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ABSTRACT OF THE DISSERTATION

Geometry and Energy: Global and Local Perspectives
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Professor Richard Schoen, Chair

This thesis includes the analysis on initial data sets with singularities which helps identify

sufficient conditions on the singularity guaranteeing the positivity of mass, characterising

the dominant energy condition on polyhedra, and showing the relation between boundary

energy and interior energy.

The main contribution of this thesis is to provide both global and local perspectives of the

relation between geometry and physics. First, we show a spacetime positive mass theorem

with corners. Then, by putting Gromov’s dihedral rigidity conjecture and fill-in conjecture

into the context of general relativity, we can use the aforementioned theorem to provide

partial solutions to these conjectures by constructing suitable extensions for compact initial

data sets.
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Chapter 1

Introduction

Riemannian geometry is the study of manifolds in terms of their curvature. The Gauss-

Bonnet Theorem is an elegant theorem which connects the topology of a 2 dimensional

manifold Σ to the curvature of its interior and boundary. If ∂Σ consists of l piecewise

smooth components, we have,

ˆ
Σ

K +

ˆ
∂Σ

κ = 2πχ(Σ)−
l∑

i=1

(π − αi), (1.0.1)

where αi is the diherdral angle between 2 smooth components. On the other hand, if ∂Σ is

smooth, we have,

ˆ
Σ

K +

ˆ
∂Σ

κ = 2πχ(Σ). (1.0.2)

From this, we can see the relation among the manifold’s interior curvature, boundary’s mean

(exterior) curvature and dihedral angles. Gromov ([25, 26]) has proposed a lot of ideas and

questions around the interaction of the boundary geometry and the interior curvature, includ-

ing his dihedral rigidity conjecture and fill-in conjecture. With the Hamiltonian formulation
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of gravitation ([29]), we will see that Gromov’s questions arise naturally from the physical

perspective of energy.

1.1 General relativity, ADM mass and quasilocal mass

Now we shall discuss the deep connection between geometry and relativity. General relativity

is a theory described by the Einstein equation for a spacetime (M̄, ḡ),

R̄µν −
1

2
R̄ḡḡµν = Tµν . (1.1.1)

The Einstein tensor on the left (also denoted byGµν) and the stress-energy-momentum tensor

on the right respectively represent the geometry and the physical content of the spacetime.

Definition 1.1.1. The constraint equations are defined on M by the Gauss equations and

the Codazzi equations as if M sits in a spacetime satisfying (1.1.1). The mass density µ and

the current density J by

µ := T00 =
1

2
(Rg + (trgk)

2 − |k|2g), Ji := T0i = divg(k − (trgk)g)i = divgπi.

Consider a 3-tuple (M, g, k), where g is a Riemannian metric and k is a symmetric (0, 2)-

tensor. The Cauchy problem is to construct a Lorentzian manifold (M
n+1

, g) such that

1. ḡ satisfies the Einstein Equation

Gµν(:= Rµν −
1

2
Rggµν) = Tµν ,

where T00|M = µ and T0i|M = Ji.
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2. there exists an isometric embedding (M, g) ↪→ (M̄, ḡ),

3. k is the second fundamental form of M with respect to M̄ .

Hence, we call (M, g, k) an initial data set. On the other hand, solving the Cauchy problem

allows us to regard (M, g, k) as a spacelike slice in a spacetime.

Definition 1.1.2. (M, g, k) is said to satisfy the dominant energy condition (DEC) if

µ ≥ |J |g.

Define the conjugate momentum tensor by π = k − (trgk)g. (M, g, k) is said to satisfy the

boundary dominant energy condition (BDEC) if on ∂M

H ≥ |π(·, ν)|g,

where the mean curvature H is computed with respect to the unit outward normal ν.

Definition 1.1.3. We say (M, g, k) is asymptotically flat (AF) if there exists a compact set

C ⊂ M such that M \ C =
∐k

i=1Ni, where each end Ni = Rn \ Bri through a coordinate

diffeomorphism in which

gij = δij +O2(|x|−q),

and

kij = O1(|x|−q−1),

where q > n−2
2
, µ, J ∈ L1(M) and for a function f onM , f = Om(|x|−p) means

∑m
|l|=0 ||x|p+|l|∂lf |

is bounded near the infinity.

There have been proposals of geometric invariants which represent the total energy of an

isolated gravitational system ([3]). After those quantities were proposed, proving their mean-

ingfulness sparked a lot of interesting problems on both geometry and physics, for example,
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the positive mass theorem which was first proved by Schoen and Yau ([57]). If k ≡ 0, we

can see the two energy conditions are purely geometric: non negative scalar curvature and

non negative mean curvature. The positive mass theorem and its proof are thus useful in

tackling geometry problems.

Definition 1.1.4. For each end of an asymptotically flat initial data set, the ADM energy-

momentum vector (E,P ) and the ADM mass m [3] are given by

E =
1

2(n− 1)ωn−1

lim
r→∞

ˆ
|x|=r

(gij,i − gii,j)ν
j,

Pi :=
1

(n− 1)ωn−1

lim
r→∞

ˆ
|x|=r

πijν
j, i = 1, 2, ..., n

and

m =
√
E2 − |P |2,

where the outward unit normal ν and surface integral are with respect to the Euclidean metric.

Moreover, ωn−1 denotes the area of Sn−1 ⊂ (Rn, gEuc).

Theorem 1.1.1 (Spacetime positive mass theorem). For 3 ≤ n ≤ 7, let (Mn, g, k) be an

asymptotically flat initial data set that satisfies the dominant energy condition. Then

E ≥ |P |.

We refer readers to [57, 58, 20] and [70] ([53]) for its proof. This theorem shows that the

ADM mass is a reasonable measure of the total energy of an isolated gravitational system

since it is non-negative whenever the energy of the mater is pointwise non-negative.

If a physical system is not isolated or cannot be viewed from infinity where asymptotic sym-

metry exists, e.g. compact initial data sets with boundary, the ADM mass is not well defined.
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Different notions of quasilocal mass have been suggested ([12, 6, 34, 44, 69]). To show these

masses are positive, a general approach is to construct an asymptotically flat extension and

study the relation between the ADM mass of such extensions and the proposed mass. The

resulting initial data set would inevitably have singularities along the boundary (corners).

Hence, the positive mass theorem with corners is important and has been extensively studied

([35], [36], [40], [46], [47], [59], [60]). In this thesis, we will establish a spacetime positive mass

theorem with corners which leads to a new notion of quasilocal mass and certain relativistic

formulations of local geometric phenomena.

Theorem 1.1.2 ([68]). Let M3 be a complete non-compact smooth manifold and Σ̃ ⊂M be

a piecewise smooth surface. Assume the metric g and the symmetric (0,2)-tensor k on M

satisfy the following:

1. (g, k) is asymptotically flat,

2. g and k are smooth up to each component of Σ̃,

3. g is Lipschitz,

4. k need not be continuous across Σ̃.

Let E be an asymptotically flat end of M . Assume there exists S, a finite (possibly empty)

disjoint union of connected weakly trapped surfaces which do not intersect Σ̃, such that

H2(Mext,S,Z) = 0, where Mext is the exterior region of M containing E with ∂Mext = S.

Denote Σ̃∩Mext by Σ. Then for E, there exists a spacetime harmonic function u such that

16π(E − |P |) ≥
ˆ
Mext\Σ

(
|∇∇u|2

|∇u|
+ 2(µ|∇u|+ ⟨J,∇u⟩)

)
+ 2

ˆ
Σ

(H− −H+)|∇u| − 2

ˆ
Σ

(π− − π+)(∇u, ν),
(1.1.2)

where π± and H± respectively denote the conjugate momentum tensors of k± and the mean

curvatures of g± on Σ with respect to ν, the unit normal pointing into the infinity of E. In
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particular, if the dominant energy condition holds on Mext \ Σ and

(H− −H+)− |ω− − ω+| ≥ 0

on Σ, then we have

E ≥ |P |,

where ω± := π±(·, ν).

Corollary 1.1.1 ([68]). Assume the dominant energy condition holds on Mext \ Σ and

(H− −H+)− |ω− − ω+| ≥ 0

on Σ. If E = |P |, then M is diffeomorphic to R3. If E = |P | = 0, then (M, g, k) arises

from an isometric embedding into Minkowski space as the graph of a linear combination of

spacetime harmonic functions.

To suggest a meaningful quasilocal quantity, we adopt the following approach.

1.1.1 Hamiltonian formulation (Hamilton-Jacobi analysis)

([3],[55],[12],[29]) Let (Ωn, g, k) be a compact initial data set with boundary Σ. A spacetime

(Nn+1, ḡ) with boundary Σ̄ can be constructed by infinitesimally deforming the initial data

set (Ω, g, k,Σ) in a transversal, timelike direction ∂t = V n⃗ +W i∂i which satisfies ∇̄∂tt = 1,

where V is the lapse function, n⃗ is the timelike unit normal of Ω in N and W is the shift

vector. Further assume that Ω meets Σ̄ orthogonally. The purely gravitational contribution

Hgrav to the total Hamiltonian at the slice Ω is given by

c(n)Hgrav(V,W ) =

ˆ
Ω

(µV + ⟨J,W ⟩)−
ˆ
Σ

(HV − π(ν,W )), (1.1.3)
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where H is the mean curvature of Σ with respect to the outward normal of Ω and π is

the conjugate momentum tensor. From this, we can expect that the contribution to the

boundary geometry is from the mean curvature H and the 1-form π(ν, ·).

Corollary 1.1.2 ([68]). Let (Ω3, g, k) be a compact initial data set satisfying the dominant

energy condition. Assume there exists S, a finite (possibly empty) disjoint union of connected

weakly trapped surfaces, such that H2(Ωext,S,Z) = 0, where Ωext denotes the portion of Ω

outside S. Suppose Σ = ∂Ω is a smooth surface with finitely many components with Gaussian

curvature κ > 0 and mean curvature H with respect to the outward normal ν. Denote the

mean curvature of an isometric embedding of Σ into R3 with respect to the outward normal

by H0. If H > |ω|, where ω = π(·, ν), then

W(Σ) :=
1

8π

ˆ
Σ

H0 − (H − |ω|) ≥ 0.

If W(Σ) = 0, then Σ is connected, Ω is diffeomorphic to a domain in R3 and can be isomet-

rically embedded into Minkowski space.

1.2 Gromov’s conjectures

There are also several interesting implications in geometry by Theorem 1.1.2. Gromov ([25]

Section 2.2) proposed the following conjecture to study the geometry of scalar curvature

with a lower bound and to define non-negative scalar curvature for C0 metric.

Conjecture 1.2.1 (The dihedral rigidity conjecture). Suppose (M, g) is a Riemannian poly-

hedron with nonnegative scalar curvature and weakly mean convex faces. Suppose that the

dihedral angles of (M, g) are not larger than the (constant) dihedral angle between corre-

sponding faces of the model Euclidean polyhedron (M, gEuc). Then (M, g) is isometric to a

flat Euclidean polyhedron.
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Definition 1.2.1 (cf. [37] Definition 1.1, [38] Definition 1.4, 1.5 and [39] Definition 2.1,

2.2). Let P ⊂ Rn be a polyhedron. A compact manifold (Mn, g) with non-empty boundary is

said to be of type P if M admits a Lipschitz diffeomorphism Ψ : M → P such that Ψ−1 is

smooth when restricted to the interior, the faces and the edges of P .

Li has made major progress on this problem; in particular, the following results are obtained.

Theorem 1.2.1 ([37],[38]). Let 2 ≤ n ≤ 7, P n be a Euclidean prism with dihedral angles at

most π/2, and if n = 3, P 3 can be an arbitrary simplex in R3. Assume Mn is a Riemannian

polyhedron of type P . Then Conjecture 1.2.1 holds for M . Precisely, if g is a C2,α metric

on M such that

1. The scalar curvature of g is nonnegative;

2. Each face of M is weakly mean convex;

3. The dihedral angles between adjacent faces of (M, g) are everywhere less than or equal

to the corresponding (constant) dihedral angles of (P, gEuc).

Then (M, g) is isometric to a Euclidean polyhedron.

There is also a polyhedral comparison result for hyperbolic polyhedra ([39]). From the

perspective of relativity, the aforementioned results give a comparison of a given polyhedral

initial data set to standard ones (Rn, gEuc, 0) and (Hn, gH, gH) in Minkowski space.

Section 1.1.1 provides us a model to formulate Conjecture 1.2.1 in terms of initial data sets

and energy conditions. In particular, we have obtained the following generalisation.
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Theorem 1.2.2 ([67]). Let (M3, g, k) be an initial data set of cube type which simultaneously

satisfies:

1. the dominant energy condition,

2. the boundary dominant energy condition,

3. everywhere the dihedral angle between two faces of M is less than or equal to π/2.

Then, (M, g, k) can be isometrically embedded into Minkowski space with boundary isometric

to the boundary of a Euclidean rectangular prism.

As a corollary we obtain the following result.

Corollary 1.2.1 ([67], cf. [25]). Let (M3, g, k) be an initial data set of cube type. Then

(M, g, k) cannot simultaneously satisfy:

1. the dominant energy condition,

2. the boundary dominant energy condition,

3. all dihedral angles of M are acute.

It is shown in [25] Section 4.9 that there exists a mean convex cubical domain with negative

scalar curvature and strictly acute dihedral angles. Hence, Corollary 1.2.1 can be seen as

a precise local characterization of the dominant energy condition. Moreover, we will see its

connection with the spacetime positive mass theorem.

For geometry on compact manifolds with boundary, Gromov proposed the following conjec-

ture ([26] Sect 3.12.2 III., IV.).

9



Conjecture 1.2.2 (The fill-in conjecture). Let (M, g) be a compact Riemannian manifold

with scalar curvature R ≥ σ. Then there exists Λ depending only on σ and the intrinsic

geometry of (∂M, g|T (∂M)) such that

ˆ
∂M

H ≤ Λ, (1.2.1)

where H is the mean curvature of the boundary ∂M in (M, g) with respect to the outward

unit normal vector.

Definition 1.2.2 ([7] Definition 2, [62]). For n ≥ 3, a tuple (Σn−1, γ,H) is called a Bartnik

data set DB, where (Σ, γ) is an oriented closed null-cobordant manifold with H being a

smooth function. A compact manifold (Ωn, g, k) is called a fill-in of DB if there is an isometry

ϕ : (Σn−1, γ) → (∂Ω, g|∂Ω) such that ϕ∗Hg = H, where Hg is the mean curvature of ∂Ω to g

with respect to the outward unit normal ν.

In [62] and [61], there was a partial affirmative answer given by the parabolic method to

construct an asymptotically flat extension done in [59]. It is shown that if the mean curvature

is too large and an NNSC (non-negative scalar curvature) fill-in to a Bartnik data set exists,

then there is a contradiction to the positive mass theorem with corners. Heuristically from

the perspective of energy (1.1.3), we can see that if the boundary energy is too large, then

the gravitational contribution must be negative. Therefore, it again provides us a direction

in which Conjecture 1.2.2 can be formulated in terms of relativity. In this thesis, a physical

formulation of Conjectures 1.2.1 and 1.2.2 will be given along with partial solutions.

Theorem 1.2.3. Let DSB := (Σ2, γ, α,H, β) be a spacetime Bartnik data set where Σ2 can

be embedded into R3 and γ is smooth. There exists a constant C0 = C0(Σ, γ) > 0 such that

if

H − f ≥ C0,

where f :=
√

(trΣ α)2 + |β|2γ, then DSB cannot admit a fill-in satisfying both of the following:
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1. there exists S, a finite (possibly empty) disjoint union of connected weakly trapped

surfaces, such that H2(Ωext,S,Z) = 0, where Ωext denotes the portion of Ω outside S,

2. the dominant energy condition.

This thesis is structured as follows. In Chapter 2, a review of curvatures and an introduction

of different techniques for scalar curvature geometry are given. In Chapter 3, we will prove

Theorem 1.1.2 and Corollary 1.1.1. Then, a new notion of quasilocal mass is discussed in

Chapter 4. In Chapter 5 and 6, we will give a physical perspective on Gromov’s conjectures

and provide partial solutions. Finally, in Chapter 7, the existence and regularity of spacetime

harmonic functions will be discussed in detail.
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Chapter 2

Preliminaries

2.1 Review of curvatures

Let (Mn, g) be a Riemannian manifold. We define the Riemann curvature tensor and the

Ricci curvature tensor as follows,

R(X, Y, Z,W ) =⟨∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,W ⟩,

Ric(X,W ) =
n∑

i=1

R(X, ei, ei,W ),
(2.1.1)

where {ei} is an orthonormal basis of TM .

Moreover, the scalar curvature is defined as

R = trgRic. (2.1.2)
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Geometrically, the scalar curvature R reflects volume. Let p ∈ (M, g), for small ε > 0,

V olg(Bε(p))

V olgEuc
(Bε(0))

= 1− R(p)

6(n+ 2)
ε2 +O(ε4).

Let Σn−1 be a 2-sided closed hypersurface in (Mn, g). We can then define the second funda-

mental form and the mean curvature as follows. Let X, Y ∈ TΣ,

h(X, Y ) =⟨∇Xν, Y ⟩,

H =trΣh,

(2.1.3)

where ν is a unit normal of Σ with respect to g. Under this convention, the mean curvature

of Sn−1 ⊂ Rn is n− 1 with respect to the outward normal.

