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Transcriptional regulatory networks (TRNs) have been studied
intensely for >25 y. Yet, even for the Escherichia coli TRN—
probably the best characterized TRN—several questions remain.
Here, we address three questions: (i) How complete is our knowl-
edge of the E. coli TRN; (ii) how well can we predict gene expres-
sion using this TRN; and (iii) how robust is our understand-
ing of the TRN? First, we reconstructed a high-confidence TRN
(hiTRN) consisting of 147 transcription factors (TFs) regulating
1,538 transcription units (TUs) encoding 1,764 genes. The 3,797
high-confidence regulatory interactions were collected from pub-
lished, validated chromatin immunoprecipitation (ChIP) data and
RegulonDB. For 21 different TF knockouts, up to 63% of the differ-
entially expressed genes in the hiTRN were traced to the knocked-
out TF through regulatory cascades. Second, we trained super-
vised machine learning algorithms to predict the expression of
1,364 TUs given TF activities using 441 samples. The algorithms
accurately predicted condition-specific expression for 86% (1,174
of 1,364) of the TUs, while 193 TUs (14%) were predicted bet-
ter than random TRNs. Third, we identified 10 regulatory mod-
ules whose definitions were robust against changes to the TRN
or expression compendium. Using surrogate variable analysis, we
also identified three unmodeled factors that systematically influ-
enced gene expression. Our computational workflow comprehen-
sively characterizes the predictive capabilities and systems-level
functions of an organism’s TRN from disparate data types.

transcriptional regulation | transcriptomics | matrix factorization |
regression

A transcriptional regulatory network (TRN) plays a major
role in enabling an organism to modulate expression of

thousands of genes in response to environmental and genetic
perturbations (1). Escherichia coli’s TRN is probably the most
extensively studied in any organism. However, the structure of
even this TRN is still subject to considerable uncertainty, seri-
ously limiting its utility for predicting gene expression or for
interpreting disparate datasets. Indeed, over a decade ago, a
combined metabolic and regulatory network model of E. coli
could explain only 15% of differential gene expression in
response to the major environmental change of oxygen depri-
vation (2). While much progress has been made since then (3–
5), predicting global gene expression remains a fundamental
challenge (6).

A global TRN can consist of regulatory interactions deter-
mined from a variety of data sources. These include direct
and indirect experimental evidence or computational predictions
(7). For the latter, reducing false-positive interactions remains
challenging—the state of the art achieves 60% precision (8, 9). In
recent years, improved chromatin immunoprecipitation (ChIP)
methods have enabled precise characterization of transcription
factor (TF) binding sites. Combining ChIP with transcriptomics
for TF KO strains has yielded high-confidence regulatory interac-
tions in the conditions studied. Such ChIP studies have now accu-

mulated for over a dozen major TFs, with each study increasing
the number of known binding sites of a TF by 74–400% (10–13).

Here, we used this critical mass of data to perform a rig-
orous assessment of the latest high-confidence TRN (hiTRN)
of E. coli that is devoid of uncertain regulatory interactions.
We further examined this TRN’s ability to explain differential
gene expression in response to genetic and environmental per-
turbations. The hiTRN was reconstructed by using published
ChIP data for 15 TFs added to only high-confidence regula-
tory interactions from RegulonDB (7). We assessed our hiTRN
using transcriptomics compendia (14–16) and multiple computa-
tional approaches: unsupervised and supervised machine learn-
ing, mutual information (MI) analysis, network topology analy-
sis, integer programing, and community detection (Fig. 1).

Results
The Coverage of the TRN Has Expanded, but Remains Incomplete.
Our reconstructed hiTRN consisted of 147 TFs, 1,538 tran-
scription units (TUs), and 1,764 genes regulated by 3,797 high-
confidence regulatory interactions (Dataset S1). We assessed the
coverage of the hiTRN for explaining differential gene expres-
sion in three ways.
Completeness. To assess hiTRN’s completeness, we computed
what fraction of the 1,764 genes whose expression changed across
154 experimental conditions could be directly explained with the
hiTRN (see Materials and Methods and SI Appendix, Fig. S1 for
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consistently explain observed differential gene expression?
We have reconstructed a high-confidence TRN, determined
its consistency with transcriptomics and predictive capabili-
ties across multiple conditions, extracted 10 functional regula-
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Fig. 1. Overview of our workflow. (A) RegulonDB (7) and additional pub-
lished ChIP data were combined to reconstruct the hiTRN. (B) Using our
hiTRN, we analyzed transcriptome shifts in expression compendia [EcoMAC
(14), E. coli Expression 2 (15), and COLOMBOS (16)]. (C) We evaluated the
completeness of our knowledge of our hiTRN on the basis of network con-
sistency, dimensionality reduction, and detection of stable regulatory mod-
ules. (D) We assessed the ability of our hiTRN to quantitatively predict gene
expression using MI and regression.

