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Is there really a link between exact-number
knowledgeandapproximatenumber systemacuity
in young children?

James Negen* and Barbara W. Sarnecka
University of California, Irvine, California, USA

Although everyone perceives approximate numerosities, some people make more

accurate estimates than others. The accuracy of this estimation is called approximate

number system (ANS) acuity. Recently, several studies have reported that individual

differences in young children’s ANS acuity are correlated with their knowledge of exact

numbers such as the word ‘six’ (Mussolin et al., 2012, Trends Neurosci. Educ., 1, 21;

Shusterman et al., 2011, Connecting early number word knowledge and approximate number

system acuity; Wagner & Johnson, 2011, Cognition, 119, 10; see also Abreu-Mendoza et al.,

2013, Front. Psychol., 4, 1). This study argues that this correlation should not be trusted. It

seems to be an artefact of the procedure used to assess ANS acuity in children. The

correlation arises because (1) some experimental designs inadvertently allow children to

answer correctly based on the size (rather than the number) of dots in the display and/or

(2) young children with little exact-number knowledge may not understand the phrase

‘more dots’ to mean numerically more. When the task is modified to make sure that

children respond on the basis of numerosity, the correlation between ANS acuity and

exact-number knowledge in normally developing children disappears.

What does it mean to have a talent for math? Is it possible that seeing (without counting)

that one set has more items than another is actually a major component of math ability?

Recently, much has been written about the approximate number system (ANS) and its

relation to math achievement. At times, the reasoning seems to verge on essentialism

(Gelman, 2003),with the ANS imagined as an inner force that causes people to succeed or

fail at mathematics.

In this paper, we consider (and ultimately reject) one claim in this literature: The claim
that young children’s ANS acuity is related to their knowledge of exact-number words (one

of the earliestmeasures of symbolicmath learning).We argue that the reported link between

ANS acuity and exact-number learning is an artefact of flawed measurement methods.

This argument is supported by two experiments: In the first, children’s ANS acuitywas

measured using a standard task.1 In the second, the standard task was modified to make

sure that children responded on the basis of numerosity. The first experiment replicates

the finding from the literature (i.e., that performance on the standard ANS task is linked to

*Correspondence should be addressed to James Negen, Department of Cognitive Sciences, 2201 Social & Behavioral Sciences
Gateway Building (SBSG), University of California, Irvine, CA 92697-5100, USA (email: jnegen@uci.edu).
1 For our argument here, an ANS task is standard if it assumes that the participant knows the correct interpretation of ‘more’ when
we ask them ‘Which side has more dots?’ or ‘Are there more blue dots or yellow dots?’ and does not attempt to teach them that
they must attend to number specifically. For example, see Panamath (Halberda, Mazzocco, & Feigenson, 2008), which is
available for free online.
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exact-number knowledge); the second experiment shows that when children’s ANS

acuity is measured more carefully, with age-appropriate controls, the evidence for a link

between ANS acuity and exact-number knowledge disappears.

Approximate and exact numbers

Human beings have the ANS that allows us to quickly estimate of the number of items

in a set (see, Dehaene, 1997; Feigenson, Dehaene, & Spelke, 2004; Gallistel, 2011, for

review). For example, if you are at a wine tasting with 30 people and there are only 20

glasses of wine on the table, the ANS is what allows you to see (without counting) that

there are not enough glasses for everyone. In the ANS, the difficulty of telling any two

numerosities apart depends on their ratio. The previous example’s 2:3 ratio (20 wine
glasses/30 people) is fairly easy to discriminate. If there were 120 glasses and 130

people (a ratio of 12:13), it would be much harder to tell that there were not enough

glasses. It would be harder even though the absolute difference (i.e., 10 people without

glasses) would be the same.

Numeric discrimination becomes more difficult as the ratio of the sets approaches 1

(e.g., 120:130 < 20:30), but there are still individual differences in performance. Some

people succeedmore often than others at more difficult ratios. The accuracy of a person’s

discrimination is called their ANS acuity, and individual differences in ANS acuity are
measurable even in childhood (e.g., Halberda & Feigenson, 2008).

