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RESEARCH ARTICLE Open Access

Differentiating IDH status in human
gliomas using machine learning and
multiparametric MR/PET
Hiroyuki Tatekawa1,2,3, Akifumi Hagiwara1,2,4, Hiroyuki Uetani2,5, Shadfar Bahri6, Catalina Raymond1,2, Albert Lai7,8,
Timothy F. Cloughesy7,8, Phioanh L. Nghiemphu7,8, Linda M. Liau7,9, Whitney B. Pope2, Noriko Salamon2 and
Benjamin M. Ellingson1,2,7*

Abstract

Background: The purpose of this study was to develop a voxel-wise clustering method of multiparametric
magnetic resonance imaging (MRI) and 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (FDOPA) positron emission
tomography (PET) images using an unsupervised, two-level clustering approach followed by support vector
machine in order to classify the isocitrate dehydrogenase (IDH) status of gliomas.

Methods: Sixty-two treatment-naïve glioma patients who underwent FDOPA PET and MRI were retrospectively
included. Contrast enhanced T1-weighted images, T2-weighted images, fluid-attenuated inversion recovery images,
apparent diffusion coefficient maps, and relative cerebral blood volume maps, and FDOPA PET images were used
for voxel-wise feature extraction. An unsupervised two-level clustering approach, including a self-organizing map
followed by the K-means algorithm was used, and each class label was applied to the original images. The
logarithmic ratio of labels in each class within tumor regions was applied to a support vector machine to
differentiate IDH mutation status. The area under the curve (AUC) of receiver operating characteristic curves,
accuracy, and F1-socore were calculated and used as metrics for performance.

Results: The associations of multiparametric imaging values in each cluster were successfully visualized.
Multiparametric images with 16-class clustering revealed the highest classification performance to differentiate IDH
status with the AUC, accuracy, and F1-score of 0.81, 0.76, and 0.76, respectively.

Conclusions: Machine learning using an unsupervised two-level clustering approach followed by a support vector
machine classified the IDH mutation status of gliomas, and visualized voxel-wise features from multiparametric MRI
and FDOPA PET images. Unsupervised clustered features may improve the understanding of prioritizing
multiparametric imaging for classifying IDH status.

Keywords: Machine learning, 18F-DOPA PET, MRI, IDH mutation, Clustering, Diffuse glioma

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: bellingson@mednet.ucla.edu
1UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision
and Imaging Biomarkers, David Geffen School of Medicine, University of
California Los Angeles, Los Angeles, USA
2Department of Radiological Science, David Geffen School of Medicine,
University of California Los Angeles, Los Angeles, USA
Full list of author information is available at the end of the article

Tatekawa et al. Cancer Imaging           (2021) 21:27 
https://doi.org/10.1186/s40644-021-00396-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s40644-021-00396-5&domain=pdf
http://orcid.org/0000-0002-2764-6640
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:bellingson@mednet.ucla.edu


Background
The World Health Organization (WHO) classification of
Tumors of the Central Nervous System was revised in
2016, and the molecular status, such as isocitrate de-
hydrogenase (IDH) gene mutation and chromosomal 1p/
19q co-deletion, was integrated to diagnose diffuse gli-
omas [1]. Because prognosis and patient management
differ depending on the IDH mutation status, predicting
the genotype before surgery has become more important
in clinical situations. Several studies have evaluated mag-
netic resonance imaging (MRI) and amino acid positron
emission tomography (PET) images to determine IDH
status, revealing specific imaging features in relation to
different IDH statuses [2].
Radiomics, including texture analysis, is a well-known

