig 2a). Overall, this suggests that we can

consider CMIP6 to be at least a partial out-of-sample test compared to CMIP5.

To assess the extent to which the uncertainty on q> andΔq (i.e.,fG andfΔH used in the regression)

determined from the LEs might be representative for each CMIP model, the PDFs of q> and Δq for

the five LEs are shown in Fig. 4c and d along with a quantification of the standard deviation of q>

across the members and its uncertainty in Fig. 4e (colored bars and black range). The closer the

agreement between the LEs, the more confidence we may have that the values derived from them
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are representative for other CMIP models. There is a range in fq> but the black uncertainty ranges

in Fig. 4e indicate that even with a large ensemble, it is still difficult to accurately determine fq> .

Another method that could have been considered for estimating fq> (and similarly fΔq) based on

the data from a given model, as opposed to the LEs, is to bootstrap, with replacement, individual

years from the past for a given model to generate a new climatology and a new estimate of q>. This

could be repeated e.g., 1000 times and fq> calculated as the standard deviation of q> across these

1000 samples. The colored ranges in Fig. 4e indicate the range of estimates of fq> determined

this way from each individual LE member. This method has the potential to be highly inaccurate

(compare colored ranges with colored bars in Fig. 4e), presumbly because 36 years within one

member is not sufficient to truly characterize the full distribution of variability. So even though

the value of fq> estimated from the LEs may not be truly representative for every model, it is

likely more representative than what could be estimated from individual CMIP models when the

ensemble size is small. Another method that could be considered for cases where there is no

dependence of the internal variability on the climate state is to bootstrap from the pre-industrial

control simulations provided for each model, but we have not considered this here given that jet

stream variability is expected to depend on climate state (Barnes and Polvani 2013).

To constrain future projections, we assume that fq> estimated from the LEs is representative

of the uncertainty on the real world q>. The estimate of fq> from the reanalysis products using

the bootstrapping of individual years method (black dots in Fig. 4e) is close to the estimate from

the LEs (dotted line in Fig. 4e), especially considering the large uncertainty associated with this

method, suggesting this is a reasonable approach.

Constraining projections for Δq following the methods in section 3, indicates that the poleward

shift in the real world will be considerably smaller than the CMIP5 or CMIP6 multi-model mean,

since the reanalysis jet position is at the poleward end of the CMIP model distribution (Fig. 5).
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Note that, unlike Curtis et al. (2020), we do not find a large reduction in the CMIP6 multi-

model mean poleward shift compared to CMIP5, but there are a variety of differences in our

methods, including a focus on a different forcing scenario (they used 4xCO2 simulation) and a

narrower winter season (they used MJJASO). Also, unlike Bracegirdle et al. (2020) we do not

find a substantial improvement in q> in CMIP6. While our methods differ, we suspect this may

be largely due to the models considered as the two most equatorward models in CMIP6 here

(MIROC-ES2L and CNRM-CM6-1-HR) were not included in that study. Taking the mean across

the CMIP5 and CMIP6 models gives a projected jet shift of 1.81> poleward while that for the

constrained jet shift distribution using OLS/TLS/BHM is 0.35/0.38/0.48 poleward for the forced

response, with 95% confidence intervals of (2.8◦ poleward to 2.2◦ equatorward)/(3.0◦ poleward to

2.2◦ equatorward)/(3.3◦ poleward to 2.3◦ equatorward) with an 88.5/86.5/83.4% chance that the

forced poleward shift in the real world will be less than the CMIP5 and CMIP6 ensemble mean.

The three regression methods give similar results, but slightly larger differences are seen for CMIP6

than CMIP5, perhaps because the constraint explains less variance in CMIP6, leaving more room

for the regression methods to differ.

When also considering the role that internal variability may play in our one potential future (right

portion of Figs. 5b-d), the 95% confidence intervals suggest that it is very unlikely we will observe

a poleward shift of more than around 3.5◦. In fact, following Cox et al. (2018), if we consider

the 66% confidence interval (white lines on each colored bar) to correspond to the “likely range”

according to Intergovernmental Panel on Climate Change (IPCC) definitions, we find the CMIP

ensemble mean sits at the very poleward edge of this likely range.

Overall, the SHJET emergent constraint still survives in CMIP6 and it could represent a useful

constraint on the poleward shift we should expect to see in the real world, if the mechanism behind

the constraint could be fully understood. Toward that end, supplemental Fig 3 repeats another
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component of the SP2016 analysis and indicates that fully understanding this constraint could

likely be achieved by understanding why, in winter, the forced changes in zonal wind are roughly

anchored to the same position in each model, regardless of climatological jet latitude differences,

such that the wind anomalies lead to a poleward shift of low latitude jets but a strengthening for

higher latitude jets.

5. North American stationary waves with extension to regional hydroclimate (VWIND)

Our second EC aims at constraining meridional wind (+) changes over North America during

the December-February (DJF) season and was proposed by Simpson et al. (2016), S2016 hereafter.

The CMIP5 ensemble mean change in 300hPa + consisted of southerlies off the US west coast,

northerlies over the US interior southwest and southerlies off the US east coast (Fig. 6e). The

same pattern is also found in CMIP6 (Fig. 6g). These + anomalies are primarily associated with

intermediate scale (zonal wavenunber : > 3) stationary waves that are meridionally trapped in the

Pacific waveguide (Figs. 6b and d), as can be seen by comparing the full change in + with that

after filtering for : > 3 (Figs. 6e vs f and g vs h). By reproducing the + changes in a stationary

wave model when only imposing changes in the upper tropospheric zonal mean zonal wind, and

using stationary wave theory, S2016 argued that the mechanism behind this change involves the

warming induced strengthening of the westerlies in the sub-tropical upper troposphere, acting to

lengthen the scale of stationary waves that can be supported by the Pacific waveguide, leading to

the + anomalies downstream over North America. Based on this mechanistic understanding, it

would then be expected that the magnitude of a model’s change in + would be related to (a) the

amplitude of a model’s intermediate scale stationary waves in the Pacific-North American sector

and (b) the strengthening of the zonal mean westerlies in the sub-tropical upper troposphere (these

two quantities are uncorrelated).
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S2016, therefore, used two predictors to predict the change in eddy meridional wind averaged

over the interior southwest of the US (Δ+(, , red box in Fig. 6e): (a) the root mean square

amplitude of the : > 3 stationary waves in the Past (|k |), based on eddy + over a region in the

eastern Pacific/southern US (red box in Fig. 6b); and (b) the change in zonal mean zonal wind at

100hPa averaged from 20◦N to 40◦N (Δ*100). Consistent with the proposed mechanism, Δ+(,

was found to be significantly negatively correlated with |k | i.e., a model with larger amplitude

: > 3 stationary waves in its climatology, exhibited larger northerly anomalies over the interior

southwest US (Figs. 7a, 8c) and a larger amplitude of the meridional wind pattern over North

America more generally (Fig. 6i). A negative, although insignificant, correlation was also found

between Δ+(, and Δ*100 i.e., the larger the increase in zonal mean zonal wind in the sub-tropical

upper troposphere, the larger the negative anomaly in Δ+(, (Fig. 7b). A multiple linear regression

regression using Δ*100 and |k | as predictors explained a substantial fraction of the variance in

Δ+(, (Fig. 7c). S2016 argued that this was further evidence for their proposed mechanism and,

in addition, since many of the models have stationary wave amplitudes (|k |) that are too large

(compare with the reanalyses in Fig. 7a), they inferred that the real world Δ+(, will likely be

smaller than the CMIP5 ensemble mean.