In addition to the ANS, people in numerate societies have an exact-number

system. People start learning this system in early childhood: Children first learn a list

of counting words, then a counting procedure, and then the cardinal meanings of the

number words. The first few number-word meanings are learned one at a time (first

one, then two, then three, sometimes four). The higher number-word meanings seem

to be learned by a process of inductive reasoning, when children figure out the

cardinality principle (Gelman & Gallistel, 1978; Schaeffer et al. 1974). This principle
states that the last word used in counting tells the cardinality of the whole set. It is

this principle that connects counting to exact, cardinal numbers: If you understand

cardinality, you know the meaning of any number word in any language by its place

in the counting list. That is, you know that the eighth word in any counting list

means 8, the 15th word means 15, the 294th word means 294, and so on. Children

who implicitly understand this key idea are called cardinality-principle knowers, or

CP-knowers for short.

Becoming aCP-knower takes a long time, on the order of a year ormore. Children learn
themeanings of the first three or four number words one at a time, with weeks or months

elapsing before they learn themeaning of the nextword. The child’s progress on this front

is called their number-knower level or just knower-level, and it is commonly assessed

using the Give-N task. In this task, the child is asked to give some number of items to a

stuffed animal (e.g., ‘Give the anteater five bananas’.). A pre-number knower is a child

who does not succeed reliably at any number. A one-knower gives one item when asked

for ‘one’, and more than one when asked for any other number, but does not reliably

distinguish among numbers higher than one. A two-knower succeeds at ‘one’ and ‘two’
but no higher numbers, and the pattern continues through the three-knower and

four-knower levels until children figure out the cardinality principle, becoming

CP-knowers. Children at the one-knower through four-knower levels are collectively

known as subset-knowers (Le Corre & Carey, 2007) because they know the meanings of

only a subset of the words in their counting list.
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How is ANS acuity related to exact-number knowledge?

Because learning the exact-number system takes a long time, and children learn it at

different speeds, any large group of preschoolers includes some one-knowers, some

two-knowers, some three-knowers, and so on. Individual differences are also found in
children’s ANS acuity. Naturally, people have wondered whether the two measures are

correlated: Do the children who know more number words also perform better on ANS

tasks?

At least four recent studies have reported that they do (Mussolin, Nys, Leybaert, &

Content, 2012; Shusterman, Slusser, Halberda, & Odic, 2011; Wagner & Johnson, 2011;

see alsoAbreu-Mendoza, Soto-Alba,&Arias-Trejo, 2013), butwe think this correlationmay

be suspect. The tasks intended tomeasure young children’s ANS acuity might not actually

do so.
One problem arises in how area is controlled. Some studies have used stimuli in

which the total summed area of every set is kept constant. This means that the side

with more dots always has smaller dots (see Figure 1). Thus, children could always

Figure 1. An example of stimuli that are not fully controlled for area. In the displays above, the two dot

clouds in each pair have the same area, meaning that the cloud with a greater number of dots always has

dots that are smaller in diameter. Thus, participants can always choose the correct answer just by pointing

to the sidewhere dots are smaller. Tomake sure that participants’ responses are basedon the numerosity

of the dots (and not their size), the side withmore dots should have larger area and larger dots 50% of the

time.

Exact-number knowledge and ANS 3



succeed on this task (regardless of their ANS acuity) just by choosing the side with

smaller individual dots.

Another, trickier problem is that subset-knowers may not yet have a clear concept of

what an exact, cardinal number is and thus may not understand the question ‘Which side
has more dots?’ (or similar phrasings) as a question about numerosity. They may

misinterpret the question as being about some other dimension (e.g., the size of individual

dots or the total area of the display), or they might simply guess at random. On the other

hand, CP-knowers (who clearly do have a concept of what an exact, cardinal number is)

are likely to understand the question the way the experimenters intended (i.e., as a

question about the number of dots).

If subset-knowers do not understand the task, they perform at chance. If CP-knowers

do understand the task, they perform better on easier ratios and worse on more difficult
ratios (just like adults). In this case, a correlation arises between exact-number knowledge

and performance on the ANS task. But this correlation has nothing to do with the

children’s ANS acuity, because the subset-knowers’ ANS acuity has not beenmeasured. To

address this problem, a study needs to show that individual children are performing above

chance, at least at the very easy ratios, and that subset-knowers are performing above

chance as a group.