and widely-used method for image feature extraction
using a machine learning technique [3, 4]. Thousands of
radiomic features can be quantified, and parts of them
are selected through computational algorithms to yield
quantitative imaging biomarkers that characterize intra-
tumoral specific features. Many radiomics studies on dif-
fuse gliomas assess the classification performance of the
molecular status using multiparametric MRI sequences
[5–9]. Amino acid PET, such as 3,4-dihydroxy-6-[18F]-
fluoro-L-phenylalanine (FDOPA) and O-(2-[18F] fluor-
oethyl)-L-tyrosine (FET), provides metabolic information
to complement MRI scan-derived information, and was
also integrated into radiomics approaches [10]. These
machine learning studies separately extracted texture
features from different sequences, and then combined
the features independently to train/validate the classifier.
Thus, they did not account for the voxel-wise association
of different sequences. Furthermore, most extracted fea-
tures were intuitively difficult to understand from a clin-
ical standpoint.
A two-level clustering approach, which was introduced

by Inano et al. [11, 12], may provide a new insight in
machine learning to help understand the specific im-
aging associations. This consists of an unsupervised clus-
tering method with a self-organizing map (SOM)
followed by a K-means and effectively differentiated gli-
oma grades. SOM is a well-known type of neural-
network unsupervised learning method that simplifies
multiparametric features to clusters, defined as ‘proto-
clusters’. These protoclusters are then classified into the
expected number of clusters by a K-means algorithm.
This two-level clustering approach has the following
three important benefits compared with the standard K-
means algorithm. First, although the K-means algorithm
is very sensitive to outliers, protoclusters of SOM are
local averages of the input vectors and outliers can be
eased; hence, they are more robust to outliers than con-
ventional K-means. Second, this method can reduce
computational costs. Third, the two-dimensional

arrangement of the larger protoclusters by SOM can be
easily visualized, thus providing useful information on
the features of interest.
The purpose of this study was to develop a voxel-

based clustering method of multiparametric MRI and
FDOPA PET images using an unsupervised, two-level
clustering approach followed by support vector machine
(SVM) to classify the IDH mutation status of gliomas.
We hypothesize that this approach may help visualize
the association of multiparametric imaging metrics, as
well as differentiate IDH status.

Methods
Patient selection
A total of 69 patients with newly diagnosed, treatment-
naïve, and histologically confirmed diffuse gliomas who
underwent FDOPA PET and MRI scans between 2010
and 2020 were retrospectively selected. By biopsy or sur-
gical resection, all patients were diagnosed with WHO
grade II, III, or IV diffuse gliomas according to the 2007
or 2016 WHO classification of Tumors of the CNS [1,
13]. Exclusion criteria were as follows: 1) sever image ar-
tifacts (n = 2); 2) absence of apparent diffusion coeffi-
cient (ADC) maps with b value = 1000 s/mm2 (n = 5).
Finally, 62 patients who fulfilled the eligibility criteria
were included, and further classified by IDH mutation
status, which was determined by genomic sequencing
analysis using polymerase chain reaction, and 1p19q
codeletion status, which was assessed using fluorescence
in situ hybridization. The MRI were obtained within 2-
month interval of the corresponding PET scans for all
patients. No patients underwent a stereotactic biopsy be-
fore FDOPA PET or MRI scan. The study was approved
by the institutional review board at UCLA, and all sub-
jects signed an informed consent form. Most subjects
were included in two previous studies: evaluation of
voxel-wise imaging correlations between FDOPA PET
and MRI [14], and evaluation of the utilities of hyper-
metabolic regions of interest (ROIs) [15].

MRI acquisition
Anatomical MRIs consisted of standard pre- and post-
contrast T1-weighted images (T1WI) at 2D axial turbo
spin echo (3 mm slice thickness and no interslice gap) or
3D inversion-prepared gradient echo images (1.0–1.2
mm isotropic voxel size) using a 1.5-T or 3-T clinical
MRI scanner [16]. T2-weighted images (T2WI) and T2-
weighted fluid-attenuated inversion recovery (FLAIR)
images (3 mm slice thickness with no interslice gap)
were also acquired.
Diffusion weighted imaging (DWI) was acquired for

