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ABSTRACT OF THE DISSERTATION

Engineering Scalable Multiplexed Molecular Screening Platforms

By

Hinesh V. Patel

Doctor of Philosophy in Biomedical Engineering

University of California, Irvine, 2021

Associate Professor, Elliot E. Hui, Co-Chair
Associate Professor, Jered B. Haun, Co-Chair

A central role of biomedical research is capturing and evaluating the rich information

from genes, proteins, and/or other small molecules to provide actionable information. With

modern advances and understanding, focus has shifted to sensing multiple analytes in

parallel. Yet, further improvements in multiplexed tools are needed for improved

throughput. Here we present two technologies that expand our toolbox for multiplexed

molecular screening.

Current standard in biochemical assay multiplexing follows the well-plate paradigm

where microliter volumes are spatially separated and retained in wells, maintaining

individual addressability of thousands of simultaneous reactions. Preservation of spatially

indexed sample wells enables robotic liquid handlers to construct parallel combinatorial

reactions. Droplet microfluidics offer facile means of translating reagents into nano- and

picoliter reaction vessels at throughput speeds outpacing robotic liquid handlers. However,

continuous droplet production usually requires serial methods of droplet fusion, mixing,

and sorting. This loss in spatial indexing limits the ability to match well plates in screening

combinations of different reagents or compounds. Demonstrated here is a microfluidic

method coupled with phase-change gating technology to generate all pairwise combinations
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between two sets of reactants, enabling improved multiplexed screening of assay markers

across multiple samples. This architecture can preserve spatial indexing with full on/off

control of droplet merging, producing deterministic pairwise combinations of original

droplets. Such an approach achieves a sharp 30-fold reduction in reagent consumption and

nearly 40-fold reduction in liquid handling, suitable for a wide range of applications from

medicine to agriculture.

Understanding the molecular heterogeneity within the tumor microenvironment can

help characterize host vs. neoplastic cell types, identify metastatic propensity, guide

clinical management, or elucidate novel drug targets. Multiplexed molecular profiling that

preserves spatial context traditionally requires either spectral differentiation, high-powered

imaging equipment, or cyclic techniques involving serially degradative rounds of sample

staining and antigen retrieval. Here we demonstrate an imaging platform, leveraging the

phasor approach to fluorescence lifetime imaging microscopy (FLIM) and deep learning, to

resolve up to 4 exogenous molecular probes. Resolution is achieved within a single spectral

window, adding an orthogonal dimension with which to multiplex optical imaging.

xii



1 Multiplexed Microfluidic Platform for

Combinatorial Droplet Pairing:

A High-Density Genetic Screening Tool

1.1 Introduction

Current standard in biochemical assay multiplexing follows the well-plate paradigm

where microliter volumes are spatially separated and retained in wells, maintaining

individual addressability of thousands of simultaneous reactions in a compact footprint.

Critical to the success of the well plate is preservation of sample manipulation based on

position to enable parallel combinatorial reactions. Robotic liquid handlers perform

reagent addition and mixing operations directly to individual reactions deterministically

based on a standardized, spatially indexed format. Historically, improvements in injection

molding capabilities drove the reduction of well volumes and increases in well-densities on

the same footprint, enabling greater multiplexing. The most common format consists of a

32x48 matrix of 1536 total independent reaction wells with working volumes ranging

between 1-10µL. However, further increases in well-density and volume reduction have

slowed, encountering technical hurdles1. As a result new, innovative approaches are needed

for performing high-throughput, multiplexed screens.

Microfluidics comprise an interdisciplinary field burgeoning in recent decades with the

promise of large-scale miniaturization and automation of multiplexed biochemical assays.

Micro- and nano-fabrication practices from the semiconductor industry have been directed
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toward building such miniaturized fluidic systems, with growth analogous to that of the

microprocessors2. Advances in understanding and maturation of core capabilities has led to

a shift towards translational efforts. In coming years, advances in these systems will likely

continue to be the epicenter of disruptive innovation in biotechnology and healthcare3.

Engineered for precise spatiotemporal control and manipulation of fluid volumes at the

micro-scale, devices enable scientists to capitalize on behaviors such as efficient heat-mass

transfer, dominance of viscous forces, increase in surface energy effects, and overall faster

reaction kinetics. Droplet microfluidics offer facile means of translating reagents into nano-

and picoliter reaction vessels at throughput speeds outpacing robotic liquid handlers4.

These technologies offer significant advantages for reduced reagent consumption and

increased reaction density on a compact chip2,3,5.

Various small molecules can be encapsulated in droplets and the resulting high surface

area to volume ratios further increase reaction kinetics. These multi-fold volume reductions

enable more rapid, efficient, and cost-effective alternatives to bulk analyses2,6. As a result,

these platforms offer significant opportunities to reduce cost and dramatically increase

throughput of many mainstay laboratory functions, including multiplexing biochemical

assays2.

The two most common continuous droplet generation techniques are T-junctions and

flow-focusing. T-junctions introduce aqueous phase orthogonally into a continuous stream

of an immiscible carrier phase. Flow-focusing junctions direct both phases into a narrow

focused nozzle. Both techniques result in an emulsion of discretized liquid plugs suspended

in an immiscible phase. However, challenges in commercial adoption remain, centering on

multi-device integration efforts, sample tracking, and analytical readout schemes. Though

continuous droplet technologies generate at speeds in the kilohertz range, critical

integration of spatial tracking and individual droplet reagent addition strategies moderate

increases in throughput.
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Moreover, continuous droplet production results in 1-dimensional droplet arrays,

usually requiring serial methods of droplet fusion, mixing, sorting and interrogation

downstream of production. Two main microfluidic technologies to perform reagent

additions are direct injection and pairwise droplet merging. Direct injectors, commonly

referred to as pico-injectors, rely on the intersection of two channels to introduce new

aqueous content to cross flows of droplet plugs. As droplets near channel intersections,

volumes of the same aqueous additions are momentarily injected into each passing droplet.

In order to add multiple different reagent additions, multiple pico-injectors are arranged in

series for the successive introduction of additional droplet content, limiting their ability to

match well plates in screening heterogeneous combinations of different reagents or

compounds7.

Alternatively, two different droplet populations can be combined to produce a

combinatorial set of new droplets. When performing pairwise droplet merging under

continuous operation, two independent streams of droplet plugs are brought together,

merging pairs of droplets sequentially. As a result, they suffer from similar limitations in

scalability and throughput for combinatorial screening as pico-injectors. Instead, under

static droplet operation, droplets are arranged in an arrayed manner analogous to

individual wells in a well plate. This architecture can preserve spatial separation and

indexing when merging droplets, producing deterministic pairwise combinations of original

droplets7. However, control of droplet fusion in static operation not only requires methods

to simultaneously generate and align distinct arrays of droplets from bulk sample, but also

integration of fluidic control elements such as microvalves, to provide full on/off control of

interaction between droplets of differing composition.

Therefore, over recent years significant attention and progress has been made towards

the development of suitable microvalves8–13. However, despite this focus, many of these

valves require expensive and bulky off-chip components or complex cleanroom fabrication
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processes in order to operate. These inherent limitations preclude them from being

low-cost disposable solutions.

Microvalves can be broadly categorized into either active or passive valves. Many

conventional active microvalves use a flexible membrane coupled to an electromechanical or

pneumatic actuator. Membrane deflection results in opening or closing of microchannels.

However, materials often used for flexible membranes exhibit poor thermal conductivity

and non-negligible liquid biomolecule absorption. When performing biochemical assays in

small fluid volumes at the micro-scale, minor fluctuations in non-specific biomolecule

absorption can be detrimental to effective local concentrations, assay reliability, and

reproducibility of results8–11. An additional result of membrane-actuator coupling is the

requirement of additional costly equipment to operate. This becomes an increasingly

non-trivial task as the capabilities, size, and density of the devices scale.

One attractive non-mechanical active valve operates through the use of smart

materials such as phase-change materials (PCMs). These materials are cheap and

disposable making them well suited for LOC applications. They often operate by thermal

actuation where a simple heat source induces a solid-to-liquid phase transition.

Phase-change material such as paraffin wax have been used as microvalves by either acting

to displace elastomeric membranes or as plugs within microchannels that are displaced by

capillary forces or pressure differentials once melted. One benefit of phase change materials

is low energy consumption as they inherently persist in latched open or closed states.

Plug-type actuation valves have typically been single-use and require lengthy fabrication in

order to appropriately incorporate paraffin at specific locations within a microfluidic

channel network. While researchers have also demonstrated multiple actuation cycles of

paraffin wax microvalves in microfluidic devices, there still remain a number of limitations

reducing its tractability as a commercial success8–11.
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Previously demonstrated microfluidic wax microvalve technologies exhibit a few key

limitations that pose a significant barrier to commercial success. These disadvantages deal

primarily with the requirements for fabrication and basic operation of these devices. Firstly,

fabrication either requires cleanroom based micro-fabrication techniques, labor-intensive

manual application and sealing of wax within microchannels, or a combination of both.

The devices then require a pressure differential, during operation, to displace liquid paraffin

from the microchannel and open the valve to allow for subsequent fluid flow. While useful

for research purposes, many previously published techniques to address some of the

inherent limitations of current wax microvalves do not easily scale with current industrial

manufacturing processes. As a result, it currently prohibits achieving higher densities of

microvalves, and therefore chip capabilities, without concurrently increasing the complexity

of operation. One approach is to use local electric heating elements paired with a

microvalve as a means of individually addressing microvalves and interfacing with other

electrical connections. In most cases, the number of independent heating elements needed

to address each microvalve individually, grows linearly with valve densities. Designing such

a chip capable of 1536 independent reactions at densities that compare to operations in

well plates, would require a non-trivial number of heating elements and electrical

connections, thereby increasing chip complexity and cost. While published demonstrations

highlight the robustness of paraffin microvalves, specific approaches to-date would require

significant channel complexity, time-consuming fabrication, and unrealistic number of

pressure or heat inputs in order to operate as true Lab-On-A-Chip technologies8–11.

Therefore in order for a platform to realize the benefits of microfluidics - volume

reduction, increased throughput, and resulting cost savings - new fluidic architecture and

microvalves are needed. Demonstrated here is a static droplet microfluidic method coupled

with phase-change gating technology to generate all pairwise combinations between two

sets of reactants. Self-digitizing droplet arrays, defined on separate layers, control routing,

generation, and trapping of aqeuous droplets in specific organized locations. Fluidic
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channels on different layers are sealed and partitioned by thin paraffin membranes which

serve to provide zero-leakage microvalves between two or more fluid compartments in the

microfluidic device. This architecture preserves spatial indexing with full on/off control of

droplet merging, producing deterministic pairwise combinations of original droplets. Such

an approach achieves a sharp 30-fold reduction in reagent consumption and nearly 40-fold

reduction in liquid handling, enabling low-cost, multiplexed screening of assay markers

across multiple samples.

1.2 Microfluidic Combinatorial Droplet Pairing

In order to leverage the significant cost and throughput advantages realized by

miniaturization, we first developed a scalable strategy for combinatorial droplet pairing.

Demonstrated here is a microfluidic method to generate all pairwise combinations between

two sets of reactants, enabling improved multiplexed screening of assay markers across

multiple samples. The approach discretizes M different samples into an array of M

columns of N individual droplets, and N reagents into an array of N rows of M droplets.

The result is an MxN matrix where each column corresponds to different sample and each

row corresponds to a different assay.