explanation of conditions analyzed). On average, 27% of differen-
tially expressed genes (DEGs) in the set of 1,764 genes considered
were enriched for at least one regulon, and 20% or more of DEGs
were enriched for at least one regulon in 57% of the conditions.
Genetic Perturbations. We then assessed whether differential
gene expression could be traced through regulatory paths in our
hiTRN to a knocked-out TF gene. We investigated 21 differ-
ent sets of single or double TF KOs. We found that 0–63%
of DEGs in the TRN were successfully traced to the knocked-
out TF through one or more regulatory paths (Fig. 2B). We
could best explain DEGs in the TRN (50–63%) for experi-
ments ∆arcA∆fnr and ∆purR (with adenine), while experi-
ments ∆narP∆oxyR and ∆soxS∆purR (without adenine) were
explained poorly. For comparison, we also extracted nine addi-
tional TF KO experiments from the COLOMBOS dataset (16)
and performed the same analysis. For the four experiments that
have DEGs identified, we found that ∼56% of the DEGs in the
TRN could be successfully traced to the knocked out TF (SI
Appendix, Fig. S2).
Regulatory Bias. We then evaluated whether the regulatory bias
(activation or inhibition) assigned to each regulatory interaction
was consistent with DEGs given a TF KO. This “sign consis-
tency” analysis was conducted by formulating the hiTRN as an
influence graph (17), with edge signs reflecting activation (+)
or repression (−). Overall, total sign consistency accounting for
both DEGs and nondifferentially expressed genes was 51–99%
consistent with the TRN (Fig. 2A). The highest consistency was
observed for local TFs such as narL, narP, dnaA, and purR. Con-
sistency was low for arcA/fnr under both conditions. We found
a negative correlation between the number of genes regulated
(both directly and indirectly) by a TF and the sign consistency
between the TRN and experimental data (Pearson r =−0.875,
P = 2.10 × 10−7) (SI Appendix, Fig. S3). We also found a sig-
nificant negative correlation between the longest regulatory path
length of a TF and consistency (SI Appendix, Fig. S4). For the
TF KO experiments from the COLOMBOS dataset, the overall
consistency was similar (59–99%).

Not all DEGs could be traced to the deleted TF (Fig. 2B).
Unreachable DEGs may indicate missing regulatory interac-

tions, while low sign consistency suggests that additional fac-
tors influencing regulatory bias need to be explicitly modeled
[e.g., effect of adenine on PurR binding (11)]. Additionally,
some differential expression may have been due to growth rate-
dependent global regulation (5, 18) (growth rates ranged from 2
to 37% of the wild-type, where these metadata were available).

Overall, the coverage of our hiTRN for DEGs varied across
experimental conditions, with an average coverage of 26%, which
was significant (permutation test, P = 3.91× 10−4; SI Appendix,
SI Methods) and up to 63%. The low DEG coverage for individ-
ual TF KO experiments reflects the highly interwoven nature of
many regulons. Thus, achieving 100% DEG coverage will likely
require precise reconstruction of individual regulons, including
mechanisms beyond TRN topology and regulatory bias.