While the VWIND constraint was accompanied by a plausible mechanism that was verified

by stationary wave model experiments and also was shown to be robust in perturbed physics

experiments by van Niekerk et al. (2017), we now test whether it still survives in CMIP6 . It is

only the predictor |k | that can be used for an emergent constraint since Δ*100 relies on future

information. We do, however, show the relationship between Δ+(, and Δ*100 in Fig. 7 as

well, to lend support to the stationary wave theory argument of S2016, given that it is important

to accompany an EC with a mechanistic explanation. Negative correlations between Δ+(, and

both |k | and Δ*100 are still found in CMIP6 (Figs. 7d and e). The correlation between |k | and
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Δ+(, is significant for both CMIP5 and CMIP6 (Fig. 8c) and this remains true after crudely

accounting for model inter-dependence by first averaging over models from the same modelling

center (supplemental Fig. 4). Lending support to the stationary wave theory arguments of S2016,

combining |k | and Δ*100 in a multiple linear regression explains a similar fraction of variance in

CMIP6 as it does in CMIP5 regardless of which ensemble the regression coefficients are derived

from (Figs. 7e and f). Focussing now on the only aspect that can be used as an emergent constraint

i.e., the relationship between Δ+(, and |k | according to Δ+(, (8) = U + V |k | (8) + n (8), using the

CMIP5 regression coefficient based on |k | alone to predict the CMIP6 Δ+(, can only explain 16%

of the variance (Fig. 7g).

The variance across models in Δ+(, is reduced by 0.87m2s−2 in CMIP6 compared to CMIP5

(Fig. 8a). This is expected based on the EC given that the variance across models in |k | (f2
|k |) is

also substantially reduced by roughly 0.63m2s−2 (Fig. 8b and Fig. 6 l versus j). In CMIP6 (Fig.

7d), there are no longer models on the extreme biased end of the CMIP5 range in |k | (compare

Figs. 7a and d), resulting in only 10.6/8.7/14.9% of the variance is Δ+(, being explained by the

EC, compared to 29.2/28.6/30.9% in CMIP5 for OLS/TLS/BHM (Fig. 8d). So, even though the

regression coefficients that relate Δ+(, to |k | are similar between CMIP5 and CMIP6 (Figs. 8e

and f), because of the reduced spread in the predictor, the EC is less effective in CMIP6, as will be

further demonstrated below.3

Before quantifying the constraint on Δ+(, , we first check some of our assumptions. Firstly,

Δ+(, in the CMIP6 models is not correlated with Δ+(, in its CMIP5 predecessor (Figs. 9a and

b). |k | in the CMIP6 models is correlated with that in CMIP5 but they do not follow the 1:1 line

(supplemental Fig 5). Overall, this suggests it is reasonable to consider CMIP6 as being at least a

3The models that had large biases in CMIP5 were bcc-csm-1-m with |k | = 5.7 which is much improved in its CMIP6 successor BCC-CSM2-MR
( |k | = 3.1), MRI-CGCM3 ( |k | = 4.6) which has improved to k = 3.8 in MRI-ESM2-0, FGOALS-g2 ( |k | = 4.6) which has improved slightly to
|k | = 4.3 in FGOALS-g3 and the IPSL variants which ranged from |k |=4.8 to 5.5 and has now improved to |k | = 4.1 in IPSL-CM6A-LR.
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partial out-of-sample test compared to CMIP5. Secondly, there are only minor differences across

the LEs in the uncertainty in |k | and Δ+(, (Fig. 9c-e) suggesting that, while assigning a f|k | and

fΔ+(, to each CMIP model based on the LEs may not be completely accurate, it is likely a best

estimate in the absence of a large ensemble for each CMIP model. Finally, the estimated f|k | from

the observations obtained by bootstrapping individual years, while likely subject to considerable

uncertainty (colored ranges in Fig. 9e), is close to the estimate from the LEs (compare black dots

and dotted line in Fig. 9e), indicating that basing f|k | of the real world on the LEs is likely a

reasonable approximation.

The constraint on Δ+(, is quantified in Fig. 10 using the methods of Section 3. In CMIP5,

the EC does indeed represent a substantial constraint on Δ+(, with OLS/TLS/BHM indicating an

84.4/84.9/86.8% chance that the forced response will be smaller (less northerly) than the CMIP5

ensemble mean along with a constrained mean Δ+(, of −1.17/−1.16/−1.04 ms−1 compared to

−2.19 ms−1 in the CMIP5 ensemble mean (Fig. 10b). The constrained distribution of forced

Δ+(, here is broader than that in S2016 since they did not incorporate uncertainty in the observed

value of |k |, or other contributions to the forced response, except for the influence of Δ*100. The

constrained distribution of Δ+(, from CMIP5 that includes the influence of internal variability is

broader still, but nevertheless still indicates that the Δ+(, we could expect to see in the real world

has around an 83% chance of being smaller than the CMIP5 ensemble mean (Fig. 10b).

Fig. 10a indicates that the ensemble mean shift to a smaller Δ+(, in CMIP6 compared to CMIP5

is consistent with a shift along the regression line accompanying a smaller ensemble mean |k |.

However, the fact that CMIP6 no longer contains models with extremely large negative values of

Δ+(, , means that the EC is no longer really an effective constraint (Fig. 10c). The constrained

range, including internal variability, encompasses almost all the CMIP6 models, although it does

still suggest the most likely value of Δ+(, is slightly smaller than the ensemble mean.
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A constraint on upper level + may be of limited practical use by itself, but S2016 demonstrated

that these + changes have an equivalent barotropic structure and the accompanying near surface

meridional wind anomalies have implications for regional hydroclimate. They did not quantify the

associated constraint on precipitation, but argued that we should expect the real world to behave

like models with smaller |k | which exhibited less wetting over the US west coast and less drying

over the interior southwest than the CMIP5 ensemble mean.

Here, this analysis is extended to provide a more rigorous quantification of the precipitation

constraint (or lack thereof) in three regions: the US west coast; the US south; and southern Mexico

(Fig. 11a, red). Δ% in these regions is clearly correlated with |k | across the CMIP5 models in the

manner described by S2016 (Fig. 11a). Models with large amplitude stationary waves exhibit more

wetting on the US westcoast and more drying over the interior southwest and Mexico associated

with their larger meridional wind changes. In CMIP6, however, these correlations between |k | and

precipitation are largely absent, except over Southern Mexico (Fig. 11b, e, h and k).

The reason for the disappearance of this correlation structure in CMIP6 is because there are no

longer any models that have very large |k | and it was those models that were dominating in the

CMIP5 correlations. This becomes clear by comparing the CMIP5 correlations with those after

omitting the CMIP5 models that have |k | larger than the maximum |k | in CMIP6 (compared red

solid and hatched bars in Figs. 11e, h and k). Once these 6 CMIP5 models have been omitted, the

correlation between |k | and precipitation in these regions is no longer significant in CMIP5 either.

In CMIP5, even though there was a significant correlation between |k | and west coast precipita-

tion, it was never really that effective a constraint, as there were too many additional uncertainties

(Fig. 12b) and the same is true now in CMIP6 (Figs. 12c). Over the southern US, the CMIP5

constraint suggested the real world response will more likely be a slight wetting as opposed to

the slight drying seen in the CMIP5 ensemble mean and that those models with a very extreme
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drying are very unlikely (Fig. 12 f). Consistent with this, in CMIP6 now that the stationary wave

biases have been reduced, the ensemble mean precipitation change has shifted to being slightly

positive and there are no longer any models with an extreme drying (Fig. 12g). However, the

reduced spread in CMIP6 does also mean that, with the uncertainties involved, the constraint does

not narrow down projected changes beyond the CMIP6 distribution. Over Southern Mexico, the

CMIP5 EC indicated that we should expect to see less drying than the CMIP5 ensemble mean (Fig.

12j). Indeed, with the model improvements in CMIP6, there is slightly less drying over this region

(Fig. 12k). The EC is still somewhat useful here and suggests that there is a reasonable chance

(∼72%) that the real world will not exhibit as much forced drying as the CMIP6 ensemble mean

(Fig. 12k). However, the constrained range incorporating internal variability is still sufficiently

wide that it almost encompasses all of the CMIP6 models.

6. The ENSO-based EC on projected California precipitation change (CALP)

Another emergent constraint on DJF California precipitation was proposed through CMIP5 by

Allen and Luptowitz (2017), AL2017, hereafter. They related a model’s 2006 to 2100 trend in

DJF California precipitation to its representation of the interannual correlation between DJF ENSO

variability (given by theNiño3.4 index) andDJFCalifornia precipitation. The proposedmechanism

behind this constraint was that the future projected California precipitation changes were related

to the El Niño-like SST warming trend seen in many models and that models with more realistic

interannual ENSO teleconnections are more likely to simulate this forced change correctly.