Reactants are discretized into droplets using a previously reported self-digitizing

approach that leverages predefined channel geometries to spatially separate and immobilize

droplets. Briefly, a droplet well consists of a circular droplet trapping region followed by a

channel constriction that acts as a capillary valve. Liquid is driven from a reservoir into a

linear channel containing a set of droplet wells connected in series. The capillary valve

allows filling but not emptying of the droplet trapping regions. The aqueous liquid is

followed by an immiscible phase (oil or air) that displaces aqueous phase from the main

channel. The surface tension between the two immiscible phases results in shearing of
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aqueous segments that remain behind in droplet wells, controlling both droplet production

and spatial indexing14–17. As a result, a single µL-volume liquid sample reservoir is

discretized into a series of nL-volume droplets with a single fluid stream. Arranging

multiple self-digitizing channels in parallel produces a 2-dimensional self-digitizing array.

Samples are distributed across M columns of the array on one layer and reagents are

distributed across N rows of the array on a second layer. This becomes useful, for example,

in the binary array in Fig. 1.1, showing a set of 5 samples (1-5) and a set of 5 reagents

(A-E). Each sample must be combined with each reagent individually, creating 25

individual reactions. Droplets from each sample are distributed vertically downwards, Fig.

1.1A, while droplets from each reagent are distributed horizontally to the right, Fig.

1.1B. Here, the horizontal and vertical paths do cross-contaminate as they are placed on

separate fluidic layers. The droplets remain trapped in their respective locations shown.

The two independent arrays are orthogonally aligned, situating sample droplets on top of

reagent droplets, generating all pairwise combinations of MxN ordered droplet pairs while

maintaining their spatial indexing.

Figure 1.1: Schematic of Combinatorial Droplet Pairing Method. Self-digitizing
channels generate arrays of droplets on separate layers. (A) Digitization of 5 different samples
into 5 columns of droplets. (B) Digitization of 5 different reagents into 5 rows of droplets.
(C) Overlap results in production of all possible combinatorial pairs.
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1.3 Phase-Change Membrane Microvalves

In order to demonstrate simultaneous pairwise droplet merging of all MxN ordered

droplet pairs, each layer of arrayed droplets is separated by a switchable barrier, providing

precise temporal control over sample-reagent fusion. The barrier will be kept in-place

during droplet generation on the two independent layers and subsequently removed to

drive mixing of contents between all generated droplet pairs simultaneously.

Microvalves, a common switchable barrier, regulate flow between two different fluid

filled chambers. Moreover, integration of microvalves is reported as critical for successful

miniaturization and commercialization of microfluidic technologies12,13,18. However, current

microvalve technologies, including those electromechanically or pneumatically driven, either

require specialized cleanroom fabrication or difficult multi-layer assembly. Additionally,

these valves exhibit drift in valve integrity or require multiple input lines for robust

actuation of valves in parallel. Row-column addressing schemes can greatly reduce the

number of required input lines, yet still scale linearly with each additional column or row of

valves. As a result, manufacturing and operating such valves between every ordered droplet

pair would prove too costly, limiting affordable scalability.

1.3.1 Dynamically Tunable Membrane Valves

Due to a lack of suitable microvalves, we derived a new microvalve technology from

phase-change materials (PCM). Paraffin wax, a widely available and inert phase-change

material, has previously been used in molecular biology. Commonly used to maintain

separation of PCR reagents at room temperature, the solid paraffin prevents off-target and

non-specific byproducts prior to thermocycling and amplification. Inspired from this

approach, we sought to miniaturize this method by fabricating and incorporating thin,
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Figure 1.2: Schematic of Phase-Change Thermal Valve. (A) A thin layer of solid
phase-change material separating two different fluid compartments. (B) The introduction
of energy (heat) induces a phase-change from solid to liquid resulting in mixing of the two
previously separated fluid compartments.

membrane-like sheets of paraffin to separate two or more overlapping microfluidic

chambers. At room temperature, paraffin is solid, blocking fluid from traveling between the

first and second microfluidic layers, Fig.1.2A. Application of heat to the entirety of the

device drives the transition of the paraffin from a solid to a liquid. The entire liquefied

membrane is displaced from regions between two overlapping chambers, resulting in mixing

of the contents of the two previously separated chambers Fig.1.2B. As a result, the thin

paraffin membrane acts as a low-cost thermally actuated microvalve.

To demonstrate fluidic sealing of thin paraffin membranes between two fluidic layers,

we adapted paraffin tissue sectioning techniques that are a mainstay of histological

specimen preparation. First, microfluidic devices were fabricated using previously reported

techniques. A silicon master mold was created using a custom dry-resist photolithography

setup and commercially printed photomasks patterned with 5x5 self-digitizing arrays.

Droplet traps were designed with a pitch of 2.25mm, analogous to well spacing in a

standard 1536 microtiter plate. Then polydimethylsiloxane (PDMS) elastomeric devices

were produced by standard soft-lithography. Briefly, a 10:1 ratio-metric mixture of

pre-polymer to curing agent were mixed and cast on to the silicon master. After polymer

curing, final devices were peeled and cut to correct dimensions (approx. 25x25mm).

Second, with a sliding microtome, micron-thick membranes are sectioned from a block of
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Figure 1.3: Schematic of Membrane Microvalve Fabrication and Assembly.

pure paraffin wax and sandwiched between two PDMS microfluidic devices as depicted by

the schematic in Fig.1.3. The face with exposed channels are sealed with paraffin

membranes analogously to mounting tissue sections on glass slides in preparation for

immunohistochemistry. Newly sectioned paraffin membranes are place in a 42˚C heated

water bath, softening and restoring planarity of the membrane, Fig.1.4A. Unsealed

microfluidic devices are submerged in the water bath and directed toward the membrane

from below. Once in contact, water is displaced from between the device and membrane,

resulting in the softened paraffin uniformly adhering, Fig.1.4B.

Since paraffin is solid at room temperature, the membrane serves as a floor or ceiling

of each droplet array, providing the necessary fluidic seal for independent droplet

production while preventing cross-contamination. We first demonstrated the strength of

Figure 1.4: Fluidic Handling of Membrane Microvalves. (A) Planarity restored to
newly sectioned paraffin. (B) Sealing of a PDMS device, containing a 5x5 self-digitizing
array, with a paraffin membrane. (C) Initial loading of aqueous blue dye in each channel,
filling droplet traps. (C) Displacement of aqueous blue dye from main channels using air,
resulting in digitization of a 5x5 droplet array.
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seal and fluid handling in a single-layer sealed device. Aqueous blue dye was loaded into

each row of a 5x5 droplet array, completely filling the self-digitizing channels and droplet

traps. The quality of liquid seal afforded by the paraffin membrane is made visually

apparent by the colored dye. Dye is completely confined to within the channel walls and

droplet traps, shown in Fig.1.4C. Next, a plug of air, dispensed into each channel,

evacuated the dye. As a result of the self-digitizing approach, a series of droplets

containing blue dye remained pinned behind in static locations specified by the predefined

channel geometry. A 2.25mm pitch resulted in droplet reaction chambers spaced equally to

the wells of a 1536-well microtiter plate, yet witth a fraction of the required volume.

Evident containment of liquid within the microchannels, without leakage of fluid in

between rows of the device, further highlights the quality of fluidic sealing,Fig.1.4D.

However, a number of regions, particularly corners, of a single channel contain remnants of

dye. The effect is a result of the interaction between dye wetting the channel walls and

sharp corners providing regions of increased wettability. A combination of rounded

channels and surface treatment of channel walls with readily available reagents to increase

hydrophobicity, would eliminate the effect.

1.3.2 Single Membrane Valved Droplet Array

Next, a layered device with two droplet arrays orthogonally aligned across a single

membrane layer demonstrates both independent fluidic operation and simultaneous

pairwise droplet merging. An empty 5x5 PDMS droplet array was sealed with a 70µm

thick sectioned paraffin membrane. A second empty 5x5 PDMS droplet array was

orthogonally aligned, overlapping droplet trapping regions, and mechanically fixed in

position to prevent loss of alignment during operation. First, a blue aqueous dye was

introduced and digitized across all rows of the top fluidic layer, leaving behind an array of

static blue droplets Fig.1.5A. Then, yellow dye was introduced across all columns of the
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Figure 1.5: Single Membrane Layer Combinatorial Droplet Array. (A) Aqueous
blue droplets digitized across rows of a 5x5 self-digitizing array top layer. (B) Yellow aqueous
dye independently filling columns of a 5x5 self-digitizing array bottom layer. (C) Following
digitization of yellow droplets produces combinatorial blue-yellow droplet pairs across a
single paraffin membrane layer. (D) Pairwise droplet mixing following thermal microvalve
actuation.

bottom fluidic layer and digitized leaving behind an array of yellow droplets. The result

positioned yellow droplets underneath the blue droplets, separated by the paraffin

membrane, Fig.1.5B,C. All but 2 of the 25 possible droplet pairs were generated, likely

due to preexisting device defects during fabrication that resulted in corrupted capillary

valves. Blue and yellow colored dyes were chosen to produce a green color upon mixing,

making rapid visualization of leaks apparent. Interestingly, blue-yellow droplet pairs

remain distinct in color and spatially ordered, demonstrating combinatorial pairing of

microfluidic droplets. Additionally, the absence of visible green color in arrayed droplets at

room temperature, Fig.1.5C, suggests no mixing has yet occurred. Since paraffin is solid

at room temperature, the membrane exists in an initially “latched closed” position, acting

as a zero-leakage valve that enables droplet generation on each layer independently.

To demonstrate valve actuation and controlled droplet fusion, the device was placed in

a heated oven for 15 minutes at 95°C, a temperature well over paraffin melting temperature

of 56°C. Application of heat melts the entire paraffin layer which seemingly leaves the

structure vulnerable to leaking. However, green color, indicative of droplet mixing, is

present across all 23 regions where droplet pairs had previously been generated, suggesting

100% mixing efficiency when alignment and channel integrity is optimal, Fig.1.5D

Interestingly, spatial indexing of order droplet pairs is maintained despite membrane
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melting. The data suggests dominance of surface tension forces at the microscale become

advantageous here. Regions outside the overlapping droplet traps remain immobilized in

part as a result of surface tension between the channel walls and the liquid paraffin and no

direct leaking occurs. At the same time, once the thin paraffin layer melts it becomes

unstable in regions where paraffin is suspended between two fluid-filled channels or

chambers. In these overlapping regions, the buoyancy of melted paraffin and the surface

tension between liquid paraffin and channel walls drive valve opening. During this process

the melted paraffin expands producing an instability that displaces the paraffin to the

ceiling of the upper channel layer, allowing a connection to be formed between the

previously separated droplets. The result is a “latched open” valve configuration and

mixing of the two fluids.

1.3.3 Double Membrane Valved Droplet Array

Although the use of a single paraffin membrane between self-digitizing layers is

sufficient to generate droplets on the two independent layers, only one layer is uniformly

sealed with paraffin prior to assembly. The second layer is pressure sealed during assembly

by mechanical clamping. This results in a greater variability of seal integrity, dependent on

Figure 1.6: Schematic of Double Membrane Layer Assembly & Loading.
Independent sealing of each device layer allows separate fluidic operation and assembly.
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Figure 1.7: Double Membrane Layer Combinatorial Droplet Array.(A) Alternating
rows of yellow and red aqueous dye across rows of a 5x5 self-digitizing array bottom layer
demonstrating multiplexed testing of different reactants. (B) Fully digitized, heterogeneous
population of yellow and red aqueous droplets in a 5x5 self-digitizing array bottom layer. (C)
Filling columns of a 5x5 self-digitizing array top layer with aqueous blue dye. (D) Following
digitization of blue droplets produces a mixed pairwise combinatorial population of either
blue-yellow or blue-red droplet pairs across a double paraffin membrane layer.

clamping mechanism and even distribution of force. A clamp seal increases the opportunity

for particulate to become trapped between the channel surface and the membrane,

facilitating routes of channel leaking during filling if a uniform seal was not achieved.

While the paraffin membrane still maintains separation of the two independent fluid layers,

sealing of parallel microchannels within a single layer remains compromised. Leaking

between two parallel channels negatively affects the balance of hydrodynamic resistances

within a single channel, otherwise necessary for droplet digitization, leading to reduced

efficacy of droplet generation. To prevent compromise of channel integrity, each layer was

sealed with independent paraffin membranes prior to assembly instead, schematically

depicted in Fig.1.6.