The hiTRN Is Consistent with Major Modes of Changes in the Entire
Transcriptome. We evaluated our hiTRN in the context of tran-
scriptomics data consisting of 4,189 genes × 441 samples. Tran-
scriptomics data are difficult to interpret, in part because they
are high-dimensional and noisy. We thus used nonnegative matrix
factorization (NMF) (19) to identify major modes (i.e., important
features) of transcriptome changes across conditions. NMF iden-
tifies cohesive subsystems from complex expression data set by
reducing thousands of genes into several dozen metagenes, which
represent the major modes (19–21). A metagene is a linear com-
bination of the genes whose expression changes are correlated
across conditions. Using NMF, we reduced the dimensionality of
the expression data from 4,189 genes × 441 samples to 40 meta-
genes × 441 samples. We confirmed using principal component
analysis (PCA) that 40 dimensions sufficiently explained (88%)
of variance in the expression data (SI Appendix, Fig. S5).
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Fig. 2. Consistency of hiTRN with observed differential gene expression
in wild-type cells and in strains with a deleted TF gene. (A) Consistency
of our TRN with observed differential and nondifferential gene expression
accounting for regulatory bias (i.e., sign consistency). (B) Reachability (exis-
tence of contiguous regulatory paths in the TRN) from deleted TFs to DEGs
in the TRN.
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We then characterized the relationship between regulons and
metagenes. To do so, we identified regulons that were enriched
for genes that were determined to be major contributors within
each metagene (i.e., genes that had large coefficients within a
metagene). We found that all metagenes were enriched for at
least one regulon (Fig. 3).

Furthermore, metagenes tended to be enriched for hiTRN-
regulons that shared related functions (Fig. 3). For example,
some stress response TFs (rcsB, gadE, gadX, and gadW) were
enriched simultaneously for several metagenes. This result is
consistent with the hiTRN structure, which causally links these
TFs: rcsB → gadX → gadW → gadE (7, 22). Overlapping reg-
ulons were also coenriched in the same metagene including narL
and narP, or nrdR and dnaA.

These results demonstrate coverage and coherency in the
hiTRN and consistency with high-dimensional transcriptomics
data, albeit at a more coarse-grained level than the reachability
and regulatory bias described above.

Robust Regulatory Modules Were Identified. Next, we evaluated
whether the organization of TFs in our hiTRN was consistent
with the functional organization of regulons as derived from the
transcriptome. We thus developed a computational pipeline to
identify clusters of TFs (or modules) that were significantly and
strongly coenriched across conditions (SI Appendix, SI Methods).
We identified 10 coenriched modules (Fig. 4 and Dataset S2). Six
modules in particular represented core biological functions. For
example, module 6 included TFs and toxin–antitoxin pairs associ-
ated with multiple stress responses. Since the E. coli TRN is still
expanding, we evaluated whether these modules would remain
stable as new regulatory interactions are incorporated into the
TRN. We randomly added up to 60 regulons and used our
pipeline to identify new modules, which were compared against
the original modules. The average Jaccard index (SI Appendix,
SI Methods) between modules ranged from 0.34 to 0.81, and nor-
malized variation of information (VI) (23) ranged from 0.025 to
0.34 (SI Appendix, Fig. S7). Module stability depended on which
regulons were added, since even when 34 new TFs and 1,290
regulatory interactions were added, the clusters could be stable
(Jaccard index = 0.55, normalized VI = 0.14). The modules were
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se
ne

ga
te

M

1. Acid and drug resistance
    Oxidative stress response
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    Biofilm formation
    Motility system 

3. Energy metabolism 
    Anaerobic growth 
    Amino acid metabolism
    Iron transport 
    

5. Inorganic ion utilization
    Anaerobic growth 
     
    

Fig. 3. Regulon enrichment and functions of
metagenes. Colors indicate functions of metagenes
based on enriched regulons. Functionally related
regulons are enriched in the same metagenes.
Note that only TFs in modules 1, 3, and 5 are shown
here. A full heatmap can be found in SI Appendix,
Fig. S6.

also relatively consistent when we used a different expression
compendium, COLOMBOS (16). The normalized VI for the
modules identified between the two compendia was 0.17, which
was significant (permutation test, P < 10−4).

Regulatory Modules Identified Have Broad Implications. Next, we
examined evolutionary characteristics of the regulatory modules
at the DNA sequence and protein structure levels.
Evolutionary Conservation. We hypothesized that modules asso-
ciated with vital functions would be conserved across species,
while organism-specific responses would not. We thus computed
conservation of the 147 TFs in our hiTRN across Enterobac-
teriaceae and γ-, β-, α-, and δ-proteobacteria (SI Appendix, SI
Methods). We found two conserved modules (modules 7 and
10) involved with motility, metal ion uptake, and DNA damage
response (SI Appendix, Fig. S8). We also found one significantly
less-conserved module (module 1), primarily involved with vari-
ous stress responses, including acid stress. This result was consis-
tent with availability of alternative pH stress response systems or
alternative regulators of conserved proton consumption or gen-
eration genes (22).
Binding Motifs. We investigated the sequence homology of DNA
binding motifs of the 147 TFs. We found that the TFs in modules
1, 2, 3, 8, and 9 shared more similar binding motifs within the
module compared with those in other modules (Mann–Whitney–
Wilcoxon test P < 0.05).
Protein Structure. We explored the structural similarity between
TFs in each module to identify whether a structure–function
relationship existed within the modules. We aligned annotated
DNA-binding domains and the full structures of TF pairs using
the FATCAT structural alignment tool (24). The TFs in mod-
ules 4, 5, and 8 showed significantly higher structural similarity in
both cases to TFs within the module compared with TFs in other
modules. Specifically, module 8 was enriched for the periplasmic
binding protein-like I domain (25).