Geometrically, the mean curvature H reflects the change of area. Let {Σt} be a smooth

family of surfaces such that it is a variation along the vector field ϕν and Σ0 = Σ, then

d

dt
|t=0Area(Σt) =

ˆ
Σ

ϕH. (2.1.4)

These geometric interpretations together with the Gauss-Bonnet theorem and the Hamilto-

nian formulation (1.1.3) give us insight to formulate and prove various phenomena in physics

and geometry.

2.2 Approaches on scalar curvature geometry

For scalar curvature geometry, there have been 2 fundamental approaches. The first one is

stable minimal surfaces ([56]) (stable prescribed mean curvature surfaces [24]). By Schoen-
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Yau rearrangement of the Gauss equation on the stability operator, an area-minimising

hypersurface Σ reveals the relation between its own scalar curvatures and that of the ambient

manifold (M, g). For all ϕ in some suitable (weighted) spaces, one has

ˆ
Σ

|∇ϕ|2 + 1

2
RΣϕ2 ≥ 1

2

ˆ
Σ

(
RM + |A|2

)
ϕ2. (2.2.1)

By the conformal Laplacian and an induction on dimension, one ultimately concerns the

Gauss curvature of a 2 dimensional surface and hence the Gauss-Bonnet theorem can be

applied.

The second important technique is spinors ([42], [28, 27]). By Lichnerowicz formula, one get

the following integral identity. Let ψ ∈ S(M), the space of spinors of M , we have

ˆ
M

−|Dψ|2 + |∇ψ|2 + 1

4
RM |ψ|2 =

ˆ
∂M

⟨ν · DΣψ, ψ⟩+ 1

2
H|ψ|2, (2.2.2)

where D and DΣ is the Dirac operator and the induced boundary Dirac operator respectively.

Both of these techniques have a corresponding version for initial data sets, which are stable

marginally trapped surfaces [17, 18, 19, 20] and the Dirac-Witten operator [70, 53] for spinors.

Stern ([65]) recently suggested a level set method which is based on harmonic 1-form, and

later in some subsequent works on harmonic functions (e.g. [9]).

Unlike the minimal surface technique, its application is only on 3 manifolds with some

topological restrictions H2(M,Z) = 0 or H2(M,∂M,Z) = 0. It gives an integral which

reveals information from the scalar curvature like spinors, giving an alternative proof of

the Riemannian positive mass theorem ([9]), which is reminiscent to the harmonic function

approach by Bartnik [5] and Jezierski-Kijowski [33]. Yet, since this integral arises from a
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solution to PDE instead of a section of spinors, by well established existence theories of PDE

solutions with various boundary conditions, one can get some results not yet discovered by

the spinorial approach which are the main contributions of this thesis. Correspondingly,

Hirsch, Kazaras and Khuri [30] formulated spacetime harmonic functions as inspired by the

Dirac-Witten operator which treats an initial data set as if it already sits in a spacetime.

If we consider (M, g, k) as a spacelike slice of a spacetime (M, g), then for a smooth function

ũ on M , for X, Y ∈ TM , the spacetime Hessian ∇∇ũ(X, Y ) = ∇∇ũ(X, Y ) + k(X, Y )n⃗(ũ),

where n⃗ is the timelike unit normal of M in M . And if ∇ũ is null, we have ∇∇ũ(X, Y ) =

∇∇ũ(X, Y ) + |∇ũ|k(X, Y ).

Definition 2.2.1. A function u on M is called spacetime harmonic if

∆u := trg∇∇u = ∆u+ (trgk)|∇u| = 0.

On an initial data set with boundary, to apply the spacetime harmonic function u, one first

establishes the following integral formula.

ˆ
Ω

1

2

|∇∇u|2

|∇u|
+ µ|∇u|+ ⟨J,∇u⟩ dV

≤
ˆ
∂ ̸=0Ω

∂ν |∇u| dσ +

ˆ
∂Ω

k(∇u, ν)dσ +
1

2

ˆ u

u

ˆ
Σt

RΣtdAdt,

(2.2.3)

where ∂̸=0Ω = {x ∈ ∂Ω | |∇u| ≠ 0}, Σt = {u = t}, ν is the outward unit normal, u and u

denote the maximum and the minimum of u respectively.

By interpreting spacetime harmonic functions as solution to a prescribed mean curvature sur-

face (or, second fundamental form) equation, it echos with the stable minimal hypersurface
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approach. Assigning the boundary conditions or the asymptotics of a spacetime harmonic

function, one can reveal not only the interaction of interior energy and boundary energy, but

also various interesting geometry phenomena.
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Chapter 3

Spacetime Positive Mass Theorem

with Corners

3.1 The set up of Theorem 1.1.2

Σ̃ ⊂ M we consider is a piecewise smooth surface with (possibly empty) piecewise smooth

boundary. Since we can fill in ∂Σ̃ by a surface in M , hereafter, it is assumed that Σ̃ is some

open sets’ boundary consisting of piecewise smooth surfaces whose boundaries are piecewise

smooth curves and vertices, where the dihedral angles between faces are bounded from below

by a positive constant. For example, Σ̃ can be the boundary of balls, cylinders, polyhedra

and cones in R3. In this setting, motivated by Hamiltonian formulation (see Section 1.1.1),

Theorem 1.1.2 provides partial results on dihedral rigidity for initial data sets in [68].

Denote the designated end by E . Let Σi be a connected component of Σ. Let ν denote the

normal on faces of Σi pointing toward E . A neigbourhood of Σi in M on the same side to

17



which ν is pointing is denoted by U+ while the one on the opposite by U−. The metrics on

U± induced by g are denoted by g± and their mean curvatures on Σi with respect to ν are

denoted by H±. Similarly, we can define k± and π± on Σ.

The regularity assumptions of (g, k) in Theorem 1.1.2 naturally arise from the fill-in and

extension problems (e.g. [6], [47], [59], [62], [61]). For example, let (M1, g1), (M2, g2) be two

Riemannian manifolds with smooth boundary, where ∂M1 is isometric to ∂M2. As mentioned

in Section 3 of [47], one can respectively identify the Gauss tubular neighbourhoods of ∂M1

in M1 and ∂M2 in M2 with U1 = ∂M1 × (−2ε, 0] and U2 = ∂M2 × [0, 2ε) for some ε > 0 by

Fermi coordinates (x, t). Then, g1 ∪ g2 would be a continuous metric on the glued manifold

M1 ∪M2 under this chart. The smooth structure might be altered but the topology remains

the same.

For a smooth closed hypersurface S ⊂ M , we say S is a weakly outer trapped surface if on

S, the outer null expansion

θ+ = H + trSk ≤ 0,

and a marginally outer trapped surface (MOTS) if

θ+ = 0;

correspondingly, a weakly inner trapped surface if the inner null expansion

θ− = H − trSk ≤ 0,
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and a marginally inner trapped surface (MITS) if

θ− = 0,

where H is computed with respect to the normal pointing to the infinity of the designated

end E . A surface is weakly trapped if it is either weakly outer trapped or weakly inner

trapped.

If M contains more than one ends, by the decay rate of g and k, we know large coordinate

spheres in all the ends other than E satisfy θ+ < 0. Therefore, we can assume that Mext has

one end E only.

Since H2(Mext,S,Z) = 0, we can compartment Mext into different components as follows,

Mext =M0 ∪l
i=1 Ki ∪m

j=1 Ωj,

for some l,m ≥ 0, where

1. M0 is the component containing E with the boundary composed of components of S

and components of Σ,

2. Ki is compact with the boundary composed only of components of Σ,

3. Ωj is compact with the boundary composed of components of S and a component of

Σ.

4. (g, k) is smooth on each of the components.
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We are going to construct an asymptotically flat initial data set to show the significance the

conditions on corners stated in Theorem 1.1.2.

3.1.1 Hyperbolic space patched with negative mass Schwarzschild

Let us consider a rotationally symmetric data set of the form g = u(r)dr2 + r2gS2 , where gS2

is the standard metric on S2. Let u = 1
1+r2

for 0 ≤ r ≤ 1 and u = 1
1− 2m

r

for r ≥ 1, take

m = −1
2
so that u is continuous at r = 1.

Note that the metric g− for r < 1 is the hyperbolic metric while g+ for r > 1 is the negative

mass Schwarzschild metric. This metric g = (g−, g+) is then Lipschitz across Σ = {r = 1}

with H− = H+ on Σ. If we take either k− = g− or −g− for r < 1 and k+ = 0 for r > 1,

then away from Σ we see that (g, k) satisfies the vacuum constraint equations, µ = |J | = 0.

Moreover, H− −H+ − |ω− − ω+| < 0 on Σ.

For this initial data set, E = m = −1
2

and |P | = 0. By the definition of ADM energy-

momentum vector, we can see that under different choices of k, E − |P | is still of the same

sign. This tells us the jump of expansions θ± = H± trΣk would not be a sufficient condition

for the spacetime positive mass theorem with corners in general. The example also shows

that the negativity of E − |P | can be expected from the conditions on the corner.
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3.2 Regular level set topology

The existence of regularity of a spacetime harmonic coordinate is stated as below and whose

proof will be postponed to Appendix 7.1.

Proposition 3.2.1. For the asymptotically flat coordinate x1, for any ϕ ∈ C∞(S), there

exists u ∈ W 2,p
loc (Mext) ∩W 3,p

loc (Mext \ Σ) such that

1. ∆u+K|∇u| = 0 on Mext,

2. u = ϕ on S,

3. u− x1 = O2(|x|1−q) as |x| → ∞,

4. u|Σ is C2 on faces of Σ.

In this section, we would first discuss the regular level set as a whole inMext. Then we would

further study the intersection of the regular level set with the corner Σ. This is essential for

analysis in Section 3.3 and 3.4 when we study the boundary terms of the integral formula

(Lemma 3.3.1). We would denote a level set {u = t} by Σt.

3.2.1 Structure of regular level sets in Mext

Denote each component of S by ∂iM , i = 1, 2, ...n. Let uc⃗, where c⃗ = (c1, c2, ..., cn) is a

constant vector, be a spacetime harmonic function such that

1. ∆uc⃗ +K|∇uc⃗| = 0 in Mext,

2. uc⃗ = ci on ∂iM ,

3. uc⃗ = v +O2(|x|1−2q) as x→ ∞.
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We are going to show the following 2 conclusions from [30] are still valid for the solution we

have obtained which is of slightly lower regularity.

Lemma 3.2.1. ([30] Lemma 5.1) Let ai ∈ {−1, 1} for i = 1, 2, ..., n. There exists a constant

c⃗ such that for each i, there exists yi ∈ ∂iM with |∇uc⃗(yi)| = 0, and (−1)ai(∂νuc⃗) ≥ 0 on

∂iM , where ν is the unit normal pointing out of Mext.

Theorem 3.2.1. ([30] Theorem 5.2) Let c⃗ be the constant obtained from Lemma 3.2.1,

then all regular level sets of uc⃗ are connected and non-compact with a single end modeled on

R2 \B1. Hence, a regular level set would have Euler characteristic ≤ 1.

It suffices to show that uc⃗ is continuously differentiable in c⃗, in the sense of Section 5 in [30],

which is as follows.

Lemma 3.2.2. Ψ : Rn → C1,α(Mext) is a C
1 map, where Ψ(c⃗) := uc⃗ − v and v is defined as

in Section 7.1.

Proof. For simplicity, say n = 1. Now, we have 2 spacetime harmonic functions ut and us,

define w := ut − us = Ψ(t)−Ψ(s), we can see w solve the following Dirichlet problem,

1. ∆w −K
(

∇ut+∇us

|∇ut|+|∇us|

)
· ∇w = 0 in Mext,

2. w = t− s on ∂M ,

3. w = O2(|x|1−2q) as |x| → ∞.

Let R >> 1, denote the part of Mext enclosed by coordinate sphere SR = {|x| = R} by

MR. Let ϕR be a function satisfying the boundary conditions ϕR = t− s on ∂M and ϕR =

w = O(R1−2q) at SR. We can extend ϕR into MR such that ||ϕR||C0 = |t − s|, |∂kϕR| ≤ C
Rk ,

k = 1, 2. Then by Theorem 8.33 in [23], we have

||w||C1,α(MR) ≤ C
(
||w||C0(MR) + ||ϕR||C1,α(MR)

)
.
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Note that the coefficient on the zeroth order term is zero and hence maximum principle ([23]

Theorem 9.1) can be applied. Then we know ||w||C0(MR) = ||w||C0(∂MR) = |t− s|. Therefore,

we have,

||w||C1,α(MR) ≤ C

(
|t− s|+ C

R

)
.

Take R → ∞, we have.

||w||C1,α(Mext) ≤ C(|t− s|).

Therefore,

Ψ(t)−Ψ(s)

t− s

converges subsequently as t→ s. Hence, Ψ is differentiable in c.

Further note that ∂cv = 0, define u
′
c = ∂cuc = ∂cΨ, then we have (equations (5.3) and (5.4)

in [30]),

1. ∆u
′
c +K ∇uc

|∇uc| · ∇u
′
c = 0 in Mext,

2. u
′
c = 1 on ∂M ,

3. u
′
c = O(|x|1−2q) as |x| → ∞.

Note that, for all c, u
′
c are bounded by 1 in L∞ by maximum principle and satisfy a PDE with

uniformly bounded coefficients. Therefore, they have uniform W 2,p
loc bound. In particular,

||∇u′
c||Lp

loc
are uniformly bounded.
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Fix t, for all s, define ws := u
′
t − u

′
s, we have

L(ws) :=∆(ws) +K
∇ut
|∇ut|

∇(ws)

=fs

:=K

(
∇us
|∇us|

− ∇ut
|∇ut|

)
∇u′

s.

(3.2.1)

For all s, ws = 0 on ∂M , ||ws||L∞(Mext) ≤ 2, while the equation above is with uniformly

bounded coefficients. Therefore, ||ws||W 2,p
loc

are uniformly bounded. Also note that, ws =

O(|x|1−2q) and fs → 0 in Lp
loc as s → t. Then as s → t, there is a diagonal subsequence

convergent to w satisfying

1. L(w) = 0 in Mext,

2. w = 0 on ∂M ,

3. w = O(|x|1−2q) as |x| → ∞.

By maximum principle, w ≡ 0. Therefore, c 7→ ∂cΨ is continuous. The same argument can

be extended to multiple boundary components correspondingly.

Note that |∇u| = ∇u
|∇u| · ∇u. Hence, the maximum principle still applies. Moreover, uc⃗ is C

2

around S, therefore Hopf lemma also applies on each ∂iM . Therefore, we can follow Section

5 in [30] to conclude Lemma 3.2.1 and Theorem 3.2.1.

3.2.2 Intersection of Σt and Σ

Recall from Section 3, we have Mext =M0 ∪l
i=1Ki ∪m

j=1Ωj. Notate ∪l
i=1Ki ∪m

j=1Ωj, faces and

edges of Σ respectively by Ω̃, F and γ. From Lemma 3.2.1, we know that u|Ω̃\Σ and u|M0\Σ

are W 3,p
loc , u|F is C2 and u|γ is C1. By [16] (cf. [21]), this is sufficient to conclude Sard’s
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Theorem on these 4 functions. Let a and b be the infimum and the supremum of u|Ω̃. In

particular for u|Σ, a.e. t ∈ [a, b], τt = {u|Σ = t} is a closed piecewise embedded curve and

since Σ is compact, we know τt is of finitely many components. Since u ∈ C1,α(Mext), we can

see that a.e. t ∈ [a, b], the level set Σt intersects Σ transversely along some closed piecewise

embedded curves.

3.3 Boundary formulae

With spacetime harmonic functions, we can study ADM energy and momentum by the

following integral formula.

Lemma 3.3.1. (cf. [68] Lemma 3.1, [30] Proposition 3.2) Let (Ω, g, k) be a compact initial

data set with Σ := ∂Ω. Then, for any spacetime harmonic function u which is C1,α(Ω̄) ∩

C2,α
loc (Ω̄ \ Ē) , where E denotes the edge components of Σ,

ˆ
Ω

1

2

|∇∇u|2

|∇u|
+ µ|∇u|+ ⟨J,∇u⟩ dV

≤
ˆ
∂ ̸=0Ω

∂ν |∇u| dσ +

ˆ
∂Ω

k(∇u, ν)dσ +
1

2

ˆ u

u

ˆ
Σt

RΣtdAdt,

(3.3.1)

where ∂ ̸=0Ω = {x ∈ ∂Ω | |∇u| ̸= 0}, Σt = {u = t}, ν is the outward unit normal, u and u

denote the maximum and the minimum of u respectively.

Proof. We here assume that |∇u| ≠ 0 for the simplicity of presentation. For the full gen-

erality, one should first consider
√

|∇u|2 + δ2 for δ > 0 and then take limit as δ → 0 (see

[65],[10],[30],[31] Remark 3.3).

It suffices to verify the divergence theorem such that the following holds.

ˆ
∂Ω

∂ν |∇u| =
ˆ
Ω

∆|∇u|. (3.3.2)
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Let {Ωr}r>0 be an exhaustion of Ω with vertices and edges of Ω being smoothed out, where

r is the parameter of radius of spherical cap around the vertices and rounded-off cylinders

along the edges. The functions are regular enough on Ωr so that the divergence theorem can

be applied.