seven subjects (3mm slice thickness and no interslice
gap). From the acquired DWI with b = 1000 s/mm2 and
b = 0 s/mm2 images, ADC maps were calculated. Diffusion
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tensor imaging (DTI) data (2–3mm slice thickness with
no interslice gap) was collected for 55 subjects for whom
conventional DWI was not obtained. The DTI was ac-
quired with 12–64 equidistant diffusion-sensitizing direc-
tions with b = 1000 s/mm2, as well as a single b = 0 s/mm2

image. After motion and eddy-correction, mean diffusivity
maps were calculated and used as estimates of ADC values
using FSL software (eddy and dtifit; FMRIB, Oxford, UK;
http://www.fmrib.ox.ac.uk/fsl/).
For dynamic susceptibility contrast (DSC) MRI, a total

dose of 0.1 mmol/kg of gadolinium contrast material
(Gadavist or Magnevist; Bayer HealthCare Pharmaceuti-
cals, Wayne, NJ, USA) was administered. A total dose of
0.025 mmol/kg was used for the preload dosage to miti-
gate T1-based leakage contamination, and the remaining
0.075 mmol/kg were used for dynamic bolus administra-
tion. Between the preload dose and the start of baseline
DSC-MRI, a 2-min gap was incorporated. The DSC-MRI
(5 mm slice thickness and no interslice gap) was ac-
quired with 10–25 baseline acquisitions before contrast
agent injection at 120 timepoints. Using FSL software
(mcflirt), dynamic time-series images were motion-
corrected. After applying a bidirectional contrast agent
leakage-correction algorithm [17], relative cerebral blood
volume (rCBV) maps were subsequently computed by
dividing each voxel of rCBV maps by the median value
of 6–10 ROIs lain on the contralateral normal-appearing
white matter.
Summary of MRI acquisition parameters is shown in

Supplemental Table 1.

FDOPA PET image acquisition
A full-ring PET/computed tomography (CT) scanner
(ECAT-HR; Siemens, Knoxville, TN, USA) was used after
the subjects fasted for more than 4 h to obtain FDOPA
PET images. For attenuation correction, a CT scan (120
kV) was acquired before the PET scan. FDOPA was
synthesized and injected intravenously [18, 19]. Three-
dimensional FDOPA emission data were obtained for 30
min. To obtain 20-min static FDOPA images after recon-
struction, the data were integrated between 10 and 30min
following the injection. FDOPA PET images were then
reconstructed using an ordered-subset expectation
maximization iterative reconstruction algorithm (6-iter-
ation and 8-subset) [20, 21]. A Gaussian filter was then ap-
plied with a full width at half maximum of 4mm. The
resulting voxels were 1.34 × 1.34 × 3mm for FDOPA PET
images. The standardized uptake value (SUV) maps were
calculated based on the radioactive activity of FDOPA di-
vided by the decay-corrected injected dose per body mass.

Postprocessing and signal intensity/SUV normalization
All MRI (T2WI, T2-weighted FLAIR images, rCBV
maps, and ADC maps) and FDOPA PET images were

registered to the post-contrast enhanced (CE) T1WI for
each patient using a six-degree-of-freedom rigid trans-
formation with a mutual information cost function using
FSL software (flirt). A tumor ROI was segmented based
on the hyperintense regions on whole brain T2-weighted
FLAIR images for supervised evaluation by a single
board-certificated neuroradiologist (H.T. with 12 years of
clinical experience and 2 years of segmentation experi-
ence) with the Analysis of Functional NeuroImages
software (NIMH Scientific and Statistical Computing
Core; Bethesda, MD, USA; https://afni.nimh.nih.gov). A
semi-automatic procedure was employed in which a
large ROI was drawn over a FLAIR hyperintensity region
and intensity thresholds were chosen for each patient to
extract only FLAIR hyperintense regions [22]. In this
study, six images, including CE-T1WI, T2WI, FLAIR
images, ADC maps, rCBV maps, and FDOPA PET im-
ages, were used for machine learning. For signal inten-
sity/SUV normalization, values ranging between 0 to 75
percentiles + 1.5 × interquartile range were assigned to a
range between 0 to 1, and outliers were not excluded.