The Expression of Most TUs Can Be Predicted Quantitatively from
TF Expression. We next asked whether gene expression could
be quantitatively predicted as a function of TF expression lev-
els across varying conditions and genetic perturbations. Eight
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Datasets S2 and S3.

potential model structures were explored to identify the best
modeling procedure: four multiple linear regression models and
four support vector regressors (SVRs). The model structures
were similar to those described in the literature (14, 26–29).
Multivariate Linear Regression. We used multivariate linear re-
gression to predict the average expression of genes grouped by
TUs from RegulonDB (7) (Materials and Methods). A total of
1,364 of the 1,538 identified TUs were measured in EcoMAC.
We tested both TFs and sigma factors as regressors (30) and
included a cooperativity term that allowed for bilinear interac-
tions between TFs for each case (Fig. 5A). Using an F test of
overall significance (31), we determined that in 77% (1,045 of
1,364) of TU-specific bilinear models, TFs significantly improved
the fit of the models compared with intercept-only models under
a false discovery rate (FDR)< 0.05. However, sigma factors
alone significantly improved the fit of 91% (999 of 1,093) of TUs
with known sigma factors, highlighting the strong influence of
sigma factors on TU expression.
Nonlinear Interactions. To better account for nonlinear regula-
tory interactions, we next trained SVRs with linear and Gaus-
sian kernels, both with and without sigma factors. Not only did
the Gaussian kernel SVR with sigma factors fit the training data
better than the best-performing linear model (P < .001), but the
SVR significantly improved the predictive power of the model
when applied to the testing data (P < .001) (Fig. 5A). The coef-
ficient of determination (R2) of the SVR with sigma factors on
the training data were correlated with the number of known
TFs (Pearson R = 0.41, P < .001) (Fig. 5B). Thus, as we dis-
cover more about the structure of the TRN, the predictive power
of the TRN should increase. The regression was performed on
COLOMBOS by using the hiTRN (SI Appendix, Fig. S9) and on
both COLOMBOS and EcoMAC by using only strong interac-
tions from RegulonDB (SI Appendix, Figs. S10 and S11), pro-
viding highly similar results (SI Appendix, SI Methods). Using
this model, we also tested whether our predictions captured
condition-specific effects by shuffling the TU expression pro-
files (predicted outputs) while maintaining the order of the TF
expression profiles (features). A total of 86% (1,174 of 1,364) of
TUs yielded significant differences between the shuffled expres-
sion profile regression and the original regression for the SVR
(FDR-adjusted P < 0.05).

Sensitivity of TU Expression to TRN Topology. We next evaluated
whether certain TUs were predicted more accurately using our
hiTRN than random TRNs. We identified 193 of 1,364 TUs (14%)
that were predicted significantly better than random TRNs for
the best SVR (FDR-adjusted P < 0.05). The random TRNs pre-
served the hiTRN’s distribution of the number of TFs regulating

a TU (SI Appendix, Fig. S12). Also, TFs sharing high MI with
known regulators of a TU were excluded (SI Appendix, Fig. S13).
MI Analysis. We next investigated why predicting the expres-
sion of 86% of TUs was apparently insensitive to the exact
TRN. Based on MI, we found that only 28% (39 of 137) of
measured TFs shared significantly higher MI with genes inside
compared with genes outside their regulons (FDR< 0.05) (SI
Appendix, Fig. S14). However, the average MI between genes
within each regulatory module was significantly higher than the
average MI between genes that did not share a regulatory mod-
ule (SI Appendix, SI Methods). Furthermore, expression profiles
of many TFs shared high MI with other TFs (SI Appendix, Figs.
S15 and S16). Therefore, the expression of most TUs could
be predicted from the expression of many alternate TFs, even
if there was no evidence of TF binding. This result reflects
known issues with nonidentifiability of the TRN from expres-
sion profiles (32). This issue is also encountered in other organ-
isms (26) and reinforces the need for high-confidence regulatory
interactions.