ˆ
∂Ωr

∂νr |∇u| =
ˆ
Ωr

∆|∇u|. (3.3.3)

From a remark in the proof of Theorem 1.4 in [37], elliptic estimates with scaling are im-

portant in showing integrability. Let p ∈ Ē , w.l.o.g., identified as 0 in a local coordinate

chart. From the fact that u ∈ C1,α(Ω̄) and Schauder estimates with scaling (e.g. [64], [23]

Corollary 6.3) applied on u in a (conic) annulus A(r) around p, where r > 0 is small, we have

|∇∇u|C0(A(r)) ≤ Crα−1. Thus, |∇∇u| is integrable on ∂Ω and Ω. Moreover, r|∇∇u| → 0 as

r → 0. Therefore,

ˆ
∂Ωr

∂νr |∇u| →
ˆ
∂Ω

∂ν |∇u|. (3.3.4)

On the other hand, ∆u = −K|∇u|, first note that by Lemma 3.1 in [30], we have

∆|∇u| ≥ − C(||g||C2 + ||k||C1)|∇u|. (3.3.5)

In particular,

(∆|∇u|)− ≤ C(||g||C2 + ||k||C1)|∇u|, (3.3.6)

i.e. (∆|∇u|)− is integrable on Ω.
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By (3.3.3) and integrability of (∆|∇u|)−, we have on Ωr,

ˆ
Ωr

(∆|∇u|)+ =

ˆ
∂Ωr

∂νr |∇u|+
ˆ
Ωr

(∆|∇u|)−. (3.3.7)

Hence, although u is not necessarily C2 on Ē , we can conclude that (3.3.2) holds by (3.3.4)

and monotone convergence theorem as r → 0. Moreover, integrability of the integrands in

(3.3.1) follows from the elliptic estimates aforementioned.

We will express the boundary terms of Lemma 3.3.1 explicitly for spacetime harmonic

functions on manifolds with boundary. Note that we have to make use of the fact that

∆u = −K|∇u| instead of 0 in [31].

Lemma 3.3.2. (cf. [31] Proposition 2.2) Let (Ω, g, k) be a compact initial data set with

Σ := ∂Ω. Then, for any spacetime harmonic function u which is C1,α(Ω̄) ∩ C2,α
loc (Ω̄ \ Ē) ,

where E denotes the edge components of Σ,

ˆ
Σ̸=0

∂ν |∇u| dσ +

ˆ
Σ

k(∇u, ν) dσ

=

ˆ
Σ

π(∇u, ν)−H|∇u| dσ +

ˆ u

u

ˆ
τt

κ ds dt

+

ˆ
Σ̸=0

−ν(u)
|∇u|

∆
Σ
η +

(∇Ση)(ν(u))

|∇u|
dσ

+

ˆ
Σ̸=0∩{∇Ση ̸=0}

−ν(u)
|∇u|

⟨∇τ ′t
τ ′t ,∇Ση⟩ dσ,

(3.3.8)

where η = u|Σ, Σ̸=0 = {x ∈ Σ | |∇u| ≠ 0}, Σt = {u = t}, τt = Σ̸=0 ∩ Σt ∩ {∇Ση ̸= 0}, H

is computed with respect to the outward unit normal ν, u and u are the maximum and the

minimum of u respectively.

Proof. As discussed in Section 3.2.2, a.e. t ∈ [u, u], t is regular value of u and Σt inter-

sects transversely with Σ on τt which is a closed piecewise embedded curve of finitely many
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components. Then, we can consider

ˆ
Σ̸=0

∂ν |∇u| dσ

=

ˆ
Σ̸=0

∂ν |∇u| dσ −
ˆ u

u

(ˆ
τt

κ ds

)
dt+

ˆ u

u

(ˆ
τt

κ ds

)
dt.

(3.3.9)

We are going to to express ∂ν |∇u| and κ explicitly. First, for ∂ν |∇u|, we have

∂ν |∇u| =
∇∇u(∇u, ν)

|∇u|

=
ν(u)

|∇u|
∇∇u(ν, ν) + 1

|∇u|
∇∇u(∇Ση, ν)

(3.3.10)

Using ∆Ωu = −K|∇u|, we have

∇∇u(ν, ν) = ∆Ωu−Hν(u)−∆Ση = −K|∇u| −Hν(u)−∆Ση. (3.3.11)

We also have,

∇∇u(∇Ση, ν) =(∇Ση)(ν(u))− (∇∇Σην)(u)

=(∇Ση)(ν(u))− ⟨∇∇Σην,∇Ση⟩+ ν(u)⟨∇∇Σην, ν⟩

=(∇Ση)(ν(u))− Π(∇Ση,∇Ση),

(3.3.12)

where Π denotes the second fundamental form on Σ with respect to ν.

Thus, we have,

∂ν |∇u| = − Π(∇Ση,∇Ση)

|∇u|
+

(∇Ση)(ν(u))

|∇u|

−Kν(u)−H
|ν(u)|2

|∇u|
− ν(u)

|∇u|
∆

Σ
η.

(3.3.13)
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And in particular, if ∇Ση = 0,

∂ν |∇u| = −Kν(u)−H|∇u| − ν(u)

|∇u|
∆

Σ
η. (3.3.14)

Then, we have to study the geodesic curvature κ. At a point x ∈ τt, in particular, we know

∇Ση ̸= 0, we have the following geometric vectors:

• ν, the outward unit normal to ∂Ω;

• ∇
Σ
η, the gradient of u = η on ∂Ω, which is perpendicular to τt in Σ. We let nt =

1
|∇

Σ
η|∇Σ

η;

• τ ′t , the unit tangent vector to the curve τt;

• νt, the outward unit normal to τt with respect to Σt; and

• n = 1
|∇u|∇u, the normal direction to Σt along which u increases.

Both

{ν, nt} and {νt, n}

are orthonormal basis for the normal bundle τ ′t
⊥. We can express n in the basis of ν and nt,

n =⟨n, ν⟩ν + ⟨n, nt⟩nt

=
ν(u)

|∇u|
ν +

|∇Ση|
|∇u|

nt

(3.3.15)

Let θ ∈ [0, π] be the angle between ν and n, then we have

cos θ =
ν(u)

|∇u|
, (3.3.16)
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and

sin θ =
|∇Ση|
|∇u|

. (3.3.17)

On the other hand, consider the geodesic curvature κ, by definition,

κ = ⟨∇τ ′t
νt, τ

′
t⟩, (3.3.18)

and

νt = sin θ ν − cos θ nt. (3.3.19)

Thus,

−κ =⟨∇τ ′t
τ ′t , νt⟩

= ⟨∇τ ′t
τ ′t , sin θ ν − cos θ nt⟩

= − sin θΠ(τ ′t , τ
′
t)− cos θ ⟨∇τ ′t

τ ′t , nt⟩

(3.3.20)

Therefore, on Σ, by co-area formula, (3.3.16) and (3.3.17), we have,

ˆ u

u

(
−
ˆ
τt

κ ds

)
dt

=

ˆ
Σ̸=0∩{∇Ση ̸=0}

−|∇Ση| sin θΠ(τ ′t , τ ′t) dσ

−
ˆ
Σ̸=0∩{∇Ση ̸=0}

|∇Ση| cos θ ⟨∇τ ′t
τ ′t , nt⟩ dσ

=

ˆ
Σ̸=0∩{∇Ση ̸=0}

−|∇Ση|2

|∇u|
Π(τ ′t , τ

′
t) dσ −

ˆ
Σ̸=0∩{∇Ση ̸=0}

ν(u)

|∇u|
⟨∇τ ′t

τ ′t ,∇Ση⟩ dσ.

(3.3.21)
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Together with (3.3.13), (3.3.14), we have

ˆ
Σ̸=0

∂ν |∇u| dσ +

ˆ u

u

(
−
ˆ
τt

κ ds

)
dt

=

ˆ
Σ̸=0∩{∇Ση=0}

−Kν(u)−H|∇u| − ν(u)

|∇u|
∆

Σ
η dσ

+

ˆ
Σ̸=0∩{∇Ση ̸=0}

−Kν(u)−H
|ν(u)|2

|∇u|

+

ˆ
Σ̸=0∩{∇Ση ̸=0}

−|∇
Σ
η|2

|∇u|
Π(nt, nt)−

|∇Ση|2

|∇u|
Π(τ ′t , τ

′
t) dσ

+

ˆ
Σ̸=0∩{∇Ση ̸=0}

−ν(u)
|∇u|

⟨∇τ ′t
τ ′t ,∇Ση⟩ −

ν(u)

|∇u|
∆

Σ
η +

(∇Ση)(ν(u))

|∇u|
dσ

=

ˆ
Σ

−Kg(∇u, ν)−H|∇u| dσ

+

ˆ
Σ̸=0

−ν(u)
|∇u|

∆
Σ
η +

(∇Ση)(ν(u))

|∇u|
dσ

+

ˆ
Σ̸=0∩{∇Ση ̸=0}

−ν(u)
|∇u|

⟨∇τ ′t
τ ′t ,∇Ση⟩ dσ.

(3.3.22)

By the definition of the conjugate momentum tensor π, we can conclude the lemma.

3.4 Proof of Theorem 1.1.2

Recall the decomposition Mext =M0 ∪l
i=1Ki ∪m

j=1Ωj in Section 3. We may first assume that

Mext = M0 ∪ Ω. Without loss of generality, we can rotate the coordinates prior to solving

for the spacetime harmonic coordinate so that P = (−|P |, 0, 0). Under the new coordinate

system x = (u, x2, x3), where u is the spacetime harmonic coordinate obtained in Lemma

3.2.1. Let L >> 1, define the following,

1. TL = {x ∈M0 | |u| ≤ L, (x2)2 + (x3)2 = L2},

2. D±
L = {x ∈M0 | u = ±L, (x2)2 + (x3)2 ≤ L2},
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3. CL = TL ∪D+
L ∪D−

L .

We would then label u by x1. Let ML be the portion of M0 bounded by CL and the corner

Σ. Since L >> 1, we can assume S ⊂ML ∪ Ω. We would use the following notations.

• ΣL
t = Σt ∩ML,

• Σ′
t = Σt ∩ Ω,

• τLt = Σt ∩ CL,

• τt = Σt ∩ Σ,

• N , the outward unit normal on ∂ML,

• νL, the unit normal vector on CL pointing to the infinity of E ,

• ν, the unit normal vector on Σ pointing to the infinity of E ,

• νS , the unit normal vector on S pointing out of Mext,

• SL, the subcollection of S which are in M0,

• S ′, the subcollection of S which are in Ω,

• η = u|Σ,

• ∇± and | · |±, the connections and norms with respect to g±,

• A̸=0 = {x ∈ A | |∇u| ≠ 0} for any A ⊂M .

From Lemma 3.2.1, we can choose c⃗ such that u on weakly outer trapped and weakly inner

trapped components of S, we would have ∂νSu ≤ 0 and ∂νSu ≥ 0 respectively. Furthermore,

S has empty intersection with regular level sets. From Section 3.2.2, we know τt are closed
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piecewise embedded curves for a.e. t. Apply Lemma 3.3.1 on ML and Lemma 3.3.2 on Σ,

we have,

ˆ
ML

1

2

(
|∇∇u|2

|∇u|
+ 2 (µ|∇u|+ ⟨J,∇u⟩)

)
dV

≤
ˆ
∂ ̸=0ML

∂N |∇u| dσ +

ˆ
∂ML

k(∇u,N) dσ +
1

2

ˆ L

−L

ˆ
ΣL

t

RΣL
t
dAdt

=

ˆ
SL
̸=0

∂νS |∇u| dσ +

ˆ
SL

k(∇u, νS) dσ

+

ˆ
∂CL

∂νL|∇u| dσ +

ˆ L

−L

(
−
ˆ
τLt

κ ds

)
dt+

ˆ
∂CL

k(∇u, νL) dσ

−
ˆ
Σ

π+(∇u, ν)−H+|∇u| dσ

+

ˆ
Σ̸=0

ν(u)

|∇u|
∆

Σ
η − (∇Ση)(ν(u))

|∇u|
dσ +

ˆ
Σ̸=0∩{∇Ση ̸=0}

ν(u)

|∇u|
⟨∇τ ′t

τ ′t ,∇Ση⟩ dσ

+
1

2

ˆ L

−L

ˆ
Σt

RΣtdAdt+

ˆ L

−L

ˆ
−τt

κ ds dt+

ˆ L

−L

ˆ
τLt

κ ds dt.

(3.4.1)

On the other hand, by the asymptotics of u and maximum principle, τLt is a circle. By

computations in Section 6 of [9] and Section 6 of [30], we get,

ˆ
∂CL

∂νL|∇u| dσ +

ˆ L

−L

(
−
ˆ
τLt

κ ds

)
dt+

ˆ
∂CL

k(∇u, νL) dσ

=− 4πL+
1

2

ˆ
CL

(gij,i − gii,j) ν
j
L dA+

ˆ
CL

π1jν
j
L dA+O(L1−2q) +O(L−q).

(3.4.2)
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Similarly, apply Lemma 3.3.1 on Ω and Lemma 3.3.2 on Σ, we have,

ˆ
Ω

1

2

(
|∇∇u|2

|∇u|
+ 2 (µ|∇u|+ ⟨J,∇u⟩)

)
dV

≤
ˆ
S′
̸=0

∂νS |∇u| dσ +

ˆ
S′
k(∇u, νS) dσ + 2π

ˆ L

−L

χ(Σ′
t) dt

+

ˆ
Σ

π−(∇u, ν)−H−|∇u| dσ

+

ˆ
Σ̸=0

−ν(u)
|∇u|

∆
Σ
η +

(∇Ση)(ν(u))

|∇u|
dσ

+

ˆ
Σ̸=0∩{∇Ση ̸=0}

−ν(u)
|∇u|

⟨∇τ ′t
τ ′t ,∇Ση⟩ dσ

+
1

2

ˆ L

−L

ˆ
Σt

RΣtdAdt+

ˆ L

−L

ˆ
τt

κ ds dt..

(3.4.3)

By (3.3.14), on S, with the corresponding choice of sign of normal derivatives as aforemen-

tioned,

ˆ
S ̸=0

∂νS |∇u|+ k(∇u, νS) dσ

=
n∑

i=1

ˆ
∂iM ̸=0

H|∂νSu| − tr∂iMk(∂νSu) dσ

≤ 0,

(3.4.4)

where ∂iM are the components of S and H is computed with respect to −νS .

Note that u is C1 across Σ, ν(u) + (−ν)(u) is constantly zero on Σ. Furthermore, g is

continuous, in case ±τt have some turning angles, they are of the opposite signs. Moreover,

by Theorem 3.2.1, we know that Σt has a single end modeled on R2 \ B1. Therefore, for

L >> 1, a.e. t ∈ [a, b], 1 ≥ χ(Σt) = χ(ΣL
t ) + χ(Σ′

t). Summing equations (3.4.1) and (3.4.3),
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and applying Gauss-Bonnet Theorem, we have,

ˆ
ML∪Ω

1

2

(
|∇∇u|2

|∇u|
+ 2 (µ|∇u|+ ⟨J,∇u⟩)

)
dV

≤ 2π

ˆ L

−L

χ(Σt) dt− 4πL+
1

2

ˆ
CL

(gij,i − gii,j) ν
j
L dA+

ˆ
CL

π1jν
j
L dA

−
ˆ
Σ

π+(∇u, ν)−H+|∇u| dσ +

ˆ
Σ

π−(∇u, ν)−H−|∇u| dσ

+O(L1−2q) +O(L−q)

≤ 1

2

ˆ
CL

(gij,i − gii,j) ν
j
L dA+

ˆ
CL

π1jν
j
L dA

+

ˆ
Σ

(H+ −H−) |∇u| dσ +

ˆ
Σ

(π− − π+)(∇u, ν) dσ

+O(L1−2q) +O(L−q).

(3.4.5)

By Proposition 4.1 in [5], as L→ ∞, we have

1

2

ˆ
CL

(gij,i − gii,j) ν
j
L dA+

ˆ
CL

π1jν
j
L dA→ 8π (E + P1) = 8π (E − |P |) .

For the general case, we can apply the same idea onto each component M0, Ki and Ωj and

sum up the integrals. Theorem 1.1.2 is therefore proved.

As we can see from the proof above, particularly the term π+(∇u, ν), in general we get

Corollary 3.4.1. For a ∈ S2 ⊂ R3, if a spacetime harmonic function ua is asymptotic to

aixi, then

16π(E + ⟨a, P ⟩) ≥
ˆ
Mext\Σ

(
|∇∇ua|2

|∇ua|
+ 2(µ|∇ua|+ ⟨J,∇ua⟩)

)
+ 2

ˆ
Σ

(H− −H+)|∇ua| − 2

ˆ
Σ

(π− − π+)(∇ua, ν).
(3.4.6)
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3.5 Proof of Corollary 1.1.1

We can follow Section 7 in [30] with slight modifications to conclude the equality case. Some

details are provided to explain how to deal with discontinuity of k and u being only C1,α

across Σ.

3.5.1 E = |P | case

Under the assumptions of Corollary 1.1.1, from the inequality of Theorem 1.1.2, if E = |P |,

we have ∇∇u = ∇∇u+ |∇u|k = 0. Then, by Kato’s inequality, we get

|∇|∇u|| ≤ |∇∇u| ≤ |k||∇u|.