There is some evidence to support the idea that subset-knowers have trouble

identifying numerosity as a perceptual dimension. Slusser and Sarnecka (2011) tested 116
children, aged 30–48 months, on a Match-to-Sample task. In this task, the experimenter

showed the child a sample picture of, for example, eight happy, green turtles and said,

‘This picture has eight turtles’. Then, the experimenter placed two more pictures on the

table and said, ‘Find another picturewith eight turtles’. One picture had the same number

of turtles as the sample, but the turtles were bigger or smaller than those in the sample

picture, so that the total area did notmatch. The other picturematched the sample in total

summed area of the turtles, but not in number.

Only the CP-knowers correctly chose pictures of the same number (rather than the
same area) tomatch the sample. Subset-knowers failed to do this, although theywere very

good at matching pictures on colour (‘Find another picture with green turtles’) or mood

(‘Find another picture with happy turtles’). In other words, only the CP-knowers

recognized numerosity as the dimension on which one picture of ‘eight turtles’ should

match every other picture of ‘eight turtles’. Based on this result, wemight expect that only

CP-knowers will correctly interpret the phrase ‘more dots’ in the ANS task instructions to

mean themore numerous set of dots.We might expect that subset-knowers will simply

guess or that they might misinterpret the instructions to be about summed area, average
area of each dot, density, and so on.

In a related finding, Odic, Paul, Hunter, Lidz, and Halberda (2013) showed that

children understand and verify sentences about which side of an array has ‘more dots’

(numeric) versus ‘more goo’ (surface area) at around 3.3 years old on average. That study

did not assess children’s exact-number knowledge, but 3.3 years is close to the average

age when children become CP-knowers in higher-SES populations. It is plausible that the

success by children over 3.3 years actually reflects success by CP-knowers and failure by

subset-knowers (who of course tend to be younger, on average).

Potential issues with previous research

Although several studies have reported a correlation between exact-number knowledge

and ANS performance in young children, none have fully solved the two problems
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outlined above. One of the first studies to report this correlation (Wagner & Johnson,

2011) had both the problems described above. First, area was equated in the stimuli, so

that a child could answer correctly by always picking the setwith smaller individual items.

Second, the study reported that children as a group performed above chance in the ANS
task, but no such data were reported for individual children or for subset-knowers as a

group. In fact, the data from that study show children at lower knower-levels performing

under 50% correct, consistent with the possibility that those children did not understand

the task. (For example, if the childrenhad always chosen the displaywith larger individual

dots, their performance would be significantly below chance.)

A similar problem with chance performance can be seen in a study published the

following year (Mussolin et al., 2012). In that study, the data can be seen as two clusters.

One group, children who scored low on the symbolic battery (testing knowledge of
spoken number words and written Arabic numerals), scored around 50% correct on the

ANS task. Several of these individual children scored below 50% on the task. A second

group, children who scored higher on the symbolic battery, scored above chance on the

ANS task, with some individual children scoring over 90%. These findings are consistent

with the possibility that childrenwith less knowledge of exact numbers did not base their

responses on numerosity in the ANS task. (In other words, their ANS acuity was not

actually measured.)

Preliminary data presented by Shusterman et al. (2011) fit the same pattern. Here,
there was a large jump in children’s ANS performance when the children changed from

subset-knowers to CP-knowers. There was no evidence of understanding of the task (i.e.,

above-chance performance on easy ratios) either for individual subset-knowers, or for

subset-knowers as a group.

Abreu-Mendoza et al. (2013) found a relation, but only in one condition where area

was a potential extra cue. They had three conditionswhere they controlled three different

non-numeric aspects of the stimuli: Density, total filled area, and correlated/anticorrelated

area (the set with greater number is larger on exactly half of trials). Children’s
understanding of cardinalitywas correlatedwith their performance only in the ‘total filled

area’ condition, where children could succeed just by picking the side with smaller items

(see Figure 1). Consistent with the present argument, Abreu-Mendoza et al. found no

relation between children’s exact-number knowledge and their performance in the other

two conditions. (Interestingly, they did not appear to have an issue with subset-knowers

failing to understand the instructions, which were given in Spanish. It is possible that this

indicates the construction ‘¿D�onde hay m�as?’ is somehowmore transparent at an earlier

age than similar English constructions.)

