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Abstract

Supersoft Emission from Thermonuclear Burning on Hydrogen-Accreting

White Dwarfs

by

William Michael Wolf

Thermonuclear burning of hydrogen on white dwarfs (WDs) is an inevitable occurence

for accreting WDs in binary systems. After the onset of thermally-unstable nuclear

burning, the WD rapidly expands and ejects much of its hydrogen-rich matter. Once it

regains thermal equilibrium, it contracts and becomes a luminous (L ∼ 104 L�) source

of supersoft X-rays. This supersoft phase can last anywhere from days (for novae on

massive WDs) to millions of years (for persistent supersoft sources). In this dissertation,

we explore how the supersoft phase of accreting WDs proceeds and what observations

of it reveal about the underlying WD. We present stellar models of persistent supersoft

sources and novae. We then use these models to explain the isothermal nature of the

ejecta as observed in the radio. We also use these models to test the efficacy of g-modes

excited in the burning layer as an explanation of observed oscillations in the supersoft

phase of novae. While we find excited modes, their periods are too short to account for

the observed oscillations.
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Chapter 1

Introduction

Most stars end their lives as white dwarfs (WDs). Many, like the sun eventually, simply

run out of fuel in their cores, and after expelling their outer envelope in a planetary

nebula, they leave behind a hot cinder with a mass on the order of a solar mass and

a radius similar to Earth’s. This newly born WD slowly cools and crystallizes over

timescales comparable to the age of the universe. Other stars in binary systems have

their outer envelopes stripped from them in the dance of mass transfer characteristic of

interacting binaries, revealing a newborn WD.

WDs’ uses as laboratories for basic physics, like diffusion and degenerate equations of

state (Fontaine et al., 1977; Saumon et al., 1995; Massacrier et al., 2011; Michaud et al.,

2015), as well as their ubiquity as end states of stars, make single WDs an interesting

field of their own. But when WDs in binaries accrete matter from a companion, they

exhibit rich behavior arising from accretion (e.g. dwarf novae) or thermonuclear burning
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(e.g. classical/recurrent novae, supersoft sources). Accreting WDs are also one of the

proposed progenitors for type Ia supernovae, but their efficacy in this capacity is still

debated (Maoz et al., 2014).

The focus of this dissertation is hydrogen burning on accreting WDs and how that

burning influences observations of classical novae, recurrent novae, and supersoft sources

across the electromagnetic spectrum. Before diving into these topics, we first visit some

basic terms and concepts relevant to accreting WDs and thermonuclear burning in a thin

shell.

1.1 Accreting White Dwarfs

The accretion of hydrogen-rich material occurs in several classes of binary systems. The

most prominent binary star classes for this work are cataclysmic variables, symbiotic

stars, and thermal timescale mass transferring systems. We discuss each of these before

outlining how thermonuclear burning occurs in them.

1.1.1 Cataclysmic Variables

Cataclysmic variables are short-period (Porb ∼ 1 − 10 hours) binary stars consisting of

a WD and a low-mass companion star that is filling its Roche lobe and stably trans-

ferring material to the WD via an accretion disk (Robinson, 1976). In this configu-

ration, the orbital separation at first shrinks due to angular momentum losses from

magnetic braking from the donor (Porb & 3 hours), transferring mass in the range of
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Ṁ ∼ 10−9 − 10−7 M� yr−1. Once the donor is eroded sufficiently, it becomes fully con-

vective and shrinks inside of its Roche lobe, and magnetic braking ceases to be effective

at shrinking the orbit. Instead, gravitational waves slowly bring the binary back into

contact at an orbital period of around Porb ≈ 2 hours with accretion rates in this regime

of Ṁ ∼ 10−12 − 10−10 M� yr−1.

1.1.2 Symbiotic Stars

At much longer orbital periods of Porb ∼ 1 − 10 years, symbiotic stars consist of a WD

accreting material captured from the wind of a Red giant star rather than siphoning

off material through the binary’s inner Lagrange point (Kenyon, 1986; Mikolajewska

et al., 1988). Mass transfer rates vary depending on the orbital separation and the

intensity of the wind from the donor star, but they are estimated to be in the range of

Ṁ ∼ 10−8 − 10−5 M� yr−1.

1.1.3 Thermal Timescale Mass Transfer Systems

A third means of transferring hydrogen-rich material is through thermal timescale mass

transfer as in van den Heuvel et al. (1992); Kahabka & van den Heuvel (1997); Langer

et al. (2000). In this scenario, a WD is in a binary system with a more massive star

as it leaves the main sequence. After exhausting core hydrogen, the donor star expands

on a thermal timescale. At orbital periods of Porb ∼ days, this expanding star overflows

its Roche lobe and thermally unstable mass transfer occurs at a rapid pace of Ṁ ∼
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Mdonor/tthermal,donor ∼ 10−8 − 10−5 M� yr−1.

1.1.4 Intermittent Accretion

For each of the systems presented above, mass from the donor is usually transferred to the

WD surface through an accretion disk (notable exceptions include strongly magnetized

WDs where matter is channeled to the poles). These accretion disks host interesting

phenomena of their own. In particular, cataclysmic variables with average accretion

rates of
〈
Ṁ
〉

. 10−9 M� yr−1 are thermally unstable. For most of the time, these

disks deposit mass onto the WD surface at a much smaller rate than mass is added

to the disk. After a buildup of matter and a rise in disk temperature, a change in the

ionization state causes the disk to rapidly deposit matter until the disk has been depleted

of much of its mass. These events are called dwarf novae, and they occur on timescales of

months to years. In this work, we consider timescales that are longer than a typical dwarf

nova and/or accretion rates above which the disks are perpetually in a ”high” state, so

throughout this work, any accretion rate Ṁ is always considered an average value.

1.2 Thermonuclear Shell Burning on White Dwarfs

In the model where a “cold” WD (with central temperature Tc . 5 × 107 K) has a

steady supply of hydrogen-rich matter at its surface, three main outcomes are possible,

depending on the mass of the WD and the accretion rate Ṁ :

1. High Ṁ : shell flash followed by steady burning in an extended form

4



2. Intermediate Ṁ : shell flash followed by steady burning in a compact form

3. Low Ṁ : intermittent shell flashes, i.e. novae

In any case, matter accumulates near the surface until a shell flash ensues, after which

the longer-term outcome manifests. We now outline the onset and evolution of the shell

flash and the subsequent possible outcomes.

1.2.1 A Typical Shell Flash

When deposited onto a WD at nearly any rate, hydrogen-rich material ignites when

heating via hydrogen fusion outstrips the radiative cooling from the atmosphere. This

occurs when the mass of the hydrogen-rich layer ∆M , reaches a criticial ignition mass

∆Mign which depends on the WD mass, its core temperature, the rate the matter is

accreted Ṁ , and the precise composition of the accreted material (Prialnik & Kovetz,

1995; Townsley & Bildsten, 2004; Yaron et al., 2005; Shen & Bildsten, 2009).

Once an ignition has occurred, the temperature at the base of the hydrogen-rich layer

rises rapidly, and the high temperature sensitivity of hydrogen burning via the CNO

burning drive convection in the envelope. The convection spreads over the accreted layer

until the thermal timescale at the outer convection boundary is comparable to the nuclear

heating timescale at the base. At this point, the nuclear luminosity far exceeds the local

Eddington luminosity, so the excess luminosity goes into mechanical energy expanding

the WD atmosphere to many times its quiescent radius (Fujimoto, 1982b; Iben, 1982).

The expansion continues until the nuclear luminosity at the base of the convective region
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can be matched by the photospheric luminosity (typically L ∼ 104 L�), after which the

convection dies out and the envelope becomes radiative. If accretion persists through this

expansion and if Ṁ > Ṁcrit, the outcome is option 1 above. Here Ṁcrit is the rate that

hydrogen-rich material is consumed at the base, so matter is accreting faster than the

WD can process it to helium. The WD remains inflated as much as the binary allows,

and accretion is tempered by mass loss to a net rate of Ṁcrit (Nomoto et al., 1979).

In most shell flashes, though, Ṁ < Ṁcrit and some combination of optically thick

winds, binary interaction, and/or dynamical ejection cause the majority of the accreted

envelope to be lost from the binary with typical ejecta velocities of vej ∼ 1000 km s−1

(Bode & Evans, 2008; Prialnik & Kovetz, 1995; Kato & Hachisu, 1994). During this time,

the ejecta appear as a bright optical source known as a “nova” (not to be confused with

dwarf novae, which are an accretion, rather than thermonuclear phenomenon). Even

after becoming optically thin to optical and shorter wavelengths, the ejecta can still be

observed in the radio, often taking on a biconical morphology (Bode & Evans, 2008).

After ∆M has been reduced by mass loss to a certain value ∆Mcrit, the WD shrinks

back to a more compact form and mass loss ceases at nearly constant bolometric lumi-

nosity L ∼ 104 L� (Kato et al., 2014). With such a small size and high luminosity, the

WD maintains high effective temperatures of Teff ∼ 105 − 106 K. The WD thus shines

brightly in the far UV and soft X-rays, and is often referred to as a supersoft source

(SSS). If Ṁ > Ṁstable, the WD becomes a persistent SSS, remaining so as long as the

accretion stream is maintained (option 2 above). Here Ṁstable is the minimum rate of
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fuel consumption that allows for stable and steady burning, and its calculation is a main

focus of chapter 2.

If Ṁ < Ṁstable, nuclear fuel is consumed faster than it can be replenished. The

hydrogen layer is eroded via nuclear burning until ∆M drops below some minimum

hydrogen layer mass ∆Mstable, below which radiative cooling overwhelms nuclear heating,

and the WD returns to a cool and quiet accreting state. The long-term outcome is then

option 3 above, where the cycle repeats itself, giving rise to classical or recurrent novae

on timescales as short as six months (Fujimoto, 1982a; Kato et al., 2014). Note that

the distinction between “classical” and “recurrent” novae is a human one. All novae

are thought to be recurrent in that they occur over and over again. Classical novae are

those that have only been observed in outburst once (they may recur on timescales of

tens of thousands of years), whereas recurrent novae are those that have been observed

in outburst multiple times (with typical recurrence times of tens of years). Often we will

refer to both classes simply as “novae”. Figure 1.1 shows the evolution of the envelope

mass ∆M for a typical nova cycle as well as its path through the HR diagram.

1.2.2 Utility of the Supersoft Phase

This dissertation aims to characterize persistent SSSs and the post-outburst SSS phase

of novae. In doing this, we relate the primary observables of these objects in radio and X-

rays to models of SSSs and thus the underlying WD. We find that supersoft emission and

its effects on radio emission provide powerful diagnostics for determining the progenitor
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systems of persistent SSSs and novae.

1.3 Overview

In chapter 2, we explore how WDs respond to the accretion of solar composition material

via steady and stable burning or periodic novae. In chapter 3 we study how the phase

of burning after a classical nova influences the thermal state of the ejecta and resulting

radio observations. And in chapter 4 we explore how pulsations in this same phase may

explain observed oscillations in X-ray data. Finally in chapter 5, we identify some open

questions and logcial next steps from this work.

1.4 Permissions and Attributions

1. The content of chapter 2 is the result of a collaboration with Lars Bildsten, Sumin

Tang, Bill Paxton, and Jared Brooks, and has previously appeared in Wolf et al.

(2013) and Tang et al. (2014). It is reproduced here with the implicit permission of

AAS Journals: http://journals.aas.org/authors/apc.html#Reproduction.

2. The content of chapter 3 is the result of a collaboration with Timothy Cunningham

and Lars Bildsten, and has previously appeared in Cunningham et al. (2015). It is

reproduced here with the implicit permission of AAS Journals: http://journals.

aas.org/authors/apc.html#Reproduction.

3. The content of chapter 4 and appendix A is the result of a collaboration with Rich
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Townsend and Lars Bildsten, and at the time of submission is being prepared for

submission to the Astrophysical Journal.
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Chapter 2

Stability, Recurrent Novae, and the

Post-Nova Supersoft Phase

In this chapter, we examine the properties of white dwarfs (WDs) accreting hydrogen-

rich matter in and near the stable burning regime of accretion rates as modeled by

time-dependent calculations done with Modules for Experiments in Stellar Astrophysics

(MESA). We report the stability boundary for WDs of masses between 0.51 M� and

1.34 M� as found via time-dependent calculations. We also examine recurrent novae

that are accreting at rates close to, but below, the stable burning limit and report their

recurrence times. Our dense grid in accretion rates finds the expected minimum possible

recurrence times as a function of the WD mass. This enables inferences to be made about

the minimum WD mass possible to reach a specific recurrence time. We compare our

computational models of post-outburst novae to the stably burning WDs and explicitly
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calculate the duration and effective temperature (Teff) of the post-novae WD in the

supersoft phase. We agree with the measured turnoff time - Teff relation in M31 by

Henze and collaborators, infer WD masses in the 1.0-1.3 M� range, and predict ejection

masses consistent with those observed. We close by commenting on the importance of

the hot helium layer generated by stable or unstable hydrogen burning for the short-and

long-term evolution of accreting white dwarfs.

2.1 Introduction

The outcome of accretion of hydrogen-rich material onto the surface of a white dwarf

(WD) is relevant to classical novae (Gallagher & Starrfield, 1978), recurrent novae, super-

soft sources (SSS) (van den Heuvel et al., 1992; Nomoto et al., 2007), and even the single

degenerate scenario (SDS) for type Ia supernovae progenitors (Nomoto, 1982; Nomoto

et al., 1984; Cassisi et al., 1998). The outcome depends on the mass of the accreting WD,

MWD, the accretion rate, Ṁ , and the core temperature, Tc (Sienkiewicz, 1980; Townsley

& Bildsten, 2004; Yaron et al., 2005; Nomoto et al., 2007; Shen & Bildsten, 2007). If the

accretion rate is too large, the burning can’t match it, causing the rapidly accreting mat-

ter to pile up into a red giant-like structure (Paczynski & Zytkow, 1978; Nomoto et al.,

1979). At lower accretion rates, hydrogen can be stably burned to helium at the same

rate that is being accreted (Paczynski & Zytkow, 1978; Sienkiewicz, 1980; Iben, 1982;

Fujimoto, 1982a; Paczynski, 1983; Livio et al., 1989; Cassisi et al., 1998; Shen & Bildsten,

2007; Nomoto et al., 2007). If the accretion rate is lower yet, the hydrogen supply rate
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is too low to match the stably burning luminosity, so a low-luminosity accreting state

is realized while hydrogen accumulates until a thermonuclear runaway occurs, quickly

burning the hydrogen and driving a radius increase and mass loss from the WD that

appears as a classical or recurrent nova.

Understanding these phenomena first requires understanding the physics of stable

burning. Previous studies (Sienkiewicz, 1980; Nomoto et al., 2007; Shen & Bildsten, 2007)

assumed a steady burning state and studied the stability of their solutions in response

to linear perturbations. While numerous time-dependent simulations of WDs accreting

hydrogen-rich material are already in the literature, many either started with the matter

pre-accreted and studied the ensuing outburst or selected initial conditions which are

not erased until several flashes have established asymptotic behavior (Iben, 1982). Only

Paczynski & Zytkow (1978), Sion et al. (1979), Iben (1982), Livio et al. (1989), Shara

et al. (1993), Kovetz & Prialnik (1994), Cassisi et al. (1998), and Yaron et al. (2005)

examined the time-dependent problem for durations long enough to observe multiple

flashes or stable burning. To date, there is no comprehensive time-dependent study of

WDs accreting solar composition material over the full range of the stable burning regime

for a large range of WD masses. Yaron et al. (2005) was the most complete prior effort,

but did not calculate a dense grid in Ṁ space near the lower stability boundary.

WDs accreting just below the stability boundary will go through periodic hydrogen

shell flashes on relatively short timescales, or recurrent novae (RNe). There are currently

ten known RNe in our galaxy (Schaefer, 2010) with recurrence times on the order of
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decades. Those RNe with shortest recurrence times have been understood to be massive

WDs (see Figure 9 of Nomoto 1982). Since the measured time between outbursts is

often an important factor in estimating MWD, we require a solid understanding of the

mass-recurrence time relation near the lower stability boundary.

At lower Ṁ ’s (. 10−8 M� yr−1), WDs undergo classical nova cycles whose recurrence

times are too long to measure on human timescales (Yaron et al., 2005). Mass deter-

minations of such systems must then rely on other observed parameters. After a CN

outburst, the ejected mass is optically thick, obscuring the view of the hot WD below.

After a turn-on time, ton, the ejecta becomes optically thin, revealing an SSS. Still later,

at some turn-off time toff after the outburst, the X-ray luminosity powered by burning in

the hydrogen-rich remnant (Starrfield et al., 1974) decreases and the nova event is over.

Hachisu & Kato (2010) have offered a way to fit the observed timescales to models in

order to infer MWD. Tuchman & Truran (1998) and Sala & Hernanz (2005) argue that

the mass left in the hydrogen-rich WD envelope after mass loss is determined primarily

by MWD and secondarily by the composition of the envelope. This remnant envelope

mass is expected to undergo stable hydrogen burning in the post-outburst SSS phase at

nearly constant luminosity. If this remaining envelope mass and luminosity are known

as a function MWD, the duration of the SSS phase can be predicted, allowing a correla-

tion between the measured turn-off time of a CN and MWD. With the increasingly large

samples of CNe like that of Henze et al. (2011) in M31 and Schwarz et al. (2011) in our

own galaxy, we can now test these methods on a meaningful number of CNe.
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In this chapter, we present models of WDs with masses ranging from MWD = 0.51 M�

to 1.34 M� accreting solar composition material as simulated by MESA (Paxton et al.,

2011; Denissenkov et al., 2013; Paxton et al., 2013). The conditions for stable hydrogen

burning are found, as are the characteristics of unstable models. We compare recurrence

times to the previous results from Iben (1982), Livio et al. (1989), Cassisi et al. (1998),

and Yaron et al. (2005). We start in §2.2 by discussing the input physics used to produce

the accreting models. Then in §2.3, we present the relevant background on stable burning

as well as the characteristics of our steadily (and stably) burning models. We investigate

unstable burning on WDs accreting at rates near, but below, the stable boundary in §2.4

with comparisons to previous time-dependent calculations explored in §2.5. We study

applications to classical novae in §2.6 and 2.7, and further implications and questions

are addressed in §2.8, where we comment on the inevitable flashes in the accumulating

helium layer.

2.2 Simulation Details and Model Building

Initial WD models were created in MESA by evolving stars between 4 and 12 M� from

ZAMS through the main sequence, RGB, and AGB through to the white dwarf cooling

track. Typically when this is done, very small time steps are required to get through the

thermal pulses during the AGB phase. To get around this, the convection in the outer

envelope is artificially made more efficient so that the full computations need not be

followed (Paxton et al., 2013). Additionally, the larger initial models used enhanced winds
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to speed up the process, which is why they didn’t undergo core collapse. These processes

do not impact our results since the physics of interest is in the accreted envelope and

nearly independent of the degenerate interior. This process was also used and discussed

in Denissenkov et al. (2013).

After the initial WD models were created, they were cooled to a central temperature

of Tc = 3× 107 K, hot enough so that the initial flash is not too violent. The results of

Yaron et al. (2005) show that for accretion rates in the stable regime, the accumulated

Helium layer is at T ≈ 108 K, making the results of hydrogen-rich accretion nearly

independent of Tc < 108 K, a result we also justify in §2.3. We assume that all WDs are

not rotating and that convective overshoot does not occur. To model the nuclear burning,

we used MESA’s cno_extras_o18_to_mg26_plus_fe56 network, which accounts for hot

CNO burning as well as other heavier isotopes’ presence. Radiative opacities are from

the OPAL tables (Iglesias & Rogers, 1993, 1996). The spatial and temporal resolutions

were adjusted to finer and finer levels until no more substantive changes were observed

in the stability/instability boundary or in the reported observables (recurrence times,

burning layer temperatures, envelope masses, etc.). This typically resulted in models

with between 7000 and 10000 mass zones that are dynamically sized in space and time

so that a burning region in an active nova or steady burner is well-resolved, typically

occupying around half of the mass zones.

The accreted material has solar composition, with X = 0.70, Y = 0.28, and metal

fractions taken from Lodders (2003), though the OPAL opacities assume a different set of
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metal fractions for solar composition. Initializing the accretion often required irradiating

the atmosphere before starting accretion so as to ease the thermal readjustment of the

outer layers. Any unphysical effects this would have on the model are undone after the

ensuing flash(es) that erase the initial conditions (Paczynski & Zytkow, 1978; Sion et al.,

1979; Cassisi et al., 1998). The first flash heats the outer layers so that the irradiation

is no longer needed for computational convenience. After several flashes (in unstable

models) or hydrogen sweeping times, ∆MH/(XṀ), where ∆MH is the total hydrogen

mass (for stably burning models), any hydrogen present in the envelope during the initial

accumulation phase has already been burned to helium or ejected. It is after this initial

“memory erasing”, with irradiation deactivated that we begin our exploration.

For this study, we employ two mass loss prescriptions: super Eddington winds and

Roche lobe overflow. For the purposes of our calculation, the RNe systems are assumed to

be wide binaries. This is not the case for all RNe. With this assumption, the only active

mass loss prescription is the super Eddington wind scheme described in Denissenkov

et al. (2013). In this prescription, winds are only active if the photosphereic luminosity

of the star exceeds an effective Eddington luminosity which is a mass-average of the

local Eddington luminosity from the outer-most cell down to where the optical depth

first exceeds 100. The excess luminosity over this effective Eddington luminosity comes

in the form of mass ejection moving at the surface escape velocity. Both of these mass

ejection scenarios take place over an extended period of time until L < LEdd or R < RRL,

usually indicating the end of the nova’s excursion to the red in the HR diagram. The
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tighter binaries in which CNe are found can result in either of these ejection scenarios,

so we present results with both assumptions in §2.6, where we also describe the Roche

lobe wind prescription in more detail. The inlists for these simulations are available on

http://www.mesastar.org.

We explore a wide range of WD masses for accretion rates in and near the stable burn-

ing regime, so we prepared C-O WDs of masses 0.51 M�, 0.60 M�, 0.70 M�, 0.80 M�,

1.00 M�, and O-Ne WDs of masses 1.10 M�, 1.20 M�, 1.30 M�, and 1.34 M�. Then,

using earlier studies of stability regimes (Sienkiewicz, 1980; Nomoto et al., 2007; Shen &

Bildsten, 2007), we chose accretion rates within and near the stable burning regime. For

each WD we then relaxed the accretion rate to the desired rate and allowed the model

to evolve for at least 30 envelope turnover times to erase all history, typically accreting

< 10−3 M�. While the study of much longer-term accretion is certainly warranted (Cas-

sisi et al., 1998; Piersanti et al., 1999), we wanted to initially avoid introducing significant

temporal changes to the models resulting from their increasing mass due to secular ac-

cumulation of helium. At the end of this accretion period, we take the measurements

shown in Figures 2.1 and 2.2.

2.3 Steadily Burning Models

The conditions for stable burning of hydrogen-rich material are detailed in Shen & Bild-

sten (2007) for a simple one-zone model of burning. The qualitative results are that

steady-state burning becomes stable when an increase in temperature causes the cooling
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rate to increase more than the energy generation rate. At accretion rates below a certain

critical value, Ṁstable, a temperature perturbation would cause the nuclear heating rate

to grow faster than the cooling rate causing a thermonuclear runaway that burns the fuel

at a rate faster than accretion, triggering a limit-cycle of accumulation and explosion

(i.e. novae). Time-dependent calculations naturally reveal the lower stability bound, as

unstable periods of hydrogen burning manifest themselves. Table 2.1 summarizes these

results, indicating the lower limiting accretion rate for stable burning, Ṁstable, the total

mass of hydrogen, ∆MH, the hydrogen sweeping time, tsweep = ∆MH/(XṀstable), and the

luminosity. Additionally Table 2.2 shows the pressure, density, temperature, fraction of

pressure due to gas pressure, and hydrogen mass fraction at the point where the exiting

luminosity is half of the total luminosity. Finally, we show the thickness of the shell from

the half-luminosity point to the surface of the WD as a fraction of the total radius, R,

demonstrating that these burning shells are only marginally thin, enhancing their stabil-

ity. For the range of masses shown in Figure 2.1, the lower red line represents the values

of Ṁstable. WDs in the region below the lower red line in Figure 2.1 would be recurrent

novae.

The upper edge of the stable regime is more subtle. Fujimoto (1982a) and Iben (1982)

note that for any WD, there is a maximum envelope mass that can sustain steady-state

burning. This corresponds with a plateau in luminosity that is related to the core mass-

luminosity relation first found by Paczynski (1970) in AGB cores. In transitioning to a

more AGB-like envelope, the luminosity is limited to a maximum value governed by the
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core mass, and so increasing Ṁ just causes more matter to pile on to the envelope while

steady-state burning at the plateau luminosity continues at the base of the envelope.

From this plateau luminosity, we then identify a hydrostatic upper limit to the accretion

rate, ṀRG = Lplateau/XQCNO. Shen & Bildsten (2007) explicitly showed that this leads

to an upper bound on the stable regime that is tightly constrained to ṀRG ≈ 3Ṁstable. It

is always the case that ṀRG is a stronger upper limit on the accretion rate than that set

by the Eddington luminosity, ṀEdd = LEdd/XQCNO, but in our code it often manifested

itself by triggering super Eddington winds since the increase in radius caused the opacity

in the outer layers to diverge from pure electron scattering.

For a given mass, increasing Ṁ to ṀRG causes the WD to travel along a path in the

HR diagram to higher L and Teff until it hits a “knee”, at which point the luminosity

continues to grow, but the effective temperature decreases, indicating a radial expansion

of the envelope. This knee can be seen in Figure 2.2. The regime inhabited by these

stably and steadily burning WDs in the HR diagram is also known to hold many of the

supersoft sources (Nomoto et al., 2007), making these stable burners excellent candidates

as the source of the soft X-rays. At high enough Ṁ ’s, hydrogen burning is outpaced by

accretion, causing a radial expansion in the envelope and a build-up of hydrogen (Nomoto

et al., 1979). The upper line in Figure 2.1 represents models with the highest Ṁ that

exhibit steady-state burning of hydrogen at the accreted rate, ṀRG. WDs in the region

above the upper line in Figure 2.1 will still burn hydrogen at a constant rate (albeit

more slowly than it is being accreted), and their envelopes will grow until optically-thick
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Table 2.1. Stably Burning WDs at the Stability Boundary: Global Properties

MWD Ṁstable ∆MH tsweep L
(M�) (10−7M� yr−1) (M�) (yr) (103 L�)

0.51 0.25 4.9× 10−5 2810 1.74
0.60 0.48 2.4× 10−5 720 3.36
0.70 0.76 1.2× 10−5 226 5.32
0.80 1.07 6.7× 10−6 88.7 7.51
0.90 1.41 3.5× 10−6 35.4 9.89
1.00 1.80 2.0× 10−6 15.5 12.7
1.10 2.40 9.6× 10−7 6.08 15.9
1.20 2.80 4.4× 10−7 2.24 19.8
1.30 3.50 1.3× 10−7 0.534 24.9
1.34 3.80 6.0× 10−8 0.226 27.0

winds or Roche-lobe overflow can slow the accretion rate (Hachisu et al., 1996). We don’t

investigate these systems in our study except to find the value of ṀRG for each mass.

The internal structures of 0.60 M�, 1.00 M�, and 1.34 M� WDs accreting at Ṁ =

5.0× 10−8 M� yr−1, 2.0× 10−7 M� yr−1, and 4.0× 10−7 M� yr−1, respectively, are shown

in Figure 2.3.

The cores are largely isothermal and degenerate, but on top of them is a hot helium

layer that is the ash of the stable burning. Above the ash is the radiative hydrogen enve-

lope with most of the burning occurring just above the Helium ash. To further illustrate

the presence of a thick, hot helium layer, Figure 2.4 shows the elemental abundance and

temperature profile of the same 1.00 M� WD shown in Figure 2.3. Additionally, we see

the expected pattern of a hydrogen-helium transition zone above the hot ash, coinciding

with a rising 14N mass fraction due to CNO burning.
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Table 2.2. Stably Burning WDs at the Stability Boundary: Properties at
L(r) = Lphot/2

MWD P ρ T β XH ∆R/R
(M�) (1017 dyne/cm2) (g/cm3) (107 K) - - -

0.51 2.31 47.5 5.08 0.928 0.258 0.558
0.60 2.25 36.0 5.69 0.882 0.335 0.496
0.70 2.48 36.7 6.24 0.846 0.286 0.430
0.80 2.74 35.9 6.72 0.812 0.290 0.376
0.90 3.15 37.0 7.22 0.783 0.291 0.323
1.00 3.63 38.9 7.72 0.753 0.280 0.285
1.10 4.37 42.1 8.32 0.723 0.272 0.244
1.20 5.41 44.8 9.05 0.687 0.284 0.210
1.30 7.66 52.4 10.2 0.644 0.293 0.168
1.34 9.76 61.0 10.9 0.630 0.290 0.141

From Figures 2.3 and 2.4 as well as Table 2.2, we see that there is a temperature

Tstable at which the stable burning occurs, and that Tstable is an increasing function of

both Ṁ and MWD. We can explain this dependence with a few assumptions about the

nature of the hydrogen-rich envelope. We expect the burning to occur at a depth where

the burning timescale, tburn ∼ QCNO/εCNO (where εCNO is the nuclear energy genera-

tion rate per unit mass and QCNO is the amount of energy released per unit mass of

hydrogen undergoing complete CNO burning) is approximately equal to the accretion

timescale, tacc = ∆M/Ṁ . If we assume a thin shell, where the pressure is approximately

P = GMWD∆M/(4πR4
core), (where Rcore is the radius at the base of the hydrogen-rich

envelope) we get the burning condition to be εCNO = (QCNOGṀMWD)/(PR4
core). Fur-

thermore, the opacity in the hydrogen-rich layer is dominated by electron scattering

and the envelope is radiative, so the accretion rate can be related to temperature and
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pressure via XQCNOṀ = L ∝MWDT
4/P . For our uses, we want to eliminate pres-

sure, so we use P ∝MWDT
4/Ṁ . Finally, we expand εCNO as a power law in temper-

ature, and with the assumption pressure is due primarily to gas pressure, we may use

εCNO ∝ ρT ν = (P/T )T ν = MWDT
ν+3/Ṁ . Putting this all together we find

Tstable ∝ Ṁ3/(ν+7)M
−1/(ν+7)
WD R−4/(ν+7)

core , (2.1)

where ν = 23.58/T
1/3
7 − 2/3 and T7 = T/107 K as shown in Hansen et al. (2004). Note

that Rcore is negatively correlated with MWD but positively (though weakly) correlated

with Ṁ . As a result, we expect Tstable to increase with increasing MWD at constant Ṁ

through the implicit Rcore-dependence. For a fixed mass, the radius is approximately

constant with changing Ṁ , so Tstable is only depending on a small power of Ṁ . Using a

prefactor of 3.5× 108 K (assuming MWD and Rcore are measured in solar units and Ṁ in

M� yr−1), Equation (2.1) and the ν−T7 relation yield temperatures at the point of peak

burning accurately to within 20%. For intermediate masses (0.6M� ≤MWD ≤ 1.2M�),

the calculated temperatures are typically well within 10% of the simulated values.

2.4 Unstable Burning

At accretion rates below the stable burning boundary (Ṁ < Ṁstable) indicated in Ta-

ble 2.1, the WDs undergo periodic hydrogen flashes. For accretion rates near the stable

boundary, these flashes lead to little mass loss from the system. Higher mass WDs ex-

perience shorter recurrence times for a given Ṁ . Equivalently, the ignition mass (the

mass of accreted material at which a runaway occurs) is smaller for larger core masses
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where the higher surface gravity allows for higher pressures with less mass accumulation.

If we look at the “first unstable model” (the model with Ṁ . Ṁstable), we can identify

the minimum recurrence time (or equivalent ignition mass) for that core mass. Before

exploring these boundary cases, we should justify our assumption that such a limiting

configuration exists

Paczynski (1983) examined flashes on hydrogen-accreting compact objects with a

simple one-zone model using linear stability analysis. His analysis showed that as the

accretion rate is decreased, the steady state models go from stable (perturbations die

exponentially) through quasi-stable (perturbations act as damped oscillators), quasi-

unstable (perturbations oscillate with increasing amplitude), and finally fully unstable

phases. When simulating the unstable-to-stable flash transition, though, he found that

the transformation was very rapid. The one-zone models gave large amplitude flashes (i.e.

novae) until the accretion rate reached the stable accretion rate at which point the model

switched over to stable and steady burning with very little weakening of the flashes. In

other words, there is essentially a discontinuity in the stability of the burning very near

Ṁstable.

In Figure 2.5 we plot a high resolution grid of Ṁ ’s performed on the 1.00 M� model,

demonstrating that as Ṁ approaches Ṁstable, the igntion mass and recurrence times in-

deed approach nearly constant values of ∆MH ≈ 4.4 × 10−6 M� and trecur ≈ 40 years.

While we didn’t compute this fine of a grid for each mass tested, we obtained the sta-

ble/unstable boundary resolved to within five percent of Ṁstable. This is precise enough
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for identifying limiting recurrence times and hydrogen ignition masses.
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Figure 2.5 Convergence of the recurrence time, hydrogen ignition mass, and stable burn-
ing duration as Ṁ approaches Ṁstable for MWD = 1.00 M�.

An observer can then use an observed nova recurrence time to infer a minimum core

mass. Table 2.3 lists the recurrence times for each first unstable model. There we

also list the peak temperature in the helium layer in the low-luminosity state as well

as the peak temperature in the burning layer as the convective burning zone develops.

The temperature in the helium layer during the low-luminosity state is always close to
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the extrapolated stable burning temperature (the temperature that would be expected

by the empirical power law fit at that Ṁ), though the two temperatures do not track

monotonically due to the varying helium mass from model to model.

Townsley & Bildsten (2004) examined how classical novae (CNe) ignition masses

depend on Ṁ . Their analysis assumed that the core had reached an equilibrium tem-

perature due to prolonged thermal contact with the cycling outer layers. We see that

for sufficiently high Ṁ ’s, the helium layer retains a significant fraction of the thermal

energy generated in a nova event. So, for these Ṁ ’s, the ignition mass and thus nearly

all other characteristics of a nova are independent of Tc. This trend is also seen in the

models with highest Ṁ ’s in Yaron et al. (2005). The hot helium layer in the unstable

models is evident in Figures 2.6 and 2.7 even while in the quiescent state. For CNe, CNO

enrichment is seen in ejecta, indicating that any helium layer from previous outbursts is

mixed with the hydrogen during the TNR and ejected along with a portion of the WD

core. Thus, we only expect the helium layer to be relevant at Ṁ ’s near Ṁstable where

mixing may cause helium dredge-up, but not necessarily the removal of the entire layer.

This would allow for the gradual build-up of an insulating helium layer.

As Ṁ decreases, more time is allowed for the helium layer to cool. This, in turn, causes

the ignition mass to increase, since a higher pressure is required to start a thermonuclear

runaway at a lower temperature. The trends for ignition masses in high-mass WDs are

shown in Figure 2.8. Compared to their steadily burning counterparts, the first unstable

model (the left-most point for each mass in Figure 2.8) has a hydrogen ignition mass that
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Table 2.3. Properties of Recurrent Novae Just Below the Stability Boundary

MWD Ṁ trecur tsweep
a THe

b Tpeak
c

(M�) (10−7M� yr−1) (yr) (yr) (107 K) (107 K)

0.51 0.24 4200 2810 5.0 8.3
0.60 0.46 1300 720 5.8 8.8
0.70 0.70 480 226 6.4 9.3
0.80 1.00 200 88.7 7.2 10.0
0.90 1.25 90 35.4 7.0 10.7
1.00 1.7 40 15.6 8.0 11.1
1.10 2.34 13.4 6.08 8.0 12.0
1.20 2.7 4.3 2.24 9.9 13.1
1.30 3.4 1.00 0.534 9.1 14.3
1.34 3.7 0.39 0.226 10.0 15.1

aTime for the stable model of the same MWD to burn
through one full layer of hydrogen.

bPeak temperature during the low-luminosity state in
the helium layer.

cPeak temperature during the outburst event.

is two to three times larger than the stable hydrogen mass. Thus, the static hydrogen

masses from the steadily burning masses cannot be extrapolated into the RNe regime to

obtain recurrence times.

2.5 Comparisons to Other Studies

Sienkiewicz (1980), Shen & Bildsten (2007), and Nomoto et al. (2007) all used linear

stability analysis to test the stability of constructed steady-state burning models. This is

a time-independent method that serves as a complementary check to our time-dependent
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calculations. We find that our stability region shown in Figure 2.1 is largely consistent

with these results and plot our results along with those of Nomoto et al. (2007) and Shen

& Bildsten (2007). Each of these is plotted in Figure 2.9, demonstrating the agreement

between various techniques.
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Figure 2.9 Stability regimes of this work (red solid line), Nomoto et al. (2007) (dotted
blue line), and Shen & Bildsten (2007) (dashed gray line).
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Shen & Bildsten (2007) studied a one-zone model for stability at various accretion

rates and compared their results favorably to those of Nomoto et al. (2007), noting

that the discrepancy at lower masses was likely due to their assumption of the burning

layer being the mass within a scale height. Nomoto et al. (2007) compute the entire

stellar model, but assumed a discontinuous transition from solar composition to nearly

pure helium (Nomoto 2012, private communication). We, however, observe a transition

zone where most of the burning is occurring, so accurate comparisons are not possible.

Nonetheless, Figure 2.9 demonstrates agreement in the stability boundary between the

linear stability analysis and time-dependent calculations.

Other recent time-dependent studies of accreting WDs in and near the stable-burning

regime have been carried out by Iben (1982), Livio et al. (1989), Cassisi et al. (1998),

and Yaron et al. (2005). The thorough analysis in Iben (1982) shows that recurrence

times change over the course of several flashes. Hence, we only compare to simulations

that computed through multiple flashes to mitigate the effect of initial condition choices.

We now compare our simulations wherever possible.

Iben (1982) studied a 1 M� WD accreting in a quasi-static (hydrostatic) approxima-

tion for Ṁ ’s near and in the stable-burning regime. He assumed X = 0.64 in the accreted

material and also neglected mass loss. Both of these assumptions should lead to longer

recurrence times. The lowered hydrogen composition lowers the CNO energy generation

rate, requiring a higher pressure/temperature to get to the same level of burning as would

be expected if X = 0.70. The lack of mass loss greatly affects the time the WD spends at

36



high luminosities, since it must burn through most of the accreted envelope rather than

removing most of it through winds. At high Ṁ ’s, the time spent on the high-luminosity

branch is comparable to the time spent in quiescence, so ignoring mass loss will lead to

appreciably longer recurence times. Additionally, the cores for Iben (1982) were typically

much hotter than ours, exceeding the temperature of the quiescent helium layer from our

models. We expect this would act to decrease the recurrence time since lower pressures

(and thus accreted masses) are required at higher temperatures to trigger a TNR. Finally,

Iben (1982) must certainly have used different opacities, which would affect the structure

of the accreted envelope.

At first, data for a stripped AGB core with Tc ≈ 3 × 108 K is presented. For Ṁ =

2.5 × 10−7M� yr−1, he reports steady and stable burning, which we also observe. At

Ṁ = 1.5× 10−7M� yr−1, he observes recurrence times at around 72 years, though they

are evidently still increasing in his Figure 6. In contrast, our corresponding model had a

recurrence time of 42 years. His model has approximately 36 years of intense hydrogen

burning, whereas ours burns for only 17, indicating that mass loss is responsible for the

much of the discrepancy. He also displays data for the same hot WD as well as one whose

core has gone into a “steady-state” temperature configuration (Tc ≈ 7×107 K) accreting

at Ṁ = 1.5× 10−8M� yr−1. These exhibit recurrence times of ≈ 550−650 years, though

it is apparent in his Figures 7 and 11 that the recurrence times have not grown to their

asymptotic values yet. We observe longer recurrence times at ≈ 1400 years. In this case,

the neglect of mass loss is likely unimportant since the accretion phase is much longer
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than the outburst phase, but the higher central temperatures of both WDs are pushing

the recurrence times down relative to ours.

Livio et al. (1989) simulated a 1.0 M� WD with Tc = 108 K accreting at 10−8,

10−7, and 10−6 M� yr−1. Again, this core temperature is even hotter than the stable

burning temperature of the steady burners, so it will influence ignition masses. Thus,

we would expect their results to exhibit shorter recurrence times and a lower stability

boundary. Additionally, the accreted material in their simulations had X = 0.7 and

Z = 0.03. Their M8 model, at Ṁ = 10−8 M� yr−1 exhibited repeated hydrogen flashes

with trecur = 1520 years and an ignition mass (total mass present above the helium

layer) of ∆Mign = 1.7 × 10−5 M�. In our corresponding model which had the lower

core temperature but the same Ṁ , we find trecur = 2220 years and an ignition mass of

∆Mign = 2.6×10−5 M�, which given the core temperature for such a relatively low Ṁ , is

a plausible difference. For their M7 model, which accreted at 10−7 M� yr−1, they found

trecur = 135 years, whereas our corresponding model gives trecur = 73 years. Their M6

model, accreting at 10−6 M� yr−1 expanded to red giant proportions, as did ours.

Cassisi et al. (1998) studied WDs with MWD = 0.516 M� and MWD = 0.80 M�

accreting at rates comparable to the stable burning regime. Their accreting matter has

X = 0.7 and Z = 0.02, and the core temperatures are well below their observed helium

layer temperatures, so we expect their models to compare more favorably to ours. It

appears that there was no mass loss prescription applied by Cassisi et al. (1998). We

don’t anticipate this causing any significant differences with our results since the stable
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burning lifetimes for the configurations in question are small compared to the accretion

timescales. Additionally, the opacities used in Cassisi et al. (1998) are taken from older

Los Alamos tables that they claim are very similar to the OPAL opacities. They simulated

a 0.516 M� WD accreting at rates of 2×10−8, 4×10−8, 6×10−8, 10−7, and 10−6 M� yr−1.

They observe that the model with Ṁ = 2× 10−8 M� yr−1 exhibits hydrogen flashes with

trecur = 5400 years, whereas our 0.51 M� model at the same Ṁ has trecur = 5040 years.

For Ṁ = 4× 10−8, 6×10−8, and 1×10−7 M� yr−1, they observe steady burning, which is

mostly consistent with our results, though we found that for our 0.51 M� WD, an Ṁ of

10−7 M� yr−1 resulted in a red giant configuration. Their WD is slightly more massive,

and given that we find that Ṁ = 9× 10−8 M� yr−1 gives stable burning on our 0.51 M�

WD, the discrepancy seems plausible. Finally, both Cassisi et al. (1998) and we observe

a red giant phase for Ṁ = 1× 10−6 M� yr−1.

For their 0.80 M� WD, Cassisi et al. (1998) ran simulations with Ṁ = 10−8, 4 ×

10−8, 10−7, 1.6 × 10−7, and 4 × 10−7 M� yr−1. For the lowest three Ṁ ’s, they found

trecur = 3110 years, 483 years, and 204 years, respectively. For the same mass and

Ṁ ’s, we find trecur = 3370, 596, and 200 years, respectively. We both observe steady

burning at Ṁ = 1.6× 10−7 M� yr−1, and we both observe a red giant configuration at

Ṁ = 4× 10−7 M� yr−1.

Finally, we compare to Yaron et al. (2005), who simulated accreting WDs with masses

of 0.65, 1.00, and 1.25 M� (among others that we do not compare to). For each of these

masses, they accreted matter at rates of 10−8 and 10−7 M� yr−1 (again with many more
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at lower Ṁ ’s that aren’t applicable to our study). They also varied the core temperature

between 1×107 K and 5×107 K. It shouldn’t affect our results, but we will compare only

with the Tc = 3×107 K results. Finally, they employed an optically thick, supersonic wind

as a mass loss prescription (Prialnik & Kovetz, 1995) and allowed for mixing between

the core and envelope, as evidenced by their metal-enriched ejecta.

At no point is stable burning reported in Yaron et al. (2005), though it seems that

simulations with no mass loss correspond to our red giant or stable configurations (a

period is still reported in their Table 3). For MWD = 0.65 M�, trecur = 10200 and 254

years are reported for Ṁ = 10−8 and 10−7 M� yr−1, respectively. Using our own 0.65 M�

WD, we find a recurrence time of 7800 years for Ṁ = 10−8 M� yr−1 and stable burning

for Ṁ = 10−7 M� yr−1. For the 1.00 M� case, the two reported trecur’s are 2030 and 87.4

years, whereas ours are trecur = 2216 and 72.6 years. Finally, their 1.25 M� WDs give

trecur = 384 and 19.6 years. Our 1.25 M� WD models indicate trecur = 258 and 14.4 years

at these Ṁ ’s. For the higher Ṁ ’s, there is little to no metal enrichmeent in the ejecta and

only minor helium enrichment, so we expect the reasonable agreement in most of the cal-

culations. The exception is the M = 1.25M�, Ṁ = 10−8M� yr−1 calculation, where the

ejecta in Yaron et al. (2005) is significantly metal-enriched, indicating significant mixing

with the core. It’s not immediately obvious why our calculation with no enrichment has

a shorter recurrence time, since CNO burning should start more easily with an enriched

base layer.
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2.6 Post-Outburst Novae

In addition to the models computed for stability analysis, we also ran models withMWD =

0.6M�, 1.0M�, 1.1M�, 1.2M�, 1.3M�, and 1.34M� at a lower accretion rate of Ṁ =

10−9M� yr−1 to study the stable burning phase after a classical nova (CN). For mass loss,

we used both the super Eddington wind prescription described earlier as well as Roche

lobe overflow (RLOF) by putting the WDs in a binary systems with Roche lobe radii

between RRL = 0.4R� and 1.0 R�. Our choice for the accretion rate, masses, and orbital

separation was motivated by the study of the classical novae population by Townsley

& Bildsten (2005). They showed that the observed orbital period distribution of the

CNe was consistent with expectations of the mass transfer rate history of cataclysmic

variables. This implied that the most often observed CNe would be those in 4-7 hours

orbital periods with a mass transfer rate driven by magnetic braking at 10−9M� yr−1.

These tight orbits then enable Roche lobe overflow when the WD undergoing the CN

reaches a photospheric radius RWD = RRL, triggering the mass loss from the WD that

creates a common envelope. Within MESA this mass loss is simulated by eliminating any

mass beyond the Roche lobe radius, effectively demanding that the WD photosphere not

exceed RRL. It is simply the hydrostatic expansion of the actively burning layer that

pushes the outer layers beyond RRL. Once the hydrogen layer mass has reduced to a

value where RWD . RRL, the mass loss ends and the period of prolonged stable burning

ensues. Since the ignition masses are smaller on more massive WDs, the expectation

is that, even though rarer, more massive WDs will be more prevalent in the observed
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population.

Kato & Hachisu (1994) have accounted for mass loss in novae through optically thick

winds driven by an opacity bump at log T (K) ≈ 5.2 from the OPAL tables. This bump

in opacity should cause a decrease in the Eddington luminosities, making our super

Eddington wind prescription a plausible mass loss mechanism. We present results using

both mass loss mechanisms independently, but it’s likely that some combination of winds

and Roche lobe overflow are present in actual novae. Finally, we again neglect convective

dredge-up and the accompanying metal enrichment of the burning layer.

The evolutionary tracks of our 0.6M�, 1.0M�, 1.2M�, and 1.3M� models just after

the end of mass loss are shown on the HR diagram with respect to the stable burners of

§2.3 for both mass loss prescriptions in Figure 2.10. There we show the CNe as lines with

markers on them denoting equal time steps after mass loss has ended. For instance, the

RLOF 0.60 M� model burns steadily for approximately 250 years, whereas our RLOF

1.20 M� model only does so for approximately a year. The duration of the supersoft

source (SSS) phase is clearly dependent on both the WD mass and the amount of mass

ejected. The super Eddington wind models tend to start “later” in the steady-state

locus since the super Eddington winds remove more mass than RLOF. As a result, those

turn-off times are always shorter than the those of the corresponding RLOF models. We

found there is some cutoff mass that depends on orbital parameters below which novae fill

their Roche lobe before the luminosity goes super Eddington. For the models shown, the

0.6 M� and 1.0 M� fill their Roche lobes before going super Eddington, so the RLOF
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prescription is likely more accurate. For the higher masses, the Roche lobe is bigger,

allowing for greater expansion, leading to lower envelope temperatures, greater opacities,

and thus a lower Eddington limit. The super Eddington models for these higher masses

never expanded to the Roche lobe radius set for the RLOF models. Additionally, we can

see that during the contracting phase, the RLOF 1.2 M� and 1.3 M� WDs are super

Eddington (the upwards excursion), so the mass loss in those cases is certainly a lower

limit.

After mass loss (on the far red end of each evolutionary track), each CN passes near or

directly through the locus of stably burning phases corresponding to its mass. However,

at an accretion rate of Ṁ = 1.0× 10−9M� yr−1, the stable burning consumes hydrogen

faster than it is accreted. Thus, a CN passes through phases with a progressively smaller

hydrogen layer, tracing a path to and around the knee until the layer becomes thinner

than that of the critically stable WD configuration. Sala & Hernanz (2005) modeled

CNe in the post-outburst phase as a series of stably-burning WDs and tracked their

evolution for four envelope compositions. Their Figure 1 gives HR diagram paths as

well as the evolution of the hydrogen-rich layer in each of their modeled CNe. Their

asymptotic luminosities and effective temperatures for the most metal-poor configuration

(ONe25, at Zenv = 0.25) agree well with our stable burners, though we find that the CNe

themselves follow tracks that are marginally brighter and hotter than the corresponding

stable burners. The depleting hydrogen layer is very apparent in Figure 2.11, where we

see that the WDs using RLOF realize states with hydrogen masses and Teff ’s very close
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to the corresponding steadily burning WDs. However, the WDs using super Eddington

winds typically removed more mass than the RLOF models, so they “skip” some or most

of the steady-state configurations and instead start with a much lower envelope mass.

This disparity in the amount of fuel between the two configurations at the same mass

explains why the turn-off times are much shorter for super Eddington winds than RLOF.

In either cases, hydrogen burning becomes an insignificant source of luminosity past the

lowest Ṁ stable burner state, and the WD then proceeds down the WD cooling track at

nearly constant radius and hydrogen mass. Comparing to the ONe25 model in Sala &

Hernanz (2005), we observe turn-off times that are always longer in the RLOF and low-

mass super Eddington cases. For the higher mass super Eddington models, we observe

marginally shorter turn-off times, likely driven by the skipped steady-state modes. The

overall trend is that nearly all turn-off times in Sala & Hernanz (2005) are shorter than

ours due to the significant metal enrichment of their envelopes, which is an important

difference we elaborate on later.

Figure 2.12 shows the temperature profile of the 1.0M� CN at four distinct stages: the

low luminosity accreting state, the peak of hydrogen burning during the TNR, the point

of highest Teff , which is near the end of stable burning, and the cooling/accumulating

phase just after stable burning has ceased. For each profile, the location of the base of the

hydrogen-burning layer (here approximated as the location where X = 0.1) is marked.

For comparison, the lowest-Ṁ 1.00 M� stable burner is also shown in the gray line. As

the hydrogen accumulates in the low-luminosity state, the profile is somewhat similar to
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Figure 2.11 The hydrogen mass against the effective temperature of post-outburst CNe
(lines) compared to steady burners of the same mass (circles). Models using super Ed-
dington winds are on the left and those using RLOF are on the right. The RLOF novae
pass through phases closely resembling their steadily-burning counterparts at the same
effective temperatures, but the stronger mass loss from super Eddington winds cause no-
vae to start stable burning at a much lower envelope mass than the corresponding RLOF
models. Equal time markers are the same as mentioned in Figure 2.10.
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a cooling WD, albeit with some heat still left over in the helium layer as well as some

energy generation due to the compressional losses from accretion (see Figures 26 and 27

in Paxton et al. (2013)). Once the pressure at the base of the hydrogen reaches a critical

threshold, the thermonuclear runaway (TNR) ensues, raising the temperature at the

base to almost 2× 108 K, which in turn drives a convective zone in the hydrogen layer.

The radius then expands, triggering Roche lobe overflow until the envelope’s thermal

structure is reorganized so that it can carry the luminosity from the hydrogen burning.

It then enters the stable burning phase, during which we see a temperature profile in the

hydrogen-rich layer that is very similar to a steadily burning WD. Note that between

the TNR and the SSS phase, approximately 90 percent of the hydrogen layer has been

lost. A small portion of this is due to the stable burning, but the majority is due to

RLOF. After stable burning ceases, the envelope cools and accretes hydrogen until the

next TNR repeats the process.

Combined measurements of Teff and the turn-off time of a CN (Henze et al., 2011) can

be used to infer the WD mass. Figure 2.13 shows observed turn-off times and Teff ’s in

post-ouburst novae. Included in Figure 2.13 are data from M31 (Henze et al., 2011, 2013)

and galactic sources (Rauch et al., 2010; Osborne et al., 2011; Beardmore et al., 2012). For

the Henze et al. (2011) dataset, we’ve only included data that had reported uncertainties

rather than limit points, which discriminates against longer-lived SSS phases since they

are less likely to be observed from beginning to end. We also plot our calculations, where

we define the turn-off time as the time between the beginning of mass loss and when the
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Figure 2.12 Time series of temperature profiles in a 1.00 M� WD accreting solar material
at Ṁ = 1.0× 10−9 M� yr−1 with RLOF for mass loss. The point shows the base of the
H layer. The long-dashed line is just prior to the outburst, when the luminosity is low
and due primarily to compressional heating. The dotted line is the profile at the time
of peak hydrogen burning, with a vigorously convective layer extending from the point
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the stable burning ceases, as the envelope is cooling off and accumulating hydrogen. The
gray line is the profile of a 1.00 M� WD accreting at the lower stable limit.
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effective temperatures shown for the computational models are the temperatures during
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are from the Stefan-Boltzmann law given a luminosity and a photospheric radius. Teff ’s
from Henze et al. (2011, 2013) are blackbody approximations taken from X-Ray spectra,
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temperatures can differ by ≈ 10% due to radiative transfer effects.
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luminosity falls below one quarter of the peak luminosity of the stable burners of the

same mass. This ending criteria isn’t very crucial since the luminosity evolution after the

stable burning phase is very rapid compared to time spent doing stable burning. For the

computational models, we cannot report a single Teff since it increases through most of

the SSS phase. The turn-off time is well defined, so we report our results as a horizontal

line in Figure 2.13 with the effective temperatures being those during the latter 70% of

stable burning (the SSS is likely obscured at earlier times by the expanding ejecta shell).

The temperatures reported for the observed CNe are obtained either by approxi-

mating an X-ray spectrum as a blackbody (Henze et al., 2011, 2013) or through more

sophisticated NLTE simulations (Rauch et al., 2010; Osborne et al., 2011; Beardmore

et al., 2012). These two methods can yield different temperatures by ≈ 10% (see Figure

4 from Henze et al. 2011), so there will necessarily be disagreement between CNe analyzed

by the two different methods. Our models do not account for dredge-up and the subse-

quent metal enrichment of the ejecta and stably-burning envelope. This could cause two

effects. First, the enriched TNR could burn more vigorously, driving stronger mass loss

and thus shortening the turn-off time. Secondly, the remnant envelope after mass loss

will be metal-enriched and will thus burn through the remaining hydrogen more quickly

than if the same mass were at solar abundance, as shown in Sala & Hernanz (2005). Both

of these factors indicate that our turn-off times are longest limits for the given mass loss

prescriptions. We do not, however, expect metal enrichment to greatly alter the effective

temperature of the outburst, so these can still be used to constrain WD masses. Finally,
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the observed data shown in Figure 2.13 are deficient in low-temperature (kTBB < 30 eV)

events.

Such events do exist, but the available measured turn-off times for them are lower

limits since they have not been observed for a long enough time to detect both turn-

on and turn-off. Additionally, observing such events is difficult due to absorption by

interstellar neutral hydrogen and the overall weaker X-Ray flux. Finally, such low-mass

systems may be more numerous, but since their recurrence times are significantly longer

than their higher-mass counterparts, they are observed less often. In Figure 2.13 we only

plot those events from Henze et al. (2011) that have established uncertainties in both

the blackbody temperature and the turn-off time. The agreement between theory and

observation in this region of parameter space is strong, implying that most of the novae

with SSS phases that have established turn-off times and blackbody temperatures have

M ≥ M�. As X-ray monitoring of M31 continues, more SSS’s will turn off and stacked

pointings allow for detection of fainter SSS’s. Thus we will soon be able to probe more

reliably into the lower-mass regime (Henze 2013, private communication).

Due to the variability of Teff during the SSS phase, it is not an ideal tracer of WD

mass on its own. The turn-off time, however, is a function of the luminosity and hydrogen

mass layer size, assuming the mass loss history is known. Since we’ve seen that ∆MH

decreases with increasing MWD while L increases with increasing MWD, the turn-off time

should be a consistent tracer of WD mass while also being relatively easy to measure.

Using our high-mass CNe models, including an additional 1.34M� CN, we find power
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laws relating turn-off time to WD mass given by MWD = 1.20M� (513 days/toff)0.081 (for

RLOF) and MWD = 1.20M� (137 days/toff)0.089 (for super Eddington winds). We then

apply this relation to the catalogue of Henze et al. (2011) to get corresponding WD masses

to compare to the reported ejection masses, which were inferred by Henze et al. (2011)

from the turn-on time and the ejecta velocity. The results of this analysis are shown

in Figure 2.14. We see the mapping from turn-off time to MWD gives a similar relation

between WD mass and ejected mass as the simulations for either mass loss prescription.

Note though that the RLOF law gives super-Chandrasekhar mass WDs for sufficiently

low turn-off times, which is a result of the under-prediction of mass loss in high-mass

WDs in the RLOF assumption.

2.7 Case Study: M31N 2008-12a

A particularly interesting nova with a detected post-outburst SSS phase is M31N 2008-

12a, which is a recurrent nova with a recurrence time of about a year (Tang et al., 2014;

Henze et al., 2014a; Darnley et al., 2014) and possibly as short as six months (Henze

et al., 2015). It has been erupting since at least 1992 when its recurrent X-ray emission

was detected and correctly identified as the result of hydrogen burning on a WD surface

by White et al. (1995). After its 2013 outburst and optical detection by the Palomar

Transient factory (Tang et al., 2014), followup on Swift revealed a post-outburst supersoft

phase that ended roughly 16 days after optical peak. We show their binned X-ray spectra

for three durations of the SSS phase and their best-fit blackbody models in Figure 2.15.
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Figure 2.15 Swift XRT spectra (from 0.3 to around 1 keV) of M31N 2008-2012a taken
at different time bins during the supersoft phase are shown with their best-fit blackbody
spectral models assuming a fixed column NH = 1.5× 1021 cm−2.
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The blackbody fits are done for two possible hydrogen columns, NH = 1021 cm−2 and

1.5 × 1021 cm−2. In either case, the peak effective temperatures are in excess of 106 K,

and their peak luminosities are in the range of 5× 104 − 105 L�.

The short nova recurrence time, rapid evolution as an X-ray source, and high surface

temperature during the SSS phase all consistently point to a high mass WD. To quantify

just how large the WD mass must be to explain the observations, we expanded upon

the work in §2.6 by simulating WDs with M = 1.30, 1.32, 1.34, and 1.36 M� accreting

material with solar composition. We focused on models that gave the observed recurrence

time of 1 year, yielding an accretion rate range of 1.7×10−7 < Ṁ/M� yr−1 < 3.3×10−7.

We used the super Eddington wind mass loss prescription for these models.

Our calculations allow us to immediately conclude that the WD in M31N 2008-12a

has a mass of at least 1.3 M�, as lower mass WDs could not yield a minimum recurrence

time as short as 1 year (see Table 2.3 and Figure 2.8). The Ṁ ’s for the 1.32, 1.34, and

1.36 M� models that yielded recurrence times closest to trecur = 1 year were, respectively,

3.1 × 10−7, 2.1 × 10−7, and 1.7 × 10−7 M� yr−1. These models retained ≈ 30% of the

accreted material through the outburst, yielding effective accretion rates onto the helium

layer of ṀWD ≈ 9 × 10−8, 9 × 10−8, and 6 × 10−8 M� yr−1. Assuming this matter

ultimately stays on the WD and that the effective accretion rate remains constant, these

models would evolve to M = 1.37 M� within 5× 105 years.

We next studied the location of these high mass WDs in the HR diagram during the

SSS phase, all of which enter the SSS phase after only about 10-20 days from the onset
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of the TNR. As shown in Figure 2.16, all model tracks are consistent with the measured

Teff from M31N 2008-12a for either absorption model, and luminosities are similar as

well. However, the WDs have different rates of evolution in the HR diagram depending

on their mass as denoted by the solid points that denote the elapsed time between each

point, similar to Figure 2.10. For example, the 1.34 M� WD evolves through the SSS

phase in about 15 days, whereas the 1.36 M� WD is in a SSS phase for only 8 days.

Clearly, the 1.30 M� WD evolves far too slowly. So, this comparison again points to WD

masses of 1.30 < M/M� < 1.36 in our super Eddington wind model, with mass loss due

to Roche lobe overflow indicating more massive WDs. The turnoff times could be shorter

if there was substantial mixing of elements heaver than hydrogen into the burning layer

during the TNR, pointing to WD masses at the lower end, i.e., M = 1.30 M�.

2.8 Concluding Remarks

We have presented stably burning WD models, found the lowest Ṁ ’s that permit such

stable burning, and verified that they are consistent with other time-dependent studies

as well as time-independent linear analysis studies of stability. We’ve shown that the

hot helium ash left over from hydrogen burning dominates the thermal structure of both

stably and unstably burning WDs at high Ṁ ’s. This helium layer is important because it

sets the recurrence times for rapidly accreting recurrent novae where dredge up is unable

to reach the WD core, but it is also important because it is likely to ignite unstably

once it has grown large enough. The mass of helium in the WD, ∆MHe, is not a static
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property of a stably burning model. For the 1.00 M� example shown in Figure 2.4,

∆MHe ≈ 1.5 × 10−3 M�, but it will continue to grow at the accretion rate, Ṁ , until

the pressure and the temperature at the base become high enough to initiate unstable

helium burning. Sienkiewicz (1980), Iben & Tutukov (1989), and Cassisi et al. (1998)

showed that the stable burning regimes for hydrogen and helium are mutually exclusive

for the case of solar composition accretion. However, Yoon et al. (2004b) offer a way to

merge the two stability regimes if a large amount of differential rotation is allowed in the

burning shells. Our calculations assume no rotation, and we observed unstable helium

burning for WDs that were allowed to continuously accrete.

Finally, we showed how CNe pass through the stably burning phases after their out-

burst and subsequent mass loss. The duration of this SSS phase is highly sensitive to the

mass of the underlying WD, spanning for hundreds of years for MWD ≈ 0.60 M� to mere

tens of days for MWD ≈ 1.30 M�. This variety of durations indicates a mapping from

observed turn-off times to WD mass, though a study of the effects of metal enhancement

and a better understanding of mass loss is necessary to get a more precise relationship.

We then used the results of this work to constrain the mass of the WD in nova M31N

2008-12a to 1.30 < MWD/M� < 1.36.

We thank Ken Nomoto for helpful discussions regarding the calculations in Nomoto

et al. (2007). We also thank Pablo Marchant for his useful binary Roche lobe overflow

routines that were used in this work and Jeno Sokoloski for consultation regarding RNe

observations. Finally, we thank Martin Henze and the referee for very helpful comments.
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Chapter 3

Photoionization Heating of Nova

Ejecta

The expanding ejecta from a classical nova remains hot enough (∼ 104 K) to be detected

in thermal radio emission for up to years after the cessation of mass loss triggered by

a thermonuclear instability on the underlying white dwarf (WD). Nebular spectroscopy

of nova remnants confirms the hot temperatures observed in radio observations. During

this same period, the unstable thermonuclear burning transitions to a prolonged period

of stable burning of the remnant hydrogen-rich envelope, causing the WD to become,

temporarily, a super-soft X-ray source. In this chapter, we show that photoionization

heating of the expanding ejecta by the hot WD maintains the observed nearly constant

temperature of (1−4)×104 K for up to a year before an eventual decline in temperature

due to either the cessation of the supersoft phase or the onset of a predominantly adiabatic
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expansion. We simulate the expanding ejecta using a one-zone model as well as the

Cloudy spectral synthesis code, both incorporating the time-dependent WD effective

temperatures for a range of masses from 0.60 M� to 1.10 M�. We show that the duration

of the nearly isothermal phase depends most strongly on the velocity and mass of the

ejecta and that the ejecta temperature depends on the WD’s effective temperature, and

hence its mass.

3.1 Introduction

Classical novae (CNe) are caused by the ejection of ∆Mej ∼ 10−4M� of matter from

an accreting white dwarf (WD) triggered by a thermonuclear instability in recently-

accreted hydrogen-rich matter (Gallagher & Starrfield, 1978; Starrfield et al., 2008). The

expanding ejecta are bright in the radio for hundreds of days after the optical peak

(Seaquist & Bode, 2008) and are well modeled by assuming the radiation comes from

thermal bremsstrahlung emission from an expanding medium of nearly constant electron

temperature Te ≈ (1 − 4) × 104 K (Seaquist & Palimaka, 1977; Hjellming et al., 1979;

Taylor et al., 1988; Eyres et al., 1996). Such temperatures are also observed via nebular

spectroscopy long after optical peak in novae like V1974 Cygni 1992 (Austin et al.,

1996) and T Pyxidis V351 (Shore et al., 2013). However, between the fading of the

optical emission (which may correspond to the end of mass ejection) and the end of the

radio emission several hundred days later, the ejecta undergo an expansion in volume

by several orders of magnitude. In the absence of a heating source, the ejecta would
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undergo adiabatic expansion, leading to a large temperature decline to values orders of

magnitude less than the observed 104 K. The cause of these much higher temperatures

for such prolonged periods is the focus of this chapter.

With the rise of frequent X-ray monitoring of classical novae, it is becoming increas-

ingly clear that most, if not all, CNe are followed by a super-soft X-ray source (SSS)

phase during which the WD shrinks in radius to nearly its pre-nova size, but continues

to burn a remnant hydrogen envelope at nearly the Eddington luminosity as modeled

by Starrfield et al. (1974), Fujimoto (1982a), Sala & Hernanz (2005), Hachisu & Kato

(2010), and Wolf et al. (2013). This phase has been decteced in many galactic novae

(Oegelman et al., 1984; Shore, 2008; Krautter, 2008; Schwarz et al., 2011), and observa-

tions in M31 are making it clear that a SSS phase is likely to follow every classical nova

outburst (Henze et al., 2011, 2014b). During the SSS phase, the WD has L ≈ 104 L� and

since it is compact, is a strong source of radiation at kTeff ≈ 50−100 eV. This SSS phase

can be as short as a few days for novae with the most massive WDs (Tang et al., 2014;

Henze et al., 2014a) and as long as a decade for low-mass WDs like V723 Cas (Ness et al.,

2008). We show here that the SSS phase is a sufficiently powerful source of photoionizing

heating to sustain the high ejecta temperature long after the optical peak.

We start in Section 3.2 by reviewing the physics of photoionization balance and estab-

lish our simplified model of hydrogen and helium ionization in nova ejecta. We derive the

temporal evolution of the ejecta temperature in Section 3.3 and discuss computational

models in Section 3.4. We compare our semi-analytic results to the computational results
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in Section 3.5, and end by showing how this new understanding can inform us about the

properties of CNe ejecta, and, potentially, the WD mass.

3.2 Photoionization Balance

For the late time evolution of interest to us, we chose to model the nova ejecta at age t

as one zone of constant mass ∆Mej in a uniform density sphere (i.e. not a shell) of radius

r(t) = vejt expanding at constant velocity vej. A hot WD of mass M and radius RWD

resides at the center. The ejecta has a composition X, here represented as a vector of

mass fractions. The number density of any given isotope, i, in the ejecta is

n(Xi) =
3Xi∆Mej

Aimp4πv3
ejt

3
, (3.1)

where Ai is the mass number of isotope i and mp is the proton mass. The electron-

ion coupling time is always much shorter than the age, t, during the time relevant for

our calculations, so there is only one temperature, T (t). We express the fundamental

equation of thermodynamics in terms of ejecta volume V , entropy S, and total number

of particles N as

TdS = NkT

(
3dT

2T
+
dV

V

)
. (3.2)

For a spherical ejecta of pure ionized hydrogen (N = 2Ne) with r = vt, this becomes

T
ds

dt
= nekT

(
3
d

dt
lnT +

6

t

)
. (3.3)
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where we now consider the specific entropy s = S/V and ne is the number density of

electrons.

The only source of heating we will consider is that from the central, hot, WD in the

SSS phase, which is a system that has been modeled extensively (Starrfield et al., 1974;

Fujimoto, 1982a; MacDonald & Vennes, 1991; Sala & Hernanz, 2005; Hachisu & Kato,

2010; Wolf et al., 2013). We extended the work of Wolf et al. (2013) to generate the

time-dependence of Teff for a range of WD masses, as shown in Figure 3.1. These simula-

tions used the 1-D stellar evolution code MESA (Paxton et al., 2011, 2013), following the

time-dependent evolution of WDs accreting solar composition material at 10−9 M� yr−1

through several nova flashes with super-Eddington winds as the primary mode of mass

loss. In particular, we only display the results from the end of mass loss until the end of

quasi-stable hydrogen burning for one representative nova cycle. The original simulations

did not have data for a 0.8 or 1.1 M� WD, so we generated additional data for this work.

At any given age since mass loss ended, we know the WD radius and Teff , and hence the

radiation field that powers the photoionization heating. This is the only information we

use from the MESA models. The ejecta parameters ∆Mej and vej used are independent of

the MESA models, and, in general, would vary significantly for novae on WDs of different

masses.
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3.2.1 Strömgren Breakout

Our first concern is whether the photoionization source is adequate to maintain a large

region of mostly ionized plasma in the ejecta. Hence, we start by finding the Strömgren

sphere radius, RS, and compare it to the ejecta dimension, vejt. For simplicity, we assume

pure ionized hydrogen (ne = np) within the Strömgren sphere, and equate the rate of

emission of H-ionizing photons by the WD, QH, with the rate of recombinations in that

volume,

QH =
4

3
πR3

Sαnpne , (3.4)

where α is the radiative recombination rate of hydrogen.

At early times RS is far inside the outer ejecta radius, vejt, and the ratio scales as

RS

vejt
=

(
4πQH

3αN2
p

)1/3

(vejt), (3.5)

where Np is the total number of protons. Hence, at early times, the Strömgren sphere

is inside the ejecta, and only breaks out at an age of

tS ≈ 30 d

(
vej

103 km/s

)−1( ∆Mej

10−5 M�

)2/3( QH

1048 s−1

)−1/3

, (3.6)

where we have scaled vej, ∆Mej, and QH to values typical of novae on intermediate-mass

WDs. Table 3.1 shows that the H Strömgren sphere breaks out by 50 days for all but

the most massive WDs for ∆Mej = 10−5 M� and vej = 103 km s−1. This confirms a time

after which all of the ejecta is exposed to the photoionizing radiation field. The pure He

breakout times for singly ionized He Strömgren spheres are systematically later due to

less ionizing radiation available for a pure He ejecta. The more massive WDs have longer
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Strömgren breakout times at the same ejecta parameters because while they produce

harder spectra than lower-mass models, the total luminosity is not significantly higher,

so the total number of ionizing photons emitted, Q, decreases, requiring more time for

a complete ionization of the ejecta. Additionally, the SSS phases for the most massive

models are short enough that the ionization front never makes it to the ejecta radius

before the ionizing source fades greatly, causing excessively long Strömgren breakout

times. We explore the ionization state of the ejecta at late times in Section 3.5.

Beck et al. (1990) performed a much more detailed calculation of this breakout for

a He Strömgren sphere for a mixed ejecta with heavier elements (Z > 2), and a lower

ejected mass and velocity (∆Mej = 1.3×10−6 M� and vej = 6×102 km s−1 than we used

for Table 3.1. So as to make a close comparison, we used their parameters, including

their WD Teff (see Figure 6 of Beck et al., 1990) as inputs to our homogenous model. We

found that the H and He Strömgren breakouts occur at 31 days and 77 days, respectively,

very close to the breakout they reported at t = 76 d for the He Strömgren sphere.

3.2.2 Ionization Timescale

After the Strömgren breakout, we allow that the ejecta may no longer absorb the majority

of the photoionizing radiation. We characterize this via the optical depth, τν , through

the ejecta at frequency ν,

τν(r) =
∑
i

n(Xi) σpi(ν,Xi) r, (3.7)
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Table 3.1. Strömgren Breakout Timesa

H He

MWD tS
b QH,47

c tS
d QHe,47

e

(M�) (d) (1047 s−1) (d) (1047 s−1)

0.60 31 8.0 95 1.2
0.80 28 11.0 69 3.6
1.00 31 8.0 60 5.6
1.10 37 5.0 67 4.4
1.20 41 4.0 214 3.6
1.30 132 2.9 387 2.7

a∆Mej = 10−5 M�; vej = 103 km s−1

bStrömgren breakout time for pure hydrogen

cEmission rate of H-ionizing photons

dStrömgren breakout time for pure helium

eEmission rate of He-ionizing photons
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where σpi(ν,Xi) is the photoionization cross-section and the sum is over all isotopes in

X. The time an isotope can spend in the neutral state is set by the photoionization

timescale, which we define at the ejecta outer radius (r = vejt), giving

1

tion(Xi)
= π

(
RWD

r

)2
∞∫

IXi
/h

dν
Bν(Teff)

hν
σpi(ν) , (3.8)

where Bν(Teff) is the Planck function evaluated for the WD Teff , and IXi
is the ionization

energy for isotope Xi.

We consider only the two most significant elements for photoionization heating; H

and He. We assume that after the breakout time n(Xi) is low enough that the ejecta

is optically thin for Lyman limit photons (hν = 13.6 eV). In this limit we neglect any

secondary ionization caused by a recombination emission (Baker & Menzel, 1938) and

consider only hydrogenic ionization processes (essentially assuming there are no neutral

helium atoms). This gives two dynamical expressions for the hydrogenic number density

of hydrogen and helium, respectively

ṅ(H) = − n(H)

tion(H)
+ nen(H+)α(T,H+) ; (3.9)

ṅ(He+) = − n(He+)

tion(He+)
+ nen(He++)α(T,He++) . (3.10)

As long as the WD is emitting, we found that the timescale over which these quantities

relax is orders of magnitude smaller than the age of the ejecta, so we can consider an
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instantaneous steady state solution, where ṅ(Xi) = 0, yielding

n(Xi)

(
1

tion

+ Pci(T,Xi)

)
= nen(X+1

i )α(T,X+1
i ) , (3.11)

with Pci(T,Xi) the temperature-dependent collisional ionization rate which we adopt

from Lang (1980). This equation yields the very small neutral fraction that we must

know to calculate the heating rate from photoionization.

3.3 Time-dependent Entropy Evolution

Now that we have shown that photoionization balance drives the neutral fraction to a low

value after the breakout of the Strömgren sphere, we can consider the entropy evolution of

the expanding ejecta, which will lead us to a temperature evolution. The photoionization

heating timescale is much less than the age initially after breakout so that any information

regarding the initial entropy is lost. This will simplify our calculation as we consider the

state of the plasma under photoionization heating and radiative cooling, where we use a

cooling function Λ(T ) determined by comparative simulations run in Cloudy as detailed

in Section 3.4. The resulting rate of change of specific entropy s is then

T
ds

dt
= Γpi − Λ(T ) , (3.12)

where the rate of photoionization heating, Γpi, is given by

Γpi =
∑
i

n(Xi)

tion(Xi)
Eion(Xi) , (3.13)
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Figure 3.1 The calculated time dependent Teff ’s of different mass WDs as simulated by
Wolf et al. (2013), including two new cases (0.80 & 1.10 M�) here. The age is the time
since the end of mass loss driven by the thermonuclear instability. The rapid decline at
later times for the three most massive WDs corresponds to the end of their SSS phases.
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with Eion(Xi) being the average photoelectron energy. Under the optically thin assump-

tion Eion is given by Draine (2011) as

Eion(Xi) =

∞∫
Z2IH/h

dν B(ν,T )
hν

σpi(ν,Xi)(hν − Z2IH)

∞∫
Z2IH/h

dν B(ν,T )
hν

σpi(ν,Xi)

. (3.14)

Using equations (3.3) and (3.12) we find the equation for T (t) as

dT

dt
=

1

3kne
[Γpi − Λ(T )]− 2T

t
. (3.15)

Finding a temperature evolution, T (t), requires solving equations (3.13) & (3.15) simul-

taneously.

Before showing the detailed solutions of equation (3.15), it is best to first exhibit

a few limits. The first limit is to assume that the plasma is nearly fully ionized, and

that ionization balance is set by equation (3.11) but with little impact from collisional

ionization. This yields a simple relation of nH/tion ≈ nenpα and a heating rate of Γpi ≈

Eionnenpα. Since tion � t when the WD is hot, we found that ejecta of different initial

temperatures would very rapidly (on a timescale much less than the age) reach a state

of Γpi ≈ Λ(T ) and a temperature, Tiso nearly independent of the electron density. The

scale of these heating and cooling terms (which nearly cancel in equation (3.15)) are so

much larger than the 2T/t adiabatic expansion term that the ejecta evolves from one

isothermal (heating balances cooling) state to the next under a condition of thermal and

photoionization balance. The resulting nearly isothermal evolution of this phase then

arises from the condition of Γpi ≈ Λ(T ) for different WD Teff ’s. There is nearly no

sensitivity to the actual electron density when in this limit, so ejecta clumping will not
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matter, and all initial entropy information is lost.

However, the heating term, Γpi/ne, in equation (3.15) is ∝ t−3, implying that there

will come a time, which we call tiso, beyond which the heating term is comparable to,

or less than, the adiabatic expansion term, 2T/t, and we expect to see a temperature

decline. If we neglect radiative cooling, this critical timescale, tiso, is when Γpi/3kne =

Eionnpα/3k = 2T/t. For the case of pure, ionized Hydrogen this gives

tiso ≈ 250 d

(
∆Mej

10−5 M�

)1/2(
vej

103 km/s

)−3/2(
Eion

10 eV

)1/2(
kT

1 eV

)−1/2

×( α

10−13 cm3 s−1

)1/2

. (3.16)

We will show in the following section that our detailed thermal evolution calculations

for these remnants can be simply described by the arguments above, with nearly all

solutions exhibiting a nearly isothermal phase for t < tiso, followed by a temperature

decline.

3.4 Cloudy Simulations

We also simulated the nova ejecta using the radiative transfer code Cloudy (version

13.03, Ferland et al., 2013), which has been successfully used to model nova ejecta in

the past by Schwarz (2002), Vanlandingham et al. (2005), and Schwarz et al. (2007).

Cloudy allows a user to specify the density structure of a gas, its composition, and an

incident radiation field. It then computes the ionization state of the material, yielding
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line strengths, temperatures, and many other details, including realistic cooling curves.

To make the models in Cloudy as similar to our semi-analytic approach as possible,

we set the radiation field at a given time to be a blackbody spectrum with the Teff and

radius set by the MESA models for that WD mass. The constant density gas reaches an

outer radius rout(t) = vejt and an inner radius rin(t) = 0.01rout(t) essentially reproducing

our constant density sphere model. To account for temperature decline from adiabatic

expansion, we insert a “cooling” term

Λexp ≈ 2× 10−16∆Mej,−5 v
−3
ej,3 T4 t

−4
8 erg s−1 cm−3, (3.17)

that matches the second term in equation (3.3), where ∆Mej,−5 = ∆Mej/(10−5 M�),

vej,3 = vej/(1000 km s−1), T4 = T/(104 K), and t8 = t/(108 s). The ejecta material

was set to have a solar (Cloudy’s default abundance set) composition so that cooling by

metals would be included. We then divide the WD evolution histories into twenty-one

times, divided equally in log age, and use Cloudy to compute a temperature/ionization

structure for the ejecta. These calculations assume that the cloud has reached both

a photoionization and thermal equilibrium with the applied radiation field. We already

established in Section 3.3 that these are valid assumptions at early times while tion � t, so

these Cloudy simulations provide physically motivated snapshots at those early times of

concern for us. Essentially, these simulations in their current form solve (3.15) assuming

dT/dt = 0 and do not incorporate dynamic effects other than the artificially inserted

adiabatic cooling.

For these simulations, we found that the temperature was rather constant with radius,
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leading to a single temperature for each model that we defined as the mass-average over

the outer 50% of the mass. These temperature histories are what we compare to the semi-

analytic models in Section 3.5. For later use in our semi-analytic work (e.g. equation

(3.15)) we also extracted a cooling curve by finding the volumetric cooling rate at each

grid point, subtracting off the portion of that cooling due to expansion from equation

(3.17), and then dividing by nHne. The resulting cooling curves depend on the WD Teff

(and hence WD mass) due to different degrees of ionization and line cooling. We thus

generated characteristic Cloudy cooling curves for each WD mass by choosing a time

in the Cloudy calculations about halfway through the observed temperature plateau in

log age. At times beyond these, the heating and cooling timescales become comparable

to the age, and we can no longer trust the equilibrium Cloudy calculation, but rather

should solve the fully time-dependent problem. We make progress on that aspect in the

Section 3.5.

Since Cloudy is inherently a multi-zone code, we can use it to test our assumption

that the density profile and composition has little influence on the temperature structure

of the ejecta. We ran four models with our fiducial ejecta parameters of ∆Mej = 10−5 M�

and vej = 1000 km s−1 with the radiation field given by the 1.00 M� WD model. These

four models used two different density distributions, constant and inverse square, as well

as two sets of elemental abundance ratios, solar and nova. The nova abundances are

a built-in option in Cloudy and are intended to model the abundanes observed in the

ejecta of nova V1500 Cygni (Ferland & Shields, 1978). Since the adiabatic cooling is
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Figure 3.2 Temperature profiles of Cloudy simulations of nova ejecta with varying density
profiles and compositions. Each represents 10−5 M� of ejected material with an outer
velocity of 1000 km s−1 being heated by radiation from a 1.00 M� WD SSS. The abscissa
measures the total enclosed mass at a given shell radius, with the outermost point being
the position enclosing all the mass and a radius of vejt.
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necessarily radius-dependent for a non-constant density profile, the simple extra cooling

of equation (3.17) could not properly model expansive cooling. To be consistent, we

included no extra cooling from expansion in this comparision study, resulting in hotter

temperatures and longer “plateau” periods. The temperature profiles of all four cases at

a time approximately 200 days after ejection are shown in Figure 3.2. Importantly, the

temperature range changes no more than by order unity in the constant density models

and is nearly exactly isothermal in the inverse square cases. Also, the temperatures for

these models do not change greatly as the density profile and/or composition are changed,

allowing us to use our simple solar composition and constant density assumptions in our

semi-analytic model. One important difference between the different density profiles is

that the opacity at the lyman-limit diverges as we let the inner radius go to zero in the

inverse square case. While a vanishing central radius is certainly unphysical, we must

be aware that the time to become optically thick is sensitive to the choice for an inner

radius. In this comparison we continued to use rin = 0.01vejt, which causes the initial

optically thick phase to last significantly longer than the similar constant density models,

sometimes approaching 100 days.

3.5 Results

The results of the one zone semi-analytic model and Cloudy simulations for WD mass

0.60, 0.80, 1.00, and 1.10 M� are shown in Figure 3.3 and Table 3.2 from the time-

dependent WD models described earlier. All temperatures are in the 104 K region, con-
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Figure 3.3 Temperature evolution of the nova ejecta for four WD masses using our semi-
analytic model (blue) with cooling curves extracted from Cloudy and simulations run
in Cloudy (dashed gold). ∆Mej = 10−5 M� and vej = 1000 km s−1 for all models, and
the time evolution of the incident radiation is set by the underlying WD mass via the
histories shown in Figure 3.1. The dotted line indicates that the ejecta is optically thick
at the Lyman limit edge at early times.

sistent with that inferred from radio observations and nebular spectroscopy, and show

a long plateau of nearly constant temperature at the value expected for photoionization

and thermal equilibrium. Results for the two higher-mass WD models are not shown for

reasons described below.

The four WD evolutions shown exhibit a period of isothermal expansion lasting

around 100-200 days that we will refer to as the plateau. Numerically, we defined this

as the duration over which the the temperature stayed within 20% of the plateau tem-
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perature Tiso. These durations are in accord with the timescale predicted by Equation

(3.16), and show that, even with the WD still providing a high level of photoionization,

the adiabatic expansion term eventually plays an important role.

The two methods - one-zone model and Cloudy simulations - agree well for all four

cases. The two higher WD mass simulations (1.20M� and 1.30M�) showed much shorter

plateau phases (up to 80 days). However, this was due to the sharp decrease in Teff at

early times relative to the 4 lower mass WDs, see Figure 3.1. The plateau phases were so

short in these cases that the ejecta remained optically thick at the photoionization edge

throughout and in our model these solutions would not have been self-consistent. For this

reason we consider only the WDs in the mass range 0.60− 1.10 M�. Note that for lower

ejecta masses and higher ejecta velocities expected of novae on higher-mass WDs, it is

possible that the plateau phase would occur after the ejecta has become optically thin.

In this work, though, we hold the ejecta parameters constant and thus do not consider

the resulting inconsistent results from higher-mass WDs. Most of these results can be

motivated and explained by our analytic work that derived equation (3.16), yielding the

dependence of tiso on the ejecta parameters and the average photoelectron energy. Such

an understanding will be key to using these observed quantities to constrain either the

WD mass or the ejecta properties.

To exhibit this physics, we explored the sensitivity of the plateau phase properties

(Tiso and tiso) by varying vej, ∆Mej and Eion in simulations of a pure H ejecta photoionized

by a 1.00 M� WD. We found that variations in ejecta properties (vej and ∆Mej) affect
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Figure 3.4 Ejecta temperature evolution for variations in ejecta velocity (top panel)
and ejecta mass (bottom panel). Simulations carried out assuming pure H ejecta with
constant Eion and negligible contribution from collisional ionizations (Pci = 0). Unless
otherwise indicated ∆Mej = 10−5 M�, vej = 103 km s−1 and Eion = 22 eV.
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Table 3.2. Isothermal Evolution of Nova Ejectaa

WD Mass Average Temperatureb tiso
c tthin

d

(M�) (104 K) (days) (days)

0.60 2.2 229 36
0.80 3.2 155 33
1.00 4.7 152 47
1.10 4.5 217 74

a∆Mej = 10−5 M�; vej = 103 km s−1

bTime-averaged temperature over isothermal phase

cTime after temperature drops 20% from early times.

dDuration of optically thick (to lyman-limit photons)
phase

the duration of the plateau but do not alter its temperature. This is revealed in Figure

3.4 where the ejecta mass varies between 10−6 M� . ∆Mej . 10−4 M� with velocities

in range 102 km s−1 ≤ vej ≤ 5× 103 km s−1. For calculating Figure 3.4 the Eion was held

constant in time for simplicity.

This highlights that the dynamic behavior of the ejecta is described by these two

quantities, vej and ∆Mej, that we can parametrize into a factor

ζ ≡ ∆Mej

10−5 M�

( vej

103 km s−1

)−3

. (3.18)

Using Equation (3.16), ζ can be inferred from the observed parameters tiso and Tiso as

ζ(tiso, Tiso) =

(
tiso

250 d

)2(
kTiso

1 eV

)(
Eion

10 eV

)−1 ( α

10−13 cm3 s−1

)
, (3.19)

potentially yielding insights into the ejecta properties from observations. The average

photo-electron energy Eion depends on the WD’s Teff and is the main determinant of Tiso,
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as is evident in Figure 3.5. Hence, the plateau temperature is most sensitive to the WD

Teff (and hence WD mass).

The plateau phase space behavior of ζ is shown in Figure 3.6 with dashed lines of

constant ζ. For nearly all cases, we see that Tiso is highly independent of the ejecta

information, vej and ∆Mej. This implies that changes made to the dynamic properties of

the ejecta should be relatively insignificant for the temperature, making it a potentially

clean diagnostic for WD mass. This also implies that changes to the ejecta profile (e.g.

non-spherically symmetric ejections) or homogeneity would unlikely impact Tiso.

The thermal evolution of the ejecta at late times is simple if the SSS phase has ended,

as the ejecta undergoes an adiabatic temperature decline, and T ∝ t−2 thereafter. The

recombination time is far longer than the age when t > tiso, so that this plasma would

maintain itself in a highly ionized state even though photoionization has ended. Hence,

it would still be a thermal bremsstrahlung radio emitter during the adiabatic decline.

If the SSS remains on at t > tiso, we can still approximate the thermal evolution. In

this limit, photoionization heating is still operative, so the temperature decline would

not be as steep as the adiabatic relation. Rather, for the cases we considered here, the

photoionization timescale is still much less than the age, tion � t, so that the heating

remains operative, and the required small neutral fraction is easily maintained. If we

assume negligible radiative cooling, rather safe as T < 104 K, then equation (3.15)

simplifies to an integrable form. If the ejecta temperature was T0 at t = t0, then its value
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at a time t > tiso is simply

T

T0

≈ t20
t2

exp

(
t2iso
t20
− t2iso

t2

)
, (3.20)

exhibiting the less steep than adiabatic decline that is evident in nearly all our results.

Differentiating between a decline from SSS shutoff versus onset of dominance of adiabatic

expansion with an active photoionization source could be attempted by comparing T (t)

inferred from radio observations or nebular spectroscopy to T ∝ t−2 versus the more

complicated relation of equation (3.20). Alternatively, a shut-off of the X-ray source could

be confirmed by direct measurements like those of Schwarz et al. (2011) and Henze et al.

(2011, 2014b). Equation (3.20) assumes a constant ionizing source, but the WD models

used in Figure 3.3 are still increasing in effective temperature when adiabatic expansion

takes over, so their decline is even less steep then equation (3.20) would indicate.

3.6 Conclusions

We have shown that the photoionizing emission from the hot white dwarf following a

classical nova is adequate to explain the inferred ejecta temperatures > 104 K that

persist for nearly a year after the optical outburst. For the typical WD mass, ≈ 0.8M�,

of a CNe this nearly isothermal phase lasts for about one year (see equation (3.16)) and

has a temperature of T ≈ (2− 3)× 104 K, in good agreement with many observed novae.

Even when the SSS phase lasts for decades, the balance between heating and cooling

eventually ends, and the ejecta transitions into a phase of temperature decline roughly

approximated analytically by equation (3.20). If the SSS phase ends early, then the ejecta
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temperature would evolve adiabatically, as T ∝ t−2.

Though our preliminary calculations allow us to see the basics of how photoionization

heating is balanced by cooling at early times, and how the heating is weak compared

to adiabatic expansive effects at late times, work remains to realize the quantitative

accuracy adequate to infer CNe ejecta properties or WD masses. We certainly identified

a degeneracy in how the ejecta information (∆Mej and vej) affect the plateau phase

duration, which should allow observers to make predictions about the properties of a given

nova, complementing existing radio techniques (Seaquist & Palimaka, 1977; Hjellming

et al., 1979; Heywood et al., 2005). For example, equation (3.19) makes possible the

inference of an ejecta mass range based on the length of the isothermal temperature

evolution inferred in the radio combined with the measured velocity of the ejecta and

temperature.

However, specific events would be best modeled by a unique Cloudy simulation that

reflects the known properties of the event as inferred from the optical, as well as the

X-ray supersoft phase. That would also allow for inclusion of unusual abundances con-

strained from modeling the nebular spectroscopy as in Schwarz (2002), Vanlandingham

et al. (2005), and Schwarz et al. (2007), which would in turn impact the mapping of the

observed ejecta temperature to the WD mass. The ideal calcuation could use a more

realistic ejecta density profile, like a Hubble flow (Seaquist & Palimaka, 1977) with an ap-

propriate filling factor, though our efforts imply that the ejecta temperature is relatively

independent of the specific density structure for the first year or so. We hope that the
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expanded efforts with the Karl G. Jansky Very Large Array to monitor nearby galactic

novae will enable a new era of quantitative analysis of the late time radio observations

(Roy et al., 2012).
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Chapter 4

Non-Radial Pulsations in

Post-Outburst Novae

After an optical peak, a classical or recurrent nova settles into a brief (days to years)

period of quasi-stable thermonuclear burning in a compact configuration nearly at the

quiescent white dwarf (WD) radius. During this time, the underlying WD becomes

visible as a strong emitter of supersoft X-rays. Observations during this phase have

revealed oscillations in the X-ray emission with periods on the order of tens of seconds.

A proposed explanation for the source of these oscillations are internal gravity waves

excited by nuclear reactions at the base of the hydrogen-burning layer. In this work,

we present the first models exhibiting unstable surface g-modes with periods similar

to oscillation periods found in galactic novae. However, when comparing model mode

periods of our models to the observed oscillations of several novae, we find that the modes
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which are excited have periods shorter than that observed.

4.1 Introduction

A nova is an optical event caused by a thermonuclear runaway on the surface of a

white dwarf (WD) (Gallagher & Starrfield, 1978). The thermonuclear runaway drives

a rapid expansion of the WD where it shines brightly in the optical and loses much of

its hydrogen-rich envelope via some combination of dynamical ejection, optically-thick

winds, and/or binary interactions. Eventually enough mass is lost from the envelope so

that the photospheric luminosity matches the nuclear burning luminosity and the WD

radius recedes to a more compact configuration (Kato et al., 2014). Hydrogen burning

does not cease, though, as a remnant envelope is slowly burned over days to decades.

The hot and compact WD shines brightly in the UV and soft X-rays, appearing very

similar to a persistent supersoft source (SSS) (Wolf et al., 2013). Dozens of SSSs from

post-outburst novae are seen in M31 (Henze et al., 2010; Henze et al., 2011, 2014b; Orio,

2006; Orio et al., 2010) and the Milky Way (Schwarz et al., 2011, and references therein)

every year.

Many, if not all, SSSs exhibit periodic oscillations in their X-ray light curve with

periods (Posc) in the range of 10-100 seconds, whose precise origin is unclear (Ness et al.,

2015, and references therein). Odendaal et al. (2014) argue that in the case of Cal 83,

its 67 s period could be the rotational period of the WD. Ness et al. (2015) point out

that the observed drift of the precise Posc of ±3 s can’t be easily explained by accretion
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spin-up or spin-down (due to high inertia of the WD) or by Doppler shifts of the emitting

plasma due to the orbital motion. Furthermore, the Posc = 67 s of Cal 83 is the longest in

the known sample, so other WDs would need to be rotating even more rapidly. While the

rotation rates of accreting WDs are still not well understood, spectroscopic measurements

to date do not point to rapid rotation (Sion, 1999; Szkody et al., 2012; Kupfer et al.,

2016).

Rotation is thus not a very promising mechanism for explaining these oscillations,

though it cannot be ruled out until an independent determination of the WD rotation

period is obtained in an oscillating SSS. A more promising explanation first proposed

by Drake et al. (2003) is that the oscillations are caused by non-radial surface g-modes

excited by the ε-mechanism at the base of the hydrogen burning layer. However, the

oscillations observed by Drake et al. (2003) for nova V1494 Aquilae were much longer.

At Posc ≈ 2500 s, these modes were more credibly explained as being driven by the

κ-mechanism, where an ionization zone, rather than temperature-sensitive burning, is

the source of an instability. Indeed, longer periods (∼ 10 − 100 minutes) have been

observed in Cal 83 (Crampton et al., 1987; Schmidtke & Cowley, 2006) and nova V4743

Sgr (Ness et al., 2003), all consistent with oscilations most similar to ZZ Ceti, driven by

the outermost convection zone. These longer-period oscillations are not the focus of this

work.

The expected Posc for ε-mechanism-driven g-modes was estimated in Ness et al. (2015)

for a typical WD mass, envelope mass, and a constant-flux radiative envelope to be on the
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order of 10 s, in great agreement with the observed periods. Their calculation, however,

could not assess whether the mode would grow unstably or damp out.

The configuration of a thin hydrogen-burning radiative envelope on a WD is similar

to early planetary nebulae nuclei, as explored by Kawaler (1988). With a detailed non-

adiabatic pulsational analysis, Kawaler (1988) found that g-modes were indeed excited

by the ε-mechanism. In a 0.618 M� planetary nebula nucleus model, higher-order modes

with Posc ≈ 200 s were excited first when the luminosity was around logL/L� ≈ 3.1, and

lower order modes with Posc ≈ 70 s only being excited after the luminosity dropped to

logL/L� ≈ 2.6.

Encouraged by the promising results of Kawaler (1988) and Ness et al. (2015), we

present in this chapter the first detailed non-adiabatic calculations of the unstable modes

in post-outburst nova models using the open source stellar evolution code MESA star

(rev. 9575; Paxton et al., 2011, 2013; Paxton et al., 2015) and the accompanying non-

adiabatic stellar pulsation tool GYRE (Townsend & Teitler, 2013; Townsend et al., 2017).

In §4.2 we explain the simulation details to obtain post-outburst nova models from MESA

star for input into GYRE. Then in §4.3 we discuss mode propagation in our models and

compare to previous simulations of oscillations in a planetary nebula nucleus. In §4.4,

we present the periods and growth timescales of the modes calculated by GYRE from the

nova models. We comment on how these modes compare to observed oscillation periods

in §4.5 before summarizing in §4.6.
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Figure 4.1 Evolution of all stellar models through the HR diagram. Different markers
separate equal times of evolution. For example, between two yellow circles, 100 days have
elapsed. Left: The three nova models that accrete solar composition material from the
end of mass loss until their luminosities reach 103 L�. Also shown is the M = 0.6172 M�
planetary nebula nucleus introduced in Section 3. The maroon circle indicates a fiducial
model of the 1.3 M� nova that we use as an example later in this chapter. Right:
Comparison between the 1.0 M� nova models accreting solar composition and 25% core
composition, 75% solar composition material. Again, markers along each track mark
intervals of equal time.

4.2 Stellar Models

To generate models for use in pulsational analysis, we use the MESA star code. Specifi-

cally, we use an inlist based on the nova test case scenario, which in turn was based off

of the nova calculations of Wolf et al. (2013). In these models, hydrogen-rich material

is accreted at a rate of 10−9 M� yr−1, which is a typical rate expected for cataclysmic

variables (Townsley & Bildsten, 2005). Mass loss was handled by the built-in super-

Eddington wind scheme described in Denissenkov et al. (2013) and Wolf et al. (2013), as

well as a modified version of the built-in Roche lobe overflow mass loss scheme.
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The precise nature of the mass loss is not important because mass is lost in some form

until the hydrogen rich layer is reduced to the maximum mass that can sustain steady

hydrogen burning in a compact form, which is a function primarily of the WD mass. At

this point the WD shrinks and enters its post-outburst phase, as found by Wolf et al.

(2013); Kato et al. (2014). The precise nature of the mass loss greatly affects properties

of the nova at the time of optical peak, which we are not interested in. However, extra

mass loss in excess of that required to reduce the hydrogen layer mass down to a stable

burning mass can truncate the duration of the post-outburst phase. To create the most

favorable conditions for mode excitation, we shut off mass loss or gain once the WD

shrinks to radii similar to the reddest steady-state burners found by Wolf et al. (2013).

In general, super Eddington winds dominate mass loss for novae on higher-mass WDs,

and Roche lobe overflow dominates mass loss for novae on the lowest-mass WD.

These models are non-rotating, though rotationally-induced instabilities can be re-

sponsible for mixing between core and accreted material (MacDonald, 1983; Livio &

Truran, 1987; Sparks & Kutter, 1987). Rotation may also affect the stability and struc-

ture of g-modes in a stellar model, so we discuss the effects of modest rotation on the

expected modes in §4.3. No diffusion is allowed, though at this high of an accretion rate,

its effects on metal enrichment of the thermonuclear runaway would not be very pro-

nounced (Iben et al., 1992; Prialnik & Kovetz, 1995; Yaron et al., 2005). Finally, we do

not allow for any convective undershoot during the thermonuclear runaway, which would

also act to enhance the ejecta with metals (Casanova et al., 2010, 2011a,b; Glasner et al.,
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2012). Mixing due to rotational instabilities, diffusion, and/or convective dredge-up are

all causes of the metal enhancement of nova ejecta indicated by optical and UV spectra

(Gehrz et al., 1998; Downen et al., 2013) as well as evidence for dust formation (Geisel

et al., 1970; Ney & Hatfield, 1978; Gehrz et al., 1980).

Rather than considering how exactly to parameterize and combine the mixing effects

of rotational, diffusion-induced, and turbulent instabilities, we instead include a model

where the accreted material is 25 percent core material, where “core composition” is

defined as the composition sampled where the helium mass fraction first drops below one

percent. The remaining 75 percent of accreted material is solar composition.

All inlists, models, and additional code used to produce these models will be posted

on the MESA users’ repository, mesastar.org.

In total, four models were calculated: pure solar material accretion models for WD

masses of 0.6 M�, 1.0 M�, and 1.3 M� and a metal-enriched accretion model for a 1.0

M� WD. The starting models were the endpoints of the similar nova simulations carried

out by Wolf et al. (2013). The solar composition models were evolved through 2-3 nova

cycles to erase initial conditions, while the metal-rich models were evolved through several

flashes at an intermediate metallicity before being exposed to 25% enrichment to ease

the transition. In all cases, model snapshots at every timestep after the end of mass loss

to the end of the SSS phase were saved and form the basis for the analysis in the rest of

this work.

Figure 4.1 shows the evolution of these nova models as well as a planetary nebula
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nucleus model with M = 0.617 M� introduced in §4.3 through the HR diagram. The

general trends are that higher mass WDs and more metal-rich accretion give faster, bluer,

and more luminous evolution. Note that the markers break the evolution into stretches of

equal duration, but the actual timesteps taken in the evolution were much shorter, taking

somewhere between 30 and 60 timesteps to get through the SSS phase. Also indicated in

Figure 4.1 is the location of a fiducial model from the 1.3 M� simulation. We will refer

to this model in subsequent sections as an example case for mode analysis.

4.3 Non-Radial Pulsation Analysis

With model snapshots of each of the novae throughout the SSS phase, we can use GYRE

to determine their oscillation modes, focusing only on the ` = 1 (dipole) modes. We

begin by looking at the adiabatic properties of our fiducial model before delving into

non-adiabatic analyses.

4.3.1 Adiabatic Pulsation

GYRE analyzes a stellar model to find its radial and non-radial pulsation modes. While

a non-adiabatic calculation is required to determine which of these modes are excited in

a given stellar model, we can learn a lot from simpler adiabatic calculations to see what

modes are available for excitation.

We aim to explain the observed oscillations as g-modes in the outer atmosphere, so

some g-modes in our model must “live” in the outermost parts of our model. The upper
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panel of Figure 4.2 shows a propagation diagram of our fiducial 1.3 M� model during

its SSS phase. Also indicated is the region of strong hydrogen burning, where we expect

mode driving to occur.

After using GYRE to search for the eigenmodes of this model, we indeed find g-modes

that live in the outer atmosphere with periods on the order of a few to tens of seconds.

Horizontal displacement eigenfunctions for the g-modes with radial orders n = −1,−2,

and−4 (in the Eckart-Osaki-Scuflaire classification scheme, as modified by Takata (2006))

are shown in the middle panel of Figure 4.2 with their periods indicated as horizontal lines

spanning their allowed propagation regions (where their frequencies lie below both the

Lamb and Brunt Väisälä frequencies) in the upper panel. The bottom panel shows the

distributions of inertia in these modes (normalized so they integrate to unity), confirming

that the modes indeed exist only within their allowed propagation regions. We see that

the lowest order mode lives mostly in the burning region and the lower-density region

above it. This makes this mode comparatively more easy to excite than the other two,

which have much of their energy in the higher-density helium-rich region below.

These are merely the modes in which the star is able to pulsate. To excite one, a

driving force must do work on the mode, and a non-adiabatic caluclation is required to

find such unstable modes. We discuss the relevant driving force and our non-adiabatic

calculations next.
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Figure 4.2 Profiles of the fiducial 1.3 M� model introduced in Figure 4.1. Top panel:
Propagation diagram of the outermost 10−4 M�. The shaded area indicates the region
over which 80% of the stellar luminosity is generated by CNO burning. Regions where
the n = −1,−2 and −4 modes can propagate are plotted as horizontal lines at their
respective frequencies. Middle panel: Eigenfunctions for the same three modes. Hor-
izontal displacement dominates over radial displacement for these modes, so only the
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scissa is shown logarithmically, the plotted value is actually the derivative of the inertia
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equal mode inertias.
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4.3.2 Non-adiabatic Pulsations and the ε-Mechanism

The driving force relevant to novae in the SSS phase as well as planetary nebula nuclei is

the ε-mechanism. In the ε-mechanism, the nuclear energy generation rate per unit mass

ε is enhanced during a compression and attenuated during rarefaction. In this way, heat

is added near the maximum temperatre of the cycle and removed near the minimum

temperature, creating a heat engine that converts thermal energy into work (Eddington,

1926).

This phenomenon requires temperature sensitivity to produce feedback between the

pulsation and ε. For temperatures of interest to this work (T . 108 K), the CNO cycle

is not yet beta-limited, and we still have ε ∝ T 9−14, so the ε-mechanism can be relevant.

There is, however, a minor complication. With periods on the order of tens of seconds,

oscillations in temperature and density occur on the same timescales as the lifetimes of

isotopes in the CNO cycle (Kawaler, 1988). This leads to lags between the phases of

maximum temperature/density and the phase of maximum energy generation. As a

result, the temperature and density sensitivities of the nuclear energy generation rate

will differ from those in a non-oscillating system at the same average temperature and

pressure.

The method for computing corrected derivatives of the energy generation rate were

presented in Kawaler (1988), but since that work examined oscillations in a planetary

nebula nucleus, which burns at a lower temperature than our nova models, an assumption

in that work does not apply here. The details of how we calculate the derivatives and
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include them in GYRE are in Appendix A.

Before studying the modes excited in the nova models, we first analyze a planetary

nebula nucleus model similar to that of Kawaler (1988) to verify that we obtain a similar

set of excited modes.

4.3.3 Planetary Nebula Nucleus

The planetary nebula nucleus (PNN) model from Kawaler (1988) was created by first

evolving a star with a ZAMS mass of a 3.0 M� star with a metallicity of Z = 0.03 to the

AGB and then stripping its envelope gradually away.

The MESA test suite includes a test case, make co wd, which evolves a star to the AGB

and through one thermal pulse from the helium burning shell, and then greatly increases

the efficiency of AGB winds to reveal the WD. We used this test case as a basis and

changed three controls to create our PNN model. First, we set the metallicity to 0.03

instead of the test case’s default value of 0.02. Secondly, we evolve the model from the

pre-main sequence (rather than interpolating from a default suite of models) due to the

specific metallicity. Finally, we adusted the initial mass to 3.30 M� so that the final

mass of M = 0.6172 M�) closely resembled the mass of the PNN in Kawaler (1988) of

M = 0.6185 M�.

Once the model reached an effective temperature greater than 10,000 K, we changed

its nuclear network to match the network used in the nova simulations (cno extras.net).

At Teff = 60, 000 K, we halted the enhanced mass loss that accelerated the thermal pulse
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phase in order to resume normal PNN evolution. We then saved profiles for pulsational

analysis at every timestep once Teff exceeded 80,000 K, and we halted evolution when

the luminosity dropped below 100 L�.

The evolution of the model’s g-mode properties through its PNN phase is shown in

Figure 4.3 for six lowest-order modes. The first mode to be excited was a g-mode with

radial order n = −6. The period of this mode stayed consistently near 150 s and its

growth time stayed in the range of hundreds to thousands of years (still shorter than the

hydrogen-burning lifetime of the PNN). The period agrees well with the k = 6 column of

Table 3 in Kawaler (1988), but we find growth timescales that are longer by one or more

orders of magnitude with the mode being stabilized sooner than in Kawaler (1988).

Other modes have matching or very nearly matching periods, but the growth times

we find are typically much longer than those of Kawaler (1988). In addition to the modes

shown in Figure 4.3, we see the n = −7 and n = −8 modes excited, but not the n = −9

mode as in Kawaler (1988), consistent with the general trend of higher stability in our

models.

We searched for modes both while accounting for the phase lags in the energy genera-

tion rate and while not accounting for them. In both PNN and nova models, adding in the

effects of phase lags increases growth times and stabilizes modes that would otherwise be

unstable. This is because the phase of peak heat injection is moved away from the phase

of peak temperature/density, weakening the heat engine set up by the ε-mechanism.
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Figure 4.3 Evolution of ` = 1 g-modes in the planetary nebula nucleus model through
the depletion of its hydrogen envelope. The top panel shows how the periods of the
six lowest-order g-modes change in time. The effective temperature is also shown for
comparison to evolution in the HR diagram. The bottom panel shows the evolution of
the growth timescale for each mode if it is unstable.
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4.4 Supersoft Nova Modes

Figure 4.4 shows the evolution of the periods of low-order g-modes in the post-outburst

nova models as well as the evolution of these modes’ growth timescales. The effective

temperature evolution is also shown in these figures, revealing that the most rapid exci-

tation occurs in the approach to the peak effective temperature at the “knee” of the HR

diagram shown in Figure 4.1.

We find unstable modes excited on timescales shorter than the supersoft phase lifetime

in all four nova models. Excited modes had periods as short as 7 seconds in the 1.3 M�

model and as long as 80 seconds for the 0.6 M� model. Unlike the PNN model, only

lower-order modes were excited. The n = −1 and n = −2 modes are excited at some

point in every model, while the n = −3 mode is excited in the 1.3 M� and enriched

1.0 M� models only. In the 1.0 M� and 1.3 M� models, only the n = −1 mode exhibits

short enough growth timescales for the mode to grow by several e-foldings before it is

stabilized, but the 0.6 M� model actually excites its n = −2 mode earlier and more

rapidly than the n = −1 mode.

The general trend is that more massive WDs exhibit shorter periods and shorter

growth times. We find that metal enrichment has little effect on the mode periods, but

it significantly reduces growth timescales and the duration of the SSS phase.

The models made in MESA star are non-rotating, but we can probe the effects of rota-

tion on the mode periods and growth timescales by using the traditional approximation

(Bildsten et al., 1996; Townsend, 2005).
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Figure 4.4 Evolution of the ` = 1 g-modes of each post-outburst nova model (masses and
compositions indicated in each plot). Similar to Figure 4.3, the top panels show mode
periods and effective temperatures while the bottom panels show growth timescales.
Points in a top panel represent unstable modes only if an accompanying point at the
same age and mode order appears in the lower panel. A gray vertical band in the 1.3 M�
plot indicates from where the fiducial model referenced elsewhere in this work is taken.

102



10

20

30

40

P
er

io
d

[s
]

M = 1.3 M�
` = 1, m = −1

10

20

30

40

P
er

io
d

[s
]

M = 1.3 M�
` = 1, m = 0

0.0 0.2 0.4

Ω/Ωcrit

10

20

30

40

P
er

io
d

[s
]

M = 1.3 M�
` = 1, m = +1

n = −1

n = −2

n = −3

n = −4

n = −5

n = −6
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modes in our 1.3 M� fiducial model. At any given rotation rate, the mode with a period
of 8–9 seconds is excited with a growth timescale of around 2.5 days. For the m = +1
case, this is always the n = −1 mode, but due to avoided crossings, the excited mode
switches to the n = −2 mode in the m = −1 and m = 0 cases at a modest fraction of
the Keplerian rotation frequency. No other modes are ever excited on timescales shorter
than or comparable to the SSS lifetime.
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We investigated how the periods and growth times for ` = 1 modes changed in

response to varying the rotation rate Ω in our fiducial 1.3 M� model. Figure 4.5 shows

how periods of ` = 1 modes are affected by rotation up to an Ω of half of the critical

rotation rate Ωcrit =
√

8GM/(27R3). We now summarize the results.

Higher-order zonal (m = 0) and prograde (m = 1) modes’ periods decreased modestly

with increasing Ω, but for higher-order retrograde (m = −1) modes, periods increased

modestly after an initial drop due to a series of avoided crossings. However, across all Ω’s,

there was only ever one mode excited on timescales comparable to or shorter than the

nova evolution timescale. The period of this mode is 8–9 seconds and its growth timescale

is 2.5 days, in great agreement with the non-rotating results shown in Figure 4.4. Due to

the avoided crossings, this mode changes in radial order from n = −1 to n = −2 at about

2% and 12% of Ωcrit for the m = −1 and m = 0 cases, respectively. With no significant

change in the periods of the excited mode, we expect no observable effect from rotation

on these oscillations other than incidental effects rotation may have on the accretion and

runaway processes.

4.5 Comparison to Observation

The goal of this work was to explain the oscillations in post-outburst novae and per-

sistent supersoft sources described in Ness et al. (2015) and references therein. We’ve

demonstrated that the ε-mechanism is indeed an effective means to excite g-modes with

periods similar to those in observed SSSs.
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However, we have only demonstrated that these modes are unstable in the linear

regime. We cannot predict amplitudes for these oscillations to construct a X-ray light

curve for comparison. A more complex non-linear calculation would be required to make

such a robust prediction.

Fortunately, our work has confirmed, as expected, that the periods are most sensitive

to the mass of the underlying WD rather than composition or rotation. Thus, a nova with

a known WD mass and observed oscillations would provide a means to check the efficacy

of g-modes as a source for these oscillations. We now review the oscillating post-outburst

novae presented in Ness et al. (2015) and compare them to our models.

4.5.1 RS Ophiuchi

RS Ophiuchi (RS Oph) is a recurrent nova with recurrence times as short as nine years.

From spectral measurements, Brandi et al. (2009) find a best orbital solution for a WD

with a mass in the range of 1.2− 1.4 M�. From the recurrence time alone, models from

Wolf et al. (2013) limit the WD mass to M > 1.1 M�, while the effective temperature

and duration are most consistent with models with a mass near 1.3 M�.

However, according to Ness et al. (2015), RS Oph has oscillations with a period of

35 seconds, which is significantly longer than the ≈ 6 − 10 second periods seen in the

n = −1 mode of our 1.3 M� model. Even giving a generously low mass of 1.0 M� would

require exciting the mode only at late times when it is already stabilizing or by tapping

into the n = −2 mode during the brief duration that it is unstable.
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4.5.2 KT Eridani

KT Eridani (KT Eri) is a nova that also exhibited oscillations with periods of roughly

35 s at multiple times in its supersoft evolution (Beardmore et al., 2010; Ness et al.,

2015). Jurdana-Šepić et al. (2012) estimate from the supersoft turn-on time and possible

presence of neon enrichment, the mass of the underlying white dwarf is 1.1M� ≤MWD ≤

1.3 M�. With a turn-off time of around 300 days (Schwarz et al., 2011), models from

Wolf et al. (2013) are consistent with this contraint. Similar to RS Oph, the lowest order

(and most easily excited) modes from the 1.0 and 1.3 M� models still cannot explain the

observed oscillations, but second or third order modes are not out of the question if they

could be excited.

4.5.3 V339 Delphini

V339 Delphini (V339 Del) was a nova with an observed 54 s oscillation (Beardmore et al.,

2013; Ness et al., 2013). Shore et al. (2016) provide an estimate for the ejecta mass of

V339 Del of 2− 3× 10−5 M�. With this and its SSS turn-off time of 150-200 days, V339

Del is consistent with a WD mass of MWD ≈ 1.0 − 1.1 M� (Wolf et al., 2013). Again

returning to our 1.0 M� models, we must rely on even higher order n < −2 to explain the

observed oscillations. The n = −3 mode is unexcited in the solar composition model, and

in the metal-enriched model, it is only marginally unstable in that its growth timescale

is comparable to the duration in which it is unstable. Even then the n = −3 mode has

a period that is slightly too short during this phase, but higher-order modes are never
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excited at all. It is difficult to explain the oscillations in V339 Del with our models.

4.5.4 LMC 2009a

LMC 2009a is a recurrent nova, having first been detected in outburst in 1971. From its

recurrence time as well as the SSS duration and temperature of the 2009 outburst, Bode

et al. (2016) estimate the mass of the underlying WD to be MWD ≈ 1.1 M� − 1.3 M�.

The oscillations during the SSS phase reported in Ness et al. (2014, 2015); Bode et al.

(2016) had a period of 33 seconds. With a similar period and mass estimate to KT Eri,

the g-mode explanation of these oscillations is similarly tenuous.

Our models show that metal enrichment does not change mode periods substantially,

and even relatively rapid rotation cannot greatly affect the periods of excited modes.

Rather, it seems that without some more exotic physics that can couple to higher-order

modes, the g-modes we see in our model cannot adequately explain the oscillations ob-

served in the novae detailed in Ness et al. (2015).

4.6 Conclusions

We have used MESA models to confirm the earlier work of Kawaler (1988) on planetary

nebula nuclei. We then extended that work to see what, if any, modes are excited in

post-outburst novae via the ε-mechanicsm. In all our models, we found unstable modes

with growth timescales shorter than the lifetime of the post-outburst supersoft phase.

While metal-enhancement of the WD envelope did expedite the evolution through the
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post-outburst phase and the growth of any excited modes, it did not greatly influence

the periods of these modes. Similarly, rotation only affected the periods of higher-order

modes that were not excited, so it is unlikely to have a strong effect on any oscillations

this mechanism might produce.

Finally, we compared our results to the observed oscillations of several novae. Broadly,

the excited modes we find for comparable nova models have periods that are too short

to explain the observed ocsillations, and neither metal enhancement nor rotation are

sufficient to excite higher-order modes or increase an excited mode’s period.
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Chapter 5

Open Questions and Next Steps

The preceding work prompts several prospective new lines of research. We outline two

such topics here. First is the long-term evolution of rapidly-accreting WDs, which is of

high interest given their status as candidates for type Ia supernovae. Another obvious

question stemming from chapter 4 is the possible explanation of oscillations seen in post-

outburst novae as convectively-excited g-modes that live deeper in the star than the

modes examined in chapter 4. We conclude this dissertation with some thoughts and

initial analysis of these two questions.

5.1 Fates of Rapidly Accreting White Dwarfs

Rapidly accreting WDs (Ṁ & 10−8 M� yr−1) have been touted as promising candidates

for type Ia since they offer a way to grow the mass of a C/O WD from MWD ≈ 1.0 M� to

the Chandrasekhar mass MCh ≈ 1.38 M�. Classical novae resulting from slower accretion

109



rates are thought to lose mass due to the combination of mixing with core material and

powerful mass loss (Prialnik & Kovetz, 1995). At higher accretion rates, novae occur on

short enough recurrence times that diffusion is not able to mix in core material, and the

runaways are mild enough that turbulent mixing at the base of the convection zone is

not as effective in dredging up core material. Similarly, mass loss is not as powerful for

these milder novae, and as a result, such nova cycles result in a net gain of mass. In the

case of steady and stable burning, there is trivially net mass growth.

Crucially, this scenario for type Ia supernovae requires growth of the carbon/oxygen

core. Nova cycles and steady burning result in growth of the helium layer. Inevitably, the

growing helium layer will ignite, driving its own nova-like transient that may very well

eject all the mass gained over previous hydrogen novae and/or steady burning, scuttling

the whole process. After this helium flash, stable helium burning analagous to stable

hydrogen burning would be able to grow the core mass, but as figure 5.1 shows, there is

no accretion rate where both hydrogen and helium can stably and steadily burn.

Since the helium can only be burned via intermittent shell flashes and we don’t believe

that C/O WDs are born more massive than MWD ≈ 1.0 M�, the main question then

becomes: do helium flashes on a MWD ≈ 1.0 M� WD lead to long-term growth of

MWD? Also, if MWD can grow, can it do so in a time short enough to occur within the

rapid mass-transferring phase of the binary? What would these helium flashes look like,

and could the long-lived supersoft phases after them be a significant contaminant in the

known sample of supersoft X-ray sources?
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Figure 5.1 Regions where stable and steady burning of H and He are possible on a
non-rotation WD. The steady H-burning region comes from Wolf et al. (2013) and the
steady He-burning region comes from simulations from Brooks et al. (2016). The H-
burning region assumes accretion of solar composition material, while the He-burning
region assumes accretion of hydrogen-deficient material with Z = 0.02, which is consistent
with the ash from steady hydrogen burning of solar material. Since the two regions do
not overlap, there are no accretion rates that support simultaneous steady and stable
burning of hydrogn and helium.
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We discuss these questions now, first looking at the work others have done.

5.1.1 Previous Work

As discussed in chapter 2, Cassisi et al. (1998) and Piersanti et al. (1999) studied the

rapid accretion of hydrogen onto low-mass WDs. While they found steady hydrogen

burning and an eventual helium flash, they could not compute through it since the

convection from the helium runaway reached the hydrogen, bringing potent nuclear fuel

to the hot depths of the helium runaway. They posited that the resulting flash would

become dynamical and eject most, if not all of the accreted material.

Yoon et al. (2004a) were able to nearly stabilize helium burning in a rapidly accreting

WD model by tracking the transport of angular momentum. By accreting matter with

Keplerian angular momentum (as is expected from the inner accretion disk), the H-rich

material is spun up relative to the core. A shear layer develops at the core-envelope inter-

face, driving strong shear heating, which acts to stabilize helium burning by providing an

extra source of flux at the base. However, this work did not account for magnetic effects

on angular momentum transport like the Spruit-Tayler dynamo, which act to quickly

enforce rigid rotation (Piro, 2008). Without the strong shear layer, the stabilization

vanishes and the helium shell would remain thermally unstable.

Another possible amelioration of this issue came from Hillman et al. (2016). In their

work, they simulated rapid hydrogen accretion to get an average effective accretion rate of

He at different initial masses of the WD, effectively determining the mass growth efficiency
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at high accretion rates. They then simulated accreting pure helium at this effective rate

since following many hydrogen flashes was computationally expensive. They found that

while the first several helium flashes indeed caused a net mass loss over the entire cycle,

these flashes heated up the WD core and caused subsequent flashes to become less violent,

eventually leading to net mass gain in a non-rotating WD model.

There are two shortcomings of this work, though. First, the only mixing mechanism

allowed between flashes is elemental diffusion. Convective overshoot (Glasner & Livne,

1995; Glasner et al., 1997, 2005, 2007; Glasner et al., 2012; Kercek et al., 1998, 1999;

Rosner et al., 2001; Alexakis et al., 2004; Casanova et al., 2010, 2011a,b) and rotationally-

induced instabilities (Durisen, 1977; Kippenhahn & Thomas, 1978; MacDonald, 1983;

Livio & Truran, 1987; Kutter & Sparks, 1987; Sparks & Kutter, 1987) also cause mixing

between accreted and core material that contribute to core erosion, even after the core is

heated substantially. Supersolar metal enrichment is ubiquitous in classical and recurrent

novae, as indicated by UV, optical, and IR spectroscopy (Downen et al., 2013; Gehrz et al.,

1998) and photometry consistent with dust formation (Geisel et al., 1970; Ney & Hatfield,

1978; Gehrz et al., 1980). Whatever mechanism is responsible for the metal enrichment

is capable of reaching through the helium layer and to the core, making long-term growth

of the helium layer through hydrogen flashes unlikely.

A way around this problem would be stable burning, which introduces the second

issue with the work of Hillman et al. (2016). Their stellar models cannot reproduce the

steady burning observed with MESA and other codes (see chapter 2). Even so, it’s still
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possible that non-diffusive mixing mechanisms could cause the removal of more mass than

is accreted in one helium flash cycle. The results of Hillman et al. (2016) are promising,

but they need to be verified.

Finally, another solution has been proposed by Hachisu et al. (1996), where the accre-

tion rate is above the stable burning regime. In this case, the WD swells up in response

to the rapid accretion rate and enters a wind phase according to the wind prescription of

Kato & Hachisu (1994). The helium flash then happens within a large, extended enve-

lope. Hachisu et al. (1996) argue that mass loss from such helium flashes is minimal by

pointing to the results of Kato et al. (1989), which detailed mass loss from helium novae,

which should be similar to these helium flashes. However, Kato et al. (1989) only looked

at helium novae on a 1.3 M� WD, where mass loss should trivially be weaker than at

lower masses. It’s also unclear if any mixing mechanisms are used in their work, so while

not ruled out, this scenario does not point to definitive mass growth from MWD ≈ 1.0M�.

5.1.2 Next Steps

To properly tackle these questions, we need to address several issues. First we need a

realistic mass transfer scenario that can support high enough Ṁ ’s for a long enough time

to grow MWD from 1.0 M� to 1.38 Modot. Secondly, we need a better understanding

of (or a least constraints on) mixing at both the H-He and He-C/O interfaces during

accretion and thermonuclear runaways.

As preliminary work, we have already generated a plausible mass transfer history
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between a 2.0 M� star as it leaves the main sequence transferring matter on a thermal

timescale to a 1.0 M� WD with an initial binary period of 1.29 days. The evolution of the

mass transfer rate is shown in Figure 5.2. This simulation was a successful comparison

to the work of Langer et al. (2000), confirming their work as well as the capabilities of

MESA to simulate the binary systems needed for this work.

Refinements to the mixing mechanisms during accretion and runaway are still needed,

though. The treatment of diffusion in degenerate matter is under active development in

MESA. Rotational mixing mechanisms are implemented in MESA, including the Spruit-

Tayler Dynamo, which is expected to enforce nearly rigid rotation, simplifying previous

difficulties associated with strong shear in numerical models.

Convective overshoot is still a process that is calibrated empirically on a case-by-

case basis. Efforts like those of Arnett et al. (2015) hope to naturally include effects like

overshoot and semiconvection in a theory of convection that will supersede mixing length

theory, but this has not yet been realized in a stellar evolution code. For now, we must

rely on multi-dimensional studies of novae to understand the degree to which overshoot

mixes material at the boundary. To date, these simulations have been too expensive

to carry out through much more than a single eddy turnover time, but a new software

tool, MAESTRO (Nonaka et al., 2010) might be able to change that. MAESTRO is a

multidimensional hydrodynamic code that essentially assumes that sound waves travel at

infinite speed. For the very subsonic convective velocities at the base of the thermonuclear

runaway, this is an excellent approximation. The end result is a simulation that can take
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long enough timesteps to calculate through the entirety of the overshoot phase, which is

a relatively short period of time over the course of the nova evolution, but an eternity

compared to the dynamical time at the base of the convective zone.

With MAESTRO, we hope to better paramaterize how much mixing happens dur-

ing the runaway. Combining such a parameterization with the improved diffusion and

rotation capabilities in MESA will allow a more realistic simulation of shell flashes of all

kinds on WDs, and in particular, we can answer the question of long-term mass growth

of WDs undergoing rapid accretion of hydrogen.

5.2 Excitation of Core g-Modes

A more immediate outgrowth of this work is the open question still left from chapter 4:

What is causing the observed oscillations in X-ray light curves?

We showed that the ε-mechanism could excite low-order modes, but those modes had

periods much shorter than the observed periods. However, we also found modes at higher

periods that were not excited by the ε-mechanism. If these modes could be excited by

other means, they could still be the source of the observed oscillations.

One possible source of excitation would be stochastic excitation from the base of the

convection zone during the thermonuclear runaway. This mechanism has been used by

Fuller et al. (2015) to explain angular momentum transport via waves in massive stars

and by Fuller (2017) to explain heat transport in pre-supernova supergiants.

With stochastic excitation, waves are generated by the motions of fluid elements at
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the convective boundary. The generated waves have periods on the order of the convective

turnover time,

Pwave ∼
αMLTH

vconv

, (5.1)

where αMLT is the mixing length in units of the pressure scale height H and vconv is

the convective velocity. Near the base of the convective zone of our 1.3 M� model from

chapter 4 during peak burning, the eddy turnover times are about 20 seconds, close to the

35 second period seen in several of the novae with masses estimated to be near 1.3 M�.

The energy put into these waves is roughly

Lwaves ∼MLconv, (5.2)

whereM is the mach number of the convective motion, which is typically a few percent,

and Lconv is the energy carried by convection, which can easily exceed 109 L� in novae.

From the MESA calculations we’ve already done, we can estimate the total amount of

energy put into these modes. What remains to be done is to use GYRE to see how fast this

energy is radiatively damped. If the waves can survive through the outburst through to

the supersoft phase, they may indeed explain the observed oscillations.
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Appendix A

Phase Delays in CNO Burning

To calculate the sensitivity of the CNO burning rate to density and temperature perturba-

tions, we followed the method of Kawaler (1988) with several changes. For completeness,

we outline the entire calculation here.

Thermonuclear burning in the post-outburst nova is dominated by the CNO cycle.

We consider only the basic CN cycle since it produces most of the energy. The reactions

involved are

12C + p → 13N + γ, (A.1)
13N → 13C + e+ + νe, (A.2)

13C + p → 14N + γ, (A.3)
14N + p → 15O + γ, (A.4)

15O → 15N + e+ + νe, (A.5)
15N + p → 12C + α. (A.6)

We will index the reactants of equations (A.1)–(A.6) as 1–6. That is, 12C will be denoted

by the number 1 in subscripts and 15N by 6. These indices will be cyclic so that 1−1 = 6
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and 6 + 1 = 1.

For an isotope i that is both produced and destroyed via proton captures, the total

number of ions of isotope i is represented by Ni. Then the net rate of production of these

isotopes is

DNi

Dt
= −Ninp 〈σv〉 i +Ni−1np 〈σv〉 i−1, (A.7)

where D/Dt is the Lagrangian time derivative, np is the number density of protons, and

the 〈σv〉 ’s are the thermally-averaged reaction rates. If the isotope is created via a beta

decay, the second term is replaced by Ni−1λi−1 where λi−1 is the decay rate of isotope

i−1. Similarly, if the isotope is destroyed by a beta decay, then we replace the first term

in (A.7) with −Niλi. The total number of ions of isotopes is related to its mass fraction

Xi and mass number Ai via Ni ∝ Xi/Ai. Thus we can rewrite (A.7) in terms of the mass

fraction via

DNi

Dt
∝ 1

Ai

DXi

dt
. (A.8)

For simplicity, we also introduce a generalized destruction rate, Ki that is λi for isotopes

destroyed via beta decay and np 〈σv〉 i for those destroyed by proton captures. This gives

a generalized rate equation of

DXi

Dt
= −XiKi +

Ai
Ai−1

Xi−1Ki−1. (A.9)

In the background equilibrium state, these rates all vanish once the mass fractions

have settled to the preferred configuration. Now we introduce Lagrangian perturbations
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(denoted by the δ symbol) in temperature and density with frequency σ,

ρ→ ρ0 + δρ eiσt T → T0 + δT eiσt, (A.10)

where subscripts of 0 indicate the constant equilibrium values. The generalized destruc-

tion rates, Ki will also change, but only for reactions involving proton captures:

Ki = λi → λi,0 Ki = np 〈σv〉 i → Ki,0 +Ki,0

[
δρ

ρ
+ νi

δT

T

]
eiσt, (A.11)

where νi = d ln 〈σv〉 i/d lnT . Similarly, the mass fractions Xi and their derivatives will

also change:

Xi → Xi,0 + δXi e
iσt DXi

Dt
→ iσδXi e

iσt. (A.12)

Phase lags will only be present if the values of δXi are complex. Now applying the

perturbations of (A.11) and (A.12) to (A.9), subtracting off the equilibrium solution,

and dividing out the exponential dependence gives

iσδXi = − (δXiKi,0 +Xi,0δKi) +
Ai
Ai−1

(δXi−1Ki−1,0 +Xi−1,0δKi−1) , (A.13)

where we’ve left the perturbation of the generalized rate as a generic δKi. Specializing

to the three classes of isotopes (creation by beta decay, destruction by beta decay, or no

beta decays) and noting that by conservation of mass,

Ai
Ai−1

(δXi−1Ki−1,0 +Xi−1,0δKi−1) = Xi,0Ki,0

(
δXi−1

Xi−1,0

+
δKi−1

Ki−1,0

)
, (A.14)

we get
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i
σ

Ki,0

δXi

Xi,0

= −
(
δXi

Xi,0

+
δKi

Ki,0

)
+

(
δXi−1

Xi−1,0

+
δKi−1

Ki−1,0

)
, (A.15)

iσ +Ki,0

Ki,0

δXi

Xi,0

− δXi−1

Xi−1,0

=
δKi−1

Ki−1,0

− δKi

Ki,0

, (A.16)

iσ +Ki,0

Ki,0

δXi

Xi,0

− δXi−1

Xi−1,0

= (νi−1 − νi)
δT

T0

(i = 1, 4), (A.17)

iσ + λi
λi

δXi

Xi,0

− δXi−1

Xi−1,0

=
δρ

ρ0

+ νi−1
δT

T0

(i = 2, 5), (A.18)

iσ +Ki,0

Ki,0

δXi

Xi,0

− δXi−1

Xi−1,0

= −δρ
ρ0

− νi
δT

T0

(i = 3, 6). (A.19)

Here (A.16) is still a general result while (A.17) - (A.19) relate the relative mass fraction

perturbations to the equilibrium conditions and the temperature and density pertur-

bations for isotopes that are created and destroyed by proton captures (A.17), created

by proton captures and destroyed by beta decays (A.18), and created by beta decays

and destroyed by proton captures (A.19). These constitute a set of six equations in

six unknowns. For a given temperature, density, and equilibrium set of abundances, we

can then query the rates module of MESA to get λi, Ki,0(ρ0, T0), and νi(T0) to get an

expression for δXi in terms of σ, δT/T0, and δρ/ρ0. In general, this has the form

δXi

Xi,0

=

(
α
δρ

ρ0

+ β
δT

T0

)
eiσt, (A.20)

where the α’s and β’s come from solving the system of equations above. They depend

only on the various Ki’s, νi’s, and σ. They are in general complex, giving rise to phase

delays between the temperature/density perturbation and the actual changes in abun-

dances. Kawaler (1988) solved for these α’s and β’s explicitly in the limit where beta

decays occur much more quickly than proton captures. This limit is valid in the case
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of a PNN, but at the higher temperatures present in some of the post-outburst novae,

this assumption fails, so the full matrix inversion calculation is needed to solve for these

quantities.

To see how this affects wave excitation via the ε-mechanism, we need to relate these

α’s and β’s to the nuclear energy generation rate. The energy generation rate due to the

destruction of species i is given by

εi =
XiKiQi

Aimp

, (A.21)

where Ki is again the generalized destruction rate and Qi is the energy released by the

destruction of one isotope (roughly the difference in binding energies). Then the total

energy generation rate is just the sum over all of these rates. After accounting for the

perturbations in Ki and Xi, the perturbation in the overall energy generation rate is

δε

ε0
=

(
A
δρ

ρ0

+B
δT

T0

)
eiσt, (A.22)

where

A =
d ln ε

d ln ρ
=

(
∑

i αiεi) + ε1 + ε3 + ε4 + ε6
ε0

(A.23)

and

B =
d ln ε

d lnT
=

(
∑

i βiεi) + ν1ε1 + ν3ε3 + ν4ε4 + ν6ε6
ε0

. (A.24)

In the long-period limit σ → 0, we expect A → 1, but in general, A < 1 for periods

in the 1-1000 second range. Similarly, B is smaller than the expected unperturbed value

for periods in this range, causing an enhanced stability in the burning rate with changes
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to temperature and densities.

As a simple check that our method is consistent with the work of Kawaler (1988),

the left panel of Figure A.1 reproduces Figure 3 of that paper, where the derivatives

A = d ln εnuc/d ln ρ and B = d ln εnuc/d lnT are plotted for a particular temperature,

density, and composition. We find excellent agreement with our general approach. The

right panel of Figure A.1 shows how the actual values of A and B vary as a function of

period for our fiducial 1.3 M� post-outburst nova model as well as a much hotter version

of that model, demonstrating that temperature and density sensitivity indeed vanish at

such high temperatures as the reaction cycle becomes limited by beta decays.
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Figure A.1 Left: dependence of the logarithmic derivatives of the nuclear energy genera-
tion rate (relative to the long-period limit) on pulsation period. This figure corroborates
the similar Figure 3 from Kawaler (1988). Right: the actual values of these derivatives
for our fiducial 1.3 M� post-outburst nova model (top) and for a much hotter (3 × 108

K) model with the same composition and density.

Generally, A and B are local quantities since they depend on the local equilibrium
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values for the Xi, ρ and T . Since we needed values for A and B at a large range

of periods for computations with GYRE and for every snapshot saved during the post-

outburst phase, we decided to simply sample the point of peak CNO burning and apply

the modified values of A and B to all regions with significant burning. The area of peak

burning is what drives the ε-mechanism, so this is the value and location that matters

most.

To incorporate the phase lags defined above, we modify GYRE so that the εad and εS

partial derivatives are evaluated via the expressions

εad ≡
(
∂ ln ε

∂ lnP

)
S

=
A

Γ1

+∇adB, (A.25)

εS ≡ cP

(
∂ ln ε

∂S

)
P

= −υTA+B, (A.26)

(all symbols have the same meaning as in Townsend et al. (2017)). For efficiency reasons,

the complex coefficients A and B are pre-calculated on tables spanning a range of periods,

and interpolated at runtime using cubic splines. These new capabilities will be included

in version 5.1 of GYRE.
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