Therefore, by standard ODE technique, there exists a constant C > 0 such that |∇u| ≥ C

on M0. Since u ∈ C1,α
loc , |∇u| ≥ C on Σ. Hence, use the same technique again within the

remaining compact portions of Mext, we can conclude that |∇u| ≥ C̃ > 0 for some C̃ on

Mext. This is inconsistent with the choice of normal derivatives of uc⃗ on S by Lemma 3.2.1.

Hence, S is empty.

Let τ >> 1, Στ = {u = τ} is an asymptotically flat complete plane and since |∇u| does

not vanish, we can see along the level set flow, the topology does not change. Therefore,

M is diffeomorphic to R2 × R = R3. Moreover, we can see that on each level set Σt,

∇∇u
|∇u| |TΣt + k|TΣt = ht + k|TΣt = 0 (spacetime totally geodesic), where ht is the second

fundamental form of Σt with respect to ∇u
|∇u| . M is thus foliated by stable MOTS. Then, by

Theorem 1 (2) of [13], we know that each Σt has vanishing Gauss curvature and hence is

isometric to R2. Thus, together with asymptotic flatness, the metric can be expressed as
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g(u, x2, x3) = 1
|∇u|2du

2 + δijdx
idxj.

3.5.2 Isometric embedding into Minkowski space for the case E =

|P | = 0.

As S is empty, we now have M = M0 ∪l
i=1 Ki. Here, for notation simplicity, we denote

∪l
i=1Ki by K̃.

For M ∼= R3, let (x1, x2, x3) be a global coordinate system which coincides with the asymp-

totically flat coordinate on M \ C. And we can, by Lemma 3.2.1, construct a spacetime

harmonic function u(a1, a2, a3) which is asymptotic to aix
i, where

∑3
i=1(ai)

2 = 1. Then as

in Theorem 7.3 in [30], we can define a lapse function α and a shift vector β by

α =

∣∣∣∣∇u( 1√
2
,
1√
2
, 0

)∣∣∣∣+ ∣∣∣∣∇u(− 1√
2
, 0,

1√
2

)∣∣∣∣− ∣∣∣∣∇u(0, 1√
2
,
1√
2

)∣∣∣∣ , (3.5.1)

and

β = ∇u
(

1√
2
,
1√
2
, 0

)
+∇u

(
− 1√

2
, 0,

1√
2

)
−∇u

(
0,

1√
2
,
1√
2

)
. (3.5.2)

Then, we can define a stationary spacetime, (M = R×M, g) where

g = −(α2 − |β|2)dt2 + 2βidx
idt+ g, (3.5.3)

where the Killing vector is

∂t = αn⃗+ β, (3.5.4)

where n⃗ is the unit normal to the hypersurface constant t-slice. We can see that (M, g) is

isometric to a constant time slice in M under such construction. First, notice that α and β
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are differentiable on M \Σ and continuous across Σ. From equations (7.9) to (7.11) in [30],

it is shown that α2 − |β|2 is constant in M \ K̃ and K̃ \ Σ respectively. By continuity, we

have α2 − |β|2 is a constant on M . Since α2 − |β|2 → 1 as r → ∞, we have α2 − |β|2 ≡ 1.

we thus have,

g = −dt2 + 2βidx
idt+ g =− (dt− βidx

i)2 + (gij + βiβj)dx
idxj

=− (dt− dΨ)2 + (g + dΨ)2,

(3.5.5)

where Ψ = u
(

1√
2
, 1√

2
, 0
)
+ u

(
− 1√

2
, 0, 1√

2

)
− u

(
0, 1√

2
, 1√

2

)
. Notice that β is exact since

β = ∇Ψ. Then, on M \ Σ, we have, a, b, c = 0, 1, 2, 3, where ∂0 = ∂t.

Γ
a

it =
1

2
gac
(
gic,t + gtc,i − git,c

)
= gac (∂iβc − ∂cβi) = 0.

On the other hand, since E = |P | = 0, for all |⃗a| = 1, we have ∇∇u(a1, a2, a3) =

−|∇u(a1, a2, a3)|k, and hence

∇iβj = −αkij.

With these, we can show k is the corresponding 2nd fundamental from of M with respect to

this embedding since on M \ Σ,

⟨∇in⃗, ∂j⟩ = α−1⟨∇i(∂t − β), ∂j⟩ = α−1Γ
b

itgbj + α−1∇iβj = kij.

Therefore, (M, g, k) arises as a constant time slice in (M, g).

For l = 1, 2 and 3, construct vector fields Xl on M as follows,

Xl = ∇ul + |∇ul|n⃗,
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where

u1 = u(1, 0, 0), u2 = u(0, 1, 0), u3 = u(0, 0, 1),

i.e. the spacetime harmonic coordinates corresponding to the original asymptotically flat

coordinates (x1, x2, x3). These vector fields are differentiable on M \ Σ and continuous

across Σ. Extend these vector fields trivially along ∂t to M . Then, as shown in equations

(7.13), (7.18) to (7.21) in [30], we know that on R× (M \ K̃) and R× (K̃ \Σ), these vector

fields and ∂t are covariantly constant. And hence by continuity, the metric on these vector

fields is constant on M . They are linearly independent at the asymptotic end and thus

linearly independent on M . Therefore, (M, g) is flat. Further, by a change of coordinate,

t = t−Ψ(x) and x = x, we have

g = −dt2 + (g + dΨ2).

From this construction, we can see (M, g, k) can be expressed as a graph t = −Ψ(x). Also

note that (R3, g + dΨ2) is asymptotically flat and therefore complete. Furthermore, it is a

constant t slice in this splitting of g and hence it is flat and isometric to Euclidean space.

Therefore, we have M is isometric to Minkowski space.
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Chapter 4

A new quasilocal mass W

In [59], the Riemannian positive mass theorem with Lipschitz metric along corners is used

to prove positivity of the Brown York mass. This motivates us to consider if Theorem 1.1.2

can provide an insight into some quasilocal quantities. In particular, we have the following.

4.1 Positivity of W(Σ) for 3 dimensional initial data

sets

Corollary 4.1.1. Let (Ω3, g, k) be a compact initial data set satisfying the dominant energy

condition. Assume there exists S, a finite (possibly empty) disjoint union of connected weakly

trapped surfaces, such that H2(Ωext,S,Z) = 0, where Ωext denotes the portion of Ω outside S.

Suppose Σ = ∂Ω is a smooth surface of finitely many components with Gaussian curvature

κ > 0 and mean curvature H with respect to the outward normal ν. Denote the mean

curvature of isometric embedding of Σ into R3 with respect to the outward normal by H0. If

40



H > |ω|, where ω = π(·, ν), then

W(Σ) :=
1

8π

ˆ
Σ

H0 − (H − |ω|) ≥ 0.1

If W(Σ) = 0, then Σ is connected, Ω is diffeomorphic to a domain in R3 and can be isomet-

rically embedded into Minkowski space.

Proof. We would follow Bartnik-Shi-Tam construction of quasi-spherical metric ([6], [59])

for each component Σi of Σ. First, define on Σ,

u =
H0

H − |ω|
. (4.1.1)

As Nirenberg ([49]) and independently, Pogorelov ([54]) have solved Weyl’s isometric em-

bedding problem, we know that by its positive Gauss curvature, Σi can be isometrically

embedded into R3. We notate the image of isometric embedding of Σi into R3 by Σ0i, and

the unbounded region of R3 outside of Σ0i by Mi = Σ0i × [0,∞) which stands for a folia-

tion by unit normal flow. Then as in [59], we can construct an asymptotically flat metric

gi = u(r)2dr2 + gr with zero scalar curvature on Mi ([59] Theorem 2.1(b)), where u(0) = u

and gr stands for the metric induced on Σr = Σ0i × {t = r} by the Euclidean metric on R3.

Since the Gauss curvature of Σr is positive, we have (Lemma 4.2 in [59]),

8π
d

dr
Q(Σr) :=

d

dr

ˆ
Σr

H0(r)

(
1− 1

u(r)

)
dσr

=− 1

2

ˆ
Σr

RΣru
−1(1− u)2 ≤ 0,

(4.1.2)

where H0(r) is the mean curvature of Σr with respect to the Euclidean metric of R3. More-

1One can compare W(Σ) to the expression of the physical Hamiltonian in equation (2.14) in [29].
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over, by Theorem 2.1 (c) in [59], we have

lim
r→∞

Q(Σr) = E(gi).

Therefore to prove the inequality, i.e. W(Σi) = Q(Σ0i) ≥ 0, it suffices to show E(gi) ≥ 0.

Consider the glued initial data set M̃ = Ω ∪n
Σi,i=1 M+i, with metric g̃ = (g, {gi}ni=1) and

symmetric 2 tensor k̃ = (k, {ki = 0}ni=1), and correspondingly πi = 0 for i = 1, 2, ..., n.

By the construction above, we know that g̃ is Lipschitz across Σ and the dominant energy

condition is satisfied on M̃ \ Σ. And by equation (1.6) in [59], we have on Σi, the mean

curvature Hi of gi with respect to the outward normal is H − |ω|. Therefore, on Σi, we have

H −Hi − |ω − 0| = H − (H − |ω|)− |ω| = 0.

Fix l, for gl, as discussed in Section 3, for each of other extensions, a large coordinate sphere

can act as a weakly trapped surface with respect to gl. These spheres together with S

are the boundary of M̃ext. Hence, by Theorem 1.1.2, we have 0 ≤ E(gl) − |Pl| = E(gl).

As W(Σ) =
∑n

i=1W(Σi), we can conclude the positivity. And by Corollary 1.1.1, we can

conclude the equality case.

4.2 Positivity of W(Σ) on spin compact initial data sets

As we can see from the proof based on [59] above, if we consider spin condition as in [63]

and [36], we can arrive at the following conclusion.

Corollary 4.2.1. (cf. [59] Theorem 4.1) For n ≥ 3, let (Ωn, g, k) be a compact initial data

set in a spacetime Nn+1 satisfying the dominant energy condition. Assume that Σ := ∂Ω
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has finitely many components. Let H denote the mean curvature of Σ with respect to the

outward normal ν. Suppose Ω is spin and Σ can be isometrically embedded into Rn as a

strictly convex closed hypersurface. Denote the mean curvature of isometric embedding of Σ

into Rn with respect to the outward normal by H0. If H > |ω|, where ω = π(·, ν), then

W(Σ) :=
1

8π

ˆ
Σ

H0 − (H − |ω|) ≥ 0,

and equality implies that Σ is connected and N is a flat spacetime along Ω.
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Chapter 5

Dihedral Rigidity of Initial Data Sets

We now outline the proof. First, we consider a solution u to the following mixed boundary

value problem.

Lemma 5.0.1. Given an initial data set (M3, g, k) of type P , where all dihedral angles are

everywhere smaller than π, then there exists a non-negative spacetime harmonic function

u ∈ C0,α(M) ∩ C1,α
loc (M \ (T̄ ∪ B̄)) ∩ C2,α

loc (M \ Ē) ∩W 3,p
loc (M̊) such that

1. G0(u) := ∆u+K|∇u| = 0 in M̊ ,

2. u = 0 on B and u = 1 on T ,

3. ∂νu = 0 on F ,

where K := trgk, ν denotes the outward unit normal of ∂M ; T,B, F and E denote the top,

the bottom, the side faces and the edges of M respectively.

The proof of Lemma 5.0.1 is based on Leray-Schauder fixed point theorem and a reflection

technique. It will be shown in Appendix 7.3. Then, under the assumptions of Theorem 1.2.2,
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we can see thatM is smoothly foliated by level sets of u. In particular, we showM is foliated

by stable free boundary MOTS. We then apply the results of [1] Section 5 to study each

level set using certain integral formulae for spacetime harmonic functions ([30],[31],[14],[68]).

Then, the flow generated by ∇u
|∇u|2 on M is studied. Finally, we can conclude the proof using

the geometric assumptions on M .

5.1 Integral Formula

The following integral formula links the interior energy condition and the boundary behaviour

of an initial data set.

Lemma 5.1.1. ([68], cf. [30] Proposition 3.2) Let (M3, g, k) be an initial data set of type

P , where all dihedral angles are everywhere smaller than π. Further assume that the dihedral

angles between T and F and those of B and F are everywhere less than or equal to π/2.

Then, for a spacetime harmonic function u in Lemma 5.0.1,

ˆ
M

1

2

|∇∇u|2

|∇u|
+ µ|∇u|+ ⟨J,∇u⟩ dV − 1

2

ˆ 1

0

ˆ
Σt

RΣtdAdt

≤
ˆ
∂ ̸=0M

∂ν |∇u| dσ +

ˆ
∂M

k(∇u, ν)dσ,
(5.1.1)

where ∂̸=0M = {x ∈ ∂M | |∇u| ̸= 0}, Σt = {u = t} and ν is the outward unit normal on

∂M .

Proof. We here assume that |∇u| ≠ 0 for the simplicity of presentation. For the full gen-

erality, one should first consider
√

|∇u|2 + δ2 for δ > 0 and then take limit as δ → 0 (see

[65],[10],[9],[30],[31] Remark 3.3).

It suffices to verify the divergence theorem such that the following holds since the remaining
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would be the same as in the references aforementioned (application of Bochner formula,

Gauss equation and coarea formula).

ˆ
∂M

∂ν |∇u| =
ˆ
M

∆|∇u|. (5.1.2)

From a remark in the proof of Theorem 1.4 in [37], elliptic estimates with scaling (e.g. [64],

[23] Corollary 6.3) are essential for determining integrability. Let {Mr}r>0 be an exhaustion

ofM with vertices and edges ofM being smoothed out, where r is the parameter of radius of

spherical cap around the vertices and rounded-off cylinders along the edges. The functions

are regular enough on Mr so that the divergence theorem can be applied.

ˆ
∂Mr

∂νr |∇u| =
ˆ
Mr

∆|∇u|. (5.1.3)

1. L.H.S. of (3.3.2). To show that
´
∂M

∂ν |∇u| is well-defined, we consider the following.

Proposition 5.1.1. (cf. [31] Proposition 2.2, [14],[68]) Let Σ be a face of a type P initial

data set (M3, g, k), for |∇u| > 0,

1. if u = constant on Σ,

∂ν |∇u| = −Kν(u)−H|∇u|; (5.1.4)

2. if ∂νu = 0 on Σ,

∂ν |∇u| =− |∇u|Π( ∇u
|∇u|

,
∇u
|∇u|

), (5.1.5)

where Π is the second fundamental form of Σ with respect to the outward normal ν.
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Proof. Let η = u|Σ,

∂ν |∇u| =
∇∇u(∇u, ν)

|∇u|

=
ν(u)

|∇u|
∇∇u(ν, ν) + 1

|∇u|
∇∇u(∇Ση, ν)

(5.1.6)

Using ∆Mu = −K|∇u|, we have

∇∇u(ν, ν) = ∆Mu−Hν(u)−∆Ση = −K|∇u| −Hν(u)−∆Ση. (5.1.7)

We also have,

∇∇u(∇Ση, ν) =(∇Ση)(ν(u))− (∇∇Σην)(u)

=(∇Ση)(ν(u))− ⟨∇∇Σην,∇Ση⟩+ ν(u)⟨∇∇Σην, ν⟩

=(∇Ση)(ν(u))− Π(∇Ση,∇Ση),

(5.1.8)

Thus, we have,

∂ν |∇u| = − Π(∇Ση,∇Ση)

|∇u|
+

(∇Ση)(ν(u))

|∇u|

−Kν(u)−H
|ν(u)|2

|∇u|
− ν(u)

|∇u|
∆

Σ
η.

(5.1.9)

Hence, if u = constant on Σ,

∂ν |∇u| = −Kν(u)−H|∇u|. (5.1.10)
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If ∂νu = 0 on Σ,

∂ν |∇u| = − Π(∇Ση,∇Ση)

|∇u|

=− |∇u|Π( ∇u
|∇u|

,
∇u
|∇u|

).

(5.1.11)

From Proposition 5.1.1 above, we have on ∂M ,

ˆ
∂M

∂ν |∇u| =
ˆ
F

−|∇u|Π( ∇u
|∇u|

,
∇u
|∇u|

) +

ˆ
T∪B

−Kν(u)−H|∇u|. (5.1.12)

In particular, on ∂M ,

|∂ν |∇u|| ≤ C(||g||C1 + ||k||C0)|∇u|. (5.1.13)

Therefore, for the well-definedness of
´
∂M

∂ν |∇u|, it suffices to check if |∇u| is integrable

on ∂M . Let p ∈ Ē , w.l.o.g., identified as 0 in a local coordinate chart. From the fact that

u ∈ C0,α(M), applyW 2,p estimate followed by Sobolev embedding onto wr(x) := u(rx)−u(0),

where r > 0 fixed, in a (conic) annulus A(1) around p, we have

|∇u|C0(A(r)) ≤ C|∇∇u|Lp(A(r)) ≤ Crα−1. (5.1.14)

|∇u| is therefore integrable on ∂M and also on M .

2.
´
∂Mr

∂νr |∇u| →
´
∂M

∂ν |∇u|. First, let’s consider the convergence along the horizontal
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edges by a blow-up argument.