The present study

This study re-examines the question of whether preschoolers’ exact-number knowledge

is related to their ANS acuity, with particular attention to the problem of how ANS acuity

can be measured in such young children. In Experiment 1, we show how an illusory

correlation between ANS acuity and exact-number knowledge arises when steps are not

taken to ensure that children attend to numerosity. We test children on the Give-N task
and the standard ANS task and replicate the correlation reported in the literature. In

Experiment 2, we show how the ANS task can be modified to ensure that children are in

fact basing their responses on numerosity. When children are tested using this modified

task, we no longer find a correlation between their exact-number knowledge and ANS

performance.
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EXPERIMENT 1

Method

Participants

Participants included 46 monolingual, English-speaking preschoolers (25 male) with a

mean age of 4 years, 3 months (range 2:8–5:6). Children were recruited at private

preschools in the USA. Participants were not asked to declare their racial/ethnic

background, income, or education levels. However, children were presumably repre-
sentative of the community from which they were recruited. This community is majority

white (45.1%) and Asian (39.0%), the median household income is $85,615 (38% higher

than the median income for the state), and 66% of adult residents have at least a college

degree. Families received a small prize (e.g., a rubber duck) when they signed up for the

study; no prizes were given at the time of testing.

Give-N task
This was our measure of exact-number knowledge. Specifically, its purpose was to

determine what number-word meanings each child knew (i.e., the child’s num-

ber-knower level). The experimenter began the game by bringing out a stuffed animal

(e.g., a lion), a plate, and a bowl of 15 small identical rubber toys (e.g., toy bananas). The

experimenter said to the child, ‘In this game, you’re going to give something to the lion,

like this [experimenter pantomimes putting an item on the plate and sliding it over to the

lion]. I’m going to tell you what to give him’. Instructions were of the form, ‘Can you give

the lion twobananas?’ After the child slid the plate over, a follow-upwas asked in the form,
‘Is that two?’ If the child said yes, the answerwas accepted. If not, the itemswere put back

into the bowl and the trial was restarted.

All childrenwere first asked for one item, then three items. Further requests depended

on the child’s earlier responses.When a child responded correctly to a request forN items,

the next request was for N + 1. When the child responded incorrectly, the next request

was forN�1. The requests continued until the child had at least two successes at a givenN

(unless the child had no successes, in which case she was classified as a pre-number

knower) and at least two failures at N + 1 (unless the child had no failures, in which case
she was classified as a CP-knower). The highest number requested was six.

A child was credited with knowing the meaning of a given number word if she had at

least twice as many successes as failures for that number word. Failures included either

giving the wrong number of items for a particular word N, or giving N items when any

other number was requested. Each child’s knower-level corresponds to the highest

number she reliably generated. (For example, children who succeeded at one and two,

but failed at three, were called two-knowers.) Children who had at least twice as many

successes as failures for trials of five and six were called CP-knowers.

Standard ANS task

Children were shown two sets of dots (Figure 2) and were asked, ‘Which side has more

dots?’ No feedback was given. The first four trials were considered warm-up trials and

those data were not counted. There were 10 different numeric ratios tested: 1:2, 2:3, 3:4,

4:5, 5:6, and 6:7. Therewere 12–50dots on each side. Area (both average area of individual
dots and summed area of the total array) in half the trials was correlated with number; in
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the other trials, area and number were anticorrelated. Figure 2 is an example of an

anticorrelated trial, where the numerically greater array has smaller dots and less summed

area.

Within each side of each trial, the size of dots varied randomly. The dots were spread

out to covermost of the rectangle. All the dots in a setwere of the samecolour; the two sets
appearing in each trial were of two different colours.

Trials were organized into 10 blocks of six trials each, presented in a preset

pseudo-random order. Each block contained one trial of each of the six ratios, three of

them congruent with area and the other three incongruent. Stimuli were balanced so that

the correct answer was on the left exactly 50% of the time, and each dot colour appeared

on amore numerous (i.e., correct answer) set exactly 50% of the time. After each block of

trials, the child was given the option to continue or stop playing, up to a maximum of ten

blocks. About half of the children (54%) continued through all ten blocks of trials; the
mean number of completed trials per child was 50 (SD = 11).

Results and discussion

Fourteen childrenwere classified as subset-knowers and 32 as CP-knowers. As in previous

studies, children’s exact-number knowledge was strongly correlated with their perfor-

mance on the ANS task (Figure 3), r(44) = .63, p < .001. However, if we look only at the

subset-knowers (i.e., if we exclude the children who understand cardinality), perfor-
mance on the numeric comparison task drops to 51.76%correct, which is not significantly

different from chance. At the level of individual children, only two of the subset-knowers

performed above chance at the p = .10 level, which is roughly the expected number of

type-I errors for that many tests. In contrast, CP-knowers as a group performedwell above

chance, t(31) = 10.13, p < .001, and 29 of 32 performed above chance individually at the

p = .10 level. These results suggest that subset-knowers did not understand the ANS

comparison task, in the sense that they failed to base their responses on numerosity.

Chance performance by the subset-knowers was combined with above-chance perfor-
mance by the CP-knowers to create the illusion of a strong positive correlation between

exact-number knowledge and ANS acuity.

Figure 2. An example of stimuli in the standard approximate number system (ANS) task for

Experiment 1.

Exact-number knowledge and ANS 7



Secondary analyses suggest that area was indeed a distracting factor for subset-know-

ers, at least on the group level. Subset-knowers chose the side with larger dots on 354/

647 = 54.7% of trials, p = .0074. Because of this, subset-knowers performed above

chance specifically on the area-correlated trials, 181/324 = 55.86%, p = .0151, and

marginally below chance on area-anticorrelated trials, 150/323 = 46.44%, p = .1104.
CP-knowers, in contrast, performed above chance on both trial types, 584/808 = 72.28%

and 590/814 = 72.48%, ps < .0001. CP-knowers also did not pick the sidewith larger dots

more than chance overall, 808/1,622 = 49.82%, p = .45.

EXPERIMENT 2

Thedifference betweenCP-knowers and subset-knowerswith regard to numerosity is one

of attention and salience. Subset-knowers, like humans of all ages and non-human animals,

surely have an ANS and can perceive differences in numerosity. How can experimenters

get subset-knowers to focus on numerosity for theANS task?Howcanwecommunicate to

very young children that number is what they should be looking for in this task?

Experiment 2 attempts to do this by modifying the ANS task in several ways. First and

most important, we introduced a set of training trials using the ratio of 1:3. The purpose of

these trials was to ensure that children based their responses on numerosity, rather than
area or some other variable. Because the ratio of 1:3 is very easy to discriminate, we

reasoned that children who answered incorrectly on the training trials simply were not

attending to numerosity. Children were not allowed to begin the test trials until they had

demonstrated (on the training trials) that they interpreted ‘more dots’ to mean themore

numerous dot cloud.

Subset-knowers might also perform at chance in the standard task if they felt

bewildered or discouraged by the more difficult trials, and/or if the lack of feedback (i.e.,

the fact that the experimenter seemed happy with whatever answer they gave) left them
with the impression that there were no wrong answers and any response was fine. To
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Figure 3. Relation between performance on the standard approximate number system (ANS) task and

knower-level in Experiment 1. The solid line reflects chance performance.
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address this, wemade three more modifications to the task. First, all trials in a given block

tested the same ratio. Second, the blocks were presented in order of increasing difficulty.

Third, children received feedback after every trial.

The number of dots was increased to between 20 and 100 dots per side. We also

changed several features of the dot clouds to make the two clouds more distinct. These

changes included placing the dots randomly around a circle (equal to twice the area of all

the dots) rather than spreading them across the page, making all the dots in each cloud a

uniform size, and making all the dots black on a white background (see Figure 4).

Method2

Participants

Participants included 86 monolingual, English-speaking preschoolers (42 male) with a

mean age of 4 years, 4 months (range 2:5–6:1). Children were recruited the same way as
in Experiment 1.

Give-N task

This task was completed the same way as in Experiment 1.

Modified ANS task
Children were first given training trials with a ratio of 1:3 and detailed feedback. In

particular, if they picked the side with fewer dots but greater total area, they were told,

‘Well, those dots arebigger, but this side hasmore dots. They’re smaller, but there’smore

of them’. There were a total of 24 training trials, but children did not have to do them all.

Once a child got eight consecutive training trials correct, theymovedon to the test trials. If

a child completed all 24 training trials without getting eight consecutive trials correct, the

experimenter cycled through the 24 training trials again. This continued until the child

answered eight consecutive trials correctly, or the child gave a total of 10 incorrect
answers (not necessarily all in a row), or the child became uncooperative.

Figure 4. Example of a trial from the modified approximate number system (ANS) task in

Experiment 2.

2 Thanks to David Barner and Jessica Sullivan for sharing an earlier version of this task.
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After the training, blocks progressed from easy to difficult ratios in the following

sequence: 1:2, 7:12, 2:3, 17:24, 3:4, 4:5, 5:6, 7:8, and 9:10. (This includesmore trials at the

easier ratios where, based on the results of Experiment 1, more variation was expected.)

Each block had eight trials, counterbalanced for area-correlation (50% correlated; 50%
anticorrelated) and for the position of the correct answer (on the left in 50% of trials; on

the right in the other 50%).

Results and discussion

Fifteen children were excluded in total. Thirteen children failed to reach criterion on the
training trials and did not continue on to the test trials. A logistic regression analysis

suggests that the rate of failure to complete trainingwas not related to knower-level when

controlling for age, p = .1, but was related to age when controlling for knower-level,

p < .01, suggesting that the task was too difficult for some of the younger children.

Additionally, two participants were excluded for scoring extremely low on the numeric

comparison task (below 56%, which is the point where performance is significantly

different from 50% at the p = .10 level), suggesting that they stopped paying attention

after the training trials. After these exclusions, 25 of the 71 remaining children were
subset-knowers.

Partialling for age, the relationship between knower-level and ANS performance did

not reach significance, r(68) = .16, p = .17 (Figure 5). In contrast, there was a significant

effect of age on ANS performance, r(69) = .35, p < .01, even when partialling for

knower-level, r(68) = .23, p < .05. In otherwords, children performed better on the ANS

task as they got older, but that performance was not closely tied to their knower-level.

Two additional analyses were performed. First, we fit the psychophysics model from

Halberda and Feigenson (2008) to these data. Appendix describes themodel and how it is
fit. The model has a single variance parameter for each child. This parameter can be

interpreted as a measure of ANS acuity. There was no significant relation between this

parameter and knower-level when partialling for age, r(60) = �.15, p = .23. Second, we
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Figure 5. Performance on the modified approximate number system (ANS) task and knower-level in

Experiment 2 (n.s.).

10 James Negen and Barbara W. Sarnecka



checked for a ratio effect, which was strong and significant, F(8, 5,102) = 30.94,

p < .001. (The absence of a ratio effect would have been a strong sign that children were

not using the ANS in our task.)

GENERAL DISCUSSION

Taken together, the results from these two experiments suggest that measuring ANS

acuity in young children requires special care. Unlike older children and adults, young

children (specifically, subset-knowers) may be unlikely to interpret the word ‘more’ as

meaning more numerous when asked, ‘Which side has more dots?’ or ‘Are there more

blue dots or more yellow dots?’ Consequently, subset-knowers may perform at chance

when other variables (such as area) are controlled.
On the other hand, it is relatively easy to draw CP-knowers’ attention to numerosity,

and they seem to have no trouble interpreting ‘more’ in theway required for the task. This

pattern of chance performance by subset-knowers and above-chance performance by

CP-knowers on the ANS task can create the impression of a correlation between

exact-number knowledge andANS acuity,when in fact the data cannot be interpreted that

way.

In Experiment 1 of the present study, we measured children’s exact-number

knowledge using the Give-N task and also used a standard ANS task. The results
demonstrate how an illusory correlation between exact-number knowledge and ANS

acuity can arise. Although exact-number knowledge and ANS performance were indeed

highly correlated, children at the lower knower-levels performed at chance, indicating

that they may not have understood the task and that we probably did not succeed in

measuring their ANS acuity. Earlier papers reporting this correlation have not provided

analyses to counter this explanation (Mussolin et al., 2012; Shusterman et al., 2011;

Wagner & Johnson, 2011).

In Experiment 2, we modified the ANS task to ensure the children answered on the
basis of numerosity. We did this by including only those children who successfully

compared sets with a 1:3 ratio. Because a ratio of 1:3 is very easy to distinguish, any

normally developing child who is responding based on numerosity should succeed at

these trials.

When children were tested using the modified ANS task, no relation was found

between exact-number knowledge and ANS acuity. This finding converges with that of

Abreu-Mendoza et al. (2013), who also found no relation when they used an area-cor-

related and anticorrelated control. (Those authors did not necessarily interpret this result
in terms of ANS acuity, but they did report the same null result between exact-number

knowledge and number-comparison performance.)

Our reading of the literature, along with the findings from the two experiments

presented here, leads us to conclude that there is no compelling evidence for a relation

between exact-number knowledge and ANS acuity in normally developing preschoolers.

Of course, one cannot prove a negative. There may be a relation between these two

variables, but the existing literature does not show it, nor do the present findings.

Aswith any negative finding,wemust be sure that the lack of correlationwe foundwas
not simply due to insufficient statistical power.Weaddress this concern in twoways. First,

our Experiment 1 replicated the effect reported in the literature. Experiment 2 (where the

effect was not shown) had over 50% more children, including more subset-knowers.

Second, our data set was large enough to find the expected ratio effect and the expected

effect of age.

Exact-number knowledge and ANS 11



Of course, our results here are limited to normally developing young children. A child

with a profound deficit in ANS acuity, unable to differentiate a 1:3 ratio, would notmake it

through the training trials in our Experiment 2 andwould not be included in our data. This

is a possible explanation for why we found no relation in this age range despite other
studies finding a relation at later ages when all children are included (e.g., Halberda et al.,

2008). Newer results suggest that ANS acuity differentiates ninth-graders with mathe-

matical learning disabilities from other achievement groups, but not low- from

typical-achieving groups (Mazzocco, Feigenson, & Halberda, 2011).

In short, we have shown in Experiment 1 how an illusory relation between

exact-number knowledge and ANS performance may arise, if subset-knowers do not

understand the ANS task and thus perform at chance. Experiment 2 provided the most

rigorous test of this hypothesis to date, by analysing data only from those children who
demonstrably understood the task. Under these conditions, the reported correlation

between ANS acuity and exact-number knowledge disappears.

These results are convergent with a previous study (Abreu-Mendoza et al., 2013).

Thus, studies from two different labs have now independently tried and failed to find a

relation between exact-number knowledge andANS acuity.Of course, one cannot prove a

negative, and such a relation may yet be found. But for now, it seems that there is no

credible evidence of a relation between ANS acuity and exact-number knowledge in

normally developing preschoolers.
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Appendix : Model-based approach to ANS task analysis

In Experiment 2, we employ amodel-based approach to analysing data from the ANS task,

following Halberda and Feigenson (2008). Because the details of this model may be

unfamiliar to some readers, we describe it in detail below.

The model has three principle assumptions. First, the child approaches the

comparison task by making an estimate of the number of items in each of the two arrays
and then seeing which estimate is larger. Second, the child’s estimates are normally

distributed with a centre at the correct answer. Third, the standard deviation of these

estimates is the number of items times a variable w, which is constant within each child

but can vary between children.

The child’s estimate of N items is described by a normal distribution with a mean of N

and a standard deviation ofwN. The probability that a child will sayX items are more than

Y items is the probability that a draw from Normal (X, wX) is higher than a draw from

Normal (Y, wY). The formula for this probability is U
�ðX � Y Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwXÞ2 þ ðwY Þ2

q �
,

where is the normal cumulative distribution function.
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Thismodel has several appealing properties. First of all, it is very simple. It has only one

parameter with a very clear interpretation: Lower w means less noise in the child’s

numeric estimates. Second, it can be fit with a simple numeric search (described below).

Third, it reflects both scalar variability (e.g., Gallistel & Gelman, 1992), because the
standard deviation of estimates is proportional to the mean, and also Weber’s Law,

because the chance of getting a correct answer is dependent on the ratio of the number of

items being compared.

The single parameterwwas fit for each child by starting withw = .01 and calculating

the full log-likelihood of their data, then incrementing w by .01 until a maximum

log-likelihoodwas reached. Childrenwere excluded from themodel-based analysis if they

were best-fit by a value of w over 1, which seems psychologically implausible.
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