Other Cellular Processes Influence Gene Expression. Unmeasured
factors can affect gene expression, from batch effects pertain-
ing to the experimental procedure to unmodeled cellular pro-
cesses. Such systemic variables are not represented in the hiTRN
and may pose difficulties for reconciling observed differential
expression. Surrogate variable analysis (SVA) (33) determines
the effect of such unmodeled variables directly from expres-
sion data. We applied SVA to EcoMAC, using the best model
(i.e., SVR with sigma factors) to predict the primary expression
signatures. We identified three surrogate variables, which were
enriched in data from a single laboratory (SI Appendix, Fig. S17).
These variables imply that unaccounted variation stemmed from
this data source, potentially related to the use of a substrate not
present in other sources (LB plus glycerol). Presence of three
surrogate variables was consistent with clustering of data in the
first two principal components (SI Appendix, Figs. S18 and S19)
in PCA analysis.

Discussion
In this study, we answered three questions concerning the scope
and gaps in our knowledge of the E. coli TRN and our ability to
predict gene expression.

The hiTRN Explains Many Causal Connections Between Differential
Gene Expression and TF Activation. We found that across 21 dif-
ferent TF KOs, up to 63% (26% on average) of the result-
ing DEGs in the TRN were traced back to the knocked-out
TF through regulatory cascades in our hiTRN. Compared with
15% coverage reported in an earlier assessment in 2004 (2),
our result represents an increase in coverage ranging from 70 to
320%. Additionally, we found that when accounting for network
topology and regulatory bias (i.e., inhibition or activation) (17),
our hiTRN explained 51–99% of DEGs and nondifferentially
expressed genes. Some of the unexplained differential expression
was potentially related to unmodeled variables that systemati-
cally influenced gene expression. We identified three such sur-
rogate variables, one of which corresponded to a single data
source having a distinct media condition. Unmodeled variables
may also be explained by systematic variation in other biological
processes, including growth rate (34).

We Can Predict Expression for 86% of TUs, but only 14% of TUs Are
Unambiguously Linked to Their Direct Regulators. We could predict
expression for 86% (1,174 of 1,364) of TUs significantly better
than shuffled expression profiles (FDR-adjusted P < 0.05). We
found 193 TUs (14%) whose expression was predicted signifi-
cantly better than random TRNs (FDR-adjusted P < 0.05), indi-
cating the critical importance of having a well-defined TRN for
these TUs. This progress resulted from having high-resolution
measurements for TF binding sites and knowing the occupancy
of these sites in a context-specific manner. Thus, designing
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Fig. 5. Accuracy of expression predictions on
training and held-out testing transcription units.
(A) R2 (coefficient of determination) of pre-
dicted expression profile vs. true expression pro-
file using various regression models. (B) R2 value
of the testing dataset predicted by a Gaussian
kernel SVR, grouped by number of known TFs.
Error bars indicate SD for groups with >3
observations.

experiments to define high-confidence regulatory interactions
should be prioritized when characterizing the TRN of an organ-
ism for which data are scarce. With the advances in ChIP-exo and
transcriptomics methods, a much more comprehensive under-
standing of the TRN could be achieved in the near term. Further-
more, given recent progress in understanding dormant TF–DNA
binding events (35, 36), it will be important to investigate diverse
conditions for expanding the repertoire of high-confidence inter-
actions, which involves observing a proximal effect of binding on
gene expression.

We Robustly Understand Global TRN Function Within a Limited Scope.
We identified 10 regulatory modules representing core biologi-
cal functions from two expression compendia using the hiTRN.
These modules showed evolutionary conservation at the DNA
sequence and protein structure levels and overlapped with previ-
ously identified clusters (37) (SI Appendix, SI Methods). Further-
more, the modules were consistent when the hiTRN was per-
turbed by adding random regulatory interactions from up to 60
regulons.

Together, these results indicate that core TRN functions are
understood robustly, and gene expression can be predicted. To
grow the scope of the hiTRN, new high-precision ChIP experi-
ments en masse directed at unconfirmed TFs or TFs regulating
uncharacterized genes are expected to greatly enhance the scope
of understanding of E. coli’s TRN and can do so in the near term.
Analyzing disparate data by using in silico models is likely to be
important for guiding us through the selection and execution of
the most informative experiments to fill gaps in our understand-
ing and to design experiments to test its robustness.