Proposition 5.1.2. Let W be a compact neighbourhood along the interior of an horizontal

edge EH and r(p) = dist(p, EH). We have r|∇∇u| −→ 0 uniformly in W as r → 0.

Proof. Assume on the contrary that r|∇∇u| does not converge to 0 uniformly inW as r → 0.

Hence, there exists ε0 > 0 and a sequence {pi} in W with

Li|∇∇u|(pi) ≥ ε0, (5.1.15)

where Li = r(pi) and Li → 0.

Denote the point on EH closest to pi by qi. Let p denote a subsequential limit of pi and

hence also the limit of qi. W.l.o.g., we still denote the subsequence by {pi}.

Then, on a ball (intersecting with a wedge) denoted by B1, define a sequence of functions ui

by scaling around each qi, that is,

ui(x) :=
u(qi + Lix)

Li

. (5.1.16)

Check that for each i,

1. ui(0) = 0,

2. ∂ui(x) = (∂u)(qi + Lix), and

3. ∂∂ui(x) = Li∂∂u(qi + Lix).

Thus,

∆iui(x) = Li∆u(qi + Lix) = −LiK(qi + Lix)|∇u(qi + Lix)| (5.1.17)
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since u is spacetime harmonic, where ∆i denotes the Laplace-Beltrami operator with respect

to gi :=
1
L2
i
ϕ∗
i g, where ϕi : B1 → (NLi

(qi) ⊂M, g). Note that, gi → g(p).

For regularity of u on W , one reflects the domain along the corresponding side face, then by

[66] and [41], we know that u is uniformly Lipschitz on W .

Then for ui, since u is uniformly Lipschitz, ui → v in some C0,α norm, while v itself is still

a Lipschitz function. Moreover, R.H.S of (5.1.17) → 0 as Li → 0.

Therefore, we have v satisfying ∆gEuc
v = 0 and mixed boundary condition on a model wedge

with angle θ. Furthermore, from (5.1.15) there exists a point y with distance 1 away from p

such that,

|∂∂v(y)| ≥ ε0. (5.1.18)

There are 2 cases. First, if θ is less than π/2, then in M , p lies on a segment where the

dihedral angle is less than π/2. Hence, there exists an open neighbourhood U of p which

1. sits along a segment where the dihedral angle is less than π/2,

2. contains a compact set V containing pi for all large i, and hence p.

By [4] Proposition (Satz) 3.1 (and (V1*)), we know that u ∈ C1,α(V ), then by weighted

Schauder estimates on u in an annulus A(r) around p, we get r|∇∇u| ≤ C(V )r1+(1+α)−2 ≤

C(V )rα → 0 as r → 0. This contradicts (5.1.15).

While for the second case, if θ = π/2, then ∂∂v should vanish as v should be linear by
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boundary Harnack inequality. This contradicts (5.1.18).

Meanwhile, for the vertical edges of F along which u is C1,α
loc , when weighted Schauder

estimates are applied on u in A(r) ⊂ Ω̃, a compact neghbourhood along the segment, we

have |∇∇u|C0(A(r)) ≤ C(Ω̃)rα−1. From this, the integrability of Gauss curvature and geodesic

curvature for each level set also follows. With Gauss-Bonnet Theorem, it will be useful to

show Lemma 5.1.2 which connects energy conditions with dihedral angles.

We then consider for p being a vertex, by weighted Schauder estimates in A(r) around p, we

have

|∇∇u|C0(A(r)) ≤ Crα−2. (5.1.19)

Note that as ∂Mr approaches the vertices, the difference in the area is of order r2. To sum

up, as r → 0,

ˆ
∂Mr

∂νr |∇u| →
ˆ
∂M

∂ν |∇u|. (5.1.20)

3. R.H.S. of (5.1.2).

∆|∇u|

=
1

|∇u|
(|∇∇u|2 + ⟨∇u,∇∆u⟩ − |∇|∇u||2 + |∇u|2Ric( ∇u

|∇u|
,
∇u
|∇u|

)).
(5.1.21)

As ∆u = −K|∇u|, note that by Lemma 3.1 in [30], we have

∆|∇u| ≥ − C(||g||C2 + ||k||C1)|∇u|. (5.1.22)
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In particular,

(∆|∇u|)− ≤ C(||g||C2 + ||k||C1)|∇u|, (5.1.23)

i.e. (∆|∇u|)− is integrable on M .

4. Conclusion. By (3.3.3) and integrability of (∆|∇u|)−, on Mr,

ˆ
Mr

(∆|∇u|)+ =

ˆ
∂Mr

∂νr |∇u|+
ˆ
Mr

(∆|∇u|)−. (5.1.24)

We can thus by (3.3.4) and monotone convergence theorem conclude that as r → 0,

ˆ
∂M

∂ν |∇u| =
ˆ
M

∆|∇u|. (5.1.25)

Then by Lemma 5.0.1, Lemma 5.1.1 and Proposition 5.1.1, we can conclude the following

which links energy conditions to dihedral angles.

Lemma 5.1.2. Let (M3, g, k) be an initial data set of type P where the dihedral angles are

everywhere less than π. Further assume that the dihedral angles between T and F and those

of B and F are everywhere less than or equal to π/2. Let u be a spacetime harmonic function
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in Lemma 5.0.1, we have

ˆ
M

1

2

|∇∇u|2

|∇u|
+ µ|∇u|+ ⟨J,∇u⟩ dV

+

ˆ
∂M

H|∇u| − π(∇u, ν) dσ

≤
ˆ 1

0

ˆ
Σt

1

2
RΣtdAdt+

ˆ 1

0

ˆ
∂Σt

κ dτ dt

=

ˆ 1

0

(
2πχ(Σt)−

q∑
j=1

(π − αj)

)
dt.

(5.1.26)

where Σt = {u−1(t)}, q denotes the number of sides of P0, αj is the dihedral angle between the

edges of the level sets and H is the mean curvature computed with respect to ν, the outward

unit normal of M .

Proof. First, we know that each regular level set of u must reach the side faces by maximum

principle. Moreover, since u ∈ W 3,p
loc (M̊), C2,α

loc on each face and C1,α
loc around the vertical edges,

Sard’s theorem is applicable ([16]). Together with the topology of a prism, each component of

a level set of regular values is homeomorphic to P0. Furthermore, by homogeneous Neumann

condition, the dihedral angle of the boundary of the level sets is the same as the dihedral

angle between corresponding side faces.

We are going to show that the boundary terms of (5.1.1) actually reveal the boundary energy

condition. For T and B, on which |∇u| is nowhere vanishing by maximum principle and u

is a constant, by Proposition 5.1.1, we have

ˆ
T∪B

∂ν |∇u|+ k(∇u, ν) dσ

=

ˆ
T∪B

−H|∇u| −Kg(∇u, ν) + k(∇u, ν) dσ

=

ˆ
T∪B

−H|∇u|+ π(∇u, ν) dσ.

(5.1.27)
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Then, on F , ∂νu = 0. From Proposition 5.1.1 and coarea formula, we have

ˆ
F

∂ν |∇u|+ k(∇u, ν) dσ

=

ˆ 1

0

ˆ
∂Σt

−Π

(
∇u
|∇u|

,
∇u
|∇u|

)
+ k

(
∇u
|∇u|

, ν

)
dτ dt

=

ˆ
F

−H|∇u|+ k(∇Fu, ν) dσ +

ˆ 1

0

ˆ
∂Σt

κ dτ dt

=

ˆ
F

−H|∇u|+ π(∇u, ν) dσ +

ˆ 1

0

ˆ
∂Σt

κ dτ dt.

(5.1.28)

The proof is then concluded by Lemma 5.1.1 and Gauss-Bonnet theorem.

5.2 Comparison Theorem and Dihedral Rigidity

In this section, we are going to use Lemma 5.1.2 to show the relation between energy condi-

tions and the geometry and dihedral rigidity of a polyhedral initial data set.

5.2.1 General spacetime case

First, we consider the case of a type P initial data set in general.

Lemma 5.2.1. Let (M3, g, k) be an initial data set of type P , where P0 is a convex q-gon,

which simultaneously satisfies:

1. the dominant energy condition,

2. H ≥ −trTk on T , H ≥ trBk on B,

3. H ≥ |πT (·, ν)| on F , where the superscript T means the projection onto the tangent

bundle of the corresponding domain and H denotes the mean curvature computed with

respect to ν, the outward unit normal of M ,
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where T,B, and F denote the top, the bottom and the side faces of M respectively.

Assume that the dihedral angles are everywhere less than π; moreover, the dihedral angles

between T and F and those between B and F are everywhere less than or equal to π/2. Let

u be a spacetime harmonic function in Lemma 5.0.1 and Σt = {u−1(t)}, where t ∈ [0, 1].

Then, the following holds.

1. Let {Ej}qj=1 denote the vertical edges of F and θj := supEj
αj, where αj denotes the

dihedral angle between F on Ej. Then,

q∑
j=1

θj ≥ (q − 2)π.

In particular, the dihedral angles of M cannot be everywhere less than those of P .

2. If the dihedral angles of M are further assumed to be everywhere less than or equal to

those of P , then

(a) µ− |J | = 0 on M .

(b) The dihedral angles between T and F and those between B and F are everywhere

π/2.

(c) M is smoothly foliated by Σt, t ∈ [0, 1]. On each Σt, the following properties are

satisfied.

i. hΣt + kΣt = 0, where hΣt denotes the second fundamental from of Σt with

respect to ∇u
|∇u| . In particular, Σt is a free boundary (stable) totally spacetime

geodesic MOTS.

ii. µ+ ⟨J, ∇u
|∇u|⟩ = 0.

iii. The dihedral angles of Σt are all equal to those of P0, RΣt = 0 and κ∂Σt = 0.

Therefore, each level set is isometric to P0 up to scaling.
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(d) On ∂M ,

i. H = −trTk on T , H = trBk on B,

ii. H = |πT (·, ν)| on F .

Proof. First, by maximum principle, ∂νu < 0 on B while ∂νu > 0 on T . By Lemma 5.1.2,

we have

ˆ
M

1

2

|∇∇u|2

|∇u|
+ (µ− |J |)|∇u| dV

+

ˆ
T

(H + trTk)|∇u| dσ +

ˆ
B

(H − trBk)|∇u| dσ

+

ˆ
F

(H − |πT (·, ν)|)|∇u| dσ

≤
ˆ 1

0

ˆ
Σt

1

2

|∇∇u|2

|∇u|2
+ µ+ ⟨J, ∇u

|∇u|
⟩ dAdt

+

ˆ
T

(H + trTk)|∇u| dσ +

ˆ
B

(H − trBk)|∇u| dσ

+

ˆ
F

(H|∇u| − π(∇u, ν) dσ

≤
ˆ 1

0

ˆ
Σt

1

2
RΣtdAdt+

ˆ 1

0

ˆ
∂Σt

κ dτ dt

=

ˆ 1

0

(
2πχ(Σt)−

q∑
j=1

(π − αj)

)
dt.

(5.2.1)

By the dominant energy condition and the assumptions on ∂M , we know that

q∑
j=1

θj ≥ (q − 2)π. (5.2.2)

Hence, the dihedral angles of M cannot be everywhere less than those of P .

If it is further assumed that the dihedral angles of M are everywhere less than or equal to

those of P , then the dihedral angles of Σt are all equal to those of P0 by (5.2.2). Then on
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∂M , we have

H = −trTk on T,H = trBk on B and H = |πT (·, ν)| on F. (5.2.3)

Moreover, on M ,

µ− |J | = 0, (5.2.4)

and

∇̄∇̄u = ∇∇u+ |∇u|k = 0. (5.2.5)

Note that u is not a constant function, hence ∇u is non-vanishing somewhere. Furthermore,

by Kato’s inequailty, on M ,

|∇|∇u|| ≤ |∇∇u| ≤ |k||∇u|. (5.2.6)

Then by ODE technique, we know that ∇u is nowhere vanishing and hence each t ∈ [0, 1] is

a regular value. By compactness of M , there exists c1, c2 ∈ R such that

c2 ≥ |∇u| ≥ c1 > 0. (5.2.7)

Hence, M is a smooth foliation of regular level sets. Moreover, assume on the contrary that

there exists p on the horizontal edges where T or B meet F such that the dihedral angle is

less than π/2, then by [4] Proposition (Satz) 3.1 (and its remark on P.343), u is C1,α around

p. Since the dihedral angle is less than π/2, ∇u(p) = 0. A contradiction arises.
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Then we recall that on each level set Σt, for X, Y ∈ TΣt, by (5.2.5) we have

h(X, Y ) =
∇∇u
|∇u|

(X, Y ) = −k(X, Y ), (5.2.8)

where h denotes the second fundamental form for Σt with respect to ∇u
|∇u| . From (5.2.8), M

is a smooth foliation of totally spacetime geodesic MOTS.

5.2.2 Stability of free boundary MOTS

To further study the geometry of each level set and M , we have to verify and use the fact

that Σt is a stable free boundary MOTS.

Proposition 5.2.1. ([20] Proposition 2) For a 2-sided MOTS Σ, let ϕ ∈ C∞(Σ) and N be

a continuous unit normal vector field on Σ, we have

δϕN(H + trΣk)

=−∆Σϕ+ 2⟨WΣ,∇Σϕ⟩

+ (divΣWΣ − |WΣ|2 +
1

2
RΣ − µ− J(N)− 1

2
|kΣ + hΣ|2)ϕ,

(5.2.9)

where hΣ and H respectively denote the second fundamental form and mean curvature of Σ

with respect to N and WΣ ∈ TΣ is dual to k(N, ·)|TΣ.

A definition of stable capillary MOTS is proposed in [1], and here we state the free boundary

case only.

Definition 5.2.1. ([1] Definition 5.1, cf. [2] Definition 2) A free boundary MOTS Σ ⊂ M

is stable with respect to the variation vector field X = φN, where N is a continuous unit

normal vector field on Σ, if and only if there exists a non-negative function φ ∈ C2(Σ), φ ̸≡ 0

satisfying Robin boundary condition ∂φ
∂ν

= Π(N,N)φ such that δX(H + trΣk) ≥ 0, where Π
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is the second fundamental form of ∂M with respect to the outward normal ν. Moreover, it is

called strictly stably outermost with respect to the direction X if, moreover, δX(H+trΣk) ̸= 0

somewhere on Σ.

On Σt, let N := ∇u
|∇u| . By (5.2.7), 1

|∇u| is well defined on M . Then, we can consider the flow

generated by ∇u
|∇u|2 . For M being foliated by level sets of u and each Σt is a free boundary

MOTS, we have

δ 1
|∇u|N

(HΣt + trΣtk) = 0. (5.2.10)

While on ∂Σt,

∂ν(
1

|∇u|
) =− ∇ν⟨∇u,∇u⟩

2|∇u|3

=
−⟨∇∇u∇u, ν⟩

|∇u|3

=
Π(N,N)

|∇u|
.

(5.2.11)

Therefore, we can conclude that Σt is a stable free boundary MOTS.

Following [1] Lemma 5.4 (equation (5.16) in [1], equation (2.9) in [22]), the stability of Σt

yields to a positive-semidefinite bilinear form G by integrating w2

|∇u|δ|∇u|N(H+ trΣtk) over Σt,

G(w,w) :=

ˆ
Σt

(
|∇Σtw|2 +Qw2

)
dA−

ˆ
∂Σt

(Π(N,N)− ⟨WΣt , ν⟩)w2dτ ≥ 0 (5.2.12)

for all w ∈ C∞(Σt), where Q := 1
2
RΣ − µ − J(N) − 1

2
|kΣ + hΣ|2. Moreover, if G(1, 1) = 0,
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then

Q = 0 , WΣt = ∇Σt log
1

|∇u|
and Π(N,N) = ⟨WΣt , ν⟩. (5.2.13)

Now, by (5.2.1), (5.2.5) and (5.2.8), we get that

0 =

ˆ
Σt

|∇∇u|2

|∇u|2
− 1

2
RΣt + µ+ ⟨J,N⟩ dA+

ˆ
∂Σt

Π(N,N)− π(ν,N) dτ

=

ˆ
Σt

− 1

2
RΣt + µ+ ⟨J,N⟩+ 1

2
|kΣt + hΣt |2 dA+

ˆ
∂Σt

Π(N,N)− ⟨WΣt , ν⟩ dτ

=−G(1, 1).

(5.2.14)

Then, by (5.2.13), we have

RΣt = 0. (5.2.15)

Let τ ′t denote the unit tangent vector of ∂Σt. From (5.2.3), we can see that on F

H = |πT (ν, ·)| =
√

|π(ν,N)|2 + |π(ν, τ ′t)|2, (5.2.16)

hence,

H ≥ |π(ν,N)| ≥ 0. (5.2.17)
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Furthermore, by (5.2.5), on F ,

Π(N,N) =⟨∇ ∇u
|∇u|

ν,
∇u
|∇u|

⟩

=
−∇∇u(∇u, ν)

|∇u|2

=k(N, ν)

=π(N, ν).

(5.2.18)

As a result,

κ∂Σt = Π(τ ′t , τ
′
t) = H − Π(N,N) ≥ 0. (5.2.19)

By (5.2.15) and Gauss-Bonnet Theorem, we can conclude that

κ∂Σt = 0. (5.2.20)

Therefore, Σt is isometric to P0 up to scaling. Then g can be expressed as 1
|∇u|2dt

2+f(t)gEuc

for some function f which depends on t only. This split form will be useful in Corollary 5.2.2

for showing dihedral rigidity of parabolic prisms.