Unsupervised two-level clustering approach
An overview of the following processing is shown in
Fig. 1. By referring to the previous study about the ana-
lysis methods, including voxel size of feature extraction
[11], features for unsupervised clustering were extracted
from voxels on the six parameters of normalized original
images every 64 (4 × 4 × 4) voxels within the binary
whole brain mask image obtained with FSL’s brain ex-
traction tool (bet). The extracted features from six differ-
ent images of all subjects were stacked and used as input
vectors (dimension: 6 × 1,520,745) for voxel-based clus-
tering. A two-level clustering approach was applied
using a batch-learning SOM and the K-means algorithm
for unsupervised clustering [11]. A large number of in-
put vectors was clustered into a much larger than ex-
pected number of protoclusters. Next, the protoclusters
were classified into the expected number of clusters by a
K-means algorithm using the weighted vectors of each
protocluster. According to a previous study [11], we
chose the numbers of K-class with K = 4, 6, 8, 10, 12, 16,
20. After unsupervised clustering by SOM followed by
the K-means, 400 (20 × 20) protoclusters with K-class
label information were generated. The label information
of the nearest protocluster was assigned to each voxel
on the six intensity-normalized original images within
the tumor ROIs. To evaluate the ratios of labels for each
K-class within tumor ROI, the common logarithmic
value of the ratio was calculated by the formula: log10
(p + 10− 2), where p is a ratio of each label (%). Then the
ratios of each K-class label for all subjects were applied
as input features (dimension: K-class × 62 [subjects]) to
the following SVM classification. We implemented this
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two-level clustering algorithm using MATLAB software
(R2019b; MathWorks, Natick, MA, USA).

Classification using SVM
By applying the ratios of each K-class label as extracted
features, which were calculated by the two-level cluster-
ing approach of six different images, a linear kernel
SVM was chosen as a classifier to discriminate between
IDH wild-type and mutant gliomas, and the hyperpara-
meter (C) of the linear kernel SVM with a two-step grid
search technique was optimized, as previously described
[11]. A leave-one-out cross validation (LOOCV) strategy
was carried out to assess the classification performance
that is widely used in machine learning, allowing us to
use most of the data for training. The decision function
derived from the training datasets was used to classify or
calculate a decision value for the test subject. After the
LOOCV, the area under the curve (AUC) of receiver op-
erating characteristic (ROC) curves, accuracy, sensitivity,

specificity, precision, recall, and F1-score were calcu-
lated. Additionally, the patients’ age was included to the
SVM analysis to evaluate differentiation performances.
We used Python (version 3.6.4) and scikit-learn library
(version 0.23.1; https://scikit-learn.org/stable/) to imple-
ment a linear kernel SVM, LOOCV strategy, and the fol-
lowing bootstrap technique.

Statistical analysis
To determine if the classification performances were sig-
nificantly different among the different K-classes (K = 4,
6, 8, 10, 12, 16, 20), we performed SVM classification in
each K-class 100 times using a bootstrap technique, and
then analyzed the differences by a one-way analysis of
variance (ANOVA) followed by Tukey’s multiple com-
parison tests. To compare the log-ratio values of each
label in the K-class with the best classification perform-
ance between IDH wild-type and mutant, Mann–Whit-
ney U test with Benjamini-Hochberg method for the

Fig. 1 Simplified graphical overview of the processing

Tatekawa et al. Cancer Imaging           (2021) 21:27 Page 4 of 10

https://scikit-learn.org/stable/


multiple comparison corrections was used. Statistical
significance was defined as P < 0.05.