Two 5x5 droplet arrays were each sealed with a paraffin membrane and each resulting

layer functioned as a complete single layer microfluidic device. The rows of one layer were

filled with alternating yellow and red dye followed by an air plug to evacuate channels and

generate a mixed population of droplets,Fig.1.7A,B. Columns of a second layer were filled

with blue dye and digitized separately, Fig.1.7C. Layers were orthogonality aligned,

positioning droplets on top of one another, generating all 25 pairwise combinations between

blue droplets and alternating yellow and red droplets, Fig.1.7D. The data suggests
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Figure 1.8: Double Membrane Layer Combinatorial Droplet Merging. (A) Left,
5x5 combinatorial droplet array with a mixed population of droplet pairs. Right, close-up of
a single blue-red and blue-yellow droplet pair separated by a double paraffin membrane prior
to merging. (B) 5x5 combinatorial droplet array with a mixed population of merged droplet
pairs. Right, close-up of a merged blue-red and merged blue-yellow droplet pair, resulting
in production of droplets with a purple-blue and green color respectively.

sealing, operating, storing, and handling of each layer separately, prior to assembly and

microvalve actuation, leads to more flexible and robust fluidic handling and operation.

Additionally, loading each row of the bottom layer with contents of differing composition

(yellow or red dye), conceptually demonstrates multiplexed testing of different assays

across 5 samples for 25 total independent reactions. Furthermore, it becomes readily

conceivable that both assay and sample multiplexing can be scaled by incorporating

additional channels and assigning different contents to each row and column respectively.

Finally, to demonstrate droplet fusion in a two membrane layered device, the device

was placed in a heated oven for 15 minutes at 95°C to melt both paraffin layers. In this

experiment green color is produced as a result of blue and yellow droplet fusion and a

darker purple-blue is produced as a result of red and blue droplet fusion. The result is

alternating rows of green and purple-blue indicating successful droplet merging, shown in

Fig.1.8. In this experiment 100% of generated droplet pairs merged, producing an

indicative color change. Interestingly, the additional thickness of the membrane layer did

not impede merging and maintained spatial indexing, pinning each reaction chamber in

place. For both single and double membrane layer experiments, an operating temperature

of 95°C was chosen because hot-start activation of PCR polymerases occur at the same
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temperature. As a result, both valve operation and hot-start can be achieved at a single

temperature, indicating device applicability as a multiplexed genetic screening platform. In

such a platform, droplet rows may consist of target DNA samples and droplet columns may

consist of primer sets against differing sequences of interest.

1.3.4 Commercialization Potential

Integration of the microfluidic self-digitizing approach significantly reduces operation

complexity compared to multiplexing in standard well plates. Loading and subsequent

reagent additions in traditional MxN well-plate are performed sequentially, resulting in

2xMxN pipetting steps necessary to construct all possible combinations between M+N

reactants. For a standard 1536 well plate, generating all combinations between 32x48

samples and reagents requires 3,072 pipetting operations for a single plate. Although

mostly automated, this results in longer turnaround times, additional consumable costs,

and a larger demand on mechanical equipment subject to wear and costly repair. In

contrast, the self-digitization method described requires only M+N pipetting operations for

initial liquid reservoir loading. Lastly, both aqueous and continuous phases are capable of

being driven under either positive or negative pressure. This suggests liquid reservoir

loading and droplet generation require minimal alteration for integration with current

robotic liquid handlers. This compatibility may reduce barriers to adoption by further

amplifying throughput without requiring workflow overhaul or expensive external

commercial systems for microfluidic chip operation.

For the same 1536 well plate setup, the described method requires only 80 pipetting

steps to construct all combinations of 32 reagents and 48 samples. Moreover, the principle

scales with any size and multiple of MxN rows and columns, Fig. 1.9A. Additionally, a

comparison of the cost per data point was made for current commercial technologies
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Figure 1.9: Operational and Cost Advantages of Microfluidic Droplet Array. (A)
Comparison of pipetting steps by desired data points between well plates and a microfluidic
droplet platform. Pipetting steps calculated based on a matrix organization of desired data
points. (B) Comparison of cost associated with increasing number of data points across
related technologies and a microfluidic droplet platform. Projections based on determined
cost/dp.

Figure 1.10: Diagram of Commercial Microfluidic Device.
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available to multiplex a widely use genotyping assay, Fig. 1.9B19. This suggests the

combinatorial droplet pairing method described is both cost-effective and commercially

scalable for use in multiplexing biochemical assays. Leveraging the volume reduction

benefits of miniaturization also enables packing droplet wells at a greater density per plate

compared to that of a 1536 well plate. As a final component of this work, we designed a

microfluidic plate with 4x well density that achieves up to 30-fold reduction in reaction

volume and more than 70-fold reduction in necessary pipetting operations, reducing costs

associated with both reagent and consumable consumption, Fig. 1.10.

1.4 Conclusion

Lab-on-a-Chip technologies seek to consolidate routine laboratory functions into

compact and paralellizable microfluidic circuits with integrated control elements, increasing

operational throughput while significantly reducing cost. Current standard in biochemical

assay multiplexing follows the well-plate paradigm where microliter volumes are spatially

separated and retained in wells maintaining individual addressability of thousands of

simultaneous reactions. Preservation of spatially indexed sample wells enables robotic

liquid handlers to construct parallel combinatorial reactions. However, commercial

development and discovery demands outpace the throughput and affordability well plates

offer.

Droplet microfluidics offer facile means of translating reagents into nano- and picoliter

reaction vessels at throughput speeds outpacing robotic liquid handlers. However,

continuous droplet production usually requires serial methods of droplet manipulation,

limiting spatially indexed screening of combinations of different reagents or compounds.

Moreover, microvalves are another important component of truly integrated microfluidics

and significant progress has been made in developing suitable microvalves based on a
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variety of actuation mechanisms including electric, magnetic, pneumatic, material-based,

acoustic, and more. Despite this abundance, challenges such as leakage, reliability,

complexity and cost remain. Demonstrated here is a static droplet microfluidic method

coupled with phase-change gating technology to generate all pair-wise combinations

between two sets of reactants, enabling improved multiplexed screening of assay markers

across multiple samples. Two 5x5 self-digitizing droplet arrays are defined on separate

layers for the purpose of routing, generating and trapping aqueous droplets in specific

organized locations in preparation for merging. Fluidic channels on different layers are

sealed and partitioned by thin paraffin membranes which serve to provide zero-leakage

microvalves between two or more fluid compartments in a microfluidic device. Importantly,

paraffin membrane microvalves enable droplet generation on the two independent

microfluidic layers, allowing arrays of droplets on different layers to overlap one another

without interfering with each other. Additionally, the entire paraffin membrane functions

to valve all arrayed droplet pairs simultaneously, requiring only a single heat input to

remove the membrane barrier and control droplet merging.

This architecture can preserve spatial indexing with low cost and full on/off control of

droplet merging, producing all pairwise combinations of original droplets. Such an

approach achieves a sharp 30-fold reduction reagent consumption and nearly 40-fold

reduction in liquid handling, providing cost-advantage and throughput suitable for a wide

range of applications from medicine to agriculture.

1.5 Future Perspectives: A Forward Look

As global population grows, food production struggles to keep pace. By 2050 the

world’s population is estimated to increase by 35%. To meet this growing food demand,

crop production must increase by 200%. With a reduction in arable land, efficiency of crop
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production becomes critical. Plant genotyping is used to selectively breed crops with

desirable traits. Genotyping is performed by Kompetitive Allele Specific PCR (KASP) to

detect single nucleotide polymorphisms (SNPs) and one reaction between a primer set and

sample detects one SNP. Currently, hundreds of thousands of reactions are performed daily,

up to billions per year, with an expected 25% growth each year. We anticipate the

advances in microfluidic combinatorial droplet pairing and new paraffin microvalve

technology can be used to develop a scalable, low-cost, and high-throughput genotyping

platform to meet industry needs.

Additional future avenues include an adaptable platform for community surveillance of

infectious pathogens. PCR-based methods are the gold standard for detection of infectious

agents. At low prevalence, pooling strategies are employed where the likelihood of negative

results allows combined testing of multiple samples to reduce cost and time. Positive

results then necessitate further testing to identify the source sample. Not only is the

molecular environment noisier in batched samples, multiplexed testing requires significant

validation of primer sets to prevent off-target effects, including primer dimers and

non-specific amplification. The balance of high-throughput with spatial indexing afforded

by the work described here, offers significant potential for use in multiplexed screening.

Since reactions are spatially separated, primer interactions are avoided, simplifying new

primer design and validation. As a result, disease specific primers can be optimized more

rapidly and mass testing deployed more readily, the need for which has been made evident

by the recent Sars-CoV-2 global pandemic.
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2 Multiplexed Phasor Fluorescence Lifetime Imaging

Microscopy (Phasor FLIM) and Deep Learning:

Building a High-Content Molecular Profiling Tool

2.1 Introduction

Over recent years, there has been a shift in characterizing tumors beyond the

reductionist view as a homogeneous neoplastic mass to a rather rich and heterogeneous

one20. As a result, cancer’s complexity is better understood from the context of the

molecular and cellular heterogeneity inherent to the tumor microenvironment.

The practice of molecular sub-typing, or categorization of tissues based on shared

characteristics is routine in clinical management of breast cancer. Sub-typing molecular

expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal

growth factor receptor (HER-2) serve to determine candidate therapeutic approaches.

Over-expression of ER/PR is associated with response to anti-estrogenic agents while

over-amplification of HER-2 is associated with response to targeted immunotherapies.

However, instances of tumors negative for all three (triple negative breast cancer, TNBC)

lack targeted therapies resulting in an overall poorer prognosis that may benefit from more

aggressive treatment. Thus, understanding the dynamics of molecular level expression

becomes increasingly important to the development of robust diagnostic tools and selection

of pertinent interventions for a leading cause of death worldwide20,21.
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In addition to molecular sub-typing, categorization of the diversity of cell types and

functional states within pathological tissue reveals the complex interactions of disease

progression. These interactions are characterized by deregulated signaling, inflammation,

and various histopathological changes. The tumor microenvironment is a heterogeneous

mixture of various host and neoplastic cell types. Host cell types include lymphocytes and

their progenitors, granulocytes, tumor infiltrating macrophages (M1 or M2 spectrum),

endothelial cells, and more. Neoplastic cell types exhibit a gradient of capabilities from

immunosurveillance to distant tumor initiation, derived from epithelial-to-mesenchymal

transitions or other similar metastatic induction programs20,22–25. Discerning the presence

and characteristics of tumor-infiltrating lymphocytes (TILs) in particular, have been

correlated with better outcomes for breast, colorectal, and other cancers26–30. For example,

tumors exhibiting high lymphocytic infiltrate, as assessed via the Immunoscore panel

(CD3+, CD8+, CD45RO+), are reported to have longer disease-free survival after primary

tumor resection31–34. In addition, higher levels of TILs are indicative of stronger

chemotherapeutic responses and better overall survival, particularly in triple negative and

HER2+ breast cancer35. However, these previous studies have relied on capturing the

extent of lymphocytic infiltration using standard hemotoxylin and eosin (H&E) and

immunohistochemical (IHC) staining of tumor sections. Given the known complexity of

lymphocyte subpopulations, higher granularity of molecular characterization of TILs may

add greater specificity and sensitivity towards the development of improved diagnostic

platforms36.