Remark 5.2.1. Following the observation by P.-F. Yip [71], (cf. [32]), for dimension 3, a folia-

tion by totally spacetime geodesic MOTS implies isometric embedding into Minkowski space

by Gauss Codazzi equation and the fundamental theorem of hypersurface. In particular, we

have the following corollary.

Corollary 5.2.1. Let (M3, g, k) be an initial data set of type P , where P0 is a convex q-gon,

which simultaneously satisfies:

1. the dominant energy condition,

2. H ≥ −trTk on T , H ≥ trBk on B,
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3. H ≥ |πT (·, ν)| on F , where the superscript T means the projection onto the tangent

bundle of the corresponding domain and H denotes the mean curvature computed with

respect to ν, the outward unit normal of M ,

where T,B, and F denote the top, the bottom and the side faces of M respectively.

Assume that the dihedral angles are everywhere less than π; moreover, the dihedral angles

between T and F and those between B and F are everywhere less than or equal to π/2. If

the dihedral angles of M are further assumed to be everywhere less than or equal to those of

P , then (M, g, k) can be isometrically embedded into Minkowski space.

For P being a rectangular prism (cube), we can further deduce the geometry of the boundary

from its symmetry.

Theorem 5.2.1. Let (M3, g, k) be a type P initial data set, where P0 is a rectangle, which

simultaneously satisfies:

1. the dominant energy condition,

2. the boundary dominant energy condition,

3. everywhere the dihedral angle between two faces of M is less than or equal to π/2.

Let Σt = {u−1(t)}, where t ∈ [0, 1] and u be a spacetime harmonic function solving the mixed

boundary problem in Lemma 5.0.1. Then,

1. M is smoothly foliated by Σt, t ∈ [0, 1]. On each Σt, the following properties are

satisfied.

(a) hΣt + kΣt = 0, where hΣt denotes the second fundamental from of Σt with respect

to ∇u
|∇u| . In particular, Σt is a free boundary (stable) totally spacetime geodesic

MOTS.
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(b) µ+ ⟨J, ∇u
|∇u|⟩ = 0.

(c) The 4 dihedral angles of the edges are all equal to π/2, κ∂Σt = 0 and RΣt = 0.

Hence, each level set is isometric to a Euclidean rectangle.

2. µ = |J | = 0 on M .

3. On ∂M ,

(a) R∂M = 0, Π = k|T (∂M) = 0. where Π is the second fundamental form of ∂M with

respect to the outward normal ν. Consequently, H∂M = tr∂Mk = |πT (ν, ·)| = 0,

where the superscript T means the projection onto the tangent bundle of the corre-

sponding domain. In particular, ∂M is isometric to the boundary of a Euclidean

rectangular prism.

(b) (∇u)|∂M is a parallel vector field, i.e. ∇X∇u ≡ 0 for X ∈ T (∂M).

4. (M, g, k) can be isometrically embedded into Minkowski space.

Proof. Based on Lemma 5.2.1, we are going to study the geometry of M further by its

symmetry. We get that the dihedral angles are everywhere π/2 as in the proof of Lemma

5.2.1. Then, by Proposition 7.2.1, u ∈ C2,α(M) ∩W 3,p
loc (M̊). Furthermore, u ∈ C3,α

loc (M̊) by

(5.2.7).

From (5.2.8), on T and B, we respectively have Π = h = −k|T (∂M) and Π = −h = k|T (∂M).

Therefore, when we reverse the identification of T and B and solve for another spacetime

harmonic function, we get that on both T and B,

Π = k|T (∂M) = 0. (5.2.21)

And since we can choose T , B and F freely, we actually get that (5.2.21) holds on all 6 faces.

In particular, the geodesic curvature of all the edges of M vanishes. Moreover, R∂M = 0
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since each face of ∂M is a stable free boundary MOTS. Hence, we can further conclude that

∂M is isometric to the boundary of a Euclidean rectangular prism P̃ = [0, a1]× [0, a2]× [0, a3]

for some a1, a2, a3 > 0.

Moreover, by the boundary dominant energy condition, we can conclude that on ∂M ,

H∂M = tr∂Mk = |πT (·, ν)| = |kT (·, ν)| = 0. (5.2.22)

Let X, Y ∈ T (∂M), by (5.2.5), (5.2.21) and (5.2.22), we get that on ∂M ,

∇X∇Y u =− |∇u|k(X, Y )

=0,

(5.2.23)

∇X∇νu =− |∇u|k(X, ν)

=0.

(5.2.24)

Hence, we can conclude that

∇u is a parallel vector field on ∂M . (5.2.25)

Moreover, if we solve for ui, 1 ≤ i ≤ 3, with the corresponding choice of Bi ⊂ {xi = 0}

and Ti ⊂ {xi = ai} with ui = ai on Ti. It is straight forward to check that (u1, u2, u3) is a

coordinate system on a neighbourhood of ∂M with corresponding vector fields ∂̃i :=
∇ui

|∇ui|2 .
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While on each Σt,

µ+ ⟨J, ∇u
|∇u|

⟩ = 0. (5.2.26)

Since we can choose another orientation of cubes, then we have another spacetime harmonic

function w such that on M ,

⟨J, ∇u
|∇u|

⟩ = ⟨J, ∇w
|∇w|

⟩ = −|J |, (5.2.27)

Note that ∇u
|∇u| and

∇w
|∇w| must be different somewhere and hence nowhere equal on M by the

following lemma and ODE technique.

Lemma 5.2.2. ([68] Lemma 8.1) Let X = ∇u/|∇u| and let Y = ∇ũ/|∇ũ| where u and ũ

are spacetime harmonic functions, then

|∇(|X − Y |2)| ≤ 2|k||X − Y |2.

Proof.

∇X =∇(
∇u
|∇u|

)

=
∇∇u
|∇u|

− 1

|∇u|2
∇∇u(∇u, ·)

|∇u|
∇u

=− k + k(X, ·)X,

(5.2.28)

i.e. in local coordinates, ∇iX
j = −kji + kmiX

mXj. Similarly,

∇Y = −k + k(Y, ·)Y. (5.2.29)
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Hence,

∇(|X − Y |2) =− 2⟨∇X, Y ⟩ − 2⟨X,∇Y ⟩

=2(k(Y, ·)− k(X, ·)⟨X, Y ⟩+ k(X, ·)− k(Y, ·)⟨X, Y ⟩)

=2(1− ⟨X, Y ⟩)k(X + Y, ·)

=|X − Y |2k(X + Y, ·).

(5.2.30)

And

|∇(|X − Y |2)| ≤|X − Y |2|k|(|X|+ |Y |)

≤2|X − Y |2||k|.
(5.2.31)

As a result, on M ,

µ = |J | = 0. (5.2.32)

Consider the initial data set (R3 \ P̃ , gEuc, 0), by (5.2.21), we can identify ∂M and ∂P̃ to

form an initial data set with corners ∂M ,

(M1, g1, k1) = (M ∪ (R3 \ P̃ ), g ∪ gEuc, k ∪ 0). (5.2.33)

Note that ∂M is isometric to ∂P̃ and the dihedral angle is everywhere π/2. Then, one can

take Fermi coordinates or {∂̃i}3i=1 as aforementioned on ∂M so that under this chart, g1 is

Lipschitz and k1 is L
∞ on M1 while smooth up to ∂M and ∂(R3 \ P̃ ) = ∂P̃ respectively. We

see thatM1 is R3 topologically and satisfies E = |P | = 0. By (5.2.4) and (5.2.22), we can ap-

ply Corollary 1.1 in [68] or Section VI of [63]. Therefore, (M1, g1, k1), in particular (M, g, k),
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can be isometrically embedded into Minkowski space (as a graph of a linear combination of

spacetime harmonic functions).

5.2.3 k = g hyperbolic space

For the special case k = g, we can conclude the dihedral rigidity for general prisms.

Definition 5.2.2. Let (H3, gH) be the hyperbolic space with sectional curvature −1. Fix the

coordinate system (x1, x2, x3) such that gH takes the form

gH = (dx1)2 + e2x
1(
(dx2)2 + (dx3)2

)
. (5.2.34)

Corollary 5.2.2. (cf. [39] Theorem 2.4) Let (M3, g, g) be an initial data set of type P which

simultaneously satisfies:

1. the dominant energy condition,

2. H ≥ π⊥(ν, ·) on T ,

3. H ≥ −π⊥(ν, ·) on B,

4. H ≥ |πT (ν, ·)| on F ,

5. everywhere the dihedral angles between two faces of M is less than or equal to those of

P ,

where T and B are identified with the face lying on {x1 = 0} and {x1 = 1} respectively1, H

is computed with respect to ν, the unit outward normal of M . Then (M, g, g) is isometric to

a parabolic prism in (H3, gH).

1Note that our identification of “top” and “bottom” faces is the reverse of [39].
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Proof. Let u be the spacetime harmonic function in Lemma 5.0.1. By (5.2.1) and k = g, we

have H = |πT (ν, ·)| = 0 on F . Moreover, by (5.2.5), on F ,

Π(N,N) =⟨∇ ∇u
|∇u|

ν,
∇u
|∇u|

⟩

=
−∇∇u(∇u, ν)

|∇u|2

=g(N, ν)

=0,

(5.2.35)

where Π denotes the second fundamental form of ∂M with respect to the outward normal

ν. On the other hand, on each Σt, let X ∈ TΣt

∇X |∇u|

=
∇∇u(∇u,X)

|∇u|

=− |∇u|g(N,X)

=0.

(5.2.36)

From the proof of Lemma 5.2.1, we can first conclude the following. Let Σt = {u−1(t)},

then,

1. M is smoothly foliated by Σt, t ∈ [0, 1]. On each Σt, the following properties are

satisfied.

(a) hΣt + gΣt = 0, where hΣt denotes the second fundamental from of Σt with respect

to N = ∇u
|∇u| . In particular, Σt is a free boundary stable totally spacetime geodesic

MOTS (horosphere).

(b) The dihedral angles of the edges are all equal to those of P0, κ∂Σt = 0 and RΣt = 0,

in particular, each level set is isometric to P0 up to scaling.
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(c) |∇u||Σt is constant.

2. RM = −6 on M .

3. The dihedral angles between T and F and those between B and F are everywhere π/2.

4. On ∂M ,

(a) H = −2 on T and H = 2 on B.

(b) H = |πT (ν, ·)| = 0 on F .

(c) Π = 0 on F .

Similar to the proof of Theorem 5.2.1, we are going to consider the flow generated by ∇u
|∇u|2 .

Since |∇u| is constant on each level set Σt, we can make a change of coordinate to express

g in the following form on M ,

g = ds2 + f(s)δijdx
idxj, (5.2.37)

where f is a function depending on s only. Then, we consider on each level set with respect

to the ∂s direction,

−2 = H(s) =
1

f(s)
δij

1

2
∂s(f(s)δij) =

∂sf(s)

f(s)
. (5.2.38)

We have

g = ds2 + e−2s+Cδijdx
idxj. (5.2.39)

Note that since ∂s is pointing in the decreasing x1 direction, after a change of direction, we

can see that (M, g, g) is isometric to a parabolic prism in (H3, gH).
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5.3 Application to the spacetime positive mass theo-

rem

(cf. [38] Section 5) In this section, we observe that if a general version of Lemma 5.2.1 holds,

then we can prove the spacetime positive mass theorem (Theorem 1.1.1) with Lohkamp’s

construction of (µ− |J |g) > 0-island (Section 2 in [45]) which is based on PDE analysis for

the density theorem in [20]. First, here is proposed a general version of Lemma 5.2.1.

Conjecture 5.3.1. Let n ≥ 3, P n be a Euclidean prism (P0 × [0, 1]n−2) and (Ωn, g, k)

be an initial data set admitting a degree one map onto P . Further assume that (Ω, g, k)

simultaneously satisfies:

1. the dominant energy condition,

2. the boundary dominant energy condition,

3. the dihedral angles of Ω are everywhere less than or equal to those of P .

Then, on Ω,

µ− |J |g = 0.

Definition 5.3.1. ([45] Definition 2.8) An asymptotically flat initial data set (Mn, g, k) is

called a (µ − |J |g) > 0-island if there exists a non-empty open set U ⊂ M with compact

closure such that

1. µ− |J |g > 0 on U , and

2. (M \ U, g, k) ≡ (Rn \Br(0), gEuc, 0).

Proposition 5.3.1. Conjecture 5.3.1 implies the spacetime positive mass theorem.
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Proof. Let (Mn, g, k) be an asymptotically flat initial data set satisfying the dominant energy

condition. Assume on the contrary that, w.l.o.g. by Christodoulou and O’Murchadha’s boost

argument ([15]), E < 0 ≤ |P |. From [45] Section 2 which based on the PDE system analysis

for the density theorem in [20], one can construct a (µ̃− |J̃ |g̃) > 0-island (M̃, g̃, k̃).

Then, consider a large scaling of P n such that ∂P can be isometrically embedded into

(M̃ \ Ũ , g̃, k̃) and encloses Ũ . Let Ω̃ denote the region in M̃ bounded by ∂P . (Ω̃, g̃, k̃) clearly

satisfies the assumptions of Conjecture 5.3.1, where a degree one map is taking Ω̃ \ Ũ to

P \{0} and Ũ to {0}. Therefore, particularly, µ̃−|J̃ |g̃ = 0 on Ũ . A contradiction arises.

In particular, for the 3 dimensional case, Theorem 1.1.1 can be proved by considering a

large cube as follows. Assume on the contrary that the spacetime positive mass theorem

does not hold, as aforementioned, then there exists a (µ̃ − |J̃ |g̃) > 0-island (M̃, g̃, k̃). Now,

the construction of the generalised exterior region ([30] Section 2) can be carried out on

(M̃, g̃, k̃). In particular, there exists (M̂, ĝ, k̂) with boundary ∂M̂ composed of MOTS and

MITS such that H2(M̂, ∂M̂,Z) = 0. Moreover, there exists a non-empty open set Û ⊂ M̂

with compact closure such that

1. µ̂− |Ĵ |ĝ > 0 on Û ,

2. (M̂ \ Û , ĝ, k̂) = (M̃ \ Ũ , g̃, k̃) ≡ (Rn \Br(0), gEuc, 0).

Then, let P 3 be a cube. As aforementioned, consider a large scaling of P such that ∂P can

be isometrically embedded into (M̂ \ Û , ĝ, k̂) and encloses Û . Let Ω̂ denote the region in M̂

bounded by ∂P . Hence, we have H2(Ω̂, ∂M̂,Z) = 0. The arguments in Appendix 7.2 can be

modified correspondingly to show the following lemma.
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Lemma 5.3.1. Let c⃗ ∈ Rm, where m denotes the number of components of ∂M̂ . Then there

exists a non-negative spacetime harmonic function uc⃗ ∈ C2,α(Ω̂) ∩W 3,p
loc (int Ω̂) such that

1. ∆̂uc⃗ + K̂|∇̂uc⃗| = 0 in int Ω̂,

2. uc⃗ = ci on ∂iM̂ for i = 1, ...m, where ∂iM̂ denotes the i-th component of ∂M̂ ,

3. uc⃗ = 0 on B and uc⃗ = 1 on T ,

4. ∂νuc⃗ = 0 on F ,

where K̂ := trĝk̂, T,B, F and E denote the top, the bottom, the side faces and the edges of

∂Ω̂ ∩ (M̂ \ Û) respectively.

Furthermore, note that Lemma 3.2.1 can be applied to Ω̂ as we reduce the mixed boundary

value problem into a Dirichlet problem in Appendix 7.2.

Then, as in the proof of Theorem 5.2.1, we get,

0 ≤
ˆ
Ω̂

1

2

|∇̂∇̂uc⃗|2

|∇̂uc⃗|
+ (µ̂− |Ĵ |ĝ)|∇̂uc⃗| dV +

ˆ
T∪B∪F

(Ĥ − |π̂(·, ν)|)|∇̂uc⃗| dσ

≤
ˆ 1

0

ˆ
Σt

1

2
RΣtdAdt+

ˆ 1

0

ˆ
∂Σt

κ dτ dt+
m∑
i=1

ˆ
∂iM̂

Ĥ|∂νuc⃗| − tr∂iM̂ k̂(∂νuc⃗) dσ

≤
m∑
i=1

ˆ
∂iM̂

Ĥ|∂νuc⃗| − tr∂iM̂ k̂(∂νuc⃗) dσ

=0.

(5.3.1)

The last equality follows from Lemma 3.2.1 that we can choose c⃗ such that uc⃗ on MOTS and

MITS components of ∂M̂ , we would have ∂νuc⃗ ≤ 0 and ∂νuc⃗ ≥ 0 respectively. Therefore,

µ̂− |Ĵ |ĝ = 0 in Ω̂, a contradiction arises.
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Chapter 6

Non-existence of DEC fill-ins

First, in [62], the construction of a scalar flat and asymptotically flat metric and decreasing

total mean curvature difference along the radial direction proved in [59] are the main inputs

to show that under certain assumptions, if an NNSC fill-in, i.e. (Ω, g) with Rg ≥ 0, of

Bartnik data (Σ, γ,H) exists, then there is a contradiction to the Riemannian positive mass

theorem with corners ([59], [47]). Heuristically from the perspective of energy, by (1.1.3),

we can see that if the boundary energy is too large, then the gravitation contribution must

be negative. Motivated by this, with Theorem 1.1.2 and [63], we can obtain similar results

regarding the energy condition of the fill-in of a spacetime Bartnik data set. In other words,

a partial answer to the spacetime version of Conjecture 1.2.2 can be obtained.