Materials and Methods
High-Confidence Regulatory Network Reconstruction. To reconstruct the
high-confidence TRN (hiTRN), we combined strong evidence interactions
from RegulonDB 9.4 (7) according to the RegulonDB Evidence Classification

(38), with TF KO-validated ChIP-based interactions for 15 regulons from liter-
ature: arcA and fnr (10, 39, 40), argR (41, 42), trpR, lrp (42), fur (13), gadEWX
(22), oxyR, soxRS (43), purR (11), crp (44), and cra (45). The regulatory direc-
tion (+ or −) was preserved from the original study. Both directions were
added if the direction was uncertain.

Expression Compendium Preparation. Experimental conditions from EcoMAC
(14) were filtered to exclude nonrelevant conditions as described in Yang et
al. (46), resulting in expression profiles for 4,189 genes× 444 samples. Three
of these samples (wild-type E. coli MG1655 grown aerobically in M9 medium
with glucose) were used as a reference.

Nonnegative Matrix Factorization. We performed NMF using sklearn with
“nnsvd” initialization (47). The top genes accounting for 15% of each meta-
gene’s weight were used for regulon enrichment. We compared NMF with
singular value decomposition to support our choice of 40 metagenes (20)
(SI Appendix, Fig. S20). We also used nonsmooth NMF (nsNMF) to identify
sparse metagenes (48) and removed genes from each metagene having coef-
ficients<0.001 (attributable to numerical error). Since NMF solves a noncon-
vex optimization problem and requires multiple runs to ensure global opti-
mality, we used two methods, by Kim and Tidor (20) and Wu et al. (21), to
confirm that our NMF decomposition was stable (SI Appendix, SI Methods).
Metagenes are defined in Dataset S4.

Regulatory Module Identification. We compiled a network of TFs that were
coenriched in a metagene, from 100 runs each of NMF and nsNMF (48). We
kept only 522 TF pairs that were strongly coenriched (Jaccard index> 0.18)
and significant (permutation test, P< 0.05, from 100,000 random networks
sampled from the observed frequency of coenriched TFs). We then identi-
fied modules using multilevel modularity optimization (49). The modularity
coefficient of 0.483 was above the recommended cutoff of 0.3 to indicate
community structure by Clauset et al. (50). The functional labels of the mod-
ules were assigned by using DAVID (51) functional annotation, followed by
manual curation.

DEG Identification. DEGs were identified by using the R package limma
in Bioconductor (52), with thresholds of | log2(Fold change|> 1 and
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FDR-adjusted P< 0.05. Three samples were used as the reference: wild-type
MG1655 grown in M9 with glucose as carbon source under aerobic condi-
tions. The resulting 441 samples of expression profiles relative to the refer-
ence corresponded to 174 experimental conditions. Of these conditions, 166
showed significant differential expression. In 162 of these 166 conditions, at
least one regulon was enriched for DEGs.

Network-Expression Consistency Analysis. We determined the consistency of
DEGs with the hiTRN for 21 TF KO experiments. Network reachability was
performed by using igraph in Python (49) and sign consistency by using
SigNetTrainer in Matlab (17).

Expression Profile Regression. We used supervised machine learning (mul-
tiple linear regression and support vector regression) to predict log-fold
change in expression of 1,364 TUs having at least one known regulator. We
compared eight model structures with features including known regulators
of each TU, cooperation/competition terms for all pairs of TFs, and known
sigma factors. Models were evaluated by using a stratified 10-fold cross-
validation to reduce overfitting (Materials and Methods). We determined

whether our models captured condition-specific effects by comparing them
against models trained on 1,000 randomly shuffled TU profiles, while main-
taining the order of regulator expression profiles. We further determined
the significance of the TRN for predicting expression by comparing models
trained on the known TRN against those trained on 1,000 random TRNs hav-
ing random TFs assigned to each TU, preserving the distribution of regula-
tors per TU. TFs having high MI with known TFs were not randomly assigned
to the TU.

Information Analysis. We computed MI between TFs and target genes using
the NPEET Python package (53). As described in Faith et al. (9), we compared
this MI to a background distribution of MI scores using the Wilcoxon rank-
sum test (α = 0.05).
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