Results
This study included 62 treatment-naïve glioma patients
(23 females) of a mean age of 53.0 years at the time of
the PET examination (Table 1 and Supplement Table 2).
A patient selection flow-chart is shown in Fig. 2. Ac-
cording to the 2007/2016 WHO criteria, 13 gliomas
were grade IV, 21 were grade III, and 28 were grade II;
33 gliomas were IDH wild-type, and 29 were IDH mu-
tant (17 were 1p/19q non-codeleted and 12 were 1p/19q
codeleted).
To determine the number of K-classes which showed

the best prediction performance for IDH mutation,
AUC, accuracy, and F1-score were compared among dif-
ferent K-classes using a bootstrap method. The 16-class
clustering showed the highest AUC, accuracy, and F1-
score, which were significantly higher than the other K-
classes (K = 4, 6, 8, 10, 12), except for the 20-class
clustering (Supplemental Fig. 1). To understand the fol-
lowing results clearly, we primarily showed the results of
the K = 16-class for the following analyses. The predic-
tion performance for all K-classes except K = 16 are
summarized in Supplemental Table 3.
The component planes of the six variables from CE-

T1WI, T2WI, FLAIR, ADC, rCBV, and FDOPA by the
SOM analysis showed the information of each sequence
in each map unit as well as the associations between the
protoclusters and each image (Fig. 3). The component
planes of 6 variables differed from each other, but those
of T2WI and ADC showed similar mapping. Next, the
protoclusters were successfully classified into 16 labels
by K-means (K = 16), each label of which was applied to
the tumor ROIs. Figure 4 shows representative cases of
IDH wild-type and mutant gliomas. In these cases, the

voxels of labels 1 and 2 occupied a majority of tumor
ROIs for both IDH wild-type and mutant gliomas, while
the voxels of label 3 can be seen more frequently for the
IDH wild-type gliomas than mutant gliomas.
As for the classification performance using SVM with

LOOCV in K = 16, the AUC, accuracy, sensitivity, speci-
ficity, precision, recall, and F1-score were 0.81, 0.76,
0.75, 0.82, 0.78, 0.81, and 0.76, respectively. When age
was included in the SVM analysis, the AUC, accuracy,
sensitivity, specificity, precision, recall, and F1-score
were 0.87, 0.84, 0.91, 0.76, 0.81, 0.91, and 0.86, respect-
ively. The log-ratio values of each label in the K = 16
class were compared between IDH wild-type and mutant
gliomas (Fig. 5a). The values of the labels 2, 3, 7, 9, and
11 were significantly higher in IDH wild-type than in
mutant gliomas (P = 0.001, < 0.001, 0.006, 0.006, and
0.007, respectively), whereas the value of the label 1 was
significantly higher in IDH mutant than in wild-type gli-
omas (P = 0.001). The radar charts of the individual nor-
malized values of the six images for each label in the
K = 16 class are shown in Fig. 5b. The chart patterns of
label 3, which showed significantly higher log-ratio
values in IDH wild-type than in mutant, consisted of
high FDOPA values. The labels 7 and 11, which were
also significantly higher in IDH wild-type than in mu-
tant, had high rCBV values.

Discussion
This study developed a voxel-based clustering method of
multiparametric images, including CE-T1WI, T2WI,
FLAIR, ADC, rCBV, and FDOPA PET, using an un-
supervised two-level clustering approach, and evaluated
the classification ability of IDH wild-type and mutant
gliomas using SVM with LOOCV. This method enabled
the visualization of the association of imaging values in
each cluster. Multiparametric images with 16-class clus-
tering showed the highest classification performance to
differentiate IDH status with the AUC, accuracy, and
F1-score of 0.81, 0.76, and 0.76, respectively. Further,
when age was included to the SVM, the AUC, accuracy,
and F1-score improved to 0.87, 0.84, and 0.86,
respectively.

Table 1 Patient demographics and molecular information

No. of patients 62

No. of female patients 23 (37%)

Age ± standard deviation (year) 53.0 ± 14.8

WHO classification grade

II 28 (45%)

III 21 (34%)

IV 13 (21%)

IDH mutation status

Wild-type 33 (53%)

Mutant 29 (47%)

1p/19q codeletion status for IDH mutant

1p/19q non-codeleted 17 (28%)

1p/19q codeleted 12 (19%)

IDH isocitrate dehydrogenase

Fig. 2 Patient selection flow-chart
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Several previous studies have identified specific fea-
tures of gliomas in relation to IDH mutation status. IDH
wild-type gliomas were reported to have a higher likeli-
hood of contrast enhancement, higher rCBV, lower
ADC value than IDH mutant gliomas, while a well-
defined border and T2–FLAIR mismatch sign were
specific features of IDH mutant gliomas [2]. A meta-
analysis revealed a summary sensitivity and specificity of
86 and 87%, respectively, to differentiate IDH mutation
status, which was similar to or slightly superior to our
results [2]. Meanwhile, IDH wild-type gliomas, especially
glioblastomas, grew into the periventricular white matter
adjacent to the subventricular zone [23, 24], whereas
more than half of IDH mutant gliomas were localized in
the frontal lobe [25]. However, these locational features
were overlapping and may not be useful for differenti-
ation purposes.
Previous machine learning studies generally performed

a texture analysis to differentiate IDH status. Zhang
et al. [7] and Zhou et al. [8] reported a higher accuracy
(0.89) and AUC (0.92), respectively, to differentiate IDH
status, as compared to our study. However, these studies
included patient age as well as multiparametric MRI fea-
tures as variables in all analyses, with the variable age of-
fering the highest predictive value. Patients with IDH
wild-type gliomas were known to be significantly older
than patients with IDH mutant gliomas [26]; therefore,
patient age may largely affect the classification perform-
ance, and the differentiation performance using imaging
features alone cannot be compared with the current
study. Li et al. [5] used imbalanced data set and reported

that multiparametric MRI could predict IDH status with
an F1-score of 0.78, which was similar to our study.
When comparing with previous machine learning

studies using amino acid PET, Lohmann et al. [27] re-
ported that combining texture features of FET PET with
standard PET parameters differentiated IDH status with
high accuracy (0.93) [27]. Haubold et al. reported that a
combination of texture features of FET PET with multi-
parametric MRI classified IDH status with an AUC of
0.88 [10]. These studies using only imaging features and
the classification performances are superior to our re-
sults. However, these cohorts used imbalanced data with
a larger number of IDH wild-type gliomas, and did not
calculate F1-scores. For the evaluation of classification
performance, accuracy and ROC can be used when the
class distributions are similar, while F1-scores should be
used when there are imbalanced classes. Thus, the true
classification performance of these studies remains un-
clear, and cannot be directly compared with our results.
Although differentiation performances were similar to

previous studies, this study can help visualize which im-
aging parameters play important roles in classifying IDH
status using unsupervised clustered features. This is the
core strength of this study and may help understand the
priority of multiparametric images in clinical situations.
The ratio of label 3 in 16-class clustering was signifi-
cantly higher in IDH wild-type than mutant gliomas.
The radar charts of six variables showed high FDOPA
values in label 3, which was mapped to FDOPA hyper-
metabolic areas on the original images. Higher ratios of
label 3 in IDH wild-type than mutant gliomas may

Fig. 3 Component planes with SOM for each imaging parameter ranging from blue to red according to each value. Red means a high weight.
The inter-class borderlines obtained by K-means clustering with K = 16 are shown on the SOM component planes as black lines between the
nodes. Detailed profiles can be seen on the K-means clustering map (from label 1 to 16)
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reflect larger hypermetabolic volume in IDH wild-type
gliomas. This may be partly due to the different ratios of
included subjects because all grade IV glioblastomas
were IDH wild-type, and glioblastomas tend to have a
large hypermetabolic volume [28]. Indeed, when exclud-
ing FDOPA in this machine learning analysis (detailed
data not shown), the specificity and recall decreased to
0.75 and 0.76, respectively, although other metrics
retained similar values. These results suggested that pa-
rameters of FDOPA PET have an additional value in dif-
ferentiating IDH status. Similarly, the ratios of labels 7
and 11, which showed high rCBV values on the radar
chart, were also significantly higher in IDH wild-type

than mutant gliomas, reflecting larger high-rCBV spots
in IDH wild-type gliomas. This is consistent with a pre-
vious study showing relatively high rCBV in IDH wild-
type gliomas [2]. We believe that these clustering
features allow for the improved establishment of feature
extraction priorities for IDH wild-type gliomas since the
associations are complex.
In contrast, the ratios of labels 1 and 2 in a 16-class

occupied a large portion of a tumor in both IDH sta-
tuses, although the ratios significantly differed between
IDH wild-type and mutant gliomas. However, the radar
charts revealed non-specific small values in all parame-
ters, suggesting that the majority of the components

Fig. 4 Representative cases of IDH wild-type and mutant gliomas with 16-class clustering that shows the highest classification performance. The
CE-T1WI, T2WI, and FLAIR image, and ADC, rCBV, and FDOPA maps are shown for each patient. Each color within the tumor ROIs corresponds to
each label in the 16-color bar. The ratios of each label are shown in pie chart. The voxels of the label 3 (red) can be seen frequently for the IDH
wild-type gliomas
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Fig. 5 a) Box-whisker plots and b) radar charts of each label by 16-class clustering. a The box-whisker plots showing median and interquartile
range for log-ratio values. * shows a significant difference. b Radar charts of six variables (CE-T1WI, T2WI, FLAIR, ADC, rCBV, and FDOPA PET) in
each label by 16-class clustering
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within tumor regions were of limited use for genotype
classification.
There are specific limitations to this study that should

be addressed. First, because the population of either IDH
mutant 1p/19q non-codeleted (17/62) or codeleted gli-
omas (12/62) was not large, the classification performance
to differentiate either of them from other subtypes or that
of 3-class differentiation was not reliable (differentiation
of IDH mutant 1p/19q non-codeleted, F1-score 0.69; dif-
ferentiation of IDH mutant 1p/19q non-codeleted, F1-
score 0.12; 3-class differentiation, F1-score 0.48; other
detailed data not shown); hence, we combined these two
groups as IDH mutant gliomas (29/62). However, gliomas
with different 1p/19q codeletion statuses must have spe-
cific imaging/pathological features, such as relatively
higher rCBV and FDOPA uptake in IDH mutant 1p/19q
codeleted gliomas than in non-codeleted gliomas [29, 30];
hence, when using a much larger cohort, our method may
help visualize specific imaging features for IDH mutant
1p/19q codeleted and non-codeleted gliomas. Second, al-
though this study used LOOCV for predicting molecular
status, another independent cohort is required to validate
our classification performance. Third, due to the retro-
spective nature of this study, the acquisition parameters
and scanners of MRI were standardized [16] but not iden-
tical across patients. For example, conventional DWI was
obtained when DTI was not available, and mean diffusivity
maps were used as estimates of ADC values instead of
conventional ADC maps. However, the differences in se-
quences were mitigated by normalizing each parameter.
In fact, the diversity of imaging acquisition parameters
may have actually helped generalize the classification per-
formance across a variety of acquisition parameters, as
would be expected in a multicenter study.

Conclusion
Machine learning using an unsupervised two-level clus-
tering approach can be used to extract and visualize
voxel-based imaging features from multiparametric MRI
and FDOPA PET images and classify IDH mutation sta-
tus using SVM with LOOCV. Unsupervised clustered
features have revealed voxel-wise imaging associations,
and may improve the understanding of the priority of
multiparametric imaging features for classifying IDH
mutation status, which may help predict molecular sta-
tus before surgery.
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