Definition 6.0.1. (cf. [7] Definition 2, [62]) For n ≥ 3, a tuple (Σn−1, γ, α,H, β) is called

a spacetime Bartnik data set, where (Σ, γ, α) is an oriented closed null-cobordant initial data

set with α ∈ C1,α, while H and β are respectively a smooth function and a C1,α 1-form on

Σ. A compact initial data set (Ωn, g, k) is called a fill-in of DSB if there is an isometry

ϕ : (Σn−1, γ) → (∂Ω, g|∂Ω) such that

1. ϕ∗Hg = H, where Hg is the mean curvature of ∂Ω to g with respect to the outward unit

73



normal ν,

2. ϕ∗tr∂Ωk = trΣα, and

3. ϕ∗(k(ν, ·)) = β.

We can see from the above definition that on Σ,

ϕ∗(|ω|g) = ϕ∗(|π(ν, ·)|g) =
√

(trΣ α)2 + |β|2γ.

Definition 6.0.2. A fill-in (Ωn, g, k) is said to satisfy a topological assumption (T ) if either

one of the following holds:

1. for n = 3, there exists S, a finite (possibly empty) disjoint union of connected weakly

trapped surfaces, such that H2(Ωext,S,Z) = 0, where Ωext denotes the portion of Ω

outside S.

2. for n ≥ 3, Ω is spin.

The condition (T ) allows applications of Theorem 1.1.2 or [63] Section VI. Following in this

section, n ≥ 3. For notation simplicity, the isometric embedding ϕ is omitted after gluing

and identification if without ambiguity. Moreover, γstd denotes the standard metric on Sn−1

induced from the Euclidean space.

Theorem 6.0.1. (cf. [62] Theorem 1.3) Let DSB := (Sn−1, γ, α,H, β) be a spacetime Bartnik

data set. If γ is isotopic to γstd in Mq
psc(Sn−1) := {η : Cq metrics on Sn−1 with Rη > 0},

where q ≥ 5, then there exists a constant h0 = h0(n, γ) > 0 such that if

H − f > 0 and

ˆ
Sn−1

H − f dµγ > h0,

where f :=
√
(trΣ α)2 + |β|2γ, then DSB cannot admit a fill-in satisfying (T ) and the dominant

energy condition.
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Proof. Notice that, since γ is isotopic to γstd in Mq
psc (as mentioned in [62], by [52] Proposi-

tion 2.1 and its proof, the path γt can be assumed to be smooth), [62] Lemma 2.1 shows that

we can construct an asymptotically flat exterior extension (M+ = Sn−1× [1,∞), ḡ = dr2+ γ̄r)

of (Σn, γ = γ̄1), which is exactly Euclidean (i.e. γr = rn−1γstd), for r ≥ s0 = s0(γt, ε) for any

ε > 0. The choice of ε is to be determined.

In the proof of [62] Lemma 2.1, we can see that Rḡ is bounded by some constants depending

on ε > 0 to be determined and γt. For this M+, since Rḡ is bounded, the argument for

the solvability of the initial value problem ([62] P.14 equation (7)) for u such that g+ =

u2(r)dr2+ γ̄r is scalar flat and asymptotically flat in [59] is also applicable . The initial value

u(1) > 0 is to be determined. Let H̄r and H
+
r denote the mean curvature for Σr := Sn−1×{r}

in ḡ and g+ respectively.

By equation (1.6) in [59], and further note that (Σ × [so,∞), ḡ) is Euclidean, then Lemma

4.2 and Lemma 2.10 in [59] are applicable. Together with the fact that, Σs0 is a standard

sphere in ḡ, we have

c(n)EADM(g+) ≤
ˆ
Σs0

H̄s0 −H+
s0
dµγ̄s0

≤n(n− 1)|Sn−1|sn−2
0 −

ˆ
Σs0

H+
s0
dµγ̄s0

(6.0.1)

What remains is to link the quantity
´
Σs0

H+
s0
dµγ̄s0

to
´
Sn−1 H−ω dµγ. Following [62] Section

3.1, we thus have

c(n)EADM(g+) ≤n(n− 1)|Sn−1|sn−2
0 − s

(n−2)(1−ε)
2

0

ˆ
Sn−1

H+
1 dµγ. (6.0.2)
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Up to this step, it is the same as in the proof of Theorem 1.3 in [62] as the construction for

the extension only concerns the metric γ.

Again, by equation (1.6) in [59], we have H+
1 = H̄1

u(1)
. Note that H̄1 > 0 by Lemma 2.1

equation (2) of [62] and by fixing a choice of ε << 1. If we choose the initial value u(1) :=

H̄1

H−f
, then we have,

c(n)EADM(g+) ≤n(n− 1)|Sn−1|sn−2
0 − s

(n−2)(1−ε)
2

0

ˆ
Sn−1

H − f dµγ. (6.0.3)

Thus, if we choose h0 = h0(n, γ) = n(n − 1)|Sn−1|sn−2− (n−2)(1−ε)
2

0 , then EADM(g+) < 0. Let

(Ω, g, k) be a fill-in which satisfies the assumptions of the proposition. Then, (Ω, g, k) with

(M+, g+, 0), altogether is an initial data set with a corner Sn−1 on which

Hg −H+
1 − |π(ν, ·)|g = H − (H − f)− f = 0,

and M+ satisfies the dominant energy condition by construction. If (Ω, g, k) furthermore

simultaneously satisfies (T ) and the dominant energy condition, by Theorem 1.1.2 or [63]

Section VI., EADM(g+) ≥ 0, contradiction arises.

Theorem 6.0.2. (cf. [62] Theorem 1.4) Let DSB := (Sn−1, γ, α,H, β) be a spacetime Bartnik

data set. If γ ∈ Mn
c,d := {η : C∞ metrics on Sn−1 with

|Rmη| ≤ c, diam(η) ≤ d, vol(η) = vol(γstd)}, then there exists a constant C0(n, c, d) > 0

such that if

H − f ≥ C0,

where f :=
√

(trΣ α)2 + |β|2γ, then DSB cannot admit a fill-in satisfying (T ) and the dominant
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energy condition.

Proof. The construction of an asymptotically flat extension with a corner where mean curva-

tures match is done in [62] Lemma 2.4 followed by Lemma 2.1. The solvability of the initial

value problem for u is again by [59], where u(1) = H̄1(n,c)
C0

while C0 is to be determined. If

C0 > 0 is sufficiently big, depending on the curvature of the extension constructed in [62]

Lemma 2.4 which depends on n, c and d, then 0 < u < 1 on M+ = Sn−1 × [1,∞). Moreover,

EADM(g+ = u(r)2 + γ̄r) < 0.

Assume on the contrary that there exists a fill-in of DSB, (Ω, g, k) which satisfies the as-

sumptions of the proposition, (T ) and the dominant energy condition. Gluing Ω and M+,

we have got an asymptotically flat initial data sets with 2 disjoint corners. For the corner

in M+, as mentioned, mean curvatures match by the construction in [62] Lemma 2.4. For

the corner ∂M+ = Σ1, we have H − C0 − f ≥ 0. By Theorem 1.1.2 or Section VI. in [63],

EADM(g+) ≥ 0, contradiction arises.

While in [61], the parabolic method to extend metric in [59] is used to construct a PSC

(Rg > 0) collar, which combined with he Riemannian positive mass theorem with corners

can show non-existence of NNSC fill-ins. In the same spirit as above, we can arrive at the

following conclusion.

Theorem 6.0.3. (cf. [61] Theorem 1.2) Let DSB := (Σn−1, γ, α,H, β) be a spacetime Bart-

nik data set where Σn−1 can be smoothly embedded into Rn and γ is smooth. There exists a

constant C0 = C0(Σ, γ) > 0 such that if

H − f ≥ C0,

where f :=
√

(trΣ α)2 + |β|2γ, then DSB cannot admit a fill-in satisfying (T ) and the dominant
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energy condition.

Proof. Let F : Σn−1 ↪→ Rn be an embedding. For λ > 0, λF is also an embedding. There

exists a λ0 > 0 such that γ1 := λ20F
∗(gEuc) > γ, where gEuc is the Euclidean metric on Rn.

Let h̃ denote the mean curvature of γ1 with respect to the outward normal in Rn. Denote

the unbounded region of Rn outside λ0F (Σ) by M+.

By [61] Lemma 2.1, we know that there exists a cobordism (Σ× [0, 1], ĝ) and h0, h1 ∈ C∞(Σ)

such that

1. ĝ|Σ×{0} = γ and ĝ|Σ×{1} = γ1,

2. With respect to ĝ and the outward normal, the mean curvature of Σ×{0} and Σ×{1}

are respectively h0 and h1,

3. h1 > h̃ and

4. Rĝ > 0.

Pick C0 = max(−h0). Let (Ω, g, k) be a fill-in satisfying the assumption of the proposition.

Then glue ∂Ω to Σ× [0, 1] along Σ× {0} and further glue Σ× [0, 1] along Σ× {1} to M+.

Altogether, we have a manifold with a flat end and hence with EADM = 0. Across the corners

Σ× {0} and Σ× {1}, we respectively have H − (−h0)− f ≥ 0 and h1 − h̃ > 0. If (Ω, g, k)

satisfies both (T ) and the dominant energy condition, by Theorem 1.1.2 or [63] Section VI.,

EADM > 0, contradiction arises.

Remark 6.0.1. For a charged initial data set (M, g, E) with corners, we can consider charged

harmonic functions ([8] Section 8) and the quantity associated with the divergence-free elec-

tric field 2⟨E±, ν⟩ like π±(ν, ·), in particular, E are only required to be L∞ across the hyper-
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surface where the corner of g occurs. The observations in this note are applicable and the

corresponding results can be obtained.
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Chapter 7

Existence and regularity of spacetime

harmonic functions

7.1 Spacetime harmonic coordinates on asymptotically

flat initial data sets with Lipschitz singularities

For notation simplicity, write trgk by K. Let S be a finite (possibly empty) disjoint union of

connected weakly trapped surfaces which do not intersect Σ̃ such that H2(Mext,S,Z) = 0.

Let Σ = Σ̃ ∩ Mext. Following the strategy of Section 4 in [30], we prove the following

proposition.

Proposition 7.1.1. For the asymptotically flat coordinate x1, for any ϕ ∈ C∞(S), there

exists u ∈ W 2,p
loc (Mext) ∩W 3,p

loc (Mext \ Σ) such that

1. ∆u+K|∇u| = 0 on Mext,

2. u = ϕ on S,
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3. u− x1 = O2(|x|1−q) as |x| → ∞,

4. u|Σ is C2 on faces of Σ.

Remark 7.1.1. In Section 3.2, we would discuss that ϕ can be chosen to achieve suitable

signs on the normal derivative of u on S.

Proof. By slightly generalising Proposition 2.2 and Theorem 3.1 in [5], we can have a function

v ∈ W 2,p
loc (M), where p > 3, such that

1. ∆v = −K on Mext,

2. v = 0 on S,

3. v = x1 +O2(|x|1−q) as |x| → ∞.

Note that by elliptic regularity, v is smooth on Mext \ Σ and C1,α across Σ by Sobolev

embedding. We also define a compactly supported smooth function v0 such that v0 = ϕ on

S. Define ṽ = v + v0.

Let r >> 1 and Mr denote the region of Mext enclosed by the coordinate sphere Sr = {|x| =

r}. Consider the following localised Dirichlet problem,

1. ∆ur +K|∇ur| = 0 in Mr,

2. ur = ϕ on S,

3. ur = ṽ on Sr.

Let wr = ur − ṽ. It is then equivalent to seek existence of wr which solves,
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1. ∆wr = −K
(

∇(wr+2ṽ)
|∇(wr+ṽ)|+|∇ṽ|

)
· ∇wr −∆ṽ −K|∇ṽ| in Mr,

2. wr = 0 on S,

3. wr = 0 on Sr.

Construct a map F : C1,α
0 (Mr)× [0, 1] → C1,α

0 (Mr) by

F(w, σ) = σ∆−1F (w), (7.1.1)

where F : C1,α
0 (Mr) → Lp(Mr) is defined by

F (w) = −K
(

∇(w + 2ṽ)

|∇(w + ṽ)|+ |∇ṽ|

)
· ∇w −∆ṽ −K|∇ṽ|.

In particular, we can see wr = F(wr, 1). Consider the following composition (cf. equation

(4.10) in [30]),

C1,α
0 (Mr)

F−→ Lp(Mr)
∆−1

−−→ W 2,p(Mr) ∩W 1,p
0 (Mr)

ι−→ C1,α
0 (Mr). (7.1.2)

Note that F and ∆−1 are bounded and the inclusion is compact by Sobolev embedding. Let

wσ = F(wσ, σ), we have

∆wσ + σK

(
∇(wσ + 2ṽ)

|∇(wσ + ṽ)|+ |∇ṽ|

)
· ∇wσ = −σ∆ṽ − σK|∇ṽ|. (7.1.3)

Since the zeroth order term coefficient vanishes, maximum principle (Theorem 9.1 in [23])

is applicable, we can have a uniform W 2,p(Mr) apriori estimate for all wσ by Theorem 9.11

and 9.13 in [23]. Thus, wσ is uniformly bounded in C1,α(Mr) by Sobolev embedding.

By Leray Schauder fixed point theorem ([23] Theorem 11.6), we can seek existence of wr. And
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by the barrier function of order O(|x|1−2q) constructed in Section 4.2 in [30] and maximum

principle, we can obtain a uniform W 2,p
loc bound for all wr. Hence, wr is uniformly C1,α

loc

bounded. Away from Σ, we can see that ∆wr ∈ C0,α, and hence wr ∈ C2,α
loc (Mext \ Σ),

uniformly bounded .

Hence, by taking a diagonal subsequence as r → ∞, we have a spacetime harmonic function

u := limr→∞wr + ṽ = ṽ + O2(|x|1−2q) = x1 + O2(|x|1−q), u ∈ C1,α
loc (Mext) ∩ C2,α

loc (Mext \ Σ).

Furthermore, since |∇u| ∈ W 1,p
loc (Mext) by Kato’s inequality, we have u ∈ W 3,p

loc (Mext \ Σ) by

Theorem 9.19 in [23].

Then, we are going to consider the regularity of u nearby Σ. Let Σ̂ be a smooth surface

component of Σ. Let p ∈ Σ̂ and V be a neighborhood of p inM which does not intersect Σ\Σ̂.

Apply Fermi coordinate along Σ̂, (x1, x2, t) ∈ Σ×(−ε, ε), considering the difference quotients

along ∂1 direction, let ϕ
h = ∆hu, where ∆hf(x1, x2, t) :=

f((x1 + h, x2, t)− f((x1, x2, t))

h
for

a function f . Since u is spacetime harmonic, we have

gijϕh
ij − gijΓk

ijϕ
h
k

=fh := −∆hg ∗ ∂̃2u+∆h(g ∗ Γ) ∗ ∂̃u− (∆hK) |̃∇u| −K∆h|∇u|,
(7.1.4)

where ∗ denotes multiplication with indices suppressed and ϕ̃(x1, x2, t) = ϕ(x1 + h, x2, t) for

functions on V . Observe that the g ∈ C0,1(V ), Γ ∈ L∞(V ) and u ∈ W 2,p(V ). While along ∂1

direction, except on a H3-measure zero set Σ∩V , g and k are also smooth. Moreover, |∇u| ∈

W 1,p(V ). Hence, its difference quotient is uniformly bounded in Lp(V ). Therefore, fh is

uniformly bounded in Lp(V ). By Theorem 9.11 in [23], we know for any U ⊂⊂ V , ||ϕh||W 2,p(U)

and hence ||ϕh||C1,α(U) is uniformly bounded. Therefore, we have ϕ := limh→0 ϕ
h = ∂1u ∈

C1,α(U) by [23] Lemma 7.24.
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By varying the direction which is tangential to Σ̂ and the neighbourhood for difference

quotients, we can see the same argument applies. Therefore, u|Σ is C2 on faces of Σ.
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7.2 Spacetime harmonic functions on regular cubes

In this section, we discuss the existence of solutions to the PDE in Lemma 5.0.1 when the

dihedral angles are π/2 everywhere. This illustrates the ideas of reducing a mixed boundary

problem to a Dirichlet problem.

Proposition 7.2.1. Given ([0, 1]3, g, k), where all dihedral angles are π/2, there exists a

non-negative spacetime harmonic function u ∈ C2,α([0, 1]3) ∩W 3,p
loc ((0, 1)

3) such that

1. G0(u) := ∆u+K|∇u| = 0 in (0, 1)3,

2. u = 0 on B and u = 1 on T ,

3. ∂νu = 0 on F ,

where K = trgk, T,B and F denote the top, the bottom and the side faces of the cube

respectively and ν is the outward unit normal of ∂[0, 1]3.

7.2.1 Invertibility of Linear operators

First, we are going to show the solvability of certain linear mixed boundary value problems,

which will be used in Section 7.2.5 to prove Proposition 7.2.1 above.