As a result, a large focus is placed on improving high-content methods for molecular

profiling to capture and contextualize the rich molecular and cellular heterogeneity within

the tumor microenvironment. Among numerous high-dimensional techniques, genomic

profiling technologies such as DNA microarrays and next-generation sequencing provide a

wealth of information. However, many of these -omics techniques are often sample

destructive and overlook the spatial context otherwise captured in microscopy-based
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methods. Optical imaging enables the study of cells within their native spatial context,

detailing morphological and categorical features. Paired with specific molecular

interrogation, optical imaging reveals key markers characteristic of cell identity, functional

state, intercellular, and environmental interactions. This comprehensive analysis can be

used to identify unique functional drivers, as well as distinct cellular niches that likely

influence normal tissue function and abnormal disease states37–40. Furthermore, in the

context of disease, these cellular expression profiles and interactions can provide diagnostic

value and insight into disease progression, elucidating potential avenues for targeted

therapies41–44.

Conventional immunofluorescence is a common optical imaging technique that

captures both morphology and molecular information. However, a more representative

analysis of heterogenous tissues requires a higher degree of multiplexing that surpasses the

capacity of traditional fluorescence microscopy; typically limited by spectral overlap to 3-5

markers45. The use of narrow emission band quantum dots and hyperspectral strategies

afford only modest gains in multiplicity46–48. To some extent, cyclic staining methods

address the multiplexing barrier with iterative rounds of spectral fluorescence, enabling

detection of as many as 40 targets49–51. However, cyclic approaches are time-consuming,

limited to fixed or frozen samples, and too risk potential sample degradation with each

round of processing. Mass spectrometry-based techniques rely on heavy metal reporters,

instead of fluorophores, to extend multiplexing capabilities to assess over 40 targets; but

these require expensive specialized instrumentation and lengthy time-scales for sub-micron

resolution52. Ultimately, there is a lack of adequate, scalable, and integrable tools that

profile tumor tissue and provide apposite spatial mapping of the molecular and cellular

heterogeneity necessary to more intelligently guide clinical cancer management. Extending

the spatially informative and quantitative advantages of immunofluorescence at higher

throughputs would address current limitations and provide actionable clinical insight53,54.

To achieve broad adaptability, an ideal multiplexed imaging technique would not only
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preserve sample integrity over time, but also be fast, scalable, and compatible with current

infrastructure.

Fluorescence lifetime is a measure of the duration of fluorescence emission decay

following an excitation pulse; a fundamental property of fluorescent species. Thus, lifetime

provides an alternative property, beyond spectral emission, to distinguish multiple

fluorescent probes within the same spectral window. Fluorescence lifetime imaging

microscopy (FLIM) involves the pixel-by-pixel measurement of lifetime decay within an

image and requires only a simple, inexpensive addition to conventional laser scanning

microscopes55. Previous attempts to resolve fluorescent probes based on lifetime relied on

complex fitting strategies, where there are often insufficient photons from experimental

data to accurately distinguish between similar lifetimes56. Alternatively, pattern-matching

techniques that rely on both lifetime and spectral information to more accurately resolve

fluorescent probes, still lack sufficient power to unmix combinations of several probes

within a single pixel57.

The phasor approach to FLIM transforms fluorescence intensity and harmonic lifetime

signals from each pixel of an image into a geometric-graphical representation of lifetime

decay data following previously reported methods58. Briefly, phase-delay and modulation

ratios, determined by differences between repetitive intensity modulated excitation light

and sample derived fluorescence emission, undergo sine and cosine Fourier transforms to

graphically map polar coordinates onto the unit circle. As a result of the mapping,

mono-exponential decays appear on the unit circle and increasingly complex

multi-exponential decays appear further within the unit circle. Shorter lifetimes appear

nearer [1,0] and longer lifetimes, represented by a larger phase angle, appear nearer the

origin. A nonlinear spectrum of lifetimes fall in between, following the arc of the unit

circle. By the nature of the transformation, coordinates in phasor space obey a law of
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linear combination. Lifetimes of each pixel in an image are a vectorial summation of

relative fractional contributions of the lifetimes of each pure fluorescent species present.

To-date, much work has been done to resolve combinations of endogenous fluorescent

molecules for fit-free characterization of cellular metabolic state59. With the product of

signal intensity and fractional lifetime, this approach can be extended to resolve mixtures

of exogenous molecular probes (FLIM-probes) in cellular environments, enabling

multiplexed molecular detection. As a result, a single recorded image, stained with

multiple FLIM-probes simultaneously, can be deconstructed into individual

immunofluorescence images derived from each particular FLIM-probe. In this way, original

total intensity of FLIM-probe stained images become analogous to multi-channel composite

images, without the need for serial capture or spectrally separate probes. In order to

unmix total intensity images into their resulting channels, lifetime fractions for each

channel are first determined on a pixel by pixel basis. A system of equations describes the

linear combination of pure species lifetimes to each pixel, and the analytical solution

quantifies the fractional lifetime contribution of each channel,60. This enables algorithmic,

quantitative, and fit-free unmixing of multiple fluorescent probes within the same spectral

window, using lifetime information alone. An approach otherwise difficult to achieve using

standard immunofluorescence techniques and filters.

Importantly, linear orthogonality of FLIM-probe phasor locations is critical to ensuring

linear independence and a non-trivial unique solution to the system of equations. However,

currently limited availability of intensity-matched, spectrally-matched long-lifetime

fluorescent probes makes selection of multiple unique, linearly independent FLIM-probes a

non-trivial task. This work first demonstrates multiplexing of 3 FLIM-probes targeting

spatially distinct cellular targets. Next, multiplexing of 3 FLIM-probes targeting spatially

overlapping cell surface targets localized to the plasma membrane. Multiplexing capacity is

then extended to 4 FLIM-probes within a single spectral channel, eliciting challenges of
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non-specific signal. Finally deep learning applied to phasor analysis provides unbiased and

systematic dimensional reduction, resolving false positive signal and standardizing a

scalable approach for future increases in multiplexing capacity, Fig. 2.1.

Figure 2.1: Schematic Overview of Multiplexed Workflow and Analysis.(a) Illus-
trates experimental steps in sample preparation, probe staining, collection of lifetime and
harmonic information, and plotting pixel lifetimes on the phasor plot. (b) Input of processed
phasor images into a trained ANN model to predict number and type of fluorescent species
present. (c) Output of ANN used to reduce dimension of the linear system and subsequent
resolution of intensity signals via phasor analysis.
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2.2 The Phasor Approach to Fluorescence Lifetime Imag-

ing Microscopy (FLIM)

Molecular absorption of energy results in excitation to higher energy levels. Newly

excited molecules can return to ground-state through a number of different relaxation

pathways including thermal relaxation, fluorescence, dynamic quenching, or other forms of

non-radiative decays. In the fluorescent pathway, energy is released though the emission of

light with characteristic properties dependent on the amount of energy being released. The

field of fluorescence microscopy exploits these fluorescent properties of certain molecules

(fluorophores) to investigate the molecular environment of cells and tissues. Histogram

counts of photon arrival times following an excitation pulse and subsequent fluorescence

emission decay exponentially. Fluorescence lifetime is an intrinsic property describing the

duration of time required for an excited state fluorophore to decay to 1
e

(≈36.8%) of its

original fluorescence intensity. For a singular exponential decay, this can be expressed

mathematically by Eq. 2.1. However, if the decay is multi-exponential or composed of

multiple independently contributing fluorescent species, it can be represented as a sum of

exponentials, generalizing the expression to Eq. 2.2.

I(t) = I0e
−t/τ (2.1)

I(t) =
N∑
n=1

Ane
−t/τn (2.2)

Fluorescence lifetime can be measured in the frequency domain by the application of a

repetitive intensity modulated excitation light to a sample of interest, and subsequently

measuring the fluorescence emission. The pattern of repetition of the excitation light can

be deconstructed into a set of sinusoidal waveforms, each component of which will also be

present in the emission signal. Analysis of the amplitude differences and phase shift in
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these sinusoids can be used to determine fluorescence lifetime. This transformation is

represented by Eqs. 2.3 where m is the modulation ratio and φ is the phase delay. In the

time-domain this is represented by Eqs. 2.4 where n is the harmonic frequency and ω is

the angular repetition frequency of the laser, (ω = 2πf). The result is a Fourier series

expansion of fluorescence signal into gi,j and si,j values that represent lifetime as vector

coordinates on a phasor plot. Importantly, as a result of the linearity of the Fourier

analysis, vectors in the phasor space follow a law of linear combination. Moreover, the

phasor approach to FLIM is reciprocal in nature, meaning spatial and temporal qualities of

pixels are linked. For example, selection of pixels clustered by similar lifetime can be

located in an image despite spatial separation.

gi,j(ω) = mi,jcos(φi,j) si,j(ω) = mi,jsin(φi,j) (2.3)

gi,j(ω) =

∫ T
0
Ii,j(t)cos(nωt)dt∫ T

0
Ii,j(t)dt

si,j(ω) =

∫ T
0
Ii,j(t)sin(nωt)dt∫ T

0
Ii,j(t)dt

(2.4)

As previously noted, for samples containing more than one independent fluorescent

species, multi-exponential decays are derived from the sum of individual exponential decays

describing each species. Determining fractional contribution of independent fluorescent

species to the lifetime of a pixel relies on the linear relationships in the phasor domain.

Previously reported work has demonstrated fractional lifetime resolution of up to 4

different fluorescent species in an individual pixel60. A system of 4 components results in

linear combination of 4 exponential decays shown in Eq. 2.5. Fractional contribution of

each component is defined by Eqs. 2.6 and the sum of fractions cannot exceed unity.

Therefore, phasor coordinates of each pixel in an image are described generally as the

weighted sum of the lifetime coordinates of each contributing fluorescent component and
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their respective fractional contribution within a pixel, Eqs. 2.7.

I(t) = A1e
−t/τ1 + A2e

−t/τ2 + A3e
−t/τ3 + A4e

−t/τ4 (2.5)

fn =
Anτn∑N
n=1Anτn

N∑
n=1

fn = 1 (2.6)

g(ω) =
N∑
n=1

fngm(ω) s(ω) =
N∑
n=1

fnsm(ω) (2.7)

The result is a system of equations for every pixel in an image describing the linear

combination of independent lifetime component coordinates and their respective fractional

contributions, Eqs. 2.8-2.12. The unknown fractional lifetime contributions for each

pixel, fi can be analytically determined using standard matrix linear algebra. Furthermore,

due to the orthogonality of the Fourier expansion, collection of each additional harmonic

(n) affords the necessary information to resolve additional unknown lifetime fractions,

providing a basis for additional multiplexing capacity (Mc), described in Eq. 2.13.

f1g
h1
1 + f2g

h1
2 + f3g

h1
3 + f4g

h1
4 = Gh1 (2.8)

f1s
h1
1 + f2s

h1
2 + f3s

h1
3 + f4s

h1
4 = Sh1 (2.9)

f1g
h2
1 + f2g

h2
2 + f3g

h2
3 + f4g

h2
4 = Gh2 (2.10)

f1s
h2
1 + f2s

h2
2 + f3s

h2
3 + f4s

h2
4 = Sh2 (2.11)

f1 + f2 + f3 + f4 = 1 (2.12)

Mc = 2 · n+ 1 (2.13)

Thus far, a method to analytically resolve fractional lifetime contributions across every

pixel in an image has been described. However, in order to extend phasor analysis to
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FLIM-based multiplexed molecular imaging, translation of lifetime information to

target-specific and quantitative fluorescent signals for each fluorescent species is necessary.

Similar to standard immunofluorescence microscopy, specificity of molecular targeting relies

on conjugation of distinct fluorescent species to antibodies targeting markers of interest.

Leveraging these receptor-ligand affinities maintains modular and customizable production

of exogenous molecular probes (FLIM-probes). Lifetimes of FLIM-probes are measured

experimentally enabling pixel resolution of fractional lifetime contributions. Quantitative

signal intensity for each FLIM-probe is then determined by the product of image intensity

and resolved lifetime fractions. The result delineates marker-specific intensity from

original, cumulative image intensity, into separate channels for each contributing probe

respectively, Eq. 2.14.

Ii,j = fn · I0i,j (2.14)

These reconstructed intensity images for each FLIM-probe ultimately recover

probe-specific immunofluorescence and resulting marker expression analogously to imaging

using spectrally distinct probes. Importantly, this algorithmic, fit-free approach simplifies

workflows by capturing signal intensity for up to 4 simultaneously employed probes.

Concurrent staining of all probes circumvents cyclic staining requirements, spatial

registering and alignment of sample, or otherwise degradative techniques needed when

capturing multiplexed signal within a single spectral band. In addition, resolving all probe

targets reduces the need to prioritize target selection due to limited multiplexing capacity.

This platform technology enables capture of multiplexed molecular expression, irrespective

of a-priori information of sample content.
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2.3 Resolution of 3 Spatially Separated Targets

As an initial demonstration of fluorescence lifetime based molecular multiplexing, 3

spatially separated cellular markers (surface, cytoplasmic, and nuclear) were

simultaneously targeted, imaged, and resolved using 3 spectrally overlapping but

temporally distinct FLIM-probes. Epithelial cell adhesion molecule (EpCAM) is both

plasma membrane specific and commonly over-expressed in many cancer phenotypes.

Cytokeratin (CK) is a prominent cytoskeletal component of epithelial tissues with

cytoplasmic distribution. Lastly, Ki-67 is a nuclear marker indicative of proliferative state

and therefore cellular presence is clinically indicative of carcinoma. Spatial separation of

cellular targets provides a facile means of evaluating analysis accuracy and recovery of

marker specific signal intensity. Direct comparison of resolved probe localization with

expected cellular distribution makes misallocated signal markedly apparent. Moreover,

development of spatially resolved multiplexing enables direction benefits of FLIM to

molecular trafficking studies.

Figure 2.2: Spectral Overlapping and Temporally Distinct Fluorescent Species.
(A) Normalized spectral emission data of 3 different fluorescent species (QDot 585, Bod-
ipyTMR, AlexaFluor 555) indicating significant overlap. (B) Combine phasor plot of 3
independent MCF7 cell samples stained with a different FLIM-probe, illustrating distinct
temporal properties.
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Three spectrally overlapping fluorescent species (Quantum Dot 585, BodipyTMR and

Alexa Fluor 555) with distinct fluorescent lifetimes were chosen to develop molecular

FLIM-probes targeting the three spatially separated cellular markers. Fluorescent species

were conjugated to monoclonal antibodies targeting the 3 spatially separated markers

(EpCAM, CK, and Ki-67) respectively. In-vitro samples of human breast cancer cell line

(MCF7) were first stained with each single probe individually to experimentally capture

pure species lifetimes. The measured emission spectra of the three species in solution were

plotted illustrating large overlap of emission within the 550-650nm range Fig. 2.2A. In

addition to spectral overlap and distinct lifetimes, fluorescent species were chosen for ample

euclidean separation and linear orthogonality on the phasor plot. During lifetime imaging,

samples were excited at 534nm and fluorescence emission was collected between

560-660nm, averaging photon counts for each pixel over 50 collected frames. Lifetime

signals were recorded, transformed, median filtered, and plotted on the phasor. The effect

of median filtering is a lossless method to de-noise data that maintains resolution. The

phasor data from each experiment was combined into a single phasor plot for comparison,

demonstrating extent of temporal separation Fig. 2.2B. Colored circles (red, green, blue)

highlight locations of each pure FLIM-probes and match color coding of spectral data.

Among all spectrally-matched, long-lifetime fluorescent species surveyed, the three chosen

exhibited the greatest degree of orthogonality and separation with respect to each other. In

addition, plotting lifetimes on the same phasor enabled rapid visual confirmation that

phasor locations correlated with expectations from previous solution-based measurements

of the unconjugated fluorescent species. This suggests lifetimes remain distinct and largely

unchanged irregardless of bio-conjugation, indicating FLIM-probes can be engineered in a

”plug-and-play” manner for multiplexing by coupling temporally distinct fluorescent

species to antibodies targeting markers of interest.

Next, single-probe stained images were used to compute 2D histograms of collected

pixel lifetime coordinates across two harmonics. The coordinate bins with maximum counts
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were used to identify the single pure component coordinates in each harmonic and used as

a basis for constructing the linear system of equations. Although single harmonic

information is sufficient for multiplexing 3 probes, use of the second harmonic nets an

overdetermined system providing improved signal fidelity. Using this information, intensity

images were reconstructed for each probe channel in the single-stained experiments. Images

in Fig. 2.3 show original total intensity followed by the phasor and three reconstructed

image channels corresponding to the three probes employed. Images were normalized and

pseudo-colored to match the colored circles on the phasor. Original intensity images

confirmed specific fluorescent staining of the three cellular compartments for each

probe-target pair, with high signal-to-noise and minimal autofluorescence. Resulting signal

in reconstructed images also correctly correspond to the target marker and match original

intensity images, demonstrating resolution of signal intensity using lifetime information.

Additional samples were then stained and imaged with all 3 FLIM-probes together.

Intensity and lifetime data were analyzed and resolved into separate image channels, Fig.

2.4. Expectedly, as a result of spectral overlap, probe-specific information in original

intensity images, Fig. 2.4(i), are indistinguishable and agnostic to cellular marker identity

when relying on spectral information alone. Although using three different spectral probes

could easily achieve the intended separation, spectral overlap and crosstalk limit further

multiplexing capacity. Alternatively, lifetime data provides another dimension to multiplex

within each spectral band and is complementary to standard spectral approaches. The

lifetime of pixels are plotted on the phasor, Fig. 2.4(ii), and the colored circles indicate

the positions of the pure probe species. Pixel locations are expected to fall within a triangle

formed depending on the linear combination of fractional lifetime from each of the three

pure species, with the colored circle positioned at the vertices. Here the distribution of

pixel lifetimes fall within the demarcated region defined by the three pure probe locations.

Phasor distributions of multiplexed images appear densest between red and green circles

primarily due to a larger fraction of the cell and therefore positively stained image pixels
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Figure 2.3: Spatially Separated, Single-Probe Stained MCF7 Cells. (A-C) MCF7
cells stained with FLIM-probes targeting EpCAM, Cytokeratin, and Ki-67 respectively. (i)
original total intensity images, (ii) corresponding first harmonic phasor plots, laser fre-
quency=20MHz, and (iii-v) resolved and reconstructed component-specific fluorescence im-
ages after phasor analysis. Scale bars=20µm.

for these two targets. Moreover, pixels positioned at the membrane-cytoplasmic interface

are likely to span cellular regions where both membrane and cytoplasmic markers can be

found. This marker overlap results in pixels containing various fractional combinations of

two fluorescent components causing phasor distributions to fall between the two pure

probes for these targets. Pixels beyond the peri-nuclear region likely containing solely

nuclear targets, spatially distinct enough from the other two cellular compartments,

making it unlikely to contain more than a single fluorescent component. Therefore a

second, mostly isolated cluster of pixels appear near the blue circle on the phasor. In

summary, few pixels are likely to contain all 3 components simultaneously. Interestingly,

the reconstructed images, Fig. 2.4(iii-v), resolve signal by stained cellular compartment.
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Figure 2.4: Spatially Separated, 3-probe Multiplexed MCF7 Cells. (A-C) Repli-
cates of MCF7 cells stained with all FLIM-probes targeting EpCAM, Cytokeratin, and Ki-67
simultaneously. (i) original total intensity images, (ii) corresponding first harmonic phasor
plots, laser frequency=20MHz, and (iii-v) resolved and reconstructed component-specific
fluorescence images after phasor analysis. Scale bars=20µm.

EpCAM signal is confined to the membrane surface, cytokeratin signal is cytoplasmic in

distribution, and Ki-67 signal is confined within the nucleus. The results match expected

cellular distribution of the three target markers and non-specific signal is not visually

apparent in alternate channels suggesting successful delineation of probe-specific signal

intensity. A composite pseudo-colored image was generated to highlight the comparison of

results to standard multiplexed immunofluorescence techniques that rely on spectral band

resolution. However, here results were ultimately generated from a single sample employing

all 3 FLIM-probes simultaneously and resolved solely based on fluorescence lifetime,

demonstrating the phasor approach to multiplexed molecular imaging, Fig. 2.5.
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Figure 2.5: Lifetime Resolved, 3-probe Spatially Multiplexed Composites. (A)
Original total intensity images from 3 experimental replicates collected from a single spectral
window. (B) Pseudocolored images for EpCAM (red), Cytokeratin (green), Ki-67 (blue)
resolved solely using fluorescence lifetime. Scale bars=20µm.

2.4 Resolution of 3 Spatially Co-localized Targets

The translational value of multiplexed high-content imaging modalities is the ability

to rapidly and quantitatively elucidate numerous molecular indicators of normal and

diseased, yet intact, cellular environments while maintaining morphologically defining

features. Simultaneous acquisition of data can eventually provide contextualized actionable

information with applications ranging from identification of current or novel drug targets,

observation and characterization cell-cell interactions, or guiding clinical diagnoses and

management. In particular, membrane bound surface markers are gateways for cell

signaling and transduction pathways, and therefore informative and potentially druggable

targets. However, the membrane surface is heterogeneous and fluid meaning many targets

of interest overlap or coexist in spatial proximity. As a result elucidating the molecular

heterogeneity present even within the confines of the membrane surface makes multiplexing

of co-localized molecular targets a difficult, yet important feature of accurate, specific, and

sensitive high-content imaging modalities. Additionally, variability in receptor expression

intrinsically distinguishes normal versus pathological cell types and states, providing
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further basis as prognostic and therapeutic targets. Epithelial cell adhesion molecule,

epithelial cadherin, and transferrin receptors are common epithelial surface markers with

broad oncogenic, diagnostic, and/or prognostic value as neoplastic signatures of breast

cancer or as hallmarks of metastasis (epithelial-to-mesenchymal transition). Molecular

sub-typing is also particularly clinically relevant in the specific management of neoplastic

pathologies of the breast. Not only is the lack of E-Cadherin (ECad) common in invasive

lobular carcinomas, a subset of breast cancers exhibit and are classified by

over-amplification of human epidermal growth factor 2 (HER-2). HER-2 positive breast

cancer is responsive to treatment with trastuzumab, underscoring the importance of

characterizing molecular phenotype.

The molecular landscape of cellular environments is rich in variety, organization, and

function. While multiplexing spatially distinct targets is necessary, the abundance of key

molecular drivers of disease are often active at the membrane surface and therefore

extension of spatial multiplexing Is required to capture of this rich information. To

demonstrate the ability to multiplex co-localized targets, additional FLIM-probes targeting

different, spatially co-localized, epithelial cell surface biomarkers were assembled. Each of

four fluorescent species (QDot 585, KU530, BodipyTMR, and AF555), Fig. 2.6A were

conjugated to monoclonal antibodies against epithelial cell adhesion molecule (EpCAM),

human epidermal growth hormone receptor 2 (HER-2), epithelial cadherin (E-Cad), or

transferrin receptor (TfR) respectively.

To demonstrate reproducibility of lifetime and specificity of molecular targeting,

human breast cancer cell lines (Bt474, ATCC) were stained with the epithelial

FLIM-probes and each single-stained sample was imaged. Bt474 cells were chosen as a

model cell line due to high expression of each of the four markers, previously confirmed by

flow cytometry. Fluorescence intensity images from each experiment, Fig. 2.6B (i-iv),

confirmed specific fluorescent staining of the cellular membrane surface for each
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probe-target pair, with high signal-to-noise and minimal autofluorescence. Once again as a

result of spectral overlap, original intensity images are indistinguishable and agnostic to

surface marker identity when relying on spectral information alone. Typically, the use of

specialized techniques or equipment such as cyclic staining and antigen retrieval methods or

hyper-spectral cameras are needed to resolve these otherwise indistinguishable differences.

The phasor data corresponding to the fluorescence images were plotted on the combined

phasor, Fig. 2.6C. The results make the intrinsic and temporally distinct character of the

probes apparent, highlighting lifetime as an independent dimension for multiplexing.

First, epithelial probes conjugated to each of the 3 fluorescent species (QDot 585,

BodipyTMR, and AF555) used in spatially separated studies were used to demonstrate

3-probe multiplexing because of their ideal characteristics. The combination of separation

of lifetime as visualized on the phasor, minimal complexity reflected by proximity to the

universal circle, and minimal pure species variance when employed in cellular contexts

make them ideal for multiplexing within the same spectral window. Human breast cancer

cell line (Bt474) cells were chosen as a model cell line due to high expression of each of the

three markers, previously confirmed by flow cytometry. Samples were stained with up to a

Figure 2.6: Development of 4 Spectral Overlapping and Temporally Distinct
Epithelial FLIM-Probes. (A) Normalized spectral emission data of 4 different fluorescent
species (QDot 585, KU530, BodipyTMR, AlexaFluor 555) indicating significant overlap. (B)
Intensity images of each single-probe stained Bt474 cell sample (C) Combine phasor plot of
4 independent Bt474 cell samples stained with a different FLIM-probe, illustrating distinct
temporal properties. Scale bars=20µm.
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total of 3 FLIM-probes to to capture all 7 possible combinations of 1-, 2-, and 3-probe

staining conditions. Experiments were performed to demonstrate the robustness of

multiplexed targeting of spatially co-localized cell surface markers.

The intensity and lifetime signals were recorded, transformed, median filtered, and

plotted on the phasor. Using lifetime information, intensity images were reconstructed for

each staining condition analogous to traditional three-color immunofluorescence

microscopy. Images in Fig 2.7 show original total intensity followed by the phasor and

three reconstructed image channels corresponding to the three probes employed in

single-probe staining conditions. Images were normalized and pseudo-colored to match the

colored circles (magenta, yellow, green) on the phasor which refer to pure species lifetime

locations of the 3 epithelial FLIM-probes targeting EpCAM, ECad, and TfR respectively.

Signal for each probe in reconstructed images are specific to the cellular membrane and

present in only the expected probe specific channel.

Original intensity images of dual-probe and triple-probe stained samples are

uninformative of molecular identity as a result of spectral overlap, Fig 2.8 (i). However,

on the phasor plots the lines connecting the colored circles in 2-probe stains indicate the

expected trajectory of pixels containing a range of linear combinations of fractional lifetime

of each of the two pure species, Fig. 2.8 (ii). For pixels containing two fluorescent

components, the euclidean distance between the pixels and a pure species is indicative of

the degree to which that species contributes to the pixel’s lifetime. The smaller the

distance, the larger the “pull” a pure species has, and the larger the lifetime fraction of a

pixel originates from that pure species. Since targets are coexistent within the same

membrane surface, a large fraction of pixels will contain both probes with varying

fractional content of each.

This manifests with phasor distributions of 2-probe stained image pixel lifetimes

appearing as a streak of pixels falling linearly between the two pure probe locations rather
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Figure 2.7: Spatially Co-localized, Resolved Single-Probe Targeted Bt474 Cells.
(A-C) Bt474 cells stained with FLIM-probes targeting EpCAM, ECad, and TfR respec-
tively. (i) original total intensity images, (ii) corresponding first harmonic phasor plots,
laser frequency=20MHz, and (iii-v) resolved and reconstructed component-specific fluores-
cence images after phasor analysis. Scale bars=20µm.

than isolated clusters. The linearity also suggests absence of interaction or energy transfer

between the probes despite targeting co-localized regions. Photo-physical interaction such

as energy transfer, would otherwise manifest as loss of linearity in the pixel distribution

and require accounting for quenching and excitation effects of a donor acceptor pair,

further complicating resolution of fractional lifetime contributions. The triangles

connecting the colored circle in the 3-probe stained image phasor once again indicate the

expected locations of pixels with varying fractional content of three components with pure

species located at the vertices. The majority of experimental pixel lifetimes fall within the

demarcated region. The identified pure component coordinates, from maximum 2D

histogram counts of single-stained images were used to construct the linear system of

equations. The three reconstructed image channels corresponding to the three probes
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Figure 2.8: Spatially Co-localized, Resolved Dual-Probe and Triple-Probe Tar-
geted Bt474 Cells. (A-C) Bt474 cells stained with combinations of 2 FLIM-probes target-
ing EpCAM, ECad, and TfR respectively. (D) Bt474 cells stained with all 3 FLIM-probes
targeting EpCAM, ECad, and TfR (i) original total intensity images, (ii) corresponding
first harmonic phasor plots, laser frequency=20MHz, and (iii-v) resolved and reconstructed
component-specific fluorescence images after phasor analysis. Scale bars=20µm.

employed in an experiment are shown in Fig. 2.8 (iii-v). Images were normalized and

pseudo-colored to match the colored circles on the phasor. Signal for 2-and 3-probe stained

images fall within the expected channel for the probes employed in each case while

maintaining cellular morphology and specificity to the membrane surface.

While images are qualitative and visually informative, quantifying signal intensity

provides relative expression of the targeted markers. The intensity distributions of
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reconstructed images for all staining scenarios are transformed and violin plots are

generated in Fig. 2.9. The data suggests distributions are similar across a specific

probe-type. More importantly, interquartile ranges are similar in size and dispersion with

mostly normal skew, further highlighting comparable recovery of multiplexed marker

specific signal with standard single-probe measurements. The violin plot of the 2-probe case

simultaneously targeting EpCAM and TfR, indicates small (5%) false positive signal in the

ECad channel. The result is minimal and partially a result of the discrete nature by which

pure component lifetimes are identified. Mean image intensity for reconstructed images

across each staining condition are plotted in Fig. 2.10. Mean intensity of original single

stains (gray bar) is a reference directly equivalent to standard immunofluorescence imaging.

Comparing to mean signal intensities of reconstructed images within a single probe channel

for all 2-and 3-probe stains demonstrates the phasor analysis correctly and quantitatively

recovers signal within standard error, and true positive and negative conditions are easily

discriminated. These results demonstrate not only the capability to multiplex spatially

co-localized exogenous molecular probes within the same spectral channel, but to do so

quantitatively using lifetime information alone. Recovery of quantitative, probe-specific

fluorescence intensity enables comparison to fluorescence calibration curves and eventually

relative recovery of marker expression. Moreover, this approach enables future

multiplicative increases in multiplexed imaging by the addition of unique probes within a

spectral channel and employing probes across other spectral windows in parallel.

2.5 Resolution of 4 Spatially Co-localized Targets

As a further demonstration of FLIM-based multiplexed molecular imaging, all 4

independent molecular FLIM-probes were assessed simultaneously. Bt474 cells were stained

using all 15 possible combinations of 1-, 2-, 3-, and 4-probes. Images were analyzed,
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Figure 2.9: Intensity Distributions of Multiplexed Spatially Co-localized Bt474
Cells. (A-C) Violin plots of individual resolved images from various experimental probe
staining conditions according to EpCAM, ECad, and Tfr channels respectively.

Figure 2.10: Mean intensity of probe-specific multiplexed channels. (Left) Mean
intensity of resolved EpCAM channel images. (Middle) Mean intensity of resolved ECad
channel images. (Right) Mean intensity of resolved TfR channel images. Means calculated
as Grand Mean of mean image intensity across 3 replicate conditions.
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resolving fractional lifetimes to reconstruct probe-specific intensity images. However, while

analysis attributes resolved image signal intensity to the expected probe-specific channels,

sparse and punctate signal also surfaced in unstained channels. Moreover, signal

originating from the KU530 probe is modest and noisier as a result of reduced relative

brightness compared to the other more robust fluorescent species employed. This

observation was more quantitatively evident in violin plots of intensity distributions for all

staining conditions, shown in Fig. 2.11. The data suggests phasor lifetime analysis with

these 4 possible contributing probes results in false positive signal arising from “signal

bleed through” from other channels. Broadly, this indicates the rank of linear system is

inconsistent with the total number of probes involved. As a result, fractional lifetimes of

pixels are not entirely linearly independent. Importantly, multiplexing only 3 probes

affords ideal probe selection and placement to maintain linear independence so the effect is

not realized. However, adapting the platform for multiplexing beyond 3-probe systems was

expected to elicit a number of challenges.

The resulting sources of error made evident with a higher degree of multiplexing can

be attributed to the effect of using discrete pure species lifetimes in cellular contexts,

limitations of spectrally matched long-lifetime probe availability and the resulting partial

loss of linear orthogonality between probe phasor locations. The currently limited

availability of reliable, spectrally-matched, long-lifetime fluorescent probes makes selection

of probes with unique, linearly orthogonal phasor locations a non-trivial task. KU530

provided the most orthogonal phasor location of the probes examined; however, complete

orthogonality is not achieved in part by the diffuse lifetime distribution resulting in

analytical ambiguity. Since the analysis depends on the analytical solution to a linear

system of equations, a unique solution will be determined for a coefficient matrix of rank

equivalent to the maximum number of probes employed. As a result, these effects of

“signal bleed through” occur most notably when resolving all four channels for conditions
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Figure 2.11: Intensity Distributions Across All 4-probe Multiplexed Studies.
(A-D) Violin plots of individual resolved images from various experimental probe staining
conditions without machine learning dimensional reduction according to EpCAM, HER-2,
ECad, and Tfr channels respectively.

stained with fewer than 4 probes. As a result, the unstained components are attributed

signal in order to arrive at a unique solution that maintains unity of fractional lifetime.

In conditions stained with fewer than 4 probes, the unstained channel becomes a

negative control as its corresponding lifetime fractions cannot assume non-zero values.

Although artificially engineered, such experimental conditions mimic potential variability

of target marker expression across sample types of interest. For example, triple-probe

stained samples are analogous to HER-2 negative samples, where cellular expression of 1 or
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more molecular targets is absent. Therefore rather than resolving all 4 components,

identification and classification of negative expression prior to fractional lifetime analysis

facilitates variable elimination and reduction of linear system dimension. As a result,

subsequent analysis reduces false positives by precluding attribution of signal in the

negative or unstained channel. Moreover, as sample complexity grows, this feature would

simplify potential future clinical utility of the platform, such as facile discrimination of

HER-2 status and the resulting impact on therapeutic choice.

Having established need for dimensional reduction to complement phasor analysis, the

question shifts to which methodology is best. Manual introduction of a-priori information

for each sample would require additional data logging, introduces potential bottlenecks in

computational speed, and is neither scalable or unbiased. More importantly, is not

applicable when investigations are exploratory or sample identity is unknown. Instead, an

automated, scalable, and unbiased approach for accurately classifying, predicting, and

reducing the dimension of higher-order FLIM systems is more clinically tractable.

2.6 A Deep Learning Approach to Dimensional Reduc-

tion of Multi-Component Phasor Analysis

The phasor approach to FLIM is powerful in simplifying complex multi-exponential

decays and representing lifetime mixtures in a geometric, graphical manner. As

demonstrated, phasor distributions of systems containing multiple lifetime components

predictably fall within geometric shapes with vertices defined by pure species lifetimes. As

a result, trained personnel are able to intuit the number of components and therefore

extent of multiplexing up to a certain extent through visual inspection, Fig. 2.12.
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Figure 2.12: Schematic Phasor Plots of Different Multi-Component Systems. (A-
D) Schematic demonstration of 1-, 2-, 3-, and 4-component systems respectively. Colored
circles indicate pure component lifetime locations and shaded/connected regions indicate
locations where pixel lifetimes are characteristically expected to fall.

Identification of these features enable dimensional reduction of phasor analysis.

However, relying on trained personnel is not only costly, but is subject to human error, and

will reach a threshold beyond which features are no longer discernible above noise by

human perception. The field of machine learning applies a variety of statistical methods

and algorithms to images for applications including object recognition, classification, and

segmentation. Deep learning in particular relies on artificial neural networks (ANNs) for

robust feature extraction and have been used extensively to build predictive models. ANNs

are networks of nodes and connections inspired after biological neural networks of

interconnected neurons. These networks are linear connections of signals and weights, and

amplification or dampening of weights provide the learned and predictive power. These

networks view images as vectors of discrete values which are cascaded through layers of

feature extraction, ultimately outputting vectors containing probabilities of selected

outcomes. Models trained on the publicly available MNIST images of handwritten

numerical digits have accurately predicted the digit written in these images. The graphical

nature of the phasor approach is analogously well-suited for supervised deep learning where

labeled ground-truth images are used to train multi-class classification models capable of

phasor pattern recognition. Such a supervised network could efficiently identify patterns in
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information-rich lifetime data and reliably predict features to reduce the dimensionality of

multiplexed systems with high accuracy in a scalable, unbiased manner.

However, one drawback is that supervised deep learning is a data-hungry approach.

Large amounts of labelled data are necessary to train representative and accurate models.

Accordingly, additional FLIM data was collected on multiple breast cancer cell lines

stained with all combinations of 1-, 2-, 3-, and 4- probes to train and validate a deep

learning classifier. Cell lines were chosen for variability of all four epithelial surface marker

expression. In total 100 phasor images were captured, processed, and distributed by 65%

and 35% into training or validation sets respectively. The various 2- and 3-probe phasor

distributions of Bt474 cells highlight the variability and fingerprint-like signature phasors

provide of different multiplexed conditions, Fig. 2.14. Additional phasor distributions

from other cell lines along with implementation of dropout during model training

prevented overfitting and improved generalizability of the model, reaching an accuracy of

95%, see Fig M. Ultimately, the deep learning model classifies fluorescence lifetime phasor

patterns according to the number of pure species lifetimes present and surface markers

actively targeted in a given experimental condition.

To investigate the effectiveness of the model in reducing “signal bleed through”, the

model was implemented to reevaluate resolution of 4 spatially co-localized surface targets.

The addition of deep learning codified the evaluation of degree of multiplexing present by

geometric phasor pattern recognition and subsequently simplified linear combination

analysis of the 1-, 2-, 3-, and 4-probe stained Bt474 samples, by predicting the number and

specific identity of probes present in a sample.
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Figure 2.13: Different Multiplexed Experimental Phasor Plot Signatures. Collec-
tion of phasor plots from Bt474 cell samples stained with varying number and combinations
of probes to highlight the graphical fingerprint-like nature of Phasor-FLIM.

Figure 2.14: ANN Loss Curves and Multi-class ROC. (A) Model loss plotted for
training (blue) and validation (red) over 30 epochs of batched training. (B) A multi-class
ROC curve illustrating model accuracy above random (dashed line).
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2.6.1 Resolution of Dual-Probe Stained Samples

The model was first implemented on phasors of dual-probe stained images. In each

experiment, Bt474 cells were stained consecutively with 2 of 4 possible epithelial

FLIM-probes prior to imaging. Experiments were arranged to comprise all six possible

combinations of 2-probe staining conditions given the four previously conjugated probes

(EpCAM-QD585, HER2-KU530, ECAD-Bodipy-TMR, and Tfr-AF555). The resulting 6

scenarios were imaged and lifetime signals were recorded, transformed, median filtered, and

plotted on the phasor. Each panel in Fig. 2.16(ii) shows the phasors corresponding to

each staining condition. The colored circles (magenta, yellow, green, cyan) refer to pure

species lifetime locations of the epithelial FLIM-probes respectively. The lines connecting

the colored circles indicate the expected trajectory of pixels containing a range of linear

combinations of fractional lifetime of each of the two pure species. The results indicate

experimental pixel lifetimes of dual-probe stained images fall linearly between the two pure

probe locations for most combinations of 2 probes. Certain conditions where mismatches

occurred in brightness of fluorescent species resulted in one fluorescent species dominating,

resulting in fractional lifetimes being more heavily weighted to one end of the trajectory

line.

These phasors were piped into the trained model which resulted in an array of values

ranging from 0 to 1 for the probabilities codifying likelihood of the number and specific

identities of FLIM-probes present amongst all possible experimental conditions, see select

examples in Fig. 2.15. Next, previous single-probe stained images were used to compute

2D histograms of collected pixel lifetime coordinates across two harmonics. The coordinate

bins with maximum counts were used to identify the single pure component coordinates in

each harmonic and used as a basis for constructing the linear system of equations. The

model results informed the phasor analysis by reducing the system from four to two
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Figure 2.15: Top 5 Model Prediction Probabilities for Select Dual-probe Exam-
ples. Phasor distributions and corresponding top 5 model predicted probabilities. Model
prediction (gray bars) correctly identify number and type of contributing fluorescent probe-
marker pairs.

dimensions, or unknown lifetime fractions, simplifying computation of non-zero fractional

lifetime for only the two probes that matched staining conditions. The linearity also

suggests absence of interaction or energy transfer between the probes despite targeting

co-localized regions.

Original total intensity and reconstructed images for all 4 possible channels were

normalized and pseudo-colored to match the colored circles on the phasor, shown in Fig.

2.16(i,iii-vi). The results indicate positive signal in the appropriate stained channels and

elimination of the punctate, sparse false positive signal in the unstained channels otherwise

previously noted. Specificity of staining was maintained, matching expectations had

different samples been stained individually for each of the two probes employed or with two

spectrally different colored probes. This demonstrates unbiased dimensional reduction via

deep learning not only reduced “signal bleed-through” but also results in improved

signal-to-noise and automation of analysis.
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Figure 2.16: Resolved Dual-probe Images via Dimensional Reduction and Deep
Learning. (A-F) Bt474 cells stained with combinations of 2 FLIM-probes targeting Ep-
CAM, HER-2, ECad, and TfR respectively.(i) original total intensity images, (ii) corre-
sponding first harmonic phasor plots, laser frequency=20MHz, and (iii-vi) resolved and re-
constructed component-specific fluorescence images after phasor analysis. Scale bars=20µm.
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2.6.2 Resolution of Triple-Probe Stained Samples

Extending this approach, we implemented the deep learning classifier on all 4 sample

combinations stained with 3 FLIM-probes (triple-probe stains) to demonstrate the

robustness of false positive signal reduction when resolving multiplexed molecular probes

within the same spectral window. Here, experiments are analogous to traditional

three-color immunofluorescence microscopy. In each experiment, Bt474 cells were stained

consecutively with 3 of the 4 possible FLIM-probes prior to imaging. Experiments were

arranged to comprise all four possible combinations of 3-probe staining conditions given

the four previously conjugated probes (EpCAM-QD585, HER2-KU530,

ECAD-Bodipy-TMR, and Tfr-AF555). The intensity and lifetime signals were recorded,

transformed, median filtered, and plotted on the phasor. Each panel in Fig. 2.17 shows

the phasors corresponding to each staining condition. Once again, the colored circles

(magenta, yellow, green, cyan) refer to pure species lifetime locations of the epithelial

FLIM-probes respectively. Here, the triangles connecting the colored circles indicate the

expected locations of pixels depending on the linear combination of fractional lifetime from

each of the three pure species located on the vertices. The results indicate majority of

experimental pixel lifetimes of triple-probe stained images fall within the demarcated

region defined by the three pure probe locations for all combinations of 3 probes. Similarly

to dual-probe analysis, the model evaluated phasors, producing an array of probabilities for

the likelihood of the number and specific identities of FLIM-probes present amongst all

possible multi-probe experimental conditions, see select examples in Fig. 2.18. The

unknown fractions of the linear system were reduced to only the most likely probes

identified, and non-zero lifetime fractions for only these 3 identified probes were resolved.

Images in Fig. 2.17(iii-vi) were normalized and pseudo-colored to match the colored

circles on the phasor and show original total intensity followed by the reconstructed images

for each probes channel. The results once again match expectations had different samples
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been stained individually for each of the three probes employed or three spectrally different

colored probes been used. This further indicated reproducibility of the staining specificity

and sample histology after resolving three spectrally overlapping molecular probes using

deep learning and the phasor approach to FLIM. Here we have extended the capability to

multiplex spatially co-localized exogenous molecular probes within the same spectral

channel while reducing signal bleed through when using non ideal fluorescent species.

Figure 2.17: Resolved Triple-probe Images via Dimensional Reduction and Deep
Learning. (A-D) Bt474 cells stained with combinations of 3 FLIM-probes targeting Ep-
CAM, HER-2, ECad, and TfR respectively.(i) original total intensity images, (ii) corre-
sponding first harmonic phasor plots, laser frequency=20MHz, and (iii-vi) resolved and re-
constructed component-specific fluorescence images after phasor analysis. Scale bars=20µm.
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Figure 2.18: Top 5 Model Prediction Probabilities for Select Triple-probe Exam-
ples. Phasor distributions and corresponding top 5 model predicted probabilities. Model
prediction (gray bars) correctly identify number and type of contributing fluorescent probe-
marker triplets.

2.6.3 Resolution of Quadruple-Probe Stained Cell Line Samples

To further demonstrate the FLIM-based molecular profiling platform, we multiplexed

all 4 FLIM-probes (quadruple-probe stains) to extend capabilities of multiplexing not only

within the same spectral window but across cellular phenotypes using lifetime information

alone. In addition to Bt474 cells, human breast cancer cell lines MCF-7 and SKBR3 were

stained consecutively with all 4 possible FLIM-probes (EpCAM-QD585, HER2-KU530,

ECAD-Bodipy-TMR, and Tfr-AF555). Cell lines were chosen to demonstrate evaluation of

samples with variable expression patterns. MCF-7 in particular exhibits very low

expression of HER-2 complementing the high expression of the other two cell lines. HER-2

expression traditionally guides clinical management of breast cancer and indicates

therapeutic choice. As a result, it serves as a model for demonstrating the practical role

and future clinical utility of multiplexed molecular profiling platforms like the one described

here. The intensity and lifetime signals for Bt474, SKBR3, and MCF-7 were recorded,

transformed, median filtered, and plotted on the phasors in Fig. 2.19 respectively.

Colored circles again refer to the four pure component lifetime locations and demarcate the

vertices of the quadrilateral that defines the region in which pixels are expected to fall.

Results confirm that majority of experimental pixel lifetimes fall within this region which

confirms continued applicability of the law of linear combination. Probe-specific intensity
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Figure 2.19: Resolved Quadruple-probe Images via Dimensional Reduction and
Deep Learning. (A-C) Bt474, MCF7, SKBR3 cells stained with all 4 FLIM-probes target-
ing EpCAM, HER-2, ECad, and TfR respectively.(i) original total intensity images, (ii) cor-
responding first harmonic phasor plots, laser frequency=20MHz, and (iii-vi) resolved and re-
constructed component-specific fluorescence images after phasor analysis. Scale bars=20µm.

images were reconstructed as before and resulting pseudo-colored images are shown in Fig.

2.19(iii-vi). The results once again match expectations of multi-color immunofluorescence

microscopy and preservation of staining specificity and sample histology after resolving all

4 spectrally overlapping molecular probes using the phasor approach to FLIM.

Here each sample type exhibits expressional activity for each of the four target

markers. As a result, dimensional reduction is not necessary when multiplexing all 4 probes

simultaneously. However, in the event samples are truly negative for one or more target

marker, dimensional reduction becomes salient and a deep learning approach enables

resolution agnostic to sample identity and irrespective of a-priori knowledge of probes used.

Moreover, it becomes imaginable that sample marker expression, albeit not entirely absent,

is low enough below thresholded value and as such for clinical utility can be categorized the

same as a negative expression. HER-2 expression is a reasonable approximation as it’s

utility in clinical management of breast cancer is more binary in nature. As a result, MCF7
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cells, known to be low HER-2 expressors can stand to benefit from dimensional reduction

from a quadruple-stained sample to a triple-stained sample resulting in both clear

demarcation of below threshold HER-2 expression and improved signal-to-noise for the

remaining three molecular markers.

Additional set of split violin plots, Fig. 2.20 of reconstructed intensity images

compare intensity distributions of all 1-, 2-, 3-, and 4-probe Bt474 experiments with and

without implementation of machine learning. Across all 1-, 2-, and 3-probe conditions

specifically, the data clearly indicates reduction of ”signal bleed through” as seen by

reduction of positive distributions in untagged channels. This elimination of false positives

(red asterisks) improves accuracy of resolution. The effect is the result of the deep learning

classifier restricting distribution of signal intensity solely to the specific and correct

component channels. Additionally, a greater fraction of signal was recovered in the

KU-dependent channel. This resulted from prevention of KU-specific signal being

incorrectly attributed as a combination of signal from the other probes. Without

implementation of machine learning, pixels that fall near the 3 linear segments between

Quantum Dot 585, KU530, and Bodily TMR probes resulted in noisier pixels within a

distribution being falsely attributed as a linear combination of the others due to their

proximity. Conversely, false positives were not significantly present in the

AF555-dependent channel and intensity distributions did not vary with the addition of

machine learning as noted by the symmetry of the violin plots in Fig. 2.20D. The

juxtaposition of these two opposing effects further highlights the practical advantages

realized by implementation of the deep learning classification model and also underscore

the importance of selection of fluorescent species linearly orthogonal in the phasor domain.

Future development of additional spectrally matched long-lifetime probes or engineering

probes with tunable intrinsic lifetimes will strongly complement the multiplexed platform.
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Figure 2.20: Intensity Distributions Across All 4-probe Multiplexed Studies.
Violin plots of individual resolved images from various experimental probe staining conditions
after implementation of machine learning dimensional reduction according to EpCAM, HER-
2, ECad, and Tfr channels respectively.

Resolution of single-probe stained images confirmed maintenance of analysis accuracy

despite introduction of an upstream deep learning module. Additionally, resolved

single-probe experiments are the direct benchmark against standard spectral imaging and

are necessary for quantitative comparison of multiplexed results. Mean intensities for each

marker-specific reconstructed image in quadruple-probe experiments were averaged across 6

replicates and 3 different cell lines, Fig. 2.21.

White bars plot original mean intensity of images from single-probe stained

experiments as a benchmark for comparison. Gray bars correspond to images resolved from

quadruple-probe stained experiments. Mean intensities of 4-probe multiplexed, lifetime
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Figure 2.21: Mean Intensity of Resolved Probe-specific Multiplexed Channels
Compared to Original. Mean intensity of all 4 resolved probes (gray) and 4 single stained
images using standard spectral imaging (white). (A-C) in Bt474, MCF7, SKBR3 cell samples
respectively. Means calculated as Grand Mean of mean image intensity across 6 replicate
conditions.

resolved images relatively approximate original image intensities within standard error

when coarsely categorizing signal into HIGH, MED, LOW. For certain applications this

may be sufficient, however for finer quantification of expressional status a few identifiable

contributors remain. First, quality of probes with respect to linear orthogonality,

intensity-matching, and degree of lifetime variance present in cellular environments are

main contributors. These impact how representative a single lifetime coordinate for pure

components are relative to the distribution of lifetimes across all pixels. As a result this

directly affects the analytical solution of fractional lifetime. As identified, the mediocre

phasor location and dimness of the KU530 probe specifically is largest to blame. However,

the specific fluorescent species used here are largely irrespective of underlying analytical

methods of the multiplexed molecular imaging platform described, which remain

fundamental and generalizable to advancing multiplexed lifetime imaging. Due to the

modular nature of FLIM-probes, alternative fluorescent species with better intrinsic

characteristics (lifetime, complexity) can be used. Additional work in the development of

distinct and stable fluorescent species for use as molecular FLIM-probes is both ongoing

and needed to realize the full potential of the lifetime multiplexing strategy described here.

Secondly, averaging intensity across entire image replicates is an indirect measure of

cellular and sub-cellular heterogeneity of expression. Moreover, image to image variations
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in size, total cell count, and resulting fraction of intracellular or inter-cellular background

likely contribute to mismatches in quantification by skewing descriptive statistics. Instead

both pixel-level and per-cell analyses will better capture variability present within a

sample. Due to the reciprocity of the phasor approach to FLIM, and the resulting mapping

of fluorescent species identity to location in an image can be used to investigate sub-cellular

spatial distributions of markers or time-linked changes in molecular feature integrity61.

Additionally, per-cell statistics of signal intensity rely on segmentation of individual cells in

images. Although achievable, manual approaches are tedious, inconsistent, and untenable

in scalability. Alternatively, unsupervised clustering and deep learning techniques automate

object-level image segmentation61. Although not demonstrated here, such techniques

address current limitations in resolution of quantification of 4-probe multiplexed systems.

2.6.4 Pixel-Level Resolution

Lastly, pixel-level analysis characterized number and distribution of probe species,

validating sub-cellular tracking with expected staining specificity. Since targeted markers

are all expressed at the cell membrane surface, distribution of pixels containing multiple

probes were predicted to spatially align with the cellular membrane. Indices of each

reconstructed intensity image were aligned and masked for positive signal. Mask cutoffs

were defined by mean photon counts of greater than or equal to one. Binarizing results for

each pixel across all probes employed resulted in probe number quantification for each of

the three cell types. The heat maps in Fig. 2.22B paint pixels by color dependent on

number of probes present. Regions with the highest intensity, corresponding to number of

probes present, spatially tracked with the surface of the cell membrane. Moreover, the bar

charts in Fig. 2.22A depict the percentage of pixels containing a particular number of

probes. While both Bt474 and SKBR3 images contain a percentage of pixels containing 4

probes, less than 0.1% of MCF-7 image pixels do. The data suggests majority of MCF-7
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image pixels have at most 3 or fewer probes with the most found in regions at the cell

membrane surface. This was expected since MCF-7 cells exhibit lower expression of

HER-2. As an example, this might be clinically useful in determining that treatment with

Herceptin is not indicated here. Moreover, the data suggests this approach is capable of

resolving up to four spectrally overlapping molecular probes spatially targeting the same

cellular compartment at the pixel-level. Furthermore, pixels here span a distance of 0.41µm

indicating FLIM-based multiplexing of molecular probes are conceivably resolvable within

a 2-dimensional sub-cellular footprint of the cell membrane surface, 0.17µm2 in area.

Another benefit over colored probes is minimal likelihood that analysis is subject to

spectral crosstalk within such close proximity since probes are spectrally overlapping.

In summary, these results demonstrate 4-probe multiplexing of spatially co-localized

surface targets with exogenous molecular probes within the same spectral channel. This

Figure 2.22: Pixel-level Spatial Resolution and Heatmapping. (A-C) Bar chart
plotting percentage of total pixels containing labeled number of different fluorescent species
across Bt474, MCF7, and SKBR3 cell samples respectively. (D-F) Heatmap generated by
color mapping pixels with differing number of fluorescent components ranging from 4 (red)
to 0 (blue).
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work qualitatively unmixes probe-specific signal and although limited, achieves coarse

quantification, establishing the a foundation and roadmap to improved resolution of

molecular expression using lifetime information alone.

2.7 Conclusion

Multiplexed molecular profiling that preserves spatial context traditionally requires

either spectral differentiation, high-powered imaging equipment, or cyclic techniques

involving serially degradative rounds of sample staining and antigen retrieval. The phasor

approach to fluorescence lifetime imaging microscopy (FLIM) is a fit-free method for facile

analysis of fluorescence lifetime by transforming and mapping complex exponential decay

curves onto a powerful and informative geometric-graphical representation. As a result of

the transformation, resolving mixtures of fluorescent species and their corresponding

multi-exponential decays becomes a simplified linear system of equations. Moreover,

pattern-recognition via machine learning provides avenues to further exploit the graphical

visualization of lifetime data. Here we demonstrate a multiplexed platform leveraging the

phasor approach to FLIM for simple, rapid resolution of up to 4 exogenous molecular

probes within a single spectral window, adding an orthogonal dimension with which to

multiplex.

We employed up to four tumor-specific FLIM-probes targeting spatially co-localized

cell surface biomarkers simultaneously within a single sample. Using lifetime information

alone, total sample signal intensity was resolved into probe-specific contributions, making it

analogous to imaging four separate spectrally distinct probes. Additionally,

implementation of deep learning classification of phasor data enables both dimensional

reduction for improved resolution and a clinically tenable path towards scalability and

platform automation.
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Improving our understanding of the molecular heterogeneity within the tumor

microenvironment can help characterize host vs. neoplastic cell types, identify

morphological changes indicative of prognosis, guide clinical management through

molecular sub-typing, or elucidate novel targets further complementing drug discovery

efforts. In order to best capture this rich and informative landscape, improvements in

multiplexing capacity of molecular profiling platforms are necessary. Advantageously,

multiplexing within a single spectral window preserves remaining spectral range for

additional increases in multiplexing. Circumventing concerns of spectral overlap that limit

simultaneous use of colored probes to a handful of spectral windows, the approach here is

capable of achieving 4 lifetime probes across each spectral window for at least a 4x

multiplicative increase in multiplexing capacity.

Current state-of-the-art hyper-spectral imaging techniques have furthered mapping the

molecular geography of pathological tissue. The advances demonstrated here in

multiplexing, realized by the addition of fluorescence lifetime imaging and molecular

feature classification through machine learning, complement these techniques. Overall, the

data illustrates the ability of the deep learning classification model to dimensionally reduce

and analytically resolve 4-component systems blind to specific cell type. These results are

particularly powerful in the context of future FLIM-based applications involving profiling

heterogeneous cell samples, such as FFPE tissue and clinical biopsies, to provide actionable

information through multiplexed quantification of molecular expression.
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2.8 Future Perspectives: A Foward Look

2.8.1 Additional Lifetime Probes and Multiplexing Capacity

The combination of Phasor FLIM analysis and deep learning has enabled resolution of

up to 4 spatially coexistent cellular targets at the individual pixel level using lifetime

information alone. Challenges resulting from the limited availability of spectrally-matched

long-lifetime fluorescent probes further highlight the growing need for the development of

additional lifetime probes. In the future, manipulating fluorescent species through

controlled quenching or dynamic biophysical molecular interactions will afford probes with

tunable lifetimes. The addition of lifetime probes combined with instrumentation for the

collection of higher harmonics wold allow further multiplexing within a given spectral

window. Additionally, extending lifetime multiplexing across remaining spectral windows

would enable multiplicative increases in total multiplexing capacity, outpacing standard

spectral imaging.

2.8.2 Applications of Machine Learning in Phasor FLIM

Further improvements in automation and analysis could be realized by implementing

additional machine learning methods. Beyond image segmentation, clustering methods

such as Gaussian Mixture Models (GMM) and Density Based Spatial Clustering of

Applications with Noise (DBSCAN) will likely leverage both the geometric-graphical and

reciprocal aspects of Phasor FLIM for more robust and translatable features.
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[31] Jérôme Galon, Helen K. Angell, Davide Bedognetti, and Francesco M. Marincola. The
Continuum of Cancer Immunosurveillance: Prognostic, Predictive, and Mechanistic
Signatures, jul 2013.

[32] Maria Gabriela Anitei, Guy Zeitoun, Bernhard Mlecnik, Florence Marliot, Nacilla
Haicheur, Ana Maria Todosi, Amos Kirilovsky, Christine Lagorce, Gabriela Bindea,
Dan Ferariu, Mihai Danciu, Patrick Bruneval, Viorel Scripcariu, Jean Marc Chevallier,
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