AL2017 found that the real world correlation between ENSO and California precipitation using

winters from 1948/1949 to 2014/2015 was 0.36 and argued that many models do not accurately

represent this, with model values ranging from -0.12 to 0.58. They generated two groups of models

based on their correlation between Niño3.4 and California precipitation, A(Niño,?A). The models
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with a correlation below 0.2 were referred to as the “LOW-r” models and those with a correlation

above 0.3 were referred to as the “HIGH-r” models, with the HIGH-r models considered more

realistic. It was found that the average California precipitation trends were higher in the HIGH-r

models. While AL2017 did not explicity quantify the constraint on California precipitation, they

argued that the models that exhibit more realistic ENSO teleconnections to California, exhibited

larger and more consistent increases in California precipitation over the 21st Century. One was left

to infer that we should expect the real world to behave more like these models. This is the opposite

conclusion to the constraint drawn by S2016 above, which was obviously problematic at the time.

However, it has been shown above that, while the mechanism of S2016 shows promise, it does not

represents an effective constraint on US west coast precipitation, given the uncertainties. So, we

see now whether the AL2016 constraint does any better.

Fig. 13a shows A(Niño3.4,?A). Six estimates of the observed correlation over the 1948 to 2014

period are shown using all combinations of datasets described in section 2 and these range from 0.30

to 0.35. However, there is likely a large uncertainty on this value due to internal variability. The

gray shaded range shows the 95% confidence interval on r(Niño3.4,pr) using GPCC and ERSSTv5,

estimated by bootstrapping the individual DJF seasons from 1948-2014 with replacement and

recalculating r(Niño3.4,pr) 1000 times. This ranges from 0.04 to 0.51 and this magnitude of

uncertainty is supported by the range of values estimated from 1948-2014 of the LEs (right side

of Fig. 13a). As such, there is little motivation for choosing the threshold of r(Niño3.4,pr)< 0.2 to

identify models that do not represent r(Niño3.4,pr) well.

Nevertheless, we proceed to reproduce the results of AL2017 by comparing 2006-2099 Cal-

ifornia precipitation trends between models with r(Niño3.4,pr)>0.3 (HIGH-r) and models with

r(Niño3.4,pr)<0.2 (LOW-r). Firstly, using r(Niño3.4,pr) calculated over 2006-2099 after detrend-

ing each field, as in AL2017, we are left with 15 models in each group, with substantial overlap
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with those used in AL2017 (H’s and L’s in Fig. 13a). We reproduce their result that the ensemble

mean of the HIGH-r models shows a relative increase in California precipitation compared to the

LOW-r models (Fig. 13b). However, an EC should really be based on a metric determined over

the historical period and when using linearly detrended SSTs and precipitation over 1948-2014 the

differences between the HIGH-r and LOW-r models is weaker, albeit still positive over California

(Fig. 13c). Performing the same calculation in CMIP6 does produce a relative increase in Cali-

fornia precipiation in the High-R models when using the 2006-2099 period to define r(Niño3.4,pr)

(Fig. 13d) but actually produces a relative decrease in High-R when using the 1948-2014 period

to determine r(Niño3.4,pr) (Fig. 13e).

Figs. 13f-i now go beyond the composite difference between the HIGH-r and LOW-r models and

show the correlation between California precipitation trends from 2006-2099 and r(Niño3.4,pr).

When using the 1948-2014 period, the correlation is not significantly different from zero in either

CMIP5 or CMIP6 (Figs. 13g and i) and the same holds true after crudely accounting for model

interdependence by first averaging over the models from the same modelling center (supplemental

Fig 6). This will, therefore, not be an effective constraint on California precipitation change, so we

do not proceed to quantify it further.

7. Discussion

In order to perform this analysis, we have proposed a linear regression method that can be

used to provide a constraint on future projections while incorporating information on the relevant

uncertainties. It is worth discussing how this approach compares to those that have been proposed

previously. Firstly, many prior studies that used the linear regression approach have not adequately

accounted for the uncertainties involved. Schneider (2018) and Brient (2020) highlight the issues

that arise under this circumstance. They demonstrated constrained distributions that were clearly
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too narrow when compared with model spread. They discussed the various limitations that may

lead to this, such as potential inadequacies of the linear model or the OLS fit or disproportionate

influences from “bad” models. However, the method they described did not account for the fact

that there can be additional spread in the ΔH direction that is introduced by internal variability as

well as other inter-model differences, not explained by the emergent constraint (our X term) and, in

fact, these are of the largest contributors to the uncertainty range (supplemental Fig 7). Here, we

simply introduce these additional uncertainties via sampling procedures and, when doing so, the

constrained distributions appear reasonable compared to the spread of ΔH values across models

that have a predictor aligned with that in observations.

To alleviate concerns related to the inadequacies of the OLS method, we also used TLS and

a BHM. We consider the BHM to be the better method given its ability to model not only the

uncertainties in Ḡ and ΔH̄ but also the correlation between them (AGΔH), as well as to more clearly

parse the contributions of each source of uncertainty. However, reassuringly, conclusions are not

strongly dependent on the regression method used, although the variance partitioning (Figs. 3 and

8a and b) and some of the constrained ranges (Figs. 12) do show some small sensitivities. There is

perhaps some indication in Figs 10a-d and 12e-h that the BHM constraint better encompasses the

spread of models that have a predictor close to observations. But in each case this is due to one

model that lies outside the constrained range, which is not unexpected given that the constrained

range is a 95% confidence interval. The overall similarity between methods occurs despite very

different approaches in quantifying the uncertainty in the regression coefficients, but is perhaps

to be expected since the X term and the uncertainty due to internal variability in ΔH are more

important sources of uncertainty than the regression coefficients themselves (supplemental Fig 7).

While we still think it is worthwhile demonstrating the robustness of conclusions across these

methods, overall the constraints considered here suggest that the simpler OLS or TLS procedures
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are adequate, although this may not be the case in situations where the uncertainty in the regression

coefficients is relatively more important. The recent study of Tokarska et al. (2020) came to similar

conclusions when exploring the sensitivity to methods in the context of constraints on global mean

warming.

For each of the methods, it is assumed that a linear relationship exists. This linear relationship

may be strongly influenced by models that are highly biased in the predictor and, therefore, may no

longer exist once suchmodels are removed from the sample. However, an adequate incorporation of

the uncertainties should be able to account for this. Indeed, this does seem to work, as exemplefied

by the S2016 constraint on US west coast precipitation. For this constraint in CMIP5 there was a

significant correlation between the predictor and west coast precipitation (Fig. 11e), but this was

clearly being influenced by 6 strongly biased models (Fig. 11c). When quantifying the constrained

distribution of west coast precipitation change, the uncertainties accounted for this, leading to a

constrained distribution that was almost as broad as the original model distribution (Fig. 12b).

Another approach to consider is a model weighting procedure (Lorenz et al. 2018; Brient 2020;

Brunner et al. 2020), but this has the potential to be strongly influenced by the limited number

of models that have a predictor close to observations. If a linear relationship across models does

exist, the linear regression method may incorporate more information. We did, however, check

that none of our conclusions are qualitatively altered if, instead, the model weighting approach of

Brient (2020) is used (not shown).

Recent studies have promoted the use of Bayesian approaches for this problem (Bowman et al.

2018; Williamson and Sansom 2019; Renoult et al. 2020) and our BHMmethod is strongly aligned

with these ideas. It differs in (a) our use of large ensembles to incorporate the uncertainty on

modelled and observed values, with dependence on ensemble size in the case of the models,

and (b) the re-sampling procedure that allows for isolation of the different contributions to the
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uncertainty. In particular, we assess constrained distributions for both the forced change we should

expect to occur in the real world (absent internal variability) and the potential future we might

experience in the one realisation of the real world that we observe (including internal variability).

An implicit assumption when using emergent constraints is that the real world will not behave

drastically differently from the model distribution i.e., it will not deviate from the relationship

between predictor and predictand by more than individual models do. This is an assumption that is

difficult to test. Williamson and Sansom (2019) describe amethodwhere this additional uncertainty

can be incorporated. It remains, however, challenging to quantify what this additional uncertainty

should be. Renoult et al. (2020) address this by testing the sensitivity of the constraint to simply

inflating the standard deviation of the residuals of their regression fit by a factor of two. We have

not performed such sensitivity tests here because we have no way of quantifying the problem. So,

all of the constraints described above come with the caveat that they assume that the real world

is interchangeable with the models in terms of both the relationship between the predictor and

the predictand and the magnitude of the additional sources of uncertainty - assumptions that are

very difficult to test. For the constraints that were found to agree between CMIP5 and CMIP6,

we can at least take comfort in the fact that a different group of models with upgraded physical

parameterizations and/or resolution do still obey the same relationships as their predecessors.

8. Conclusions

Three previously proposed emergent constraints have been tested in CMIP6 and a rigorous

quantification of the constrained future projections they imply has been provided.

The SHJET constraint (section 4) relates a model’s SH wintertime climatological jet position to

the magnitude of its future projected poleward shift. This constraint has now been shown to be

robust throughout CMIP3, CMIP5 and CMIP6, although in CMIP6 it explains less variance than
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in CMIP5. Nevertheless, it still provides a quantitatively useful constraint on the future projected

poleward shift of the SH westerlies in this season and suggests that there is around an 83% chance

that it will be smaller than the mean shift projected by the CMIP5 and CMIP6 ensembles combined

(Fig. 5d). However, the mechanism behind this constraint is still not well understood (see the

discussion in the supplemental material).

The VWIND constraint, discussed in section 5, relates a models response in eddy meridional

wind over North America to the amplitude of its climatological, intermediate scale, stationary

waves in that region. This constraint was previously shown to be robust in sensitivity experiments

within a single model by van Niekerk et al. (2017) and is also shown here to be robust in CMIP6.

However, this is a clear example where model improvements have rendered this constraint less

useful. While, on average, the CMIP6 models still have too large a stationary wave amplitude

in this region, there are no longer as many models with extremely large biases. As a result, the

constraint no longer substantially constrains the future projections beyond the range projected by

the CMIP6 models themselves, although it does still suggest a slightly smaller amplitude of the

meridional wind change over the US southwest than the CMIP6 ensemble mean (Fig. 10c).

Extending this to quantify constrained projections on future precipitation change over North

America has revealed that, over the US west coast, uncertainties are too large for the relationship

between precipitation change and stationary wave amplitude to effectively constrain future projec-

tions (Fig. 12a-d). The CMIP5 relationship between stationary wave amplitude and precipitation

changes in this region were being dominated by models with very large stationary wave biases and,

in CMIP6, now that models have improved, the EC projections are not much more constrained than

the CMIP6 distribution itself.

The final constraint we assessed was the CALP constraint, discussed in section 6, which relates

a models representation of the interannual correlation between ENSO and California precipitation
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A (Niño3.4, ?A), to future trends in California precipitation. In this example we find that there is

considerable uncertainty in the predictor A (Niño3.4, ?A)when assessed from the short observational

record, which encompasses a large fraction of the model spread (Fig. 13). Furthermore, we do not

find the correlation between historical A (Niño3.4, ?A) and future projected California precipitation

change to be robust in either CMIP5 or CMIP6 (Figs. 13g and i).

Aside from providing an update on these three ECs, our aim has been to provide a detailed

description of methods that can be used to adequately account for uncertainties when constraining

future projections, which may now be used to scrutinize other existing and forthcoming ECs.

To this end, the analysis codes and methodological descriptions are all provided on github at

www.github.com/islasimpson/ecpaper2020/.
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APPENDIX

Description of the Bayesian Hierarchical Model (BHM) Method

In the OLS and TLS approaches, the linear regression model is fit by finding the parameters

that minimize the residuals given the data points that we have measured, albeit with different

weighting of the errors in the predictor and predictand. The BHM, on the other hand, models

the true values Ḡ and ΔH̄ (uncontaminated by internal variability) based on G and ΔH and their
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uncertainties, allowing for correlation between the errors in G and ΔH (AGΔH) to be incorporated

(McKinnon 2015). We assume that X is represented by a normal distribution with zero mean and

variance f2
X
(i.e., X ∼ N(0,f2

X
)), so the regression parameters in the BHM are U, V and f2

X
and a

joint probability distribution of U, V and f2
X
values is determined, given the values of G and ΔH,

which we will denote %(U, V,f2
X
|G,ΔH). We will continue to use the notation %(- |. ) to denote the

conditional probability of - , given . , throughout.

Bayes’ theorem tells us that

%(U, V,f2
X , Ḡ,ΔH̄ |G,ΔH) ∝ %(G,ΔH |U, V,f2

X , Ḡ,ΔH̄)%(U, V,f2
X , Ḡ,ΔH̄) (A1)

Since G and ΔH are independent of the regression parameters

%(G,ΔH |U, V,f2
X , Ḡ,ΔH̄) = %(G,ΔH |Ḡ,ΔH̄). (A2)

Furthermore, exploiting the identity %(�, �) = %(�|�)%(�), the last term in (A1) can be written

as

%(U, V,f2
X , Ḡ,ΔH̄) = %(Ḡ,ΔH̄ |U, V,f2

X )%(U, V,f2
X ) (A3)

and then exploiting the identity %(�, � |�) = %(�|�,�)%(� |�) gives

%(Ḡ,ΔH̄ |U, V,f2
X ) = %(ΔH̄ |Ḡ, U, V,f2

X )%(Ḡ |U, V,f2
X ) = %(ΔH̄ |Ḡ, U, V,f2

X )%(Ḡ) (A4)
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and we further assume that %(Ḡ) is best represented by a normal distribution with mean `G and

standard deviation X2
G , such that

%(Ḡ) ∝ %(Ḡ |`G , X2
G)%(`G , X2

G) (A5)

while

%(ΔH̄ |Ḡ, U, V,f2
X ) ∝ N (U+ VḠ,f2

X ) (A6)

So (A1) can be written as

%(U, V,f2
X , `G , X

2
G , Ḡ,ΔH̄ |G,ΔH) ∝ %(G,ΔH |Ḡ,ΔH̄)%(ΔH̄ |Ḡ, U, V,f2

X )%(Ḡ |`GX2
G)%(`G , X2

G)%(U, V,f2
X )

(A7)

which is the joint posterior distribution of all unknowns: U, V,f2
X
, G,ΔH, `G , X

2
G .

Conditional posteriors for U, V, f2
X
, `G and X2

G can be deteremined from (A7) by conditioning on

all other variables, aside from the one of interest.

We model the relationship between the errors in G and the errors in ΔH using a bivariate normal

distribution

%(G,ΔH) ∝ 1
2cfG ,fΔH

4G?

(
− 1

2(1− AGΔH)

[
(G− Ḡ)2

f2
G

+ (ΔH−ΔH̄)
2

f2
ΔH

− AGΔH
(G− Ḡ) (ΔH−ΔH̄)

fGfΔH

])
(A8)

which leads to

%(G |ΔH, Ḡ,ΔH̄) ∼ N
(
G + AGΔH

fG

fΔH
(ΔH−ΔH̄),f2

G (1− A2
GΔH)

)
(A9)

%(ΔH |G, Ḡ,ΔH̄) ∼ N
(
ΔH̄ + AGΔH

fΔH

fG
(G− Ḡ),f2

ΔH (1− A
2
GΔH)

)
(A10)
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and use the following priors: %(U, V,f2
X
) ∝ 1/f2

X
and %(`G , X2

G) ∝ 1/X2
G i.e., uniform priors on U, V

and `G and Jeffrey’s prior on f2
X
and X2

G . This gives

%(U |·) ∼ N
((∑

8

ΔH̄(8) − V
∑
8

Ḡ(8)
)
/#,f2

X /#
)

(A11)

%(V |·) ∼ N
(∑

8 Ḡ(8) (ΔH̄(8) −U)∑
8 Ḡ(8)2

,
f2
X∑

8 Ḡ(8)2

)
(A12)

%(f2
X |·) ∼ IG

(
#/2,

∑
8

(ΔH̄(8) − VḠ(8) −U)2/2
)

(A13)

%(`G |·) ∼ N
(∑
8

Ḡ(8)/#,f2
X /#

)
(A14)

%(X2
G |·) ∼ IG

(
#/2,

∑
8

(Ḡ(8) − `G)2/2
)

(A15)

where IG(�, �) refers to an Inverse Gamma distribution with shape parameter � and scale

parameter � and we have used the notation %(- |·) to denote the probability of - conditioned on

all other parameters.

Conditional posteriors for Ḡ and ΔH̄ can be determined from (A7) by conditioning on ΔH̄ and Ḡ,

respectively, giving

%(Ḡ |ΔH̄, U, V,f2
X , `G , X

2
G , G,ΔH) ∝ N (+GΨG ,ΨG)

+G =
V(ΔH̄−U)

f2
X

+
G− AGΔH fGfΔH (ΔH−ΔH̄)

f2
G (1− A2

GΔH
)

+ `G
X2
G

ΨG =

(
V2

f2
X

+ 1
f2
G (1− A2

GΔH
)
+ 1
X2
G

)−1

(A16)
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%(ΔH̄ |Ḡ, U, V,f2
X , `G , X

2
G , G,ΔH) ∝ N (+HΨH,ΨH)

+H =
VḠ +U
f2
X

+
ΔH− AGΔH

fΔH
fG
(G− Ḡ)

f2
ΔH
(1− A2

GΔH
)

ΨH =

(
1
f2
X

+ 1
f2
ΔH
(1− A2

GΔH
)

)−1

(A17)

Thus the full conditional posteriors are represented either by Normal distributions or Inverse

Gamma distributions which can be easily sampled. Probability distributions of U, V, f2
X
, `G , X2

G , Ḡ

and ΔH̄ are obtained using a Markov-Chain Monte-Carlo procedure via Gibbs sampling, whereby

a random sample for each of the unknowns is drawn from the conditional posterior distributions

((A11)-(A15) and (A16)-(A17)) in turn. After 30 spin-up rounds of sampling, 1000 rounds of

samples for each the parameters is performed, giving 1000 (U, V, f2
X
, X2

G , Ḡ and ΔH̄) combinations

that are then used to provide constrained projections by the methods described in section 3b.
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Table 1. A summary of the CMIP5 and CMIP6 models and number of ensemble members used. hist refers

to the historical simulations, 8.5 refers to the forcing scenario that results in 8.5Wm−2 radiative forcing by the

end of the century (RCP8.5 for CMIP5 and SSP5-8.5 for CMIP6). (left) CMIP5, (right) CMIP6. Superscripts

from 1 to 22 indicate the 22 CMIP5 and CMIP6 models that are considered to be predecessors and succesors to

test the independence of CMIP5 and CMIP6.

CMIP5 CMIP6
Name hist 8.5 Name hist 8.5
ACCESS1-0 1 1 ACCESS-CM21 2 1
ACCESS1-31 1 1 ACCESS-ESM1-5 3 3
bcc-csm1-1 1 1 AWI-CM-1-1-MR 5 1
bcc-csm1-1-m2 1 1 BCC-CSM2-MR2 3 1
BNU-ESM 1 1 CAMS-CSM1-0 1 2
CanESM23 5 5 CanESM53 25 25
CCSM4 6 6 CanESM5-CanOE 3 3
CESM1-BGC 1 1 CESM24 10 2
CESM1-CAM54 3 3 CESM2-WACCM5 3 1
CESM1-WACCM5 1 1 CIESM 3 1
CMCC-CM 1 1 CMCC-CM2-SR56 1 1
CMCC-CMS6 1 1 CNRM-CM6-17 15 6
CNRM-CM57 5 5 CNRM-CM6-1-HR 1 1
CSIRO-Mk3-6-0 10 10 CNRM-ESM2-1 5 5
EC-EARTH8 1 1 EC-Earth38 10 7
FGOALS-g29 1 1 EC-Earth3-Veg 4 3
FIO-ESM10 3 3 FGOALS-f3-L 3 1
GFDL-CM311 1 1 FGOALS-g39 3 1
GFDL-ESM2G 1 1 FIO-ESM-2-010 3 3
GFDL-ESM2M12 1 1 GFDL-CM411 1 1
GISS-E2-H 2 2 GFDL-ESM412 1 1
GISS-E2-R13 2 2 GISS-E2-1-G13 10 1
HadGEM2-AO 1 1 HadGEM3-GC31-LL14 4 3
HadGEM2-CC 3 3 HadGEM3-GC31-MM 4 3
HadGEM2-ES14 3 3 INM-CM4-8 1 1
inmcm415 1 1 INM-CM5-015 8 1
IPSL-CM5A-LR16 4 4 IPSL-CM6A-LR16 32 1
IPSL-CM5A-MR 1 1 KACE-1-0-G 3 1
IPSL-CM5B-LR 1 1 MCM-UA-1-0 1 1
MIROC517 3 3 MIROC617 10 3
MIROC-ESM18 1 1 MIROC-ES2L18 3 1
MIROC-ESM-CHEM 1 1 MPI-ESM1-2-HR20 10 1
MPI-ESM-LR19 3 3 MPI-ESM1-2-LR19 10 1
MPI-ESM-MR20 1 1 MRI-ESM2-021 5 1
MRI-CGCM321 1 1 NESM3 5 2
NorESM1-M 1 1 NorESM2-LM22 3 1
NorESM1-ME22 1 1 NorESM2-MM 1 1

UKESM1-0-LL 4 5

45
Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-21-0055.1.Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 06/03/21 10:06 PM UTC



LIST OF FIGURES
Fig. 1. Illustrative depiction of the EC method using synthetic data. (a) the relationship between the

projected change (ΔH) and the present day climatology (G) for the models depicted by the
red points. Gray cross hairs depict the uncertainty on each red point by the +/-1.96f range.
Black vertical lines show four different measurements of G� while the brown, green and
purple dashed lines show the best fitting linear regression line using the OLS, TLS and BHM
methods. (b) depicts the distribution of possible true values of the real world climatology
Ḡ� given by PDFs that reflect the uncertainty due to internal variability, centered on each
observed value. (c) depicts the probability distributions of the real world change along with
its mean (horizontal lines) and the 95% confidence interval (vertical ranges) for each method.
This PDF considers the uncertainty in the best fitting regression line, the uncertainty in the
true real world value of G and the potential influence of internal variability and other aspects
of the forced response not explained by the EC, using the method outlined in Section 3. . . . 50

Fig. 2. (a) CMIP5 Δq vs q>. Uncertainties for each model are derived using the method in section
3c and depicted here using the 95% confidence interval (±1.96f range). Black vertical
lines show q> for ERA5, ERA-Interim, JRA-55 and MERRA2. Brown, green and purple
dashed lines show the best fitting regression line for the OLS, TLS and BHM methods. The
correlation (A) is quoted in the top right. (b) as (a) but for CMIP6. (c) shows the Δq for
CMIP6 that is predicted based on the CMIP5 BHM regression coefficients and the CMIP6
q> values versus the actual CMIP6 Δq values. The percentage of CMIP6 variance in Δq that
is explained by the prediction is quoted. . . . . . . . . . . . . . . . 51

Fig. 3. (a) Variance in Δq using ensemble means for each model. (b) as (a) but for q>. (c)
The correlation A between q> and Δq both without (left) and with (right) first regressing
out the component that is linearly related to globally averaged surface temperature change
(Δ)2<). Whiskers show the 95% confidence intervals estimated using a bootstrapping with
replacement procedure. (d) A decomposition of the total variance across models, using a
single member. The black hatching on the gray bar shows the percent variance explained
by inter-model differences in Δ)2<, calculated by differencing the total variance and the
variance after regressing out the contribution that is linearly related to Δ)2<. The colored
bars show the percent variance explained by the EC (red), internal variability (green) and
inter-model differences in the forced response that are unrelated to the EC (blue) for each
method. (e) and (f) show the U and V regression parameters. Black ranges in (e) and (f)
show the 95% confidence intervals derived by bootstrapping models with replacement for
OLS and TLS and by using the 1000 estimates of the regression coefficients from the BHM. . 52

Fig. 4. (a) The relationship between Δq in a CMIP6 model and its CMIP5 predecessor. (b) The
correlation of the points shown in (a) along with a 95% confidence interval (estimated by
bootstrapping models with replacement). (c) PDFs of the anomalies of q> from the true
(ensemble mean) q> for each LE members for the 5 LEs, using the same color scheme
as in panel (e). (d) is as (c) but for the distribution of Δq anomalies from the ensemble
mean. (e) Bars show the standard deviation of the distributions shown in (c). Black ranges
show the uncertainty on the bars by bootstrapping with replacement the members in (c) and
recalculating f(q>). Colored ranges show values of f(q>) calculated by bootstrapping the
individual years from a single member, 1000 times, and calculating the standard deviation
across these bootstrapped samples. f(q>) is calculated this way for each member of the LE
and the range shows the range of values derived. Black points show an estimate of f(q>)
by bootstrapping years, with replacement for the reanalyses. The black dotted line shows
the value of f(q>) that is used to sample the observational uncertainty i.e., that determined
from the five LEs pooled together. . . . . . . . . . . . . . . . . . 53

46
Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-21-0055.1.Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 06/03/21 10:06 PM UTC



Fig. 5. (a) Jet shift (Δq) versus climatological jet latitude q> for ensemble means of the CMIP5 (red)
and CMIP6 (blue) models along with best fitting regression lines for CMIP5 and CMIP6
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Brown, Green and Purple ranges with black line and white range show the 95% confidence
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and BHM, respectively. Values quoted are from the mean across the methods and are, from
top to bottom: Δq, the range of the 95% confidence interval and the probability of the real
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Fig. 6. A comparison of 300hPa meridional wind between CMIP5 (left) and CMIP6 (right). (a)
and (c) show the climatological V300 for CMIP5 and CMIP6 respectively while (b) and (d)
show the same but after filtering to only retain zonal wavenumbers greater than 3. (e) and (g)
show the Future - Past difference for CMIP5 and CMIP6, respectively and (f) and (h) show
the same after filtering to only retain zonal wavenumbers greater than 3. (i) and (k) show the
correlation between the climatological : > 3 stationary wave amplitude (|k |) and the change
in 300hPa meridional wind across models for CMIP5 and CMIP6. (j) and (l) show the across
model variance in : > 3 meridional wind for CMIP5 and CMIP6, respectively. The stippling
in panels (e)-(h) shows regions where more than 80% of the models agree on the sign of
the anomaly. The red box in (b) and (d) shows the region used to define |k | (160◦W-60◦W,
20◦N-40◦N). The red box in (e) and (g) shows the region used to defineΔ+(, (110◦W-95◦W,
25◦N-37◦N). . . . . . . . . . . . . . . . . . . . . . . . 55

Fig. 7. (a) - (c) are for CMIP5. (a) Δ+(, vs |k |, (b) Δ*100 vs |k | and (c) the relationship between
the actual Δ+(, and that predicted using multiple linear regression onto |k | and Δ*100.
Uncertainties for each model in (a) and (b) are derived using the method in section 3c and
depicted here using the 95% confidence interval (±1.96f range). Black vertical lines in (a)
show |k | for ERA5, ERA-Interim, JRA-55 and MERRA2. Brown, green and purple dashed
lines show the best fitting regression line for OLS, TLS and BHM. (d)-(f) are as (a)-(c) but
for the CMIP6 models. (g) the CMIP6 ΔE(, that is predicted based on the CMIP5 BHM
regression onto |k | versus the actual CMIP6 ΔE(, values. (h) the ΔE(, for CMIP6 that is
predicted based on the CMIP5 BHM regression onto ΔD100 versus the actual ΔE(, . (i) The
CMIP6 ΔE(, that is predicted based on the CMIP5 multiple linear (OLS) regression onto
|k | and ΔD100 versus the actual ΔE(, . Filled diamonds in each panel show the ensemble
mean. . . . . . . . . . . . . . . . . . . . . . . . . 56

Fig. 8. (a) Variance in Δ+(, using the ensemble mean for each model. (b) as (a) but for |k |. (c)
The correlation between |k | and Δ+(, both without (left) and with (right) first regressing
out the component that is linearly related to globally average surface temperature change
Δ)2<. Whiskers show the 95% confidence interval derived by bootstrapping models with
replacement. (d) A decomposition of the total variance in Δ+(, across models using a
single member. The black hatching on the gray bar shows the percent variance explained
by inter-model differences in Δ)2<, calculated by differencing the total variance and the
variance after regressing out the contribution that is linearly related to Δ)2<. The colored
bars show the percent variance explained by the EC (red), internal variability (green) and
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inter-model differences in the forced response that are unrelated to the EC (blue) for each
method. (e) and (f) show the U and V regression parameters for Δ+(, = U + V |k |. Black
ranges in (e) and (f) show the 95% confidence interval derived by bootstrapping models with
replacement for OLS and TLS and by using the 1000 regression coefficients estimated from
the BHM. . . . . . . . . . . . . . . . . . . . . . . . 57

Fig. 9. (a) The relationship between ΔE(, in a CMIP6 model and its CMIP5 predecessor. (b)
The correlation of the points shown in (a) along with 95% confidence interval derived by
bootstrapping models with replacement. (c) PDFs of the anomalies in stationary wave
amplitude |k | from the true (ensemble mean) |k | for each LE member for the 5 LEs, using
the same color scheme as in panel (e). (d) is as (c) but for the distribution of ΔE(, for
Future−Past differences from each LE members. (e) Bars show the standard deviation of the
distributions shown in (c). Black ranges show the uncertainty on the bars by bootstrapping
with replacement the members of the LE and recalculating f( |k |). Colored ranges show
values off( |k |) calculated by bootstrapping the individual years from a singlemember, 1000
times, and calculating the standard deviation across these bootstrapped samples. f( |k |) is
calculated this way for each member of the LE and the range shows the range of values
obtained. Black points show an estimate of f( |k |) for the reanalysis using the bootstrapping
method. The black dotted line shows the value off|k | that is used to sample the observational
uncertainty i.e., that determined from the five LEs pooled together. . . . . . . . . 58

Fig. 10. (a) CMIP5 (red) and CMIP6 (blue) Δ+(, versus |k | along with the best fitting regression
lines for CMIP5 and CMIP6 combined using OLS (brown), TLS (green) and BHM (purple).
The four reanalyses are shown by the black lines (see Fig. 7 legend). (b) the left portion of the
panel reproduces the CMIP5 Δ+(, from panel (a) and the red line that spans the panel shows
the CMIP5 ensemble mean. The gray shaded region shows the 95% confidence interval of
anomalies in Δ+(, that could arise due to internal variability, determined from the LEs. In
the middle portion of the panel, the colored bars show the 95% confidence interval of the
constrained forced response using (brown) OLS, (green) TLS and (purple) BHM. Black line
shows the mean of the constrained distribution and white lines delineate the 66% confidence
interval on the constrained distribution. The right portion of the panel is the same as the
middle but including the contribution to Δ+(, from internal variability that could arise in
our one future. Numbers quoted are, from top to bottom, the mean across the methods of
the mean change in Δ+(, , the 95% confidence interval of the constrained distribution (ci)
and the probability that ΔE(, will be greater than (less negative) than the CMIP ensemble
mean. (c) and (d) are as (b) but for CMIP6 and CMIP5 and CMIP6 combined, respectively. . . 59

Fig. 11. (a) and (b) show the correlation between the stationary wave amplitude |k | and Δ?A for
CMIP5 and CMIP6 respectively. Stippled regions are significant at the 95% confidence
level by a two-sided bootstrapping test and red contours depict the regions used in panels
(c)-(k). (c) and (d) show the relationship between Δ?A averaged over the U.S. west coast
and |k | for CMIP5 and CMIP6 respectively along with |k | for the reanalyses and the best
fitting linear regression (brown=OLS, green=TLS, purple=BHM). The red and blue bars
in (e) display the correlation and its 95% confidence interval (derived by bootstrapping
models with replacement) of the points shown in (c) and (d), respectively, and the red
hatched correlation, referred to as CMIP5*, shows the correlation across the CMIP5 models,
excluding those that have |k | larger than the maximum |k | in CMIP6. (f)-(h) are as (c)-(e)
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Fig. 12. (a) The relationship between Δ?A averaged over the US west coast and |k | (red circles =
CMIP5, blue circles = CMIP6, red diamond=CMIP5 mean, blue diamond = CMIP6 mean,
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and BHM regression lines using CMIP5 and CMIP6 combined). (b) (left) the CMIP5 Δ?A
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averaged over the US westcoast, (middle) the constrained distributions of the forced change,
(right) the constrained distribution of the forced change + internal variability. Colored bars
show the 95% confidence interval of the constrained distribution, black line shows the mean
and white range shows the 66% confidence interval. Red lines spanning the panel shows
the CMIP5 ensemble mean and 66% confidence interval and gray range shows the 95%
confidence range of Δ?A values that could arise due to internal variability. (c) is as (b) but
for CMIP6 and (d) is as (b) but for CMIP5 and CMIP6 combined. (e)-(h) are as (a)-(d)
but averaged over the US south and (i)-(l) are as (a)-(d) but averaged over southern Mexico.
The values quoted are, from top to bottom, the mean across the methods of the mean Δ?A,
the 95% confidence interval of the constrained distribution (ci) and the probability, from the
constrained distribution, that the Δ?A will be greater than or less than the CMIP5 or CMIP6
ensemble mean (whichever is larger). . . . . . . . . . . . . . . . . 61

Fig. 13. (a) The interannual correlation between detrendedDJFNiño3.4 and detrendedDJFCalifornia
?A anomalies. Dark red and blue show CMIP5 and CMIP6 values using the 2006-2099
period. Light red and light blue show the same but using the 1948-2014 period. Values
are ordered according to the 2006-2099 correlation and the H’s and L’s depicted the models
used in the “High-R” and “Low-R” composites of AL2017. Black lines show the correlation
for different combinations of observational SST and precipitation datasets and the gray
shading shows the 95% confidence interval on the correlation using GPCC precipitation and
ERSSTv5 SSTs. Colored ranges on the right show the minimum to maximum range of the
1948-2014 correlations determined using the LEs. (b)-(e) show differences in 2006-2099
precipitation trends between models with a correlation greater than 0.3 and those with a
correlation less than 0.2. Stippling indicates regions where the difference is significant at
the 95% level using a two-sided bootstrapping test. (f)-(i) The relationship between the
2006-2099 precipitation trend over California and the correlation between the Niño3.4 index
and California precipitation. Correlations are quoted along with 95% confidence interval
determined by bootstrapping models with replacement. Significant correlations are denoted
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Fig. 1. Illustrative depiction of the EC method using synthetic data. (a) the relationship between the projected

change (ΔH) and the present day climatology (G) for the models depicted by the red points. Gray cross hairs depict

the uncertainty on each red point by the +/-1.96f range. Black vertical lines show four different measurements of

G� while the brown, green and purple dashed lines show the best fitting linear regression line using the OLS, TLS

and BHM methods. (b) depicts the distribution of possible true values of the real world climatology Ḡ� given

by PDFs that reflect the uncertainty due to internal variability, centered on each observed value. (c) depicts the

probability distributions of the real world change along with its mean (horizontal lines) and the 95% confidence

interval (vertical ranges) for each method. This PDF considers the uncertainty in the best fitting regression line,

the uncertainty in the true real world value of G and the potential influence of internal variability and other aspects

of the forced response not explained by the EC, using the method outlined in Section 3.
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Fig. 2. (a) CMIP5 Δq vs q>. Uncertainties for each model are derived using the method in section 3c

and depicted here using the 95% confidence interval (±1.96f range). Black vertical lines show q> for ERA5,

ERA-Interim, JRA-55 and MERRA2. Brown, green and purple dashed lines show the best fitting regression line

for the OLS, TLS and BHM methods. The correlation (A) is quoted in the top right. (b) as (a) but for CMIP6.

(c) shows the Δq for CMIP6 that is predicted based on the CMIP5 BHM regression coefficients and the CMIP6

q> values versus the actual CMIP6 Δq values. The percentage of CMIP6 variance in Δq that is explained by the

prediction is quoted.
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Fig. 3. (a) Variance in Δq using ensemble means for each model. (b) as (a) but for q>. (c) The correlation

A between q> and Δq both without (left) and with (right) first regressing out the component that is linearly

related to globally averaged surface temperature change (Δ)2<). Whiskers show the 95% confidence intervals

estimated using a bootstrapping with replacement procedure. (d) A decomposition of the total variance across

models, using a single member. The black hatching on the gray bar shows the percent variance explained by

inter-model differences in Δ)2<, calculated by differencing the total variance and the variance after regressing

out the contribution that is linearly related to Δ)2<. The colored bars show the percent variance explained by the

EC (red), internal variability (green) and inter-model differences in the forced response that are unrelated to the

EC (blue) for each method. (e) and (f) show the U and V regression parameters. Black ranges in (e) and (f) show

the 95% confidence intervals derived by bootstrapping models with replacement for OLS and TLS and by using

the 1000 estimates of the regression coefficients from the BHM.
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Fig. 4. (a) The relationship between Δq in a CMIP6 model and its CMIP5 predecessor. (b) The correlation

of the points shown in (a) along with a 95% confidence interval (estimated by bootstrapping models with

replacement). (c) PDFs of the anomalies of q> from the true (ensemble mean) q> for each LE members for the 5

LEs, using the same color scheme as in panel (e). (d) is as (c) but for the distribution of Δq anomalies from the

ensemble mean. (e) Bars show the standard deviation of the distributions shown in (c). Black ranges show the

uncertainty on the bars by bootstrapping with replacement the members in (c) and recalculating f(q>). Colored

ranges show values of f(q>) calculated by bootstrapping the individual years from a single member, 1000 times,

and calculating the standard deviation across these bootstrapped samples. f(q>) is calculated this way for each

member of the LE and the range shows the range of values derived. Black points show an estimate of f(q>) by

bootstrapping years, with replacement for the reanalyses. The black dotted line shows the value of f(q>) that is

used to sample the observational uncertainty i.e., that determined from the five LEs pooled together.
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Fig. 5. (a) Jet shift (Δq) versus climatological jet latitude q> for ensemble means of the CMIP5 (red) and

CMIP6 (blue) models along with best fitting regression lines for CMIP5 and CMIP6 combined for (brown) OLS,

(green) TLS and (purple) BHM. Black vertical lines show the reanalyses (see the legend of Fig. 2) and filled

diamonds show the CMIP5 and 6 ensemble means. (b) CMIP5 constrained projections: (left portion) reproduces

the CMIP5 Δq’s of panel (a) along with the 66% confidence interval (dotted red lines); (middle portion) shows

the constrained projections for the forced response i.e., excluding internal variability; and the (right portion)

shows the constrained projections for the forced response plus internal variability for a single realization. Red

horizontal line across the panel shows the CMIP5 ensemble mean while the gray range shows the 95% confidence

interval for the range of jet shifts that could arise due to internal variability for a single member, estimated from

the LEs. (c) is as (b) but for CMIP6 and (d) is as (b) but for CMIP5 and CMIP6 combined. Brown, Green and

Purple ranges with black line and white range show the 95% confidence intervals, mean and 66% confidence

intervals of constrained projections using TLS, OLS and BHM, respectively. Values quoted are from the mean

across the methods and are, from top to bottom: Δq, the range of the 95% confidence interval and the probability

of the real world future Δq being less poleward than the relevant CMIP ensemble mean.
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Fig. 6. A comparison of 300hPa meridional wind between CMIP5 (left) and CMIP6 (right). (a) and (c) show

the climatological V300 for CMIP5 and CMIP6 respectively while (b) and (d) show the same but after filtering

to only retain zonal wavenumbers greater than 3. (e) and (g) show the Future - Past difference for CMIP5 and

CMIP6, respectively and (f) and (h) show the same after filtering to only retain zonal wavenumbers greater than

3. (i) and (k) show the correlation between the climatological : > 3 stationary wave amplitude (|k |) and the

change in 300hPa meridional wind across models for CMIP5 and CMIP6. (j) and (l) show the across model

variance in : > 3 meridional wind for CMIP5 and CMIP6, respectively. The stippling in panels (e)-(h) shows

regions where more than 80% of the models agree on the sign of the anomaly. The red box in (b) and (d) shows

the region used to define |k | (160◦W-60◦W, 20◦N-40◦N). The red box in (e) and (g) shows the region used to

define Δ+(, (110◦W-95◦W, 25◦N-37◦N).
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Fig. 7. (a) - (c) are for CMIP5. (a) Δ+(, vs |k |, (b) Δ*100 vs |k | and (c) the relationship between the actual

Δ+(, and that predicted using multiple linear regression onto |k | and Δ*100. Uncertainties for each model in (a)

and (b) are derived using the method in section 3c and depicted here using the 95% confidence interval (±1.96f

range). Black vertical lines in (a) show |k | for ERA5, ERA-Interim, JRA-55 and MERRA2. Brown, green and

purple dashed lines show the best fitting regression line for OLS, TLS and BHM. (d)-(f) are as (a)-(c) but for the

CMIP6 models. (g) the CMIP6 ΔE(, that is predicted based on the CMIP5 BHM regression onto |k | versus the

actual CMIP6 ΔE(, values. (h) the ΔE(, for CMIP6 that is predicted based on the CMIP5 BHM regression

onto ΔD100 versus the actual ΔE(, . (i) The CMIP6 ΔE(, that is predicted based on the CMIP5 multiple linear

(OLS) regression onto |k | and ΔD100 versus the actual ΔE(, . Filled diamonds in each panel show the ensemble

mean.
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Fig. 8. (a) Variance in Δ+(, using the ensemble mean for each model. (b) as (a) but for |k |. (c) The

correlation between |k | and Δ+(, both without (left) and with (right) first regressing out the component that

is linearly related to globally average surface temperature change Δ)2<. Whiskers show the 95% confidence

interval derived by bootstrapping models with replacement. (d) A decomposition of the total variance in Δ+(,

across models using a single member. The black hatching on the gray bar shows the percent variance explained

by inter-model differences in Δ)2<, calculated by differencing the total variance and the variance after regressing

out the contribution that is linearly related to Δ)2<. The colored bars show the percent variance explained by

the EC (red), internal variability (green) and inter-model differences in the forced response that are unrelated to

the EC (blue) for each method. (e) and (f) show the U and V regression parameters for Δ+(, = U+ V |k |. Black

ranges in (e) and (f) show the 95% confidence interval derived by bootstrapping models with replacement for

OLS and TLS and by using the 1000 regression coefficients estimated from the BHM.
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Fig. 9. (a) The relationship between ΔE(, in a CMIP6 model and its CMIP5 predecessor. (b) The correlation

of the points shown in (a) along with 95% confidence interval derived by bootstrapping models with replacement.

(c) PDFs of the anomalies in stationarywave amplitude |k | from the true (ensemblemean) |k | for each LEmember

for the 5 LEs, using the same color scheme as in panel (e). (d) is as (c) but for the distribution of ΔE(, for

Future−Past differences from each LE members. (e) Bars show the standard deviation of the distributions shown

in (c). Black ranges show the uncertainty on the bars by bootstrapping with replacement the members of the LE

and recalculating f( |k |). Colored ranges show values of f( |k |) calculated by bootstrapping the individual years

from a single member, 1000 times, and calculating the standard deviation across these bootstrapped samples.

f( |k |) is calculated this way for each member of the LE and the range shows the range of values obtained.

Black points show an estimate of f( |k |) for the reanalysis using the bootstrapping method. The black dotted

line shows the value of f|k | that is used to sample the observational uncertainty i.e., that determined from the

five LEs pooled together.
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Fig. 10. (a) CMIP5 (red) and CMIP6 (blue) Δ+(, versus |k | along with the best fitting regression lines for

CMIP5 and CMIP6 combined using OLS (brown), TLS (green) and BHM (purple). The four reanalyses are

shown by the black lines (see Fig. 7 legend). (b) the left portion of the panel reproduces the CMIP5 Δ+(,

from panel (a) and the red line that spans the panel shows the CMIP5 ensemble mean. The gray shaded region

shows the 95% confidence interval of anomalies in Δ+(, that could arise due to internal variability, determined

from the LEs. In the middle portion of the panel, the colored bars show the 95% confidence interval of the

constrained forced response using (brown) OLS, (green) TLS and (purple) BHM. Black line shows the mean of

the constrained distribution and white lines delineate the 66% confidence interval on the constrained distribution.

The right portion of the panel is the same as the middle but including the contribution to Δ+(, from internal

variability that could arise in our one future. Numbers quoted are, from top to bottom, the mean across the

methods of the mean change in Δ+(, , the 95% confidence interval of the constrained distribution (ci) and the

probability that ΔE(, will be greater than (less negative) than the CMIP ensemble mean. (c) and (d) are as (b)

but for CMIP6 and CMIP5 and CMIP6 combined, respectively.
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Fig. 11. (a) and (b) show the correlation between the stationary wave amplitude |k | and Δ?A for CMIP5 and

CMIP6 respectively. Stippled regions are significant at the 95% confidence level by a two-sided bootstrapping

test and red contours depict the regions used in panels (c)-(k). (c) and (d) show the relationship between Δ?A

averaged over the U.S. west coast and |k | for CMIP5 and CMIP6 respectively along with |k | for the reanalyses and

the best fitting linear regression (brown=OLS, green=TLS, purple=BHM). The red and blue bars in (e) display

the correlation and its 95% confidence interval (derived by bootstrapping models with replacement) of the points

shown in (c) and (d), respectively, and the red hatched correlation, referred to as CMIP5*, shows the correlation

across the CMIP5 models, excluding those that have |k | larger than the maximum |k | in CMIP6. (f)-(h) are as

(c)-(e) but averaged over the U.S. South and (i)-(k) are as (c)-(e) but averaged over southern Mexico.
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Fig. 12. (a) The relationship between Δ?A averaged over the US west coast and |k | (red circles = CMIP5, blue

circles = CMIP6, red diamond=CMIP5 mean, blue diamond = CMIP6 mean, black vertical lines = the reanalyses

|k |, brown green and purple dashed lines = the OLS, TLS and BHM regression lines using CMIP5 and CMIP6

combined). (b) (left) the CMIP5 Δ?A averaged over the US westcoast, (middle) the constrained distributions of

the forced change, (right) the constrained distribution of the forced change + internal variability. Colored bars

show the 95% confidence interval of the constrained distribution, black line shows the mean and white range

shows the 66% confidence interval. Red lines spanning the panel shows the CMIP5 ensemble mean and 66%

confidence interval and gray range shows the 95% confidence range of Δ?A values that could arise due to internal

variability. (c) is as (b) but for CMIP6 and (d) is as (b) but for CMIP5 and CMIP6 combined. (e)-(h) are as

(a)-(d) but averaged over the US south and (i)-(l) are as (a)-(d) but averaged over southern Mexico. The values

quoted are, from top to bottom, the mean across the methods of the mean Δ?A , the 95% confidence interval of the

constrained distribution (ci) and the probability, from the constrained distribution, that the Δ?A will be greater

than or less than the CMIP5 or CMIP6 ensemble mean (whichever is larger).
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(a) Interannual correlations between Nino3.4 index and California precipiation
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Fig. 13. (a) The interannual correlation between detrended DJF Niño3.4 and detrended DJF California ?A

anomalies. Dark red and blue show CMIP5 and CMIP6 values using the 2006-2099 period. Light red and light

blue show the same but using the 1948-2014 period. Values are ordered according to the 2006-2099 correlation

and the H’s and L’s depicted the models used in the “High-R” and “Low-R” composites of AL2017. Black lines

show the correlation for different combinations of observational SST and precipitation datasets and the gray

shading shows the 95% confidence interval on the correlation using GPCC precipitation and ERSSTv5 SSTs.

Colored ranges on the right show theminimum tomaximum range of the 1948-2014 correlations determined using

the LEs. (b)-(e) show differences in 2006-2099 precipitation trends between models with a correlation greater

than 0.3 and those with a correlation less than 0.2. Stippling indicates regions where the difference is significant at

the 95% level using a two-sided bootstrapping test. (f)-(i) The relationship between the 2006-2099 precipitation

trend over California and the correlation between the Niño3.4 index and California precipitation. Correlations are

quoted along with 95% confidence interval determined by bootstrapping models with replacement. Significant

correlations are denoted by an asterisk. Titles in (b)-(i) indicate the time period used to calculate the correlation

between the Niño3.4 index and California precipitation.62
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