Definition 7.2.1. Let B := {w ∈ C2,α([0, 1]3) | ∂νw = 0,∃C1, C2 ∈ R s.t. w = C1 on T and w =

C2 onB}, which is a Banach space with C2,α([0, 1]3) norm.

Definition 7.2.2. Let B0 = {w ∈ B |w = 0 on T and B}, which is also a Banach space with

C2,α([0, 1]3) norm.

The following lemma is implied by the proof of Section 3 in [14]. And here we provide an

alternative proof by reflection (cf. [38] Appendix B, [50]) which reduces the mixed boundary
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problem to a Dirichlet boundary problem. This approach can further be utilised when we

study the mixed boundary problem on general prisms in Appendix 7.3.

Lemma 7.2.1. Given ([0, 1]3, g), where all dihedral angles are π/2. If X is a vector field of

regularity C0,α([0, 1]3), then the operator L : B0 → C0,α([0, 1]3) defined by

L(u) = ∆(u) + ⟨X,∇u⟩

is invertible.

Proof. Consider

1. L(u) = ∆(u) + ⟨X,∇u⟩ = f in (0, 1)3, where f ∈ C0,α([0, 1]3),

2. u = 0 on B and u = 0 on T ,

3. ∂νu = 0 on F ,

First, say B and T are identified with {x3 = 0 | (x1, x2) ∈ [0, 1]2} and {x3 = 1 | (x1, x2) ∈

[0, 1]2}. We can make an even isometric reflection along the one of the side faces F . Then,

make another even reflection along one of the longer faces. Without loss of generality, the

quadruple cube is obtained by reflecting along {x1 = 1}, then {x2 = 1}, identified by

[0, 2]2 × [0, 1] and denoted by Q.

Correspondingly, under the coordinate charts (general Fermi coordinate) introduced in [38]

Lemma 2.2, the metric components gij, the Christoffel symbols Γk
ij, X

i and f are evenly

reflected twice as in [38] Appendix B. They then would be denoted by g̃, Γ̃, X̃ and f̃

respectively. Note that, since the dihedral angle is everywhere π/2, on the edges and vertices

where doubling takes place, g̃ is still a well-defined Lipschitz metric on Q. Identifying and

gluing the faces of Q lying on {x1 = 0} and {x1 = 2}, then the faces lying on {x2 = 0} and
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{x2 = 2}, we have obtained T 2 × [0, 1] = S1 × S1 × [0, 1]. We can see that the component

functions of g̃ ∈ C0,1(T 2 × [0, 1]) while f̃ ∈ C0,α(T 2 × [0, 1]) and Γ̃, X̃ ∈ L∞(T 2 × [0, 1]).

Then we consider the following PDE,

1. ∆̃u+ g̃(X̃, ∇̃u) = f̃ in T 2 × (0, 1),

2. u = 0 on T 2 × {0} and u = 0 on T 2 × {1}.

By standard elliptic theory ([23] Theorem 9.15, Theorem 9.13 and Lemma 9.16), there exists

a unique strong solution v ∈ W 2,p(T 2 × [0, 1]), p > 3, hence C1,α(T 2 × [0, 1]). In order to

show that this v when restricted to one of the cubes solves the mixed boundary problem.

It suffices to show that v is actually periodically evenly reflected. Back to Q, define a new

functions v̂ and f̂ by reflection as follows

v̂(x1, x2, x3) = v(2− x1, x2, x3),

f̂(x1, x2, x3) = f̃(2− x1, x2, x3),

(7.2.1)

note that f̂ = f̃ .

Now, we consider the following PDE,

1. ∆̃u+ g̃(X̃, ∇̃u) = f̂ in T 2 × (0, 1),

2. u = 0 on T 2 × {0} and u = 0 on T 2 × {1}.

By the symmetry of f̃ , v ∈ W 2,p(T 2 × [0, 1]) is the unique solution. On the other hand, by

the symmetry of coefficients, obviously v̂ is also a solution. Hence, v = v̂. Hence v is even

along the plane {x1 = 1}. Similarly, we can conclude that v is symmetric along the other
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side faces. Therefore, we can conclude that v|[0,1]3 ∈ W 2,p([0, 1]3) is a strong solution to the

mixed boundary problem. Moreover, since ∂νv = 0 on F , v is actually C2 in T 2× (0, 1). For

its regularity up to the boundary, in particular across the closed side faces and edges, let Ω

be a neighbourhood in T 2× [0, 1] near the boundary. For ν on F can be extended as a Fermi

coordinate system, consider

1. g̃ijvij + g̃ijΓ̃a
ij∂av + X̃a∂av = f̃ − g̃ijΓ̃ν

ij∂νv − X̃ν∂νv in Ω,

2. v = 0 on T 2 × {0},

where i, j ∈ {1, 2, 3} while a, b ∈ {1, 2} stands for the component perpendicular to ν. Note

that ∂νv ∈ C1(T 2 × (0, 1)) ∩ C0,α(T 2 × [0, 1]) and vanishes along the side faces, hence the

right hand side is C0,α(Ω̄). Similarly, we can deal with the edges. Therefore, by [23] Lemma

6.18, we know that v ∈ C2,α(T 2 × [0, 1]). As a result, L : B0 → C0,α([0, 1]3) is invertible.

7.2.2 Regularised operators

After showing invertibility of linear operators in Lemma 7.2.1, we are going to show that

the mixed boundary problem in Proposition 7.2.1 is solvable by implicit function theorem.

Since the operator there is not linearisable, we first have to consider the following regularised

operator.

Let δ ∈ (0, 1), let Gδ be a regularised operator defined by Gδ(u) := ∆u+K
√
δ2 + |∇u|2−δK.

We are going to consider the following regularised PDE.

1. Gδ(u) = 0 in (0, 1)3,

2. u = 0 on B and u = 1 on T ,

3. ∂νu = 0 on F ,
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where K = trgk and T,B, F denotes the top, the bottom and the side faces of a cube

respectively.

7.2.3 Aprori estimates

Let u ∈ B be a solution to the PDE above. As in Section 7.2.1, by reflection and the fact

that

∆u = −K
√
δ2 + |∇u|2 + δK,

together with interpolation inequality ([23] Lemma 6.35), we get the following estimate

||u||C2,α([0,1]3) ≤ C(||u||C0([0,1]3) + δ||K||C0,α([0,1]3)). (7.2.2)

where C depends on metric g. Moreover, by [23] Theorem 9.1, we have ||u||C0([0,1]3) ≤

C(1 + ||K||C0([0,1]3)). Altogether, we have

||u||C2,α([0,1]3) ≤ C(1 + ||K||C0,α([0,1]3)), (7.2.3)

which is independent of δ.

7.2.4 Uniqueness of solutions

Proposition 7.2.2. The solution to the regularised PDE is unique.

Proof. If u and v are solutions to the regularised PDE, then we have

1. ∆(u− v) +K ∇(u+v)√
δ2+|∇u|2+

√
δ2+|∇v|2

· ∇(u− v) = 0 in (0, 1)3,

2. u− v = 0 on B and u− v = 0 on T ,
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3. ∂ν(u− v) = 0 on F ,

Then by maximum principle, u = v.

7.2.5 Linearisation of the regularised operator

Let ϕ ∈ B with ϕ = 0 on B and ϕ = 1 on T . For a fixed δ ∈ (0, 1), we consider a mapping

Tδ : B0 × [0, 1] → C0,α([0, 1]3) defined by

Tδ[u, t] = Gδ(u+ tϕ).

And for each t, let T
(1)
δ |[u,t] : B0 → C0,α([0, 1]3) denote its linearisation in the parameter of

B0.

Let A = {t ∈ [0, 1] | ∃w ∈ B0 such thatTδ[w, t] = 0.}. Equivalently, if t ∈ A, there exists

u ∈ B solving the following mixed boundary problem,

1. Gδ(u) = 0 in (0, 1)3,

2. u = 0 on B and u = t on T ,

3. ∂νu = 0 on F .

A is non-empty obviously since Tδ[0, 0] = 0. We first show that A is open as follows. Let

t̄ ∈ A, i.e. there exists ū ∈ B0 such that

Tδ[ū, t̄] = 0.
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Consider the linearisation

T
(1)
δ |[ū,t̄](v) = ∆v +K

∇(ū+ t̄ϕ)√
δ2 + |∇(ū+ t̄ϕ)|2

· ∇v,

which is invertible by Lemma 7.2.1. By implicit function theorem ([23] Theorem 17.6), we

know that there exists a neighbourhood N of t̄ in [0, 1] such that for all t ∈ N , there exists

uδ,t ∈ B0 such that Tδ[uδ,t, t] = 0.

By the estimate (7.2.3) which is independent of δ ∈ (0, 1) and t ∈ [0, 1], we have that A is

closed and hence A = [0, 1]. Therefore, for all δ ∈ (0, 1), there exists uδ ∈ B solving the

PDE,

1. Gδ(uδ) = 0,

2. uδ = 0 on B and uδ = 1 on T ,

3. ∂νuδ = 0 on F .

Again, by the uniform estimate (7.2.3), we have uδ
C2,β([0,13])−−−−−−→

δ→0
u ∈ B for all 0 < β < α,

satisfying

1. ∆u+K|∇u| = 0,

2. u = 0 on B and u = 1 on T ,

3. ∂νu = 0 on F .

Furthermore, by Kato’s inequailty and [23] Theorem 9.19, we get u ∈ W 3,p
loc ((0, 1)

3) and by

maximum principle, u ≥ 0.
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7.3 Spacetime harmonic functions on prisms

To prove Lemma 5.0.1, Leray-Schauder fixed point theorem is applied for existence and

reflection is still an essential tool for regularity. Generally, for P0 being a q-gon, we can

locally around each vertical edge perform a reflection twice for regularity estimates. (For

example, see [50] and [51] which apply a bi-Lipschitz mapping locally onto the boundary

where Neumann conditions are imposed to get it straightened followed by a reflection.)

Therefore, after identifying the side faces where Neumann conditions are imposed, we can

apply standard results in [23] for estimates on Dirichlet problems.

However, since the angles are no longer necessarily π/2 or constant, though local bi-Lipschitz

mappings are applied through identification with reflection is carried out twice as in Ap-

pendix 7.2, the coefficients could be discontinuous, yet still uniformly bounded across the

edges and vertices. Correspondingly, we need to apply weak solution theory instead and

consider different Banach spaces. G0(u) is then expressed as

div(∇u) +K|∇u|

whose structure would be preserved under bi-Lipschitz transformation.

For a type P initial data set (M, g, k), we define the following.

Definition 7.3.1. Let M̊ := intM , H̃ := {w ∈ W 1,2(M̊) | ∃C1, C2 ∈ R s.t. w = C1 on T and w =

C2 onB}, which is a Banach space with W 1,2(M̊) norm.

Definition 7.3.2. Let H̃0 = {w ∈ W 1,2(M̊) |w = 0 on T and B}, which is also a Banach

space with W 1,2(M̊) norm.
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7.3.1 Invertibility of Linear operators

We first have to show that weak (generalised) solutions to the following linear PDE exist,

1. div(∇u) + ⟨X,∇u⟩ = f̃ , where X is a bounded vector field and f̃ ∈ H̃∗
0,

2. u = 0 on B and u = 1 on T ,

3. ∂νu = 0 on F .

It is then equivalent to consider the following.

Lemma 7.3.1. Given a type P initial data set (M, g, k). If X is a bounded vector field, then

the operator L̃ : H̃0 → H̃∗
0 defined by

L̃(u)(v) =

ˆ
M

⟨∇u,∇v⟩ − ⟨X,∇u⟩v

for v ∈ H̃0, is invertible.

Proof. First, an alternative weak maximum principle where we only need to consider supT∪B u+

or infT∪B u− follows from the proof of [23] Theorem 8.1.

Define a bilinear functional L : H̃0 × H̃0 → R by

L(u, v) =
ˆ
M

⟨∇u,∇v⟩ − ⟨X,∇u⟩v

for (u, v) ∈ H̃0×H̃0. As in the proof of [23] Theorem 8.3, we can see there exists a sufficiently

large λ > 0 such that the bilinear functional Lλ defined by

Lλ(u, v) =

ˆ
M

⟨∇u,∇v⟩ − ⟨X,∇u⟩v + λuv
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for (u, v) ∈ H̃0 × H̃0 is coercive. Then follow the argument of [23] Theorem 8.3, by Lax-

Milgram theorem and Fredholm alternative we can conclude that for all f̃ ∈ H̃∗
0, there exists

a unique u ∈ H̃0 such that

L(u, v) = f̃(v)

for all v ∈ H̃0. By [48] Ch. IV Section 1.1, u is by definition the weak solution satisfying

the boundary conditions: u = 0 on T ∪ B and ∂νu = 0 on F . An alternative way is to first

reduce the mixed boundary problem to the Dirchlet problem by bi-Lipschitz map followed

by a reflection as in Appendix 7.2. After the existence of solution is established as above,

we can see the solution satisfies ∂νu = 0 on F .

7.3.2 Existence of solutions

(cf. [30] Section 4, [68] Section 3) By Lemma 7.3.1, there exists v ∈ H̃ such that

1. div(∇v) = 0 in M̊ ,

2. v = 0 on B,

3. v = 1 on T ,

4. ∂νv = 0 on F .

Let u ∈ H̃ denote a solution to the mixed boundary problem in Lemma 5.0.1, it is then

equivalent to seek existence of w := u− v ∈ H̃0 which satisfies

div(∇w) = −K
(

∇(w + 2v)

|∇(w + v)|+ |∇v|

)
· ∇w −K|∇v|

in M̊ .
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Construct a map F : H̃0 × [0, 1] → H̃0 by

F(ϕ, σ) = σ∆−1ĨG(ϕ), (7.3.1)

where G : H̃0 → L2(M̊) and Ĩ : L2(M̊) → H̃∗
0 are respectively defined as follows. For all

ϕ ∈ H̃0,

G(ϕ) =−K

(
∇(ϕ+ 2v)

|∇(ϕ+ v)|+ |∇v|

)
· ∇ϕ−K|∇v|. (7.3.2)

And for all (ξ, ψ) ∈ L2(M̊)× H̃0,

Ĩ(ξ)(ψ) =

ˆ
M

ξψ. (7.3.3)

In particular, we can see w = F(w, 1). Consider the following composition (cf. equation

(4.10) in [30], equation (3.2) in [68]),

H̃0
G−→ L2(M̊)

Ĩ−→ H̃∗
0

∆−1

−−→ H̃0. (7.3.4)

Note that G and ∆−1, by Lemma 7.3.1, are bounded while Ĩ is compact by Sobolev em-

bedding and Schauder theorem ([11] Theorem 6.4). Let wσ = F(wσ, σ). To apply Leray-

Schauder fixed point theorem ([23] Theorem 11.6), it remains to obtain a uniform apriori

W 1,2 estimate for wσ. Consider

∆wσ + σK

(
∇(wσ + 2v)

|∇(wσ + v)|+ |∇v|

)
· ∇wσ = −σK|∇v|. (7.3.5)

By Corollary 8.7 in [23] and the definition of wσ, we know that

||wσ||W 1,2(M̊) ≤ C(||wσ||L2(M̊) + ||v||W 1,2(M̊)) ≤ C(||u||L2(M̊) + ||v||W 1,2(M̊)).
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Following the proof Theorem 8.1 in [23], we get that u ≥ 0 and an apriori estimate

||u||L∞(M) ≤ 1. Thus, wσ is uniformly bounded in H̃0. And thus u = v + w ∈ H̃0 exists.

Again, by reducing the mixed boundary problem to the Dirchlet problem as aforementioned,

we can see the solution satisfies ∂νu = 0 on F .

7.3.3 Regularity of solutions

Regarding regularity, since the structural inequality in [23] Section 8.5 is satisfied, with

reflection as aforementioned, by [23] Theorem 8.22 and 8.29, u ∈ C0,α(M)∩W 1,2(M̊). Then

by elliptic regularity theory as in Appendix 7.2, we get that u is C2,α away from the edges.

In particular, for each compact Ω ⊂M \ Ē , where E denotes the edges, by interior estimates

and boundary estimates as in Section 7.2.3, ||u||C2,α(Ω) is bounded since ||u||C0(M) ≤ 1.

Furthermore, by [43] Theorem 4.1, since the dihedral angles are assumed to be less than π

everywhere, one can see that u is C1,α up to the vertical edges away from T̄ and B̄. Therefore,

a classical solution u ∈ C0,α(M) ∩ C2,α
loc (M \ Ē) ∩ C1,α

loc (M \ (T̄ ∪ B̄)) to the mixed boundary

problem in Lemma 5.0.1 is obtained. Moreover, u ∈ W 3,p
loc (M̊) by Kato’s inequality and [23]

Theorem 9.19.

96



Bibliography

[1] A. Alaee, M. Lesourd, and S.-T. Yau. Stable surfaces and free boundary marginally outer
trapped surfaces. Calculus of Variations and Partial Differential Equations, 60(5):186,
2021.

[2] L. Andersson, M. Mars, and W. Simon. Local existence of dynamical and trapping
horizons. Phys. Rev. Lett., 95:111102, Sep 2005.

[3] R. Arnowitt, S. Deser, and C. W. Misner. Energy and the criteria for radiation in
general relativity. Phys. Rev., 118:1100–1104, May